Lineare Regression und Korrelation (s. auch Applet auf Arbeitsblatt 1 : Lineare Regression

Größe: px
Ab Seite anzeigen:

Download "Lineare Regression und Korrelation (s. auch Applet auf Arbeitsblatt 1 : Lineare Regression"

Transkript

1 Leare Regreo ud Korrelato (. auch Applet auf Fragetellug: Lerzele: De leare Regreo bechäftgt ch mt der folgede Fragetellug: Gegebe d Pukte ( / ), =,.., m (,)- Koordatetem ( > ). Geucht t de leare Fukto mt Glechug = f() = a + b, de de Pukte 'optmal aähert'. De Korrelatorechug betmmt u e Ma dafür, ob de Aahme ee leare Zuammehag zwche de - ud de - Werte voll t.. Bedeutug der 'optmale Aäherug.. Defto ud Berechug vo Mttelwert ud Varaz der -Werte bzw. der -Werte owe der Kovaraz. 3. Betmmug der Parameter a ud b der Geradeglechug = f() = a + b. 4. Begrff de Korrelatokoeffzete r ud ee Bedeutug al Ma für de Qualtät ee leare Zuammehag der - ud -Werte. 5. Berechug de Korrelatokoeffzete r. Vorgehe: Studum vo Arbetblatt : Leare Regreo ud da Arbetblatt : Korrelatorechug. Lerkotrolle: Löe der jewel agegebee Aufgabe. Arbetblatt : Leare Regreo Bevor wr auf de Begrff 'optmal aäher' egehe, wolle wr och ege Formel, de vo früher her bekat d, zuammetelle: ehe auch DMK/DPK Formel ud Tafel, p. 85. Mttelwert der -Werte: Varaz der -Werte: = ( ) = ( ) = Mttelwert der -Werte: = Varaz der -Werte: We lät ch u der Begrff 'optmal aäher' mathematch präzere? Al praktch brauchbar ud auch theoretch gut fudert hat ch de Summe der Quadrate der Abwechuge f( ) - zwche Fuktowert ud -Koordate der Pukte ( / ) heraugetellt. Wr defere de Fehlerquadratumme F : F := (f( ). ) Da f( ) = a + b, o wrd F Abhäggket vo a ud b zu F(a,b) = (a + b. ) Wr uche u dejege Gerade g, für de dee Fehlerquadratumme mmal t. E d alo de zwe Ubekate a ud b zu bereche. Mt Mttel der höhere (B. Berchtold)

2 Mathematk ka ma zege, da der Pukt ( / ) mmer auf deer geuchte Gerade g legt. g: = a + b 3 = 5 4 f() Da alo = f( ) = a + b, o lät ch b durch a audrücke: b = - a. F t alo ur och abhägg vo eer Varable a: F(a) = (a + a ). Da F(a) mmal werde oll, o bldet ma de erte Abletug F'(a) {ummadewee Ablete ach a, Ketteregel beachte!} ud etzt e glech Null: F'(a) = (a + a ) ( ) = 0. Dvo mt ud Aureche der Klammer lefert: (a a + + a + ) = 0, alo a ( ( + ) ) = ( + + ). Berückchtgt ma =, ud de Recheregel für Summe {kotate Faktore ach vore!}, o glt: = + a( ) = + +. De Stegug a berechet ch alo zu a =. b lät ch da au a bereche: b = - a (. weter obe). De Löug der Aufgabe 3 zegt, da F für dee a tatächlch mmal wrd. (B. Berchtold)

3 Defert ma de Kovaraz c := ( ) ( ) ud zegt ma, da c = ( ) ud = ( ) (ehe Aufgabe ), o glt für de Kovaraz c Stegug a der geuchte Gerade: a = =. Varaz der Werte Bepel: -Werte: 3 4 ( = 4) -Werte: 4 5 Auf pezelle Dartellug zur Berechug vo Had wrd verzchtet, da päter de gewüchte Gröe oheh vom Tacherecher gelefert werde. Mttelwert = 4 (++3+4) =.5 Mttelwert = 4 (++4+5) = 3 Varaz der -Werte = (( -.5) + ( -.5) + (3 -.5) + (4 -.5) 5 ) = 3 3 Varaz der -Werte = (( - 3) + ( - 3) + (4-3) + (5-3) 0 ) = 3 3 Kovaraz c = 3 ((-.5) (-) + (-0.5) (-) ) = c 7 Stegug a = = = = , Acheabchtt b = = -0.5 De Glechug der Regreogerade g het alo = f() = (B. Berchtold) 3

4 Aufgabe zu Tel Nr. : Gegebe d de folgede ver Pukte: -Werte Werte Betmme (ohe Mthlfe der pezelle Fuktoe de Tacherecher) de Mttelwerte ud, de Varaze ud, de Kovaraz c ud de Glechug der Auglechgerade g: = f() = a + b. Nr. : Bewee mt Hlfe der Recheregel für Summe ud der Defto der Mttelwerte: a) Für de Varaz der -Werte glt: ) = ( ) = ( ) b) Für de Kovaraz c glt: c = ( ) ( ) = ( Nr. 3: c Im Theoretel habe wr au der Setzug F'(a) = 0 für a de Wert a = erhalte. Zege mt Hlfe der zwete Abletug F''(a), da F für dee a tatächlch mmal wrd. Löuge. =.5 =.5 = = c = g: = =. a) ( ) = ( + ) = + = b) ( ) ( ) = ( + ) =... = > 3. F''(a) = ( + ) = ( ) = ( ) 0 (ogar für alle a) (B. Berchtold) 4

5 Arbetblatt : Korrelatorechug Au dem Arbetblatt t da Verfahre, um für jede belebge Puktwolke ( / ), =,.., ee Auglechgerade mt Glechug = a + b zu betmme, bekat. De Korrelatorechug gbt u e Ma dafür a, ob de Aahme ee leare Zuammehag zwche de - ud de -Werte voll t. Dazu wrd der og. Korrelatokoeffzet r defert. Im Arbetblatt wurde de Fehlerquadratumme F defert: F := (f( ) ) bzw. F(a,b) = (a + b ). Da = f( ) = a + b, o t b = - a. F t alo ur och abhägg vo eer Varable a: F(a) = (a + a ) = (a ( ) + ( )) = (a ( ) + a( ) ( ) + ( ) ) Im Arbetblatt wurde de Kovaraz c al Für de Stegug a der Gerade g folgte da dort: = ( ) ( ) = c defert. a = Kovaraz Varaz der Werte = c. Setzt ma u a de Fehlerquadratumme F e, o glt: c c F = ( ( ) + ( ) ( ) + ( ). ) 4 ) ) c = ( ) ( ) Berückchtgt ma ( ( ), ( ) = (, ) = ( ud de Recheregel für Summe {kotate Faktore ach vore!}, o glt: F = c c c ( ) ( )c + ( ) = ( )( ) = ( ) ( 4 Wr defere u de Korrelatokoeffzete r al r := c. c ) (B. Berchtold) 5

6 Egechafte vo r : c. - r de: Fehlerquadratumme F 0, alo.. r = a de: a = c 3. r > 0 c > 0 a > 0 Regreogerade g hat potve Stegug. r < 0 c < 0 a < 0 Regreogerade g hat egatve Stegug. 4. Je äher r be, deto beer de Leartät zwche de - ud -Werte, de je äher r be, deto kleer wrd de Fehlerquadratumme F. 5. Für r = lege alle Pukte ( / ) auf der Gerade g, de F wrd Null. Da folgede Bepel t beret vo Arbetblatt bekat. Berechet wrd u zuätzlch der Korrelatokoeffzet. Bepel: -Werte: 3 4 ( = 4) -Werte: 4 5 Auf pezelle Dartellug zur Berechug vo Had wrd verzchtet, da päter de gewüchte Gröe oheh vom Tacherecher gelefert werde. Mttelwert = 4 (++3+4) =.5 Mttelwert = 4 (++4+5) = 3 Varaz der -Werte = (( -.5) + ( -.5) + (3 -.5) + (4 -.5) 5 ) = 3 3 Varaz der -Werte = (( - 3) + ( - 3) + (4-3) + (5-3) 0 ) = 3 3 Kovaraz c = 3 ((-.5) (-) + (-0.5) (-) ) = c 7 Stegug a = = = = , Acheabchtt b = = -0.5 De Glechug der Regreogerade g het alo = f() = Korrelatokoeffzet r = a 5.4 =.4 = , alo gute Korrelato. 0 (B. Berchtold) 6

7 Aufgabe zu Tel Nr. : Gegebe d de folgede ver Pukte: -Werte Werte Betmme (ohe Mthlfe der pezelle Fuktoe de Tacherecher) de Mttelwerte ud, de Varaze ud, de Kovaraz c ud de Glechug der Auglechgerade g: = f() = a + b. Gb de Korrelatokoeffzete r a. Nr. : Gegebe d de folgede ver Pukte: -Werte 3 4 -Werte - 0 a) Zeche de ver Pukte e Koordatetem. b) Betmme de Mttelwerte ud, de Varaze ud, de Kovaraz c ud de Glechug der Auglechgerade g: = f() = a + b. Zeche de Gerade g auch Koordatetem. Gb de Korrelatokoeffzete r a. c) It de Aahme ee leare Zuammehag zwche de - ud de -Werte voll? Löuge. =.5 =.5 = = c = g: = r = (ehr gute Korrelato). a) - b) =.5 = 0.5 = = c = g: = 0. (b = 0) r = (praktch kee Korrelato) c) De Aahme ee leare Zuammehag t zu verwerfe! (B. Berchtold) 7

8 Arbetblatt 3 : Regreo mt dem TI89 (Deer Tel auch de Aufgabe ud de Löuge - tammt vo Walter Burgherr, Mathematklehrer a der Katochule Reubühl. Er wurde vo mr auf de TI89 agepat) Im Arbetblatt 3 bearbete wr Probleme der leare Regreo mt dem Tacherecher. Deer betet auerdem Möglchkete a, de Pukte ( / ) durch Graphe aderer Fuktotpe (quadratche Fkt., kubche Fkt., bquadratche Fkt., Potezfkt., Epoetalfkt., logarthmche Fkt.) zu appromere (erweterte Regreo). Lerzele: Vorgehe:. Du kat Daterehe mt Hlfe de Matr-Edtor de TI-89 egebe ud edtere.. Au de Lte der - ud -Werte kat du de Koeffzete der Regreogerade a ud b, owe de Korrelatokoeffzete r ermttel. 3. Du wet, we ee optmal aäherde Potez-, Epoetal- oder Logarthmufukto durch Zurückführe auf leare Regreo gewoe wrd. 4. Du kat de etprechede Fuktoparameter mt dem Recher betmme. 5. Du erket, welche der agebotee Fuktotpe de Zuammehag zwche - ud -Werte am bete wedergbt. Bearbete für Dch da Arbetblatt 3: Regreo mt dem Tacherecher TI-89. Lerkotrolle: Löe der weter ute agegebee Aufgabe. Leare Regreo Bepel: E d de folgede füf Pukte gegebe ud m Koordatetem dargetellt. : : Zeche ee Gerade (provorche Regreogerade), de deer Meug ach optmal a de Pukte agepat t (d.h. m Mttel möglcht ahe a de Pukte herakommt) ud le Stegug a * ud Acheabchtt b * ab. (B. Berchtold) 8

9 a* = a = r = a' = r' = b* = b = b' = Gb de -Werte we folgt de TI89 e: wähle da Meu APPS (Applcato) wähle de Matr-Edtor wähle New ud da Tpe Data Gb ee Varableame e, z.b. Re Gb u de Werte Spalte c ud de -Werte Spalte c e Wähle mt F5 da Utermeu CALC ud aktvere mt ENTER de Berechug <LReg> Gb für c ud für c e. Le de Koeffzete a, b der Regreogerade = a + b ud de Korrelato r ab ud vergleche mt a * ud b *. Zeche de korrekte Regreogerade de Fgur e. Ädere de Pukt P 3 (5 / 5), dem du der Spalte c für 3 de Wert 4 egbt. Betmme wederum a, b ud r. We habe ch Regreogerade ud Korrelato geädert? Merke: De Korrelato legt zwche - ud : - r Je äher de Korrelato r be oder be - legt, deto beer bechrebt de leare Fukto de Zuammehag zwche - ud -Werte. Regreo mt Potezfukto = a b Logarthmert ma de Fuktoglechug = a b, (Ba belebg), o ergbt ch log = log a + b log Fall Pukte ( / ) auf der Potezkurve lege, o lege de etprechede Pukte (log / log ) auf der Gerade mt Stegug b ud Acheabchtt log a. De Meuwahl CALC/<PwrReg> veralat, da der Recher für de Logarthme der gegebee - ud -Werte ee leare Regreo durchführt ud darau de Parameter der Potezkurve a ud b betmmt. Für de Korrelato r (der Logarthme): ehe p.0 (*) (B. Berchtold) 9

10 Regreo mt Epoetalfukto = a b Logarthmert ma de Fuktoglechug = a b o ergbt ch log = log a + log b Fall Pukte ( / ) auf der Epoetalkurve lege, o lege de Pukte ( / log ) auf der Gerade mt Stegug log b ud Acheabchtt log a. De Meuwahl CALC/<EpReg> veralat, da der Recher für de gegebee -Werte ud de Logarthme der -Werte ee leare Regreo durchführt ud de Parameter der Epoetalkurve a ud b agbt. Für de Korrelato r: ehe (*). Regreo mt Logarthmufukto = a + b l Fall Pukte ( / ) auf eer olche Logarthmukurve lege, o lege de Pukte (l / ) auf der Gerade mt Stegug b ud dem Acheabchtt a. De Meuwahl CALC/<LReg> veralat, da der Recher für de atürlche Logarthme der -Werte ud de -Werte ee leare Regreo durchführt ud de Parameter der Logarthmukurve a ud b agbt. (*) Der TI89 gbt de Korrelatokoeffzete r ur be learer Regreo a. Wll ma de etprechede r-werte auch be PwrReg, EpReg ud LReg, o hat ma de - Werte, bzw. -Werte zu logarthmere ud etpreched de Modelle ee leare Regreo durchzuführe. Am efachte ertellt ma dazu m Matr-Edtor ee Koloe c3=l(c) ud ee wetere Koloe c4=l(c). Polomche Regreo Durch Pukte ( / ) wrd ee möglcht gut appromerede quadratche, kubche oder Polomfukto höhere Grade gelegt. Da Krterum für ee optmale Kurve t daelbe we be der leare Regreo (Arbetblatt ). De Koeffzete werde mt Methode der höhere Mathematk betmmt. Der Recher TI-89 lefert quadratche, kubche ud Polome verte Grade. Meuwahl: <QuadReg>, <CubcReg> ud <QuartReg> Aufgabe: Führe mt de (urprüglche) Zahle de obge Bepel logarthmche, Epoetal- ud Potez-Regreo durch ud otere de Ergebe a l = a lo = a e = a po = b l = b lo = b e = b po = r l = r lo = r e = r po = Welche Regreomodell hat de abolut gröte Korrelato? Notere de betagepate deer Fuktoglechuge = f() = Gb ebeo de betappromerede Polome a = P () = = P 3 () = = P 4 () = Welche davo t da bete? Erklärug! (B. Berchtold) 0

11 Aufgabe zu Tel 3 Nr. : Be der adabatche Kompreo ee fat deale Gae werde Druck ud Temperatur eer Merehe we folgt ermttelt: Druck p (-Werte, bar) Temperatur T (-Werte, K) Betmme de Parameter a, b ud de Korrelato r für leare, logarthmche, epoetelle ud Potez-Regreo. T = a * p + b T = a + b * l p T = a * b p T = a * p b a l = a lo = a e = a po = b l = b lo = b e = b po = r l = r lo = r e = r po = (ehe obe) Welche t da Modell mt der am ächte be legede Korrelato? Notere de Fuktoglechug der am bete agepate Fukto. T = f(p) = Für e deale Ga glt de Bezehug: T κ = cot * p κ- (DMK/DPK Formel ud Tafel, p. 54) Betmme κ (Kappa) au der obge Fuktoglechug; um welche Ga köte e ch hadel? (Formelammlug S. 73) Nr. : Der radoaktve Zerfall vo Radum 4 erfolgt epoetell. Ee Meug ergbt de folgede Werte: Zet t ( Tage) Mae m ( Gramm) Betmme de zugehörge Epoetalfukto, de de Mefehler auglecht, durch epoetelle Regreo. Notere de Parameter a, b ud de Korrelato r. a = a = b = b = r = r = Bereche weter de Werte l ud führe für de Pukte ( / l ) ee leare Regreo durch; Vergleche de Parameter a, b, r mt de zuert gefudee. Löuge. T = a * p b = a * p (κ-)/κ mt a = 96.7 ud b = 0.393, r = ud κ = / (-b) =.648 (Argo). m = a * b t mt a =.67 b = r = l m = a * t + b mt a = b = r = Der Verglech lefert a = e b b = e a r = r Da Vorzeche vo r t durch de Stegug der Regreogerade gegebe; dee fällt. (B. Berchtold)

Regression und Korrelation

Regression und Korrelation Regreo ud Korrelato regreo: Zurückführug, Rückchrete correlato: Wechelbezehug Praktche Aäherug (Bepel1) wevele Ewemoleküle d dem Blutplama? (Stück, mol, g, ) we gro t de Ewekozetrato de Blutplama? (St/L,

Mehr

Regression und Korrelation

Regression und Korrelation Regreo ud Korrelato regreo: Zurückführug, Rückchrete correlato: Wechelbezehug Praktche Aäherug (Bepel1) wevele Ewemoleküle d dem Blutplama? (Stück, mol, g, ) we gro t de Ewekozetrato de Blutplama? (St/L,

Mehr

Multiple Regression (1) - Einführung I -

Multiple Regression (1) - Einführung I - Multple Regreo Eführug I Mt eem Korrelatokoeffzete ud der efache leare Regreo köe ur varate Zuammehäge zwche zwe Varale uterucht werde. Beutzt ma tatt dee mehrere Varale zur Vorherage, egt ma ch auf da

Mehr

6. Zusammenhangsmaße (Kovarianz und Korrelation)

6. Zusammenhangsmaße (Kovarianz und Korrelation) 6. Zuammehagmaße Kovaraz ud Korrelato Problemtellug: Bher: Ee Varable pro Merkmalträger, Stchprobe x,, x Geucht: Maße für Durchchtt, Streuug, uw. Jetzt: Zwe metrche! Varable pro Merkmalträger, Stchprobe

Mehr

Regressionsgerade und Korrelationskoeffizient

Regressionsgerade und Korrelationskoeffizient Regreogerade ud Korrelatokoeffzet Für Merkmalträger ee de Beobachtugwerte = der Merkmale ud fetgetellt worde. Gegebe d alo Wertepaare der Merkmalaupräguge ud De durchchttlche Auprägug der Merkmale t {(,

Mehr

Deskriptive Statistik - Aufgabe 2

Deskriptive Statistik - Aufgabe 2 Derptve Statt - Augabe Budelad Mäer Fraue Bade-Württemberg 7,5 7,5 Bayer 6,8 7,5 Berl-Wet 4,4 Berl-Ot,8 4, Bradeburg 0, 0,8 Breme 4,6,6 Hamburg, 8, Hee 8, 8, Mecleburg-Vorpommer,3, Nederache 0,3, Nordrhe-Wetale

Mehr

1 n. STATISTIK I Übung 06 Schiefe und Wölbung. 1 Kurze Wiederholung. Eine dritte Form von Verteilungsparametern?

1 n. STATISTIK I Übung 06 Schiefe und Wölbung. 1 Kurze Wiederholung. Eine dritte Form von Verteilungsparametern? Stattk I Übu 06 Chrta Reboth STATISTIK I Übu 06 Schefe ud Wölbu Kurze Wederholu Ee drtte For vo Verteluparaeter? Nebe de Maße der zetrale Tedez (Zetru eer Vertelu) ud de Dperoparae- ter (Streuu der Werte

Mehr

ue biostatistik: korrelation und regression 1/7 h. lettner / physik

ue biostatistik: korrelation und regression 1/7 h. lettner / physik ue botattk: korrelato ud regreo /7 h. letter / phk Korrelato ud Regreo Uterucht ma zwe oder mehrere Zufallvarable, da ka ma u. U. fettelle, daß zwche de Zufallvarable e Zuammehag beteht. Z.B. köte ma erwarte,

Mehr

Spannweite, Median Quartilsabstand, Varianz und Standardabweichung.

Spannweite, Median Quartilsabstand, Varianz und Standardabweichung. Rudolf Brkma http://brkma-du.de Sete 06.0.008 Spawete, Meda Quartlsabstad, Varaz ud Stadardabwechug. Streuug um de Mttelwert. I de folgede Säuledagramme st de Notevertelug zweer Schülergruppe (Mädche,

Mehr

Statistik für Ingenieure (IAM) Version 3.0/21.07.2004

Statistik für Ingenieure (IAM) Version 3.0/21.07.2004 Stattk fü Igeeue (IAM) Veo 74 Vaazaalye Mt de efache Vaazaalye (ANOVA Aaly of Vaace) wd de Hypothee gepüft, ob de Mttelwete zwee ode mehee Stchpobe detch d, de au omaletelte Gudgeamthete gezoge wede, de

Mehr

Lösung: Zur Erinnerung noch mal die Werte (Klasseneinteilung), aus Serie1, Aufgabe 4:

Lösung: Zur Erinnerung noch mal die Werte (Klasseneinteilung), aus Serie1, Aufgabe 4: Derptve Sttt Löug zu. Übugufgbe Aufgbe. Betmme Se zu Aufgbe 4 der. Sere jewel uter Verwedug der 0 Stchprobedte ud uter Verwedug der Kleetelug de Atel der Glühlmpe, dere Lebeduer zwche 400 ud 600 Stude

Mehr

Leitfaden zu den Indexkennzahlen der Deutschen Börse

Leitfaden zu den Indexkennzahlen der Deutschen Börse Letfade zu de Idexkezahle der Deutsche Börse Verso.5 Deutsche Börse AG Verso.5 Letfade zu de Idexkezahle der Deutsche Börse Page Allgemee Iformato Um de hohe Qualtät der vo der Deutsche Börse AG berechete

Mehr

Die Binomialverteilung als Wahrscheinlichkeitsverteilung für die Schadenversicherung

Die Binomialverteilung als Wahrscheinlichkeitsverteilung für die Schadenversicherung De Bomalvertelg al Wahrchelchketvertelg für de Schadevercherg Für da Modell eer Schadevercherg e gegebe: = Schade ee Verchergehmer, we der Schadefall etrtt w = Wahrchelchket dafür, da der Schadefall etrtt

Mehr

(Markowitz-Portfoliotheorie)

(Markowitz-Portfoliotheorie) Thema : ortfolo-selekto ud m-s-rzp (Markowtz-ortfolotheore) Beurtelugskrtere be quadratscher Nutzefukto: Beroull-rzp + quadratsche Nutzefukto Thema Höhekompoete: Erwartugswert µ Rskokompoete: Stadardabwechug

Mehr

Einführung Fehlerrechnung

Einführung Fehlerrechnung IV Eführug Fehlerrechug Fehlerrechuge werde durchgeführt, um de Vertraueswürdgket vo Meßergebsse beurtele zu köe. Uter dem Fehler eer Messug versteht ma de Abwechug ees Meßergebsses vom (grudsätzlch ubekate

Mehr

Allgemeine Prinzipien

Allgemeine Prinzipien Allgemee Przpe Es estere sebe Grudehete der Physk; alle adere physkalsche Größe ka ma darauf zurückführe. Dese Grudehete sd: Läge [m] Masse [kg] Zet [s] Elektrsche Stromstärke [A] Temperatur [K], Stoffmege

Mehr

Aufgaben. 1. Gegeben seien folgende Daten einer statistischen Erhebung, bereits nach Größe sortiert (Rangliste):

Aufgaben. 1. Gegeben seien folgende Daten einer statistischen Erhebung, bereits nach Größe sortiert (Rangliste): Aufgabe. Gegebe see folgede Date eer statstsche Erhebug, berets ach Größe sortert (Raglste): 0 3 4 4 5 6 7 7 8 8 8 9 9 0 0 0 0 0 3 3 3 3 4 4 5 5 5 5 5 6 6 6 7 7 8 30 Erstelle Se ee Tabelle, der de Merkmalsauspräguge

Mehr

Im Wöhlerdiagramm wird die Lebensdauer (Lastwechsel oder Laufzeit) eines Bauteils in Abhängigkeit von der Belastung dargestellt.

Im Wöhlerdiagramm wird die Lebensdauer (Lastwechsel oder Laufzeit) eines Bauteils in Abhängigkeit von der Belastung dargestellt. Webull & Wöhler 0 CRGRAPH Wöhlerdagramm Im Wöhlerdagramm wrd de Lebesdauer ( oder Laufzet) ees Bautels Abhägget vo der Belastug dargestellt. Kurzetfestget Beaspruchug Zetfestget auerfestget 0 5 3 4 6 0

Mehr

Zur Interpretation einer Beobachtungsreihe kann man neben der grafischen Darstellung weitere charakteristische Größen heranziehen.

Zur Interpretation einer Beobachtungsreihe kann man neben der grafischen Darstellung weitere charakteristische Größen heranziehen. Rudolf Brkma http://brkma-du.de Sete 0.0.008 Lagemaße der beschrebede Statstk. Zur Iterpretato eer Beobachtugsrehe ka ma ebe der grafsche Darstellug wetere charakterstsche Größe herazehe. Mttelwert ud

Mehr

Beispielklausur BWL B Teil Marketing. 45 Minuten Bearbeitungszeit

Beispielklausur BWL B Teil Marketing. 45 Minuten Bearbeitungszeit Bespelklausur BWLB TelMarketg 45MuteBearbetugszet BWLBBespelklausurTelMarketg Sete WchtgeHwese:. VOLLSTÄNDIGKEIT: PrüfeSeuverzüglch,obIhreKlausurvollstädgst(Aufgabe).. ABGABE: EsstdegesamteKlausurabzugebe.

Mehr

4. Marshallsche Nachfragefunktionen Frage: Wie hängt die Nachfrage nach Gütern

4. Marshallsche Nachfragefunktionen Frage: Wie hängt die Nachfrage nach Gütern Prof. Dr. Fredel Bolle Vorlesug "Mkroökoome" WS 008/009 III. Theore des Haushalts 0 Prof. Dr. Fredel Bolle Vorlesug "Mkroökoome" WS 008/009 III. Theore des Haushalts 0 4. Marshallsche Nachfragefuktoe Frage:

Mehr

Maße zur Kennzeichnung der Form einer Verteilung (1)

Maße zur Kennzeichnung der Form einer Verteilung (1) Maße zur Kezechug der Form eer Vertelug (1) - Schefe (skewess): Defto I - Ee Vertelug vo Messwerte wrd als schef bezechet, we se der Wese asymmetrsch st, dass lks oder rechts des Durchschtts ee Häufug

Mehr

2 Regression, Korrelation und Kontingenz

2 Regression, Korrelation und Kontingenz Regresso, Korrelato ud Kotgez I desem Kaptel lerst du de Zusammehag zwsche verschedee Merkmale durch Grafke zu beschrebe, Maßzahle ür de Stärke des Zusammehags zu bereche ud dese zu terpretere, das Wsse

Mehr

14. Folgen und Reihen, Grenzwerte

14. Folgen und Reihen, Grenzwerte 4. Folge ud Rehe, Grezwerte 4. Folge ud Rehe, Grezwerte 4. Ee Folge defere Defere de Folge (a ) Õ mt a =+: Eplzte Defto *+ a() Doe 3, falls = Rekursve Defto Defere de Folge (b ) Õ, b = : b + sost whe(=,

Mehr

Regressionsrechnung und Korrelationsrechnung

Regressionsrechnung und Korrelationsrechnung Regressosrechug ud Korrelatosrechug Beschrebede Statstk Modul : Probleme be der Abhäggketsaalyse Problem : Es gbt mest cht ur ee Eflussfaktor (Probleme sd selte mookausal ) A Ursache() Wrkug B C - efache

Mehr

Grundlagen der Energietechnik Energiewirtschaft Kostenrechnung. Vorlesung EEG Grundlagen der Energietechnik

Grundlagen der Energietechnik Energiewirtschaft Kostenrechnung. Vorlesung EEG Grundlagen der Energietechnik Prof. Dr. Ig. Post Grudlage der Eergetechk Eergewrtschaft Kosterechug EEG. Vorlesug EEG Grudlage der Eergetechk De elektrsche Eergetechk st e sogeates klasssches Fach. Folglch st deses Fach vele detallert

Mehr

Deskriptive Statistik - Aufgabe 3

Deskriptive Statistik - Aufgabe 3 Desrptve Statst - Aufgabe 3 De Überachtugszahle der Fremdeverehrsgemede "Bachstadt" für de Moate ud zege auf de erste Blc scho deutlche Uterschede de ezele Ortschafte. We seht e etsprecheder Verglech der

Mehr

Ordnungsstatistiken und Quantile

Ordnungsstatistiken und Quantile KAPITEL Ordugsstatste ud Quatle Um robuste Lage- ud Streuugsparameter eführe zu öe, beötge wr Ordugsstatste ud Quatle... Ordugsstatste ud Quatle Defto... Se (x,..., x R ee Stchprobe. Wr öe de Elemete der

Mehr

Korrelations- und Assoziationsmaße

Korrelations- und Assoziationsmaße k m χ : j l r +. Zusammehagsmaße ( o e ) jl jl e jl Korrelatos- ud Assozatosmaße e jl 5 Merkmal Y Summe X b b m a H (a,b) H (a,b). a H (a,b) H (a,b). Summe.. Zusammehagsmaße Eführug Sche- ud Noses-Korrelato

Mehr

die Schadenhöhe ( = Risikoergebnis) des i-ten Versicherungsnehmers i 1,, n).

die Schadenhöhe ( = Risikoergebnis) des i-ten Versicherungsnehmers i 1,, n). Aufgabe Wr betrachte ee Reteverscherug der Retebezugszet mt jährlch vorschüssger Retezahlug solage der Verscherte lebt. a) Bezeche V bzw. V de rechugsmäßge Deckugsrückstellug am Afag bzw. am Ede des Verscherugsjahres.

Mehr

WIB 2 Mathematik und Statistik Formelsammlung. Z Menge der ganzen Zahlen {...,-3,-2,-1,0,1,2,3,...}

WIB 2 Mathematik und Statistik Formelsammlung. Z Menge der ganzen Zahlen {...,-3,-2,-1,0,1,2,3,...} 1 Allgeme Geometrsche Rehe: q t = 1 q1 t=0 1 q Mtterachtsformel: ax 2 bxc=0 x 1/ 2 = b±b2 4ac 2a Bomsche Formel: 1. ab 2 =a 2 2abb 2 2. a b 2 =a 2 2abb 2 3. ab a b=a 2 b 2 Wurzel: ugerade 1 Ergebs gerade

Mehr

Universitätslehrgang Sports Physiotherapy Einführung in die Statistik

Universitätslehrgang Sports Physiotherapy Einführung in die Statistik Departmet of Sport Scece ad Kesolog Uverstätslehrgag Sports Phsotherap Eführug de Statstk Gerda Strutzeberger Block I Block Mttwoch 5..0 3:00 bs 4:50 Grudlage, Skaleveau 5:05 bs 7:00 Gütekrtere, Hpothese,

Mehr

Statistik mit Excel und SPSS

Statistik mit Excel und SPSS Stattk mt Excel ud SPSS G. Kargl Grudbegrffe Grudgeamthet Erhebugehet Merkmale Werteberech Stchprobe Telbereche der Stattk: Dekrtpve Stattk Iduktve Stattk Exploratve Stattk U- / B- / Multvarate Stattk

Mehr

Lösung : Merkmal Skalierung geeignetes Zusammenhangsmaß. Studienfach nominal korrigierter Kontingenzkoeffizient C korr Anfangsgehalt proportional

Lösung : Merkmal Skalierung geeignetes Zusammenhangsmaß. Studienfach nominal korrigierter Kontingenzkoeffizient C korr Anfangsgehalt proportional Dekrptve Stattk Löug zu.5 Übugaufgabe Aufgabe.) Gb e geegete Zuammehagmaß für de folgede Merkmalpaare a: a) Studefach ud Afaggehalt DM be de Abolvete eer Hochchule. b) Etellugalter ud Afaggehalt DM be

Mehr

Korrelation und Assoziation

Korrelation und Assoziation Sche- ud Noe- Korrelato Korrelato ud Aozato Schekorrelato: zwe Merkmale häge bede vo eem wetere drtte ab Noekorrelato: zwe Merkmale habe ee hohe Korrelato, aber kee urächlche Zuammehag Korrelato ud Aozato

Mehr

Geometrisches Mittel und durchschnittliche Wachstumsraten

Geometrisches Mittel und durchschnittliche Wachstumsraten Dpl.-Kaufm. Wolfgag Schmtt Aus meer Skrpterehe: " Kee Agst vor... " Ausgewählte Theme der deskrptve Statstk Geometrsches Mttel ud durchschttlche Wachstumsrate Modellaufgabe Übuge Lösuge www.f-lere.de Geometrsches

Mehr

Grundgesetze der BOOLEschen Algebra und Rechenregeln

Grundgesetze der BOOLEschen Algebra und Rechenregeln 5... Grudgesetze der BOOLEsche Algebra ud Recheregel Auf de mathematsch korrekte Eführug der BOOLEsche Algebra ka ch verzchte, da das Ihrer Mathematkausbldug ausführlch behadelt wrd. Ich stelle Ihe zuächst

Mehr

Sitzplatzreservierungsproblem

Sitzplatzreservierungsproblem tzplatzreserverugsproblem Be vele Zugsysteme Europa müsse Passagere mt hrem Zugtcet ee tzplatzreserverug aufe. Da das Tcetsystem Kude ee ezele Platz zuwese muss, we dese e Tcet aufe, ohe zu wsse, welche

Mehr

Teil IV Musterklausuren (Univ. Essen) mit Lösungen

Teil IV Musterklausuren (Univ. Essen) mit Lösungen Tel IV Musterklausure (Uv. Esse) mt Lösuge Hauptklausur WS 9/9 Aufgabe : a) Revolverheld R stzt m Saloo ud pokert. De Wahrschelchket, daß er dabe ee seer Mtspeler bem Falschspel erwscht (Eregs F), bezffert

Mehr

BERGISCHE UNIVERSITÄT WUPPERTAL FB B: SCHUMPETER SCHOOL OF BUSINESS AND ECONOMICS

BERGISCHE UNIVERSITÄT WUPPERTAL FB B: SCHUMPETER SCHOOL OF BUSINESS AND ECONOMICS Name: Vorame: Matrkel-Nr.: BERGISCHE UNIVERSITÄT WUPPERTAL FB B: SCHUMPETER SCHOOL OF BUSINESS AND ECONOMICS Itegrerter Studegag Wrtshaftswsseshaft Klausuraufgabe zur Hauptprüfug Prüfugsgebet: BWW 2.8

Mehr

Übungen zur Wahrscheinlichkeitsrechnung und Schliessenden Statistik

Übungen zur Wahrscheinlichkeitsrechnung und Schliessenden Statistik Übuge zur Wahrschelchketsrechug ud Schlessede Statstk Aufgabe ud Lösuge vo Peter M Schulze, Verea Dexhemer. Auflage Übuge zur Wahrschelchketsrechug ud Schlessede Statstk Schulze / Dexhemer schell ud portofre

Mehr

Leitfaden zur Auswertung analytischer Ergebnisse

Leitfaden zur Auswertung analytischer Ergebnisse Praktkum Waercheme/Waeraaltk m Bachelor-Studegag Water Scece; Cheme Praktkumleter: PD Dr. Urula Telgheder; Dr. Jörg Hppler Letfade zur Auwertug aaltcher Ergebe Dr. Urula Telgheder Stad: 5.09.013-1 - Lte

Mehr

Unter einer Rente versteht man eine regelmässige und konstante Zahlung

Unter einer Rente versteht man eine regelmässige und konstante Zahlung 8 Aweduge aus der Fazmathematk Perodsche Zahluge: Rete ud Leasg Uter eer Rete versteht ma ee regelmässge ud kostate Zahlug Bespele: moatlche Krakekassepräme, moatlche Altersrete, perodsches Spare, verteljährlcher

Mehr

2. Zusammenhangsanalysen: Korrelation und Regression

2. Zusammenhangsanalysen: Korrelation und Regression 2. Zusammehagsaalse: Korrelato ud Regresso Dowloads zur Vorlesug 2. Zusammehagsaalse: Korrelato ud Regresso 2 Grudbegrffe zwedmesoale Stchprobe De Gewug vo mehrere Merkmale vo eer Beobachtugsehet führt

Mehr

2. Die Elementarereignisse sind die Kombinationsmöglichkeiten von: Wappen = W und:

2. Die Elementarereignisse sind die Kombinationsmöglichkeiten von: Wappen = W und: 1 L - Hausaufgabe Nr. 55 Sotag, 1. Ju 2003 Ee Müze werde dremal geworfe. Was st das Zufallsexpermet, das Elemetareregs, das zusammegesetzte Eregs, der Eregsraum ud de Wahrschelchket? Lösugs kte.: 1 De

Mehr

Grundzüge der Preistheorie

Grundzüge der Preistheorie - - Grudzüge der Prestheore Elemetare Gedake der uterehmersche Prespoltk Verso 3. Harr Zgel 999-3, EMal: HZgel@aol.com, Iteret: http://www.zgel.de Nur für Zwecke der Aus- ud Fortbldug Ihaltsüberscht. Grudgedake.....

Mehr

Carl Friedrich Gauß (Deutscher Mathematiker, 1777 bis 1855) formulierte die folgende Formel n

Carl Friedrich Gauß (Deutscher Mathematiker, 1777 bis 1855) formulierte die folgende Formel n mthphys-ole Alyss. Klsse Techk Itegrlrechug Vertefug des Itegrlegrffs De Itegrlrechug ht ds Zel, de Flächehlt krummlg egrezter Flächestücke zu ereche. Be der äherugswese Berechug der Fläche uter Polyomfuktoe

Mehr

Zahlensysteme. Dezimalsystem. Binär- oder Dualsystem. Hexadezimal- oder Sedezimalzahlen

Zahlensysteme. Dezimalsystem. Binär- oder Dualsystem. Hexadezimal- oder Sedezimalzahlen IT Zahlesysteme Zahledarstellug eem Stellewertcode (jede Stelle hat ee bestmmte Wert) Def. Code: Edeutge Abbldugsvorschrft für de Abbldug ees Zeche-Vorrates eem adere Zechevorrat. Dezmalsystem De Bass

Mehr

Wie gelingt es den Buchmachern (oder FdJ 1 ) IMMER zu gewinnen

Wie gelingt es den Buchmachern (oder FdJ 1 ) IMMER zu gewinnen We gelgt es de Buchacher (oder FdJ IMMER zu gewe Eletug Schrebwese ud Varable Erwarteter Gew des Buchachers 4 4 De Stratege der Buchacher 5 4 Der ehrlche Buchacher 6 4 "real lfe" Buchacher6 4 La FdJ 9

Mehr

1 s. 1 s. 1 k. n j. j = Wärmedurchgang durch eine mehrschichtige, ebene Wand:

1 s. 1 s. 1 k. n j. j = Wärmedurchgang durch eine mehrschichtige, ebene Wand: Wärmeurchgg urch ee mehrchchtge, ebee W: ugehe vo er Löug er Fourer'che Dfferetlglechug für e Wärmetrport urch ee ebee Wfläche : A T ergbt ch ru für ee mehrchchtge, ebee Wfläche: A ru wr e Wärmeurchggwertzhl

Mehr

F 6-2 π. Seitenumbruch

F 6-2 π. Seitenumbruch 6 trebsauslegug Für dese ckelprozess üsse de otore so ausgelegt werde, dass dese Fahrbetreb cht überlastet werde. Herfür üsse de ezele asseträghetsoete [7] der Bautele (otor, etrebe, ckler ud Ulekrolle)

Mehr

8. Mehrdimensionale Funktionen

8. Mehrdimensionale Funktionen Prof. Dr. Wolfgag Koe Mathematk, SS05.05.05 8. Mehrdmesoale Fuktoe Wer Greze überschretet, versucht, ee eue Dmeso vorzustoße. [Dael Mühlema, (*959), Übersetzer ud Aphorstker] Ege Leute sollte cht dü werde,

Mehr

Schätzfehler in der linearen Regression (1) Einführung

Schätzfehler in der linearen Regression (1) Einführung Schätzfehler ( Reduum: Schätzfehler n der lnearen Regreon ( e Enführung Zel der Regreontattk t e, Schätzglechungen nach dem Krterum der klenten Quadrate aufzutellen und anzugeben, we groß der jewelge Schätzfehler

Mehr

Festverzinsliche Wertpapiere. Kurse und Renditen bei ganzzahligen Restlaufzeiten

Festverzinsliche Wertpapiere. Kurse und Renditen bei ganzzahligen Restlaufzeiten Festverzslche Wertaere Kurse ud Redte be gazzahlge Restlaufzete Glederug. Rückblck: Grudlage der Kursrechug ud Redteermttlug 2. Ausgagsstuato 3. Herletug der Formel 4. Abhäggket vom Marktzsveau 5. Übugsaufgabe

Mehr

3 g-adische Ziffernentwicklung reeller Zahlen

3 g-adische Ziffernentwicklung reeller Zahlen 1 3 g-adche Zffernentwcklung reeller Zahlen In deem Kaptel e tet 2 g N und Z g = {0, 1, 2, 3,..., g 1} N. Motvaton: Wr wollen jede potve reelle Zahl x > 0 n der Ba g 2 dartellen (g-adche Dartellung von

Mehr

Messfehler, Fehlerberechnung und Fehlerabschätzung

Messfehler, Fehlerberechnung und Fehlerabschätzung Apparatves Praktkum Physkalsche Cheme der TU Brauschweg SS1, Dr. C. Maul, T.Dammeyer Messfehler, Fehlerberechug ud Fehlerabschätug 1. Systematsche Fehler Systematsche Fehler et ma solche Fehleratele, welche

Mehr

1 Mathe Formeln Statistik und Wahrscheinlichkeitsrechnung

1 Mathe Formeln Statistik und Wahrscheinlichkeitsrechnung 1 Mathe Formel Statstk ud Wahrschelchketsrechug Jör Horstma, 6.10.003. Alle Agabe ohe Gewähr. http://www.ba-stuttgart.de/ w017/ 1.1 Grudlage Ezelklasse [a ; b [ Klassewete Klassemtte Mttelwert b a = w

Mehr

Quantitative Methoden in der klinischen Epidemiologie

Quantitative Methoden in der klinischen Epidemiologie Quattatve Methode der klsche Epdemologe Korrelato ud leare Regresso Lerzele Besteht e fuktoeller Zusammehag zwsche zwe Messuge a eem Patete? Korrelato als Maßzahl für de Stärke ees leare Zusammehages Beschrebe

Mehr

Eine Definition von Statistik : Die Statistik befasst sich mit Gewinnung und Auswertung von Daten. Ziel ist die Vorbereitung von Entscheidungen.

Eine Definition von Statistik : Die Statistik befasst sich mit Gewinnung und Auswertung von Daten. Ziel ist die Vorbereitung von Entscheidungen. Stattk» Kaptel : Eführug ud Übercht» Kaptel : Dategewug» Kaptel : Bechrebede Stattk. Eführug ud Übercht Ee Defto vo Stattk : De Stattk befat ch mt Gewug ud Auwertug vo Date. Zel t de Vorberetug vo Etcheduge.

Mehr

6. Zusammenhangsmaße (Kovarianz und Korrelation)

6. Zusammenhangsmaße (Kovarianz und Korrelation) Problemstellug: Bsher: Gesucht: 6. Zusammehagsmaße (Kovaraz ud Korrelato) Ee Varable pro Merkmalsträger, Stchprobe x1,, x Maße für Durchschtt, Streuug, usw. Bespel: Kurse zweer Akte ud a 9 aufeader folgede

Mehr

Mathematik: Mag. Schmid Wolfgang & LehrerInnenteam Arbeitsblatt Semester ARBEITSBLATT 7-8 WAHRSCHEINLICHKEITSRECHNUNG UND STATISTIK

Mathematik: Mag. Schmid Wolfgang & LehrerInnenteam Arbeitsblatt Semester ARBEITSBLATT 7-8 WAHRSCHEINLICHKEITSRECHNUNG UND STATISTIK Mathematk: Mag. Schmd Wolfgag & LehrerIeteam Arbetsblatt 7-7 7. Semester ARBEITSBLATT 7-8 WAHRSCHEINLICHKEITSRECHNUNG UND STATISTIK STATISTISCHE GRUNDBEGRIFFE Statstk gledert sch zwe Telbereche De Beschrebede

Mehr

Formelsammlung zur Zuverlässigkeitsberechnung

Formelsammlung zur Zuverlässigkeitsberechnung Formelsmmlug zur Zuverlässgetsberechug zusmmegestellt vo Tt Lge Fchhochschule Merseburg Fchberech Eletrotech Ihlt:. Zuverlässget vo Betrchtugsehete.... Zuverlässget elemetrer, chtreprerbrer ysteme... 3.

Mehr

Lösungen zum Übungs-Blatt 7 Wahrscheinlichkeitsrechnung

Lösungen zum Übungs-Blatt 7 Wahrscheinlichkeitsrechnung Lösuge zum Übugs-Blatt 7 Wahrschelchketsrechug BMT Bostatstk Prof. Dr. B. Grabowsk ----------------------------------------------------------------------------------------------- Bedgte Wahrschelchket

Mehr

Auswertung bivariater Datenmengen

Auswertung bivariater Datenmengen Auwertug bvarater Datemege Grudbegrffe ud Dartellugwee Zuammehag zwche zwe kardale Merkmale Prof. Kück / Dr. Rcabal Delgado Lehrtuhl Stattk Korrelato I Bblografe: Prof. Dr. Kück Uvertät Rotock Stattk,

Mehr

Prof. Dr. H. Rommelfanger: Entscheidungstheorie, Kapitel 3 54

Prof. Dr. H. Rommelfanger: Entscheidungstheorie, Kapitel 3 54 Prof. Dr. H. Rommelfager: tschedugstheore, Katel 3 54 3.2.8 ARROW-PRATT-Maß für de Rskoestellug Rskoverhalte bsher grob kategorsert ach Rskoeutraltät, -symathe ud averso be Rskoaverso: (X) < SÄ Rskoräme

Mehr

2. Mittelwerte (Lageparameter)

2. Mittelwerte (Lageparameter) 2. Mttelwerte (Lageparameter) Bespele aus dem täglche Lebe Pro Hemspel hatte Borussa Dortmud der letzte Saso durchschttlch 7.2 Zuschauer. De deutsche Akte sd m Durchschtt um 0 Zähler gefalle. I Ide wurde

Mehr

Validierung der Software LaborValidate Testbericht

Validierung der Software LaborValidate Testbericht Valderung der Software LaborValdate Tetbercht De Software LaborValdate dent dazu Labormethoden zu Valderen. Dazu mu nachgeween en, da de engeetzten Funktonen dokumentert und nachvollzehbar nd. De Dokumentaton

Mehr

( ) ( ) ) ( ) 1/ ( ) Beispiel: U = y1. 3. Ergänzungen zur Haushaltstheorie, insbesondere Dualität und Anwendungen

( ) ( ) ) ( ) 1/ ( ) Beispiel: U = y1. 3. Ergänzungen zur Haushaltstheorie, insbesondere Dualität und Anwendungen Prof. Dr. Fredel Bolle 3. rgäzuge zur Haushaltstheore, sbesodere Dualtät ud Aweduge (Btte wederhole Se zuächst emal de Haushaltstheore aus Mkro I!!!) komme gegebe errechbare Idfferezkurve festgelegt Güterprese

Mehr

Methoden der computergestützten Produktion und Logistik

Methoden der computergestützten Produktion und Logistik Methode der comutergestützte Produkto ud Logstk 9. Bedesysteme ud Warteschlage Prof. Dr.-Ig. habl. Wlhelm Dagelmaer Modul W 336 SS 06 Bedesysteme ud Warteschlage Besel: Fahrradfabrk Presse Puffer Lackerere

Mehr

REGRESSION. Marcus Hudec Christian Neumann. Eine anwendungsorientierte Einführung. Unterstützt von Institut für Statistik der Universität Wien

REGRESSION. Marcus Hudec Christian Neumann. Eine anwendungsorientierte Einführung. Unterstützt von Institut für Statistik der Universität Wien REGRESSION Ee awedugsoreterte Eführug Marcus Hudec Chrsta Neuma Uterstützt vo Isttut für Statstk der Uverstät We Eletug De Regresso st e velfältg esetzbares Werkzeug zur Beschrebug ees fuktoale Zusammehags

Mehr

F ORMELSKRIPT. Spektraler Transmissionsgrad einer planparallelen Platte aus isotropem homogenen

F ORMELSKRIPT. Spektraler Transmissionsgrad einer planparallelen Platte aus isotropem homogenen ORMESRI Zuammehäge zwche de etale Stoffezahle etale Reflexogad ( ( geamt ( ( fü läche etale Retamogad ( a ( b a b Setale amogad ee laaallele latte au otoem homogee Medum ( ( mt

Mehr

1.2.2 Prozentrechnung

1.2.2 Prozentrechnung .2. Verhältsglechuge, Produktglechuge Ee Awedug vo leare Glechuge sd Verhälts- ud Produktglechuge Be Verhältsglechuge st das Verhälts zwsche zwe Varable kostat, z.b. hergestellte Stückzahl zu beötgter

Mehr

Verteilungen und Schätzungen

Verteilungen und Schätzungen Verteluge ud Schätzuge Zufallseperet Grudbegrffe Vorgag ach eer bestte Vorschrft ausgeführt ( Przp) belebg oft wederholbar se Ergebs st zufallsabhägg be ehralge Durchführug des Eperets beeflusse de Ergebsse

Mehr

Zur Bestimmung des Terms der Regressionsgeraden

Zur Bestimmung des Terms der Regressionsgeraden Nme: Zu Betmmug de Tem de Regeogede Auggput ue Üeleguge t e vte Stz vo Dte ; ; ; ;; ; Dtum: mt de etpehede Mttelwete ud, de ze ud,de Kovz ud dem Koeltooeffzete. Geuht d de Wete de Stegugfto ud de Odtehtt

Mehr

= k. , mit k als Anzahl der Hypothesen A i und den Daten B. Bestimmtheitsmaß:!Determinationskoeffizient

= k. , mit k als Anzahl der Hypothesen A i und den Daten B. Bestimmtheitsmaß:!Determinationskoeffizient Ablehugsberech:!Sgfkazveau abhägge Gruppe: Gruppe vo Versuchspersoe, dee jede ezele Versuchsperso aus Gruppe A eer äquvalete Versuchsperso aus Gruppe B etsprcht (oder tatsächlch de gleche Versuchsperso

Mehr

Hochschule Furtwangen University Sommersemester Prof. Dr. Thomas Schneider Medien und Informatik 2. Übungsblatt 5. dar.

Hochschule Furtwangen University Sommersemester Prof. Dr. Thomas Schneider Medien und Informatik 2. Übungsblatt 5. dar. Hochschle Frtwage Uversty Sommersemester 0 Fakltät Dgtale Mede Mathematk Prof. Dr. Thomas Scheder Mede d Iformatk Übgsblatt. Elemetares Reche mt komplexe Zahle Es se w= +. a) Blde Se de komplex Kojgerte

Mehr

AG Konstruktion KONSTRUKTION 2. Planetengetriebe (Umlaufgetriebe) Skript. TU Berlin, AG Konstruktion

AG Konstruktion KONSTRUKTION 2. Planetengetriebe (Umlaufgetriebe) Skript. TU Berlin, AG Konstruktion AG Kstrut KONTRUKTION Plaetegetrebe (Umlaufgetrebe) rpt TU Berl, AG Kstrut Plaetegetrebe Vrtele Plaetegetrebe: e Achsversatz z.t. sehr grße Über-/Utersetzuge möglch grße Tragraft guter Wrugsgrad Rhlff

Mehr

Ralf Korn. Elementare Finanzmathematik

Ralf Korn. Elementare Finanzmathematik Ralf Kor Elemetare Fazmathematk Ihaltsverzechs. Eletug Exkurs : Akte Begrffe, Grudlage ud Geschchte. We modellert ma Aktekurse? 4. Edlche E-Perode-Modelle 6. Edlche Mehr-Perode-Modelle 3.3 Das Black-Scholes-Modell

Mehr

Induktion am Beispiel des Pascalschen Dreiecks

Induktion am Beispiel des Pascalschen Dreiecks Iduto am Bespel des Pascalsche Dreecs Alexader Rehold Coldtz 0.02.2005 Eletug vollstädge Iduto De vollstädge Iduto st ebe dem drete ud drete Bewesverfahre ees der wchtgste der Mathemat. Eher bespelhaft

Mehr

Einschlägige Begriffe zur Meßunsicherheit Dr. Wolfgang Kessel, Braunschweig

Einschlägige Begriffe zur Meßunsicherheit Dr. Wolfgang Kessel, Braunschweig Eschlägge Begrffe zur Meßuscherhet /7 Eschlägge Begrffe zur Meßuscherhet Dr. Wolfgag Kessel, Brauschweg De Aufstellug folgt cht der re lexografsch-alphabetsche Aordug. Verwadte Begrffe sd velmehr zu Gruppe

Mehr

19. Amortisierte Analyse

19. Amortisierte Analyse 9. Amortserte Aalyse Amortserte Aalyse wrd egesetzt zur Aalyse der Laufzet vo Operatoe Datestrukture. Allerdgs wrd cht mehr Laufzet ezeler Operatoe aalysert, soder de Gesamtlaufzet eer Folge vo Operatoe.

Mehr

1 Elementare Finanzmathematik

1 Elementare Finanzmathematik Elemetare Fazmathemat 4 Elemetare Fazmathemat Zel: Bewertug ud Verglech atueller ud zuüftger Geldströme. Determstsche Zahlugsströme Defto: E determstscher Zahlugsstrom st ee Futo Z: N R, de jedem Zetput

Mehr

Entwicklung einer Dispatcherfunktion zur Überprüfung von Nominierungsmengen in der Betriebsführung von Erdgasspeichern

Entwicklung einer Dispatcherfunktion zur Überprüfung von Nominierungsmengen in der Betriebsführung von Erdgasspeichern AMMO Berchte aus Forschug ud Techologetrasfer Etwcklug eer Dsatcherfukto zur Überrüfug vo Nomerugsmege der Betrebsführug vo Erdgassecher Prof. Dr. sc. tech. Dr. rer. at. R. Ueckerdt Dr.Ig. H.W. Schmdt

Mehr

Statistik. Statistik, Prof. Dr. Karin Melzer

Statistik. Statistik, Prof. Dr. Karin Melzer Stattk.. Wa t Stattk? (I E geht um de Kut de verüftge Vermute Stuatoe, wo der Zufall m Spel t oder Spel gebracht werde ka. Prof. Dr. Herma Dge (U Frakfurt/Ma, 99 .. Wa t Stattk? (II Ee möglche Atwort:

Mehr

Dipl.-Kaufm. Wolfgang Schmitt. Aus meiner Skriptenreihe: " Keine Angst vor... " Ausgewählte Themen der deskriptiven Statistik.

Dipl.-Kaufm. Wolfgang Schmitt. Aus meiner Skriptenreihe:  Keine Angst vor...  Ausgewählte Themen der deskriptiven Statistik. Dpl.-Kaufm. Wolfgag Schmtt Aus meer Skrpterehe: " Kee Agst vor... " Ausgewählte Theme der deskrptve Statstk Zetreheaalyse Modellaufgabe Übuge Lösuge www.f-lere.de Modellaufgabe 1 Nach Übergabe des vom

Mehr

2. Arbeitsgemeinschaft (11.11.2002)

2. Arbeitsgemeinschaft (11.11.2002) Mat T. Kocbk G Fazeugs- & Ivesttostheoe Veastaltug m WS / Studet d. Wtschatswsseschat. betsgemeschat (..). Fshe-Sepaato Das Fshe-Sepaatostheoem sagt aus, daß ute bestmmte ahme heutge ud mogge Kosum substtueba

Mehr

Produkt-Moment-Korrelation (1) - Einführung I -

Produkt-Moment-Korrelation (1) - Einführung I - Produkt-Moment-Korrelaton - Enführung I - Kennffer ur Bechreung de lnearen Zuammenhang wchen we Varalen X und Y. Bechret de Rchtung und de Enge de Zuammenhang m Snne von je... deto... oder wenn... dann...

Mehr

Zum Problem unterjähriger Zinsen und Zahlungen in der Zinseszinsrechnung

Zum Problem unterjähriger Zinsen und Zahlungen in der Zinseszinsrechnung Zu Proble urjährger Zse ud Zahluge der Zsessrechug Gewöhlch geht a der Zsessrechug davo aus, dass de Zse ach ee Jahr de Kapl ugeschlage werde ud da weder Zse trage. Der Zssat, t de das Kapl ultplert wrd,

Mehr

Es ist dann nämlich 2 2 2

Es ist dann nämlich 2 2 2 Ege Bemerkuge zum Sklrprodukt See U,V,W Vektorräume üer eem Körper K. Ee Aldug ϕ :U V W heßt ler, we λ, λ, µ, µ K, u, u U, v, v V : ϕ( λ u + λ u, µ v + µ v ) = λ µ ϕ( u, v ) + λ µ ϕ( u, v ) + λ µ ϕ( u,

Mehr

Prof. Dr. B.Grabowski. Die Behauptung I folgt aus der Multiplikationsformel: )

Prof. Dr. B.Grabowski. Die Behauptung I folgt aus der Multiplikationsformel: ) Höhere Mathemat KI Master rof. Dr..Grabows E-ost: grabows@htw-saarlad.de Satz vo ayes ud totale Wahrschelchet Zu ufgabe anachwes der Formel I ud II: eh.: I. Formel der totale Wahrschelchet: ewes: Es glt:...

Mehr

Thema 5: Reduzierte Datenanforderungen II: Naive Diversifikation

Thema 5: Reduzierte Datenanforderungen II: Naive Diversifikation Thea 5: Reduzerte Dateaforderuge II: Nave Dversfkato roble: Klealeger verfüge oft cht eal über hrechede Iforatoe zur Awedug des Sgle-Idex-Modells. I wetere: Herletug eer Hadlugsepfehlug für de Fall fehleder

Mehr

Workshops zum TI-83 PLUS

Workshops zum TI-83 PLUS Workshops zum TI-83 PLUS Beträge vo T 3 Flader / Belge E Uterrchtsbehelf zum Esatz moderer Techologe m Mathematkuterrcht T 3 Österrech / ACDCA am PI-Nederösterrech, Hollabru Vorwort Alässlch userer gemesame

Mehr

Formelsammlung für die Lehrveranstaltung Wirtschaftsmathematik / Statistik

Formelsammlung für die Lehrveranstaltung Wirtschaftsmathematik / Statistik Formelsammlug rtschaftsmathemat / Statst Formelsammlug für de Lehrverastaltug rtschaftsmathemat / Statst zugelasse für de Klausure zur rtschaftsmathemat ud Statst de Studegäge der Techsche Betrebswrtschaft

Mehr

Statistik. Statistik, Prof. Dr. Karin Melzer

Statistik. Statistik, Prof. Dr. Karin Melzer Stattk.. Wa t Stattk? (I E geht um de Kut de verüftge Vermute Stuatoe, wo der Zufall m Spel t oder Spel gebracht werde ka. Prof. Dr. Herma Dge (U Frakfurt/Ma, 99 .. Wa t Stattk? (II Ee möglche Atwort:

Mehr

R S T R S T R S T. 1 Lineare, affine und konvexe Kombinationen. Definition: X. Definition: Sei X. U. BREHM: Konvexgeometrie 1-1

R S T R S T R S T. 1 Lineare, affine und konvexe Kombinationen. Definition: X. Definition: Sei X. U. BREHM: Konvexgeometrie 1-1 U. BEHM: Konvexgeoete - Lneae, affne un konvexe Kobnatonen W abeten -enonalen euklchen au I un cheben x = ( x,, x ) ( ξ I, =,, ) fü enen Punkt (Vekto) von I. Da nnee Poukt auf I von Vektoen x un y = (

Mehr

Einführung in die deskriptive Statistik

Einführung in die deskriptive Statistik Eführug de dekrptve Stattk Übercht: 1. Grudlage: Mee, Skalere, edeoale Häufgketverteluge 1.1. Mee 1.. Skaleveau 1.3. Mewertklae 1.4. Uvarate Häufgketverteluge 1.5. Graphche Dartellug vo uvarate Häufgketverteluge

Mehr

Vorlesung Multivariate Statistik. Sommersemester 2009

Vorlesung Multivariate Statistik. Sommersemester 2009 P.Martus, Multvarate Statstk, SoSe 009 Free Uverstät Berl Charté Uverstätsmedz Berl Bachelor Studegag Boformatk Vorlesug Multvarate Statstk Sommersemester 009 Prof. Dr. rer. at. Peter Martus Isttut für

Mehr

11. Schwerpunkt. Umwelt-Campus Birkenfeld Technische Mechanik II

11. Schwerpunkt. Umwelt-Campus Birkenfeld Technische Mechanik II Uwelt-Cpu Brkefeld Techche Mechk II. chwerpukt der Fchhochchule Trer I der Techche Mechk pelt de Betug de chwerpukt ee Körper oder eer Fläche ee wchtge Rolle ud wrd owohl der ttk l uch der Fetgketlehre

Mehr

Methode der kleinsten Quadrate

Methode der kleinsten Quadrate Methode der kleiste Quadrate KAPITEL 5: REGRESSIONSRECHNUNG Die Methode der kleiste Quadrate (MklQ) ist ei Verfahre zur Apassug eier Fuktio a eie Puktwolke. Agewadt wird sie beispielsweise, um eie Gesetzmäßigkeit

Mehr

Bestimmen einer stetigen Ausgleichsfunktion f(x), die eine gegebene Menge von n Datenpunkten (x k

Bestimmen einer stetigen Ausgleichsfunktion f(x), die eine gegebene Menge von n Datenpunkten (x k Hochschule für Tech ud Archtetur Ber Iformat ud agewadte Mathemat 3- Ausglechs- ud Iterpolatosrechug 3 Ausglechs- ud Iterpolatosrechug De Aufgabe der Ausglechsrechug st mt Hlfe eer stetge Futo f()ee bestmmte

Mehr