Wiederholung zu Flüssen

Größe: px
Ab Seite anzeigen:

Download "Wiederholung zu Flüssen"

Transkript

1 Universität Konstanz Methoden der Netzwerkanalyse Fachbereich Informatik & Informationswissenschaft SS 2008 Prof. Dr. Ulrik Brandes / Melanie Badent Wiederholung zu Flüssen Wir untersuchen Flüsse in Netzwerken: Wieviel kann man in einem Netzwerk maximal von einer Quelle s zu einer Senke t transportieren, wenn die Kapazitäten der einzelnen Verbindungen gegeben sind? 1 Definitionen Definition (Fluss) Sei D = (V, E) ein einfacher gerichteter Graph mit Kantenkapazitäten c : E R + 0 und ausgezeichneten Knoten s, t V. Man bezeichnet das Tupel (D; s, t; c) als Netzwerk mit Quelle s (engl.: source) und Senke t (engl.: target). Eine Abbildung f : E R + 0 heißt Fluss, wenn sie die folgenden beiden Eigenschaften hat: 1. Für alle (i, j) E ist die Kapazitätsbedingung erfüllt. 0 f(i, j) c(i, j) 2. Für alle i V \ {s, t} ist die Flusserhaltungsbedingung f(j, i) = 0 erfüllt. {j } {j (j,i) E} Die Kapazitätsbedingung besagt also, dass durch jede Kante ein nicht-negativer Fluss, der durch die Kapazität der Kante beschränkt ist, fließt. Die Flusserhaltungsbedingung besagt, dass in jeden Knoten (abgesehen von Quelle und Senke) genau so viel hinein fließt wie heraus. Anschaulich ist klar, dass der Gesamtfluss aus s heraus gleich dem Gesamtfluss nach t sein sollte. Das folgende Lemma bestätigt dies: Lemma 1 Für einen Fluss f in einem Netzwerk (D; s, t; c) gilt f(s, i) f(i, s) = (s,i) E (i,s) E (i,t) E f(i, t) (t,i) E f(t, i). Beweis. Es gilt f(i, j) = (i,s) E = (s,s) E f(i, s) + (i,t) E f(s, i) + (t,i) E Wegen der Flusserhaltung folgt die Behauptung. 1 f(i, t) + f(t, i) + j V \{s,t} j V \{s,t} (j,i) E f(i, j) f(j, i).

2 Definition (Wert des Flusses) Der Ausdruck w(f) := heißt Wert des Flusses f. (s,i) E f(s, i) (i,s) E f(i, s) Definition (Maximalfluss) Ein Fluss f, für den w(f) maximal ist, d.h. w(f ) w(f) für alle Flüsse f in einem Netzwerk (D; s, t; c), heißt Maximalfluss in (D; s, t; c). Definition (Schnitt, Kapazität eines Schnittes) Eine Menge S V induziert eine Partition (S, V \ S) der Knotenmenge V, die wir Schnitt im Graphen D = (V, E) nennen. In einem Netzwerk (D; s, t; c) heißt (S, V \ S) ein s-t-schnitt, wenn s S und t V \ S. Die Kapazität eine Schnittes (S, V \ S) ist definiert als c(s, V \ S) := c(i, j) Definition (minimaler Schnitt) Ein Schnitt (S, V \ S) heißt minimal, wenn c(s, V \ S) minimalen Wert unter allen Schnitten (S, V \ S ) hat, d.h. c(s, V \ S ) c(s, V \ S) für alle S V mit S V. Lemma (Schnittlemma) Sei (S, V \ S) ein s-t-schnitt im Netzwerk (D; s, t; c). Für jeden Fluss f gilt, dass w(f) = Insbesondere ist w(f) c(s, V \ S). j S i V \S f(i, j). Beweis. Es gilt w(f) = = i,j S ( (j,i) E i,j S (j,i) E f(j, i) + c(i, j) = c(s, V \ S). ) f(j, i) (j,i) E f(j, i) 2

3 Definition (erhöhender Weg) Zu einem Fluss f im Netzwerk (D; s, t; c) betrachten wir einen ungerichteten Weg von s nach t. Alle Kanten auf diesem Weg, die von s in Richtung t gerichtet sind, heißen Vorwärtskanten (VwK), alle anderen Rückwärtskanten (RwK). Ein solcher Weg heißt erhöhender Weg bezüglich f, wenn für jede Vorwärtskante (i, j) des Weges f(i, j) < c(i, j) gilt und wenn für jede Rückwärtskante f(i, j) > 0. Satz (Satz vom erhöhenden Weg) Ein Fluss f in einem Netzwerk (D; s, t; c) ist genau dann ein Maximalfluss, wenn es bezüglich f keinen erhöhenden Weg gibt. Beweis. = : Sei f ein Maximalfluss. Angenommen, es existiere bezüglich f ein erhöhender Weg. Sei für Kanten (i, j) dieses Weges { c(i, j) f(i, j) falls (i, j) Vorwärtskante (i, j) := f(i, j) falls (i, j) Rückwärtskante und := min{ (i, j) (i, j) auf erhöhendem Weg W }. Dann ist > 0. Sei nun f : E R + 0 definiert als f(i, j) + falls (i, j) Vorwärtskante auf W f := falls (i, j) Rückwärtskante auf W f(i, j) sonst. Dann ist f wieder ein Fluss und w(f ) > w(f) im Widerspruch zur Annahme, dass f ein Maximalfluss ist. =: Das Netzwerk (D; s, t; c) habe keinen bezüglich f erhöhenden Weg. Sei S die Menge aller Knoten in V, zu denen ein erhöhender Weg von s aus bezüglich f existiert. Es gilt S, weil s S und S V, weil t / S. Dann induziert s einen s-t-schnitt und es muss gelten, dass f(i, j) = c(i, j) für alle (i, j) mit i S, j V \ S und dass f(i, j) = 0 für alle (i, j) mit i V \ S, j S (d.h. alle Kanten (i, j) mit i S, j V \ S sind saturiert und alle Kanten (i, j) mit i V \ S, j S sind leer). Nach dem Schnittlemma ergibt sich w(f) = c(s, V \ S). Es muss also w(f) maximal sein. Satz (Max-Flow Min-Cut Theorem, Ford und Fulkerson, 1956) In einem Netzwerk (D; s, t; c) ist der Wert eines Maximalflusses gleich der minimalen Kapazität eines s-t-schnittes. Beweis. Die Behauptung folgt direkt aus dem Satz vom erhöhenden Weg. Denn ist f ein Maximalfluss, dann existiert ein Schnitt (S, V \ S) mit s S und t V \ S, wobei S die Menge aller auf einem erhöhenden Weg von s erreichbaren Knoten ist. Für (S, V \ S) gilt, dass w(f) = c(s, V \ S) und c(s, V \ S) = min =S V s S t V \S c(s, V \ S). 3

4 2 Der Algorithmus von Edmonds und Karp Der Algorithmus von Edmonds und Karp (1972) berechnet in O( V E 2 ) einen maximalen Fluss entsprechend dem Beweis des Satzes vom erhöhenden Weg. Hierbei wird systematisch mittels Breitensuche ein erhöhender Weg kürzester Länge gesucht (siehe Abbildung 1). 1) Setze f(i, j) := 0 für alle Kanten (i, j) E. 2) Solange es einen erhöhenden Weg bezüglich f gibt, führe aus: 3) Sei e 1, e 2,..., e k mit e 1, e 2,..., e k E ein erhöhender Weg kürzester Länge. 4) Setze := min({c(e i ) f(e i ) e i VwK} {f(e i ) e i RwK}). 5) Setze f(e i ) := f(e i ) +, falls e i VwK ist und f(e i ) := f(e i ), falls e i RwK ist. Im Algorithmus von Edmonds und Karp wird der Fluss maximal O( V E ) oft erhöht und eine Erhöhung kostet jeweils höchstens O( E ), was zu einer Laufzeit von O( V E 2 ) führt. Für Implementationsdetails und weitere Flussalgorithmen, siehe Skript über Flussprobleme und Dualität oder [2]. 3 Bipartites Matching 3.1 Definitionen Definition (bipartiter Graph) Sei G = (V, E) ein ungerichteter Graph. G heißt bipartit, falls die Knotenmenge V in zwei disjunkte Teilmengen X und Y partitioniert werden kann, so dass jede Kante aus E genau einen Endknoten in X und genau einen Endknoten in Y hat, d.h. für {v, w} E gilt v X und w Y oder v Y und w X. Definition (Matching, maximales Matching) Ein Matching von G ist eine Teilmenge M der Kantenmenge E, die keine gemeinsamen Endknoten besitzt. Ein maximales Matching ist ein Matching maximaler Mächtigkeit (siehe Abbildung 2(b)), d.h. G enthält kein Matching M mit M < M. Definition (das maximale bipartite Matching-Problem) Das maximale bipartite Matching-Problem besteht darin, ein maximales Matching zu finden. 3.2 Reduktion auf ein Flussproblem Sei G ein bipartiter Graphen, dessen Knoten in zwei disjunkte Mengen X und Y partitioniert sind. Wir erzeugen ein Flussnetzwerk D, so dass der maximale Fluss in D in ein maximales Matching umgerechnet werden kann (siehe Abbildung 3). Alle Knoten in G werden zu Knoten in D. Füge zwei weitere Knoten s bzw. t als Quelle bzw. Senke hinzu. Füge jede Kante von G zu D hinzu, richte die Kante so, dass sie von X nach Y orientiert ist. Füge gerichtete Kanten von s zu jedem Knoten aus X hinzu und Kanten von jedem Knoten aus Y zu t. Alle Kanten bekommen jeweils die Kapazität 1. Sei f ein Fluss in D. Sei e M E, falls f(e) = 1. Wir zeigen nun, dass M ein Matching ist. Da in D alle Kapazitäten 1 sind, trägt jede Kante den Fluss 0 oder 1. Weiterhin hat 4

5 (a) (b) (c) (d) (e) (f) (g) (h) (i) (j) Abbildung 1: Beispiel des Algorithmus von Edmonds und Karp. 5

6 (a) (b) Abbildung 2: (a) Ein nicht erweiterbares Matching, das aber nicht maximal ist. (b) Ein maximales Matching. jeder Knoten aus X genau eine einkommende Kante. Dies impliziert, dass höchstens eine ausgehende Kante von X nicht-leeren Fluss haben kann. Genauso hat jeder Knoten aus Y genau eine ausgehende Kante und somit höchstens eine eingehende Kante mit nicht-leerem Fluss. Daraus folgt, dass jeder Knoten aus X mit maximal einem Knoten aus Y durch eine flusstragende Kante verbunden ist und somit ist M ein Matching. Wir sehen leicht, dass die Mächtigkeit von M gleich dem Wert des Flusses f ist. Die umgekehrte Richtung gilt ebenso. Falls ein Matching M eines Graphen G gegeben ist, können wir daraus einen Fluss f für D folgendermaßen bestimmen: Sei f(e) = 1, falls e M und f(e) = 0, sonst. Weiterhin gilt für alle Kanten e D, die inzident zu s oder t sind: f(e) = 1, falls e Endpunkt einer Kante aus M ist und f(e) = 0, sonst. Dann ist f ein Fluss und der Wert des Flusses gleicht der Mächtigkeit von M. Hieraus folgt, dass jeder Algorithmus zur Bestimmung eines maximalen Flusses auch zur Bestimmung des bipartiten maximalen Matching-Problems benutzt werden kann. Genauer: 1. Konstruiere ein Netzwerk D eines bipartiten Graphen G in O(n + m). Das Netzwerk D hat n + 2 Knoten und n + m Kanten. 2. Berechne einen maximalen Fluss für D zum Beispiel mit dem Algorithmus von Edmonds und Karp. Da die Kanten Einheitsgewicht haben und somit der Wert des Maximalflusses gleich M ist, ist die Laufzeit dieses Schrittes O(nm). Satz Sei G ein bipartiter Graph mit n Knoten und m Kanten. Ein maximales Matching von G kann in O(nm) berechnet werden. 4 Anwendungsbeispiel - ein Tag in der Arbeitsagentur Bei der Arbeitsagentur haben sich viele Leute gemeldet, die noch eine Arbeit suchen. Auf dem Formular für Arbeitssuche haben sie angegeben, für welche Arbeiten sie qualifiziert sind. Die Arbeitsagentur möchte nun so viele Jobs wie möglich vermitteln. Hierbei hilft der Satz von Hall (siehe [3]). Satz (Heiratssatz von Hall, 1935) In einem bipartiten Graphen G mit Knotenpartitionen X und Y existiert genau dann ein Matching M mit M = X, falls für jede Teilmenge S X gilt, dass die Nachbarschaft von 6

7 (a) (b) Abbildung 3: (a) Ein bipartiter Graph G. (b) Ein von G reduziertes Flussnetzwerk D mit Maximalfluss (dicke Kanten); die dicken Kanten haben Fluss 1, die anderen Kanten haben Fluss 0 (siehe [1]). S mindestens so groß ist, wie S selbst, d.h. N(S) S für alle S X (wobei N(S) := {y Y {x, y} E, x S} die Nachbarschaft der Knotenmenge S heißt). Beweis. = : In dem durch M induzierten Teilgraphen H = (V, M) hat jede Teilmenge S X nach Definition eines Matchings genau S Nachbarn. Wegen M E gilt daher auch N(S) S. =: Beweis durch Widerspruch Annahme: Es gäbe einen Graphen, für den N(S) S für alle S X, aber der kein Matching der Kardinalität X enthält. Wähle ein kardinalitätsmaximales Matching M in G. Dann gilt M < X. Also gibt es mindestens einen Knoten x 0 X, der nicht von M überdeckt wird. Da N(x 0 ) x 0 = 1 nach Voraussetzung, hat x 0 mindestens einen Nachbarn y 0 in Y. Dann können wir eine Folge von Knoten konstruieren: k 0; while y k wird von M überdeckt do x k+1 Nachbar von y k in M; wähle einen beliebigen Knoten y k+1 aus N({x 0,..., x k+1 }) \ {y 0,..., y k }; k k + 1; Wegen der Voraussetzung gibt es in jedem Durchlauf der Schleife Knoten y k+1, denn jeder Knoten ist nach Konstruktion zu mindestens einem Knoten in der Menge {x 0,..., x k+1 } inzident. Somit gibt es einen Pfad von x 0 zu dem letzten gefundenen Knoten, der abwechselnd aus Kanten besteht, die nicht zum Matching M gehören und aus Kanten, die in M enthalten sind. Nach Konstruktion werden x 0 und y k nicht von M überdeckt. Daraus folgt, dass ein neues Matching M konstruiert werden kann. Entferne aus M alle Kanten des Pfades, die zu M gehören und füge statt dessen zu M alle Kanten des Pfades hinzu, die bislang nicht zu M gehört haben. Das so entstandene Matching M enthält dann genau eine Kante mehr als das Matching M. Da M als kardinalitätsmaximal gewählt wurde, haben wir einen Widerspruch zur Annahme. Wann kann nun die Arbeitsagentur allen Bewerbern einen Job vermitteln? Sei hierfür X die Menge die Bewerber und Y die Menge der Jobs. Für jedes S X sei N(S) die Menge der 7

8 Jobs für die sich die Bewerber S X interessieren. Mit der Konstruktion, die im Beweis vom Satz von Hall benutzt wurde, kann nun auch die Arbeitsagentur genau dann allen Bewerbern einen Job vermitteln, falls N(S) S für alle S X. Literatur [1] M. T. Goodrich, R. Tamassia: Algorithm Design: Foundations, Analysis, and Internet Examples. Wiley, [2] D. Jungnickel: Graphen, Netzwerke und Algorithmen. BI-Wissenschaftsverlag, [3] A. Steger: Diskrete Strukturen. Springer,

5. Musterlösung. Problem 1: Vitale Kanten * ω(f) > ω(f ). (a) Untersuchen Sie, ob es in jedem Netzwerk vitale Kanten gibt.

5. Musterlösung. Problem 1: Vitale Kanten * ω(f) > ω(f ). (a) Untersuchen Sie, ob es in jedem Netzwerk vitale Kanten gibt. Universität Karlsruhe Algorithmentechnik Fakultät für Informatik WS 05/06 ITI Wagner 5. Musterlösung Problem : Vitale Kanten * In einem Netzwerk (D = (V, E); s, t; c) mit Maximalfluß f heißen Kanten e

Mehr

Algorithmentheorie. 13 - Maximale Flüsse

Algorithmentheorie. 13 - Maximale Flüsse Algorithmentheorie 3 - Maximale Flüsse Prof. Dr. S. Albers Prof. Dr. Th. Ottmann . Maximale Flüsse in Netzwerken 5 3 4 7 s 0 5 9 5 9 4 3 4 5 0 3 5 5 t 8 8 Netzwerke und Flüsse N = (V,E,c) gerichtetes Netzwerk

Mehr

Bäume und Wälder. Definition 1

Bäume und Wälder. Definition 1 Bäume und Wälder Definition 1 Ein Baum ist ein zusammenhängender, kreisfreier Graph. Ein Wald ist ein Graph, dessen Zusammenhangskomponenten Bäume sind. Ein Knoten v eines Baums mit Grad deg(v) = 1 heißt

Mehr

WS 2008/09. Diskrete Strukturen

WS 2008/09. Diskrete Strukturen WS 2008/09 Diskrete Strukturen Prof. Dr. J. Esparza Lehrstuhl für Grundlagen der Softwarezuverlässigkeit und theoretische Informatik Fakultät für Informatik Technische Universität München http://www7.in.tum.de/um/courses/ds/ws0809

Mehr

Das Heiratsproblem. Definition Matching

Das Heiratsproblem. Definition Matching Das Heiratsproblem Szenario: Gegeben: n Frauen und m > n Männer. Bekanntschaftsbeziehungen zwischen allen Männern und Frauen. Fragestellung: Wann gibt es für jede der Frauen einen Heiratspartner? Modellierung

Mehr

Graphentheorie. Maximale Flüsse. Maximale Flüsse. Maximale Flüsse. Rainer Schrader. 31. Oktober Gliederung. sei G = (V, A) ein gerichteter Graph

Graphentheorie. Maximale Flüsse. Maximale Flüsse. Maximale Flüsse. Rainer Schrader. 31. Oktober Gliederung. sei G = (V, A) ein gerichteter Graph Graphentheorie Rainer Schrader Zentrum ür Angewandte Inormatik Köln 31. Oktober 2007 1 / 30 2 / 30 Gliederung maximale Flüsse Schnitte Edmonds-Karp-Variante sei G = (V, A) ein gerichteter Graph sei c eine

Mehr

KAPITEL 3 MATCHINGS IN BIPARTITEN GRAPHEN

KAPITEL 3 MATCHINGS IN BIPARTITEN GRAPHEN KAPITEL 3 MATCHINGS IN BIPARTITEN GRAPHEN F. VALLENTIN, A. GUNDERT 1. Definitionen Notation 1.1. Ähnlich wie im vorangegangenen Kapitel zunächst etwas Notation. Wir beschäftigen uns jetzt mit ungerichteten

Mehr

Anwendungen von Netzwerkfluss. Wojciech Polcwiartek Institut für Informatik FU Berlin

Anwendungen von Netzwerkfluss. Wojciech Polcwiartek Institut für Informatik FU Berlin Anwendungen von Netzwerkfluss Wojciech Polcwiartek Institut für Informatik FU Berlin 13. 01. 2009 Gliederung Einführung Netzwerk, Fluss und Schnitt Max-Flow-Min-Cut Theorem Algorithmen zum Bestimmen vom

Mehr

Kombinatorische Optimierung

Kombinatorische Optimierung Juniorprof. Dr. Henning Meyerhenke 1 Henning Meyerhenke: KIT Universität des Landes Baden-Württemberg und nationales Forschungszentrum in der Helmholtz-Gemeinschaft www.kit.edu Vorlesung 1 Programm des

Mehr

6. Flüsse und Zuordnungen

6. Flüsse und Zuordnungen 6. Flüsse und Zuordnungen In diesem Kapitel werden Bewertungen von Kanten als maximale Kapazitäten interpretiert, die über solch eine Kante pro Zeiteinheit transportiert werden können. Wir können uns einen

Mehr

Algorithmische Graphentheorie

Algorithmische Graphentheorie Algorithmische Graphentheorie Sommersemester 204 4. Vorlesung Matchings / Paarungen Kombinatorische Anwendungen des Max-Flow-Min-Cut-Theorems Prof. Dr. Alexander Wolff 2 Paarungen (Matchings) Def. Sei

Mehr

Fortgeschrittene Netzwerk- und Graph-Algorithmen

Fortgeschrittene Netzwerk- und Graph-Algorithmen Fortgeschrittene Netzwerk- und Graph-Algorithmen Dr. Hanjo Täubig Lehrstuhl für Eziente Algorithmen (Prof. Dr. Ernst W. Mayr) Institut für Informatik Technische Universität München Wintersemester 2007/08

Mehr

Algorithmen II Vorlesung am

Algorithmen II Vorlesung am Algorithmen II Vorlesung am 0..0 Minimale Schnitte in Graphen INSTITUT FÜR THEORETISCHE INFORMATIK PROF. DR. DOROTHEA WAGNER KIT Universität des Landes Baden-Württemberg und Algorithmen nationales Forschungszentrum

Mehr

Ferienkurs zur algorithmischen diskreten Mathematik Kapitel 6: Matchings und TSP-Problem

Ferienkurs zur algorithmischen diskreten Mathematik Kapitel 6: Matchings und TSP-Problem Ferienkurs zur algorithmischen diskreten Mathematik Kapitel 6: Matchings und TSP-Problem Dipl-Math. Wolfgang Kinzner 4.4.2012 Kapitel 6: Matchings und TSP-Problem Matching und Matchingproblem Flussalgorithmus

Mehr

Formale Grundlagen der Informatik

Formale Grundlagen der Informatik Formale Grundlagen der Informatik / 2015 1 Die Elemente einer (endlichen) Menge sollen den Elementen einer zweiten, gleichmächtigen Menge zugeordnet werden Problemstellung Bipartite Graphen Zuordnungsprobleme

Mehr

\ E) eines Graphen G = (V, E) besitzt die gleiche Knotenmenge V und hat als Kantenmenge alle Kanten des vollständigen Graphen ohne die Kantenmenge E.

\ E) eines Graphen G = (V, E) besitzt die gleiche Knotenmenge V und hat als Kantenmenge alle Kanten des vollständigen Graphen ohne die Kantenmenge E. Das Komplement Ḡ = (V, ( V ) \ E) eines Graphen G = (V, E) besitzt die gleiche Knotenmenge V und hat als Kantenmenge alle Kanten des vollständigen Graphen ohne die Kantenmenge E. Ein Graph H = (V, E )

Mehr

Flüsse, Schnitte, bipartite Graphen

Flüsse, Schnitte, bipartite Graphen Flüsse, Schnitte, bipartite Graphen Vlad Popa 08.06.2010 Inhaltsverzeihnis 1. Flussnetzwerke und Flüsse 1.1 Ford- Fulkerson 1.2 Edmond Karp 1.3 Dinic 2. Schnitte 3. Maximaler Fluss bei minimalen Kosten

Mehr

Literatur. Dominating Set (DS) Dominating Sets in Sensornetzen. Problem Minimum Dominating Set (MDS)

Literatur. Dominating Set (DS) Dominating Sets in Sensornetzen. Problem Minimum Dominating Set (MDS) Dominating Set 59 Literatur Dominating Set Grundlagen 60 Dominating Set (DS) M. V. Marathe, H. Breu, H.B. Hunt III, S. S. Ravi, and D. J. Rosenkrantz: Simple Heuristics for Unit Disk Graphs. Networks 25,

Mehr

Effiziente Algorithmen und Datenstrukturen II

Effiziente Algorithmen und Datenstrukturen II Effiziente Algorithmen und Datenstrukturen II Prof. Dr. Christian Scheideler Technische Universität München, 25. April 2006 1 Algorithmen für maximale Flüsse 1.1 Flüsse Ein Flussnetzwerk G = (V, E) ist

Mehr

Kapitel 7: Flüsse in Netzwerken und Anwendungen Gliederung der Vorlesung

Kapitel 7: Flüsse in Netzwerken und Anwendungen Gliederung der Vorlesung Gliederung der Vorlesung. Fallstudie Bipartite Graphen. Grundbegriffe. Elementare Graphalgorithmen und Anwendungen. Minimal spannende Bäume. Kürzeste Pfade. Traveling Salesman Problem. Flüsse in Netzwerken

Mehr

KAPITEL 4 FLÜSSE IN NETZWERKEN

KAPITEL 4 FLÜSSE IN NETZWERKEN KAPITEL 4 FLÜSSE IN NETZWERKEN F. VALLENTIN, A. GUNDERT 1. Das Max-Flow-Min-Cut Theorem Es sei D = (V, A) ein gerichteter Graph, s, t V zwei Knoten. Wir nennen s Quelle und t Senke. Definition 1.1. Eine

Mehr

Das Briefträgerproblem

Das Briefträgerproblem Das Briefträgerproblem Paul Tabatabai 30. Dezember 2011 Inhaltsverzeichnis 1 Problemstellung und Modellierung 2 1.1 Problem................................ 2 1.2 Modellierung.............................

Mehr

Ausarbeitung über den Satz von Menger und den Satz von König

Ausarbeitung über den Satz von Menger und den Satz von König Ausarbeitung über den Satz von Menger und den Satz von König Myriam Ezzedine, 0326943 Anton Ksernofontov, 0327064 Jürgen Platzer, 0025360 Nataliya Sokolovska, 0326991 1. Beweis des Satzes von Menger Bevor

Mehr

Algorithmen und Datenstrukturen 2

Algorithmen und Datenstrukturen 2 Algorithmen und Datenstrukturen 2 Sommersemester 2006 5. Vorlesung Peter F. Stadler Universität Leipzig Institut für Informatik studla@bioinf.uni-leipzig.de Wdhlg.: Dijkstra-Algorithmus I Bestimmung der

Mehr

Maximaler Fluß und minimaler Schnitt. Von Sebastian Thurm sebastian.thurm@student.uni-magedburg.de

Maximaler Fluß und minimaler Schnitt. Von Sebastian Thurm sebastian.thurm@student.uni-magedburg.de Maximaler Fluß und minimaler Schnitt Von Sebastian Thurm sebastian.thurm@student.uni-magedburg.de Maximaler Fluß und minimaler Schnitt Wasist das? Maximaler Fluss Minimaler Schnitt Warumtut man das? Logistische

Mehr

Algorithmen zur Berechnung von Matchings

Algorithmen zur Berechnung von Matchings Algorithmen zur Berechnung von Matchings Berthold Vöcking 1 Einleitung Matchingprobleme sind Zuordnungsprobleme. Es geht darum z.b. Studierenden Plätze in Seminaren zuzuordnen, Bewerber auf freie Stellen

Mehr

Algorithmen und Datenstrukturen Kapitel 10

Algorithmen und Datenstrukturen Kapitel 10 Algorithmen und Datenstrukturen Kapitel 10 Flüsse Frank Heitmann heitmann@informatik.uni-hamburg.de 6. Januar 2016 Frank Heitmann heitmann@informatik.uni-hamburg.de 1/8 Flüsse Graphen Grundlagen Definition

Mehr

Graphentheorie. Eulersche Graphen. Eulersche Graphen. Eulersche Graphen. Rainer Schrader. 14. November Gliederung.

Graphentheorie. Eulersche Graphen. Eulersche Graphen. Eulersche Graphen. Rainer Schrader. 14. November Gliederung. Graphentheorie Rainer Schrader Zentrum für Angewandte Informatik Köln 14. November 2007 1 / 22 2 / 22 Gliederung eulersche und semi-eulersche Graphen Charakterisierung eulerscher Graphen Berechnung eines

Mehr

4.7 Der Algorithmus von Dinic für maximalen Fluss

4.7 Der Algorithmus von Dinic für maximalen Fluss 4.7 Der Algorithmus von Dinic für maximalen Fluss Wir kennen bereits den Algorithmus von Ford Fulkerson zur Suche nach einem maximalen Fluss in einem Graphen. Wir lernen nun einen Algorithmus für maximalen

Mehr

15. Elementare Graphalgorithmen

15. Elementare Graphalgorithmen Graphen sind eine der wichtigste Modellierungskonzepte der Informatik Graphalgorithmen bilden die Grundlage vieler Algorithmen in der Praxis Zunächst kurze Wiederholung von Graphen. Dann Darstellungen

Mehr

6. Übung zur Linearen Optimierung SS08

6. Übung zur Linearen Optimierung SS08 6 Übung zur Linearen Optimierung SS08 1 Sei G = (V, E) ein schlichter ungerichteter Graph mit n Ecken und m Kanten Für eine Ecke v V heißt die Zahl der Kanten (u, v) E Grad der Ecke (a) Ist die Anzahl

Mehr

WS 2013/14. Diskrete Strukturen

WS 2013/14. Diskrete Strukturen WS 2013/14 Diskrete Strukturen Prof. Dr. J. Esparza Lehrstuhl für Grundlagen der Softwarezuverlässigkeit und theoretische Informatik Fakultät für Informatik Technische Universität München http://www7.in.tum.de/um/courses/ds/ws1314

Mehr

Flüsse in Netzwerken

Flüsse in Netzwerken Skript zum Seminar Flüsse in Netzwerken WS 2008/09 David Meier Inhaltsverzeichnis 1 Einführende Definitionen und Beispiele 3 2 Schnitte in Flussnetzwerken 12 2.1 Maximaler s t Fluss..........................

Mehr

Definition Ein gerichteter Graph G = (V, E) ist ein Graph von geordneten Paaren (u, v) mit u V und v V.

Definition Ein gerichteter Graph G = (V, E) ist ein Graph von geordneten Paaren (u, v) mit u V und v V. Kapitel 4 Graphenalgorithmen 4.1 Definitionen Definition 4.1.1. Der Graph G = (V, E) ist über die beiden Mengen V und E definiert, wobei V die Menge der Knoten und E die Menge der Kanten in dem Graph ist.

Mehr

ADS: Algorithmen und Datenstrukturen 2

ADS: Algorithmen und Datenstrukturen 2 ADS: Algorithmen und Datenstrukturen Der Tragödie IV. Theyl Peter F. Stadler & Konstantin Klemm Bioinformatics Group, Dept. of Computer Science & Interdisciplinary Center for Bioinformatics, University

Mehr

1. Klausur zur Vorlesung Algorithmentechnik Wintersemester 2009/2010

1. Klausur zur Vorlesung Algorithmentechnik Wintersemester 2009/2010 . Klausur zur Vorlesung Algorithmentechnik Wintersemester 2009/200 Lösung! Beachten Sie: Bringen Sie den Aufkleber mit Ihrem Namen und Matrikelnummer auf diesem Deckblatt an und beschriften Sie jedes Aufgabenblatt

Mehr

Felix Brandt, Jan Johannsen. Vorlesung im Wintersemester 2008/09

Felix Brandt, Jan Johannsen. Vorlesung im Wintersemester 2008/09 Felix Brandt, Jan Johannsen Vorlesung im Wintersemester 2008/09 Übersicht Übersicht Definition Ein Matching in G = (V, E) ist eine Menge M E mit e 1 e 2 = für e 1, e 2 M, e 1 e 2 Ein Matching M ist perfekt,

Mehr

Effiziente Algorithmen Übung 2 Lösungen

Effiziente Algorithmen Übung 2 Lösungen TU Ilmenau, Fakultät für Informatik und Automatisierung FG Komplexitätstheorie und Effiziente Algorithmen Univ.-Prof. Dr. M. Dietzfelbinger, M. Sc. Stefan Walzer https://www.tu-ilmenau.de/iti/lehre/lehre-ws-016017/ea/

Mehr

Flüsse in Netzwerken. Seminar über Algorithmen SoSe 2005. Mike Rohland & Julia Schenk

Flüsse in Netzwerken. Seminar über Algorithmen SoSe 2005. Mike Rohland & Julia Schenk Flüsse in Netzwerken Seminar über Algorithmen SoSe 2005 Mike Rohland & Julia Schenk Inhalt Einführung Definition Maximale Flüsse Schnitte Restgraphen Zunehmende Wege Max-Fluss Min-Schnitt Theorem Ford-Fulkerson

Mehr

3.1 Konstruktion von minimalen Spannbäumen Es gibt zwei Prinzipien für die Konstruktion von minimalen Spannbäumen (Tarjan): blaue Regel rote Regel

3.1 Konstruktion von minimalen Spannbäumen Es gibt zwei Prinzipien für die Konstruktion von minimalen Spannbäumen (Tarjan): blaue Regel rote Regel 3.1 Konstruktion von minimalen Spannbäumen Es gibt zwei Prinzipien für die Konstruktion von minimalen Spannbäumen (Tarjan): blaue Regel rote Regel EADS 3.1 Konstruktion von minimalen Spannbäumen 16/36

Mehr

Definition Gerichteter Pfad. gerichteter Pfad, wenn. Ein gerichteter Pfad heißt einfach, falls alle u i paarweise verschieden sind.

Definition Gerichteter Pfad. gerichteter Pfad, wenn. Ein gerichteter Pfad heißt einfach, falls alle u i paarweise verschieden sind. 3.5 Gerichteter Pfad Definition 291 Eine Folge (u 0, u 1,..., u n ) mit u i V für i = 0,..., n heißt gerichteter Pfad, wenn ( i {0,..., n 1} ) [ (u i, u i+1 ) A]. Ein gerichteter Pfad heißt einfach, falls

Mehr

6. Flüsse in Netzwerken Berechnung maximaler Flüsse. dann berechnet der Markierungsalgorithmus für beliebige Kapazitätsfunktionen

6. Flüsse in Netzwerken Berechnung maximaler Flüsse. dann berechnet der Markierungsalgorithmus für beliebige Kapazitätsfunktionen 6. Flüsse in Netzwerken Berechnung maximaler Flüsse Satz 6.4. Ersetzt man in Algorithmus 6.1 den Schritt 2 durch 2a. Wähle den Knoten, der zuerst in eingefügt wurde. Setze. dann berechnet der arkierungsalgorithmus

Mehr

Seminarvortag zum Thema Virtual Private Network Design im Rahmen des Seminars Network Design an der Universität Paderborn

Seminarvortag zum Thema Virtual Private Network Design im Rahmen des Seminars Network Design an der Universität Paderborn Seminarvortag zum Thema Virtual Private Network Design im Rahmen des Seminars Network Design an der Universität Paderborn Ein 5.55-Approximationsalgorithmus für das VPND-Problem Lars Schäfers Inhalt Einführung:

Mehr

Aufgabe 1: Berechnen Sie für den in Abbildung 1 gegebenen Graphen den. Abbildung 1: Graph für Flussproblem in Übungsaufgabe 1

Aufgabe 1: Berechnen Sie für den in Abbildung 1 gegebenen Graphen den. Abbildung 1: Graph für Flussproblem in Übungsaufgabe 1 Lösungen zu den Übungsaufgaben im Kapitel 4 des Lehrbuches Operations Research Deterministische Modelle und Methoden von Stephan Dempe und Heiner Schreier Aufgabe 1: Berechnen Sie für den in Abbildung

Mehr

Flüsse, Schnitte, bipartite Graphen. Martin Oettinger

Flüsse, Schnitte, bipartite Graphen. Martin Oettinger Flüsse, Schnitte, bipartite Graphen Martin Oettinger Übersicht Einführung Algorithmen für maximalen Fluss Preflow-Push Ford-Fulkerson Spezialfall: Maximaler Fluss bei minimalen Kosten Reduktionen Bipartites

Mehr

Kombinatorische Optimierung

Kombinatorische Optimierung Juniorprof. Dr. Henning Meyerhenke 1 Henning Meyerhenke: KIT Universität des Landes Baden-Württemberg und nationales Forschungszentrum in der Helmholtz-Gemeinschaft www.kit.edu Vorlesung 4 Programm des

Mehr

Effiziente Algorithmen I

Effiziente Algorithmen I H 10. Präsenzaufgabenblatt, Wintersemester 2015/16 Übungstunde am 18.01.2015 Aufgabe Q Ein Reiseveranstalter besitzt ein Flugzeug, das maximal p Personen aufnehmen kann. Der Veranstalter bietet einen Flug

Mehr

Kombinatorische Optimierung

Kombinatorische Optimierung Juniorprof. Dr. Henning Meyerhenke 1 Henning Meyerhenke: KIT Universität des Landes Baden-Württemberg und nationales Forschungszentrum in der Helmholtz-Gemeinschaft www.kit.edu Vorlesungen 5 und 6 Programm

Mehr

4 Greedy-Algorithmen (gierige Algorithmen)

4 Greedy-Algorithmen (gierige Algorithmen) Greedy-Algorithmen (gierige Algorithmen) Greedy-Algorithmen werden oft für die exakte oder approximative Lösung von Optimierungsproblemen verwendet. Typischerweise konstruiert ein Greedy-Algorithmus eine

Mehr

Übungsblatt 2 - Lösung

Übungsblatt 2 - Lösung Institut für Theoretische Informatik Lehrstuhl Prof. Dr. D. Wagner Übungsblatt 2 - Lösung Vorlesung Algorithmentechnik im WS 08/09 Ausgabe 04. November 2008 Abgabe 8. November, 5:0 Uhr (im Kasten vor Zimmer

Mehr

Very simple methods for all pairs network flow analysis

Very simple methods for all pairs network flow analysis Very simple methods for all pairs network flow analysis Tobias Ludes 02.07.07 Inhalt Einführung Algorithmen Modifikation der Gomory-Hu Methode Einführung Nach Gomory-Hu nur n-1 Netzwerk-Fluss- Berechnungen

Mehr

Aufgabe 4.2 Sei G = (V, E, l) ein ungerichteter, gewichteter und zusammenhängender Graph.

Aufgabe 4.2 Sei G = (V, E, l) ein ungerichteter, gewichteter und zusammenhängender Graph. Aufgabe 4.2 Sei G = (V, E, l) ein ungerichteter, gewichteter und zusammenhängender Graph. a) Es seien W 1 = (V, E 1 ), W 2 = (V, E 2 ) Untergraphen von G, die beide Wälder sind. Weiter gelte E 1 > E 2.

Mehr

Durchschnitt von Matroiden

Durchschnitt von Matroiden Durchschnitt von Matroiden Satz von Edmonds Dany Sattler 18. Januar 2007/ Seminar zur ganzzahligen Optimierung / Wallenfels Definition: Unabhängigkeitssystem Definition: Ein Mengensystem (S, J ) nennt

Mehr

Graphen und Bäume. A.1 Graphen

Graphen und Bäume. A.1 Graphen Algorithmen und Datenstrukturen 96 A Graphen und Bäume A.1 Graphen Ein gerichteter Graph (auch Digraph) G ist ein Paar (V, E), wobei V eine endliche Menge und E eine Relation auf V ist, d.h. E V V. V heißt

Mehr

Seminar über aktuelle Forschungsthemen in der Algorithmik, Dozent Prof. Dr. Alt;

Seminar über aktuelle Forschungsthemen in der Algorithmik, Dozent Prof. Dr. Alt; Seminar über aktuelle Forschungsthemen in der Algorithmik, Dozent Prof. Dr. Alt Referent Matthias Rost 1 Einleitung Definitionen Maximaler Dynamischer Fluss Algorithmus von Ford-Fulkerson Techniken zur

Mehr

Algorithmen und Komplexität Teil 1: Grundlegende Algorithmen

Algorithmen und Komplexität Teil 1: Grundlegende Algorithmen Algorithmen und Komplexität Teil 1: Grundlegende Algorithmen WS 08/09 Friedhelm Meyer auf der Heide Vorlesung 8, 4.11.08 Friedhelm Meyer auf der Heide 1 Organisatorisches Am Dienstag, 11.11., fällt die

Mehr

3. Musterlösung. Problem 1: Boruvka MST

3. Musterlösung. Problem 1: Boruvka MST Universität Karlsruhe Algorithmentechnik Fakultät für Informatik WS 06/07 ITI Wagner. Musterlösung Problem : Boruvka MST pt (a) Beweis durch Widerspruch. Sei T MST von G, e die lokal minimale Kante eines

Mehr

Algorithmen und Datenstrukturen 2

Algorithmen und Datenstrukturen 2 Algorithmen und Datenstrukturen 2 Sommersemester 2006 3. Vorlesung Peter F. Stadler Universität Leipzig Institut für Informatik studla@bioinf.uni-leipzig.de Algorithmen für Graphen Fragestellungen: Suche

Mehr

Stefan Schmid TU Berlin & T-Labs, Berlin, Germany. Reduktionen in der Berechenbarkeitstheorie

Stefan Schmid TU Berlin & T-Labs, Berlin, Germany. Reduktionen in der Berechenbarkeitstheorie Stefan Schmid TU Berlin & T-Labs, Berlin, Germany Reduktionen in der Berechenbarkeitstheorie Problem: Wie komme ich von hier zum Hamburger Hbf? 2 Beispiel P1 Wie komme ich von hier zum Hamburger Hbf? kann

Mehr

Grundbegriffe der Informatik

Grundbegriffe der Informatik Grundbegriffe der Informatik Einheit 11: Graphen Thomas Worsch Karlsruher Institut für Technologie, Fakultät für Informatik Wintersemester 2010/2011 1/59 Graphische Darstellung von Zusammenhängen schon

Mehr

Vorlesung 2 KÜRZESTE WEGE

Vorlesung 2 KÜRZESTE WEGE Vorlesung 2 KÜRZESTE WEGE 34 Kürzeste Wege im Graphen Motivation! Heute:! Kürzeste Wege von einem Knoten (SSSP)! Kürzeste Wege zwischen allen Knotenpaaren (APSP)! Viele Anwendungen:! Navigationssysteme!

Mehr

3.4 Maximale Flüsse und der Algorithmus von Ford Fulkerson

3.4 Maximale Flüsse und der Algorithmus von Ford Fulkerson 3.4 Maximale Flüsse und der Algorithmus von Ford Fulkerson Definition 3.4.1 Die Aufgabe, zu jedem Netzwerk N = (s, t, V, E, c o ) mit n = V Knoten und m = E Kanten den Fluß f IR m mit maximalem Wert zu

Mehr

Maximale s t-flüsse in Planaren Graphen

Maximale s t-flüsse in Planaren Graphen Maximale s t-flüsse in Planaren Graphen Vorlesung Algorithmen für planare Graphen June 18, 2012 Ignaz Rutter INSTITUT FÜR THEORETISCHE INFORMATIK PROF. DR. DOROTHEA WAGNER KIT Universität des Landes Baden-Württemberg

Mehr

Vorlesung Kombinatorische Optimierung (Wintersemester 2016/17)

Vorlesung Kombinatorische Optimierung (Wintersemester 2016/17) Vorlesung Kombinatorische Optimierung (Wintersemester 06/7) Kapitel : Flüsse und Zirkulationen Volker Kaibel Otto-von-Guericke Universität Magdeburg (Version vom 4. Oktober 06) Definition. Ein Netzwerk

Mehr

Wie findet man den optimalen Weg zum Ziel? Klassische Probleme der Kombinatorischen Optimierung

Wie findet man den optimalen Weg zum Ziel? Klassische Probleme der Kombinatorischen Optimierung Wie findet man den optimalen Weg zum Ziel? Klassische Probleme der Kombinatorischen Optimierung Teilnehmer/innen: Markus Dahinten, Graf Münster Gymnasium Bayreuth Robert Fay, Herder Gymnasium Berlin Falko

Mehr

Quicksort ist ein Divide-and-Conquer-Verfahren.

Quicksort ist ein Divide-and-Conquer-Verfahren. . Quicksort Wie bei vielen anderen Sortierverfahren (Bubblesort, Mergesort, usw.) ist auch bei Quicksort die Aufgabe, die Elemente eines Array a[..n] zu sortieren. Quicksort ist ein Divide-and-Conquer-Verfahren.

Mehr

Technische Universität München Zentrum Mathematik Propädeutikum Diskrete Mathematik. Weihnachtsblatt

Technische Universität München Zentrum Mathematik Propädeutikum Diskrete Mathematik. Weihnachtsblatt Technische Universität München Zentrum Mathematik Propädeutikum Diskrete Mathematik Prof. Dr. A. Taraz, Dipl-Math. A. Würfl, Dipl-Math. S. König Weihnachtsblatt Aufgabe W.1 Untersuchen Sie nachstehenden

Mehr

Kürzeste Wege in Graphen. Maurice Duvigneau Otto-von-Guericke Universität Fakultät für Informatik

Kürzeste Wege in Graphen. Maurice Duvigneau Otto-von-Guericke Universität Fakultät für Informatik Kürzeste Wege in Graphen Maurice Duvigneau Otto-von-Guericke Universität Fakultät für Informatik Gliederung Einleitung Definitionen Algorithmus von Dijkstra Bellmann-Ford Algorithmus Floyd-Warshall Algorithmus

Mehr

Kapitel 5: Minimale spannende Bäume Gliederung der Vorlesung

Kapitel 5: Minimale spannende Bäume Gliederung der Vorlesung Gliederung der Vorlesung 1. Grundbegriffe 2. Elementare Graphalgorithmen und Anwendungen 3. Kürzeste Wege. Minimale spannende Bäume. Färbungen und Cliquen. Traveling Salesman Problem. Flüsse in Netzwerken

Mehr

8 Diskrete Optimierung

8 Diskrete Optimierung 8 Diskrete Optimierung Definition 8.1. Ein Graph G ist ein Paar (V (G), E(G)) besteh aus einer lichen Menge V (G) von Knoten (oder Ecken) und einer Menge E(G) ( ) V (G) 2 von Kanten. Die Ordnung n(g) von

Mehr

Graphentheorie. Organisatorisches. Organisatorisches. Organisatorisches. Rainer Schrader. 23. Oktober 2007

Graphentheorie. Organisatorisches. Organisatorisches. Organisatorisches. Rainer Schrader. 23. Oktober 2007 Graphentheorie Rainer Schrader Organisatorisches Zentrum für Angewandte Informatik Köln 23. Oktober 2007 1 / 79 2 / 79 Organisatorisches Organisatorisches Dozent: Prof. Dr. Rainer Schrader Weyertal 80

Mehr

WS 2009/10. Diskrete Strukturen

WS 2009/10. Diskrete Strukturen WS 2009/10 Diskrete Strukturen Prof. Dr. J. Esparza Lehrstuhl für Grundlagen der Softwarezuverlässigkeit und theoretische Informatik Fakultät für Informatik Technische Universität München http://www7.in.tum.de/um/courses/ds/ws0910

Mehr

Grundlagen Datenstrukturen Transitive Hülle Traversierung Kürzeste Wege Spannender Baum Max. Fluss Zuordnungen. 6. Graphen

Grundlagen Datenstrukturen Transitive Hülle Traversierung Kürzeste Wege Spannender Baum Max. Fluss Zuordnungen. 6. Graphen . Graphen viele praktische (Optimierungs-)Probleme sind als graphentheoretische Probleme formulierbar z.b. in Produktionsplanung, Personaleinsatzplanung,.... Grundlagen gerichteter, ungerichteter und gewichteter

Mehr

Kürzeste Wege in Graphen. Orte mit Straßenverbindungen. Coma I Rolf Möhring

Kürzeste Wege in Graphen. Orte mit Straßenverbindungen. Coma I Rolf Möhring Kürzeste Wege in Graphen Orte mit Straßenverbindungen Orte als Knoten eines Graphen Straßenverbindungen als Kanten eines Graphen Ungerichteter Graph G = (V,E) Kanten Knoten Knotenmenge V = {,,n} oder {,,n

Mehr

Minimal spannende Bäume

Minimal spannende Bäume http://www.uni-magdeburg.de/harbich/ Minimal spannende Fakultät für Informatik Otto-von-Guericke-Universität 2 Inhalt Definition Wege Untergraphen Kantengewichtete Graphen Minimal spannende Algorithmen

Mehr

Graphen: Einführung. Vorlesung Mathematische Strukturen. Sommersemester 2011

Graphen: Einführung. Vorlesung Mathematische Strukturen. Sommersemester 2011 Graphen: Einführung Vorlesung Mathematische Strukturen Zum Ende der Vorlesung beschäftigen wir uns mit Graphen. Graphen sind netzartige Strukturen, bestehend aus Knoten und Kanten. Sommersemester 20 Prof.

Mehr

Übungsblatt 6. Vorlesung Theoretische Grundlagen der Informatik im WS 16/17

Übungsblatt 6. Vorlesung Theoretische Grundlagen der Informatik im WS 16/17 Institut für Theoretische Informatik Lehrstuhl Prof. Dr. D. Wagner Übungsblatt 6 Vorlesung Theoretische Grundlagen der Informatik im WS 16/17 Ausgabe 22. Dezember 2016 Abgabe 17. Januar 2017, 11:00 Uhr

Mehr

Optimierung auf Netzwerken

Optimierung auf Netzwerken KAPITEL 4 Optimierung auf Netzwerken Wir untersuchen hier spezielle lineare Programme, die eine zusätzliche kombinatorische (graphentheoretische) Struktur tragen. Nutzt man diese kombinatorische Struktur

Mehr

Minimal spannender Baum

Minimal spannender Baum Minimal spannender Baum 16 1 2 21 5 11 19 6 6 3 14 33 10 5 4 18 Die Kreise zeigen die vorgesehenen Standorte neu zu errichtender Filialen einer Bank. Entlang der bestehenden Straßen sollen Telefonleitungen

Mehr

Technische Universität Wien Institut für Computergraphik und Algorithmen Arbeitsbereich für Algorithmen und Datenstrukturen

Technische Universität Wien Institut für Computergraphik und Algorithmen Arbeitsbereich für Algorithmen und Datenstrukturen Technische Universität Wien Institut für Computergraphik und Algorithmen Arbeitsbereich für Algorithmen und Datenstrukturen 186.172 Algorithmen und Datenstrukturen 1 VL 4.0 Übungsblatt 4 für die Übung

Mehr

TECHNISCHE UNIVERSITÄT MÜNCHEN FAKULTÄT FÜR INFORMATIK

TECHNISCHE UNIVERSITÄT MÜNCHEN FAKULTÄT FÜR INFORMATIK TECHNISCHE UNIVERSITÄT MÜNCHEN FAKULTÄT FÜR INFORMATIK Lehrstuhl für Sprachen und Beschreibungsstrukturen SS 2009 Grundlagen: Algorithmen und Datenstrukturen Übungsblatt 11 Prof. Dr. Helmut Seidl, S. Pott,

Mehr

Planare Graphen, Traveling Salesman Problem, Transportnetze. Formale Methoden der Informatik WiSe 2012/2013 teil 4, folie 1 (von 61)

Planare Graphen, Traveling Salesman Problem, Transportnetze. Formale Methoden der Informatik WiSe 2012/2013 teil 4, folie 1 (von 61) Planare Graphen, Traveling Salesman Problem, Transportnetze Formale Methoden der Informatik WiSe 2012/2013 teil 4, folie 1 (von 61) Teil IV: Planare Graphen / Transportnetze 1. Planare Graphen / Traveling

Mehr

Einführung in die Graphentheorie. Monika König

Einführung in die Graphentheorie. Monika König Einführung in die Graphentheorie Monika König 8. 11. 2011 1 Vorwort Diese Seminararbeit basiert auf den Unterkapiteln 1.1-1.3 des Buches Algebraic Graph Theory von Chris Godsil und Gordon Royle (siehe

Mehr

Netzwerkfluß. Gegeben ist ein System von Wasserrohren: Die Kapazität jedes Rohres ist 3, 5 oder 8 l/s.

Netzwerkfluß. Gegeben ist ein System von Wasserrohren: Die Kapazität jedes Rohres ist 3, 5 oder 8 l/s. Netzwerkfluß (Folie, Seite 78 im Skript) Gegeben ist ein System von Wasserrohren: Quelle s t Senke Die Kapazität jedes Rohres ist, oder 8 l/s. Frage: Wieviel Wasser kann von der Quelle zur Senke fließen?

Mehr

Gliederung. Kapitel 4. Lokale Suchverfahren. Meta-Heuristiken. Simulated Annealing. Lokale Suchverfahren. Optimierungsalgorithmen

Gliederung. Kapitel 4. Lokale Suchverfahren. Meta-Heuristiken. Simulated Annealing. Lokale Suchverfahren. Optimierungsalgorithmen Kapitel Optimierungsalgorithmen Gunnar Klau Institut für Computergraphik und Algorithmen Gliederung Kombinatorische vs. Ganzzahlige Optimierung Exakte Verfahren Branch-and-Bound Schnittebenenverfahren

Mehr

maximaler Fluss & minimaler Schnitt

maximaler Fluss & minimaler Schnitt maximaler Fluss & minimaler Schnitt Referat in angewandte Logistik Marcus Pottendorfer HTBLuVA Sankt Pölten Inhalt Maximaler Fluss minimaler Schnitt... 2 Grundbegriffe... 2 Erklärung... 2 Minimaler Schnitt...

Mehr

2. Woche Eindeutige Entschlüsselbarleit, Sätze von Kraft und McMillan, Huffmancodierung

2. Woche Eindeutige Entschlüsselbarleit, Sätze von Kraft und McMillan, Huffmancodierung 2 Woche Eindeutige Entschlüsselbarleit, Sätze von Kraft und McMillan, Huffmancodierung 2 Woche: Eindeutige Entschlüsselbarleit, Sätze von Kraft und McMillan, Huffmancodierung 24/ 44 Zwei Beispiele a 0

Mehr

WS 2009/10. Diskrete Strukturen

WS 2009/10. Diskrete Strukturen WS 2009/10 Diskrete Strukturen Prof. Dr. J. Esparza Lehrstuhl für Grundlagen der Softwarezuverlässigkeit und theoretische Informatik Fakultät für Informatik Technische Universität München http://www7.in.tum.de/um/courses/ds/ws0910

Mehr

Proseminar Online Algorithmen, Prof. Dr. Rolf Klein

Proseminar Online Algorithmen, Prof. Dr. Rolf Klein Proseminar Online Algorithmen, Prof. Dr. Rolf Klein Vortrag von Michael Daumen am 13.12.2000 Thema : Minimum Spanning Tree und 2-Approximation der TSP-Tour Inhalt des Vortrags : 1. genaue Vorstellung des

Mehr

Minimal spannende Bäume

Minimal spannende Bäume Minimal spannende Bäume Ronny Harbich 4. Mai 006 (geändert 19. August 006) Vorwort Ich danke Patrick Bahr und meinem Bruder Steffen Harbich für die Unterstützung bei dieser Arbeit. Sie haben sowohl zu

Mehr

Matchings (Paarungen) in Graphen. PS Algorithmen auf Graphen SS `06 Steven Birr

Matchings (Paarungen) in Graphen. PS Algorithmen auf Graphen SS `06 Steven Birr Matchings (Paarungen) in Graphen PS Algorithmen auf Graphen SS `06 Steven Birr 1 Gliederung 1) Definitionen und Beispiele 2) Algorithmus des maximalen Matchings 3) Das Personal-Zuteilungsproblem Ungarischer

Mehr

Periodische Fahrpläne und Kreise in Graphen

Periodische Fahrpläne und Kreise in Graphen Periodische Fahrpläne und Kreise in Graphen Vorlesung Algorithmentechnik WS 2009/10 Dorothea Wagner Karlsruher Institut für Technologie Eisenbahnoptimierungsprozess 1 Anforderungserhebung Netzwerkentwurf

Mehr

ADS: Algorithmen und Datenstrukturen 2

ADS: Algorithmen und Datenstrukturen 2 ADS: Algorithmen und Datenstrukturen 2 Teil 5 Prof. Peter F. Stadler & Dr. Christian Höner zu Siederdissen Bioinformatik/IZBI Institut für Informatik & Interdisziplinäres Zentrum für Bioinformatik Universität

Mehr

Graphen: Datenstrukturen und Algorithmen

Graphen: Datenstrukturen und Algorithmen Graphen: Datenstrukturen und Algorithmen Ein Graph G = (V, E) wird durch die Knotenmenge V und die Kantenmenge E repräsentiert. G ist ungerichtet, wenn wir keinen Start- und Zielpunkt der Kanten auszeichnen.

Mehr

8 Das Flussproblem für Netzwerke

8 Das Flussproblem für Netzwerke 8 Das Flussproblem für Netzwerke 8.1 Netzwerke mit Kapazitätsbeschränkung Definition 15 Ein Netzwerk N = (V, E, γ, q, s) besteht aus einem gerichteten Graph G = (V, E), einer Quelle q V und einer Senke

Mehr

Flüsse, Schnitte, Bipartite Graphen II

Flüsse, Schnitte, Bipartite Graphen II Flüsse, Schnitte, Bipartite Graphen II Jonathan Hacker 06.06.2016 Jonathan Hacker Flüsse, Schnitte, Bipartite Graphen II 06.06.2016 1 / 42 Gliederung Einführung Jonathan Hacker Flüsse, Schnitte, Bipartite

Mehr

Diskrete Strukturen. Hausaufgabe 1 (5 Punkte)

Diskrete Strukturen. Hausaufgabe 1 (5 Punkte) Technische Universität München Fakultät für Informatik Lehrstuhl für Informatik 15 Computergraphik & Visualisierung Prof. Dr. Rüdiger Westermann Dr. Werner Meixner Wintersemester 007/08 Lösungsblatt 7

Mehr

Systems of Distinct Representatives

Systems of Distinct Representatives Rheinisch-Westfälische Technische Hochschule Aachen Lehr- und Forschungsgebiet Theoretische Informatik Prof. Dr. Peter Rossmanith Systems of Distinct Representatives Seminar: Extremal Combinatorics SS

Mehr

Kürzeste Wegealgorithmen

Kürzeste Wegealgorithmen Kürzeste Wegealgorithmen Berechnung kürzester Wege Ein gewichteter Graph G ist ein Tupel (V,E) zusammen mit einer Gewichtsfunktion f, wobei E V V und f: E Seien u,v V. Ein kürzester Weg von u nach v ist

Mehr

κ(k) k K S Algorithmus zur Bestimmung eines spannenden Baumes mit minimalen Kosten (Kruskal, 1965).

κ(k) k K S Algorithmus zur Bestimmung eines spannenden Baumes mit minimalen Kosten (Kruskal, 1965). 5. Graphenprobleme Im folgenden bezeichnen G = (E, K) einen endlichen Graphen mit der Eckenmenge E und der Kantenmenge K. G kann ungerichtet, gerichtet, schlicht oder nicht schlicht sein. 5.1 Spannende

Mehr