Unterrichtsmaterialien in digitaler und in gedruckter Form. Auszug aus: Lineare Funktionen kinderleicht erlernen

Save this PDF as:
 WORD  PNG  TXT  JPG

Größe: px
Ab Seite anzeigen:

Download "Unterrichtsmaterialien in digitaler und in gedruckter Form. Auszug aus: Lineare Funktionen kinderleicht erlernen"

Transkript

1 Unterrichtsmaterialien in digitaler und in gedruckter Form Auszug aus: kinderleicht erlernen Das komplette Material finden Sie hier: School-Scout.de

2 Ab 8. Schuljahr Friedhelm Heitmann Lineare Funktionen... kinderleicht erlernen Erklärungen, Arbeitsblätter, Tests und Lernspiele Mit ausführlichen Lösungen

3 Inhaltsverzeichnis Kartesisches Koordinatensstem und lineare Funktionen... Punkte im Koordinatensstem... 5 Das Spiel Schatzsuche, Agentenjagd... 7 (Ablesen von Werten)... 9 (Punkte, Graphen) (Wertetabellen, Graphen)... 1 ( = mx) Linaere Funktionen ( = mx + n) (Übungen zu Wertetabellen und Graphen) (Benennen der Funktionsgleichungen bei Buchstaben)... 1 (Bestimmen von Funktionsgleichungen bei Vierecken)... (Nullstellen)... 5 Nullstellen-Puzzle... 7 Stadt-Land-Fluss mal anders diesmal mit Funktionsgleichungen... 8 (Benennen von Funktionsgleichungen)... Funktionsgleichung gesucht ein Spiel... 4 (Übungen zum Zeichnen und Benennen von Funktionsgleichungen anhand von Punkten)... 6 (Bestimmung der Schnittpunkte)... 8 (Übungen zu Graphen, Wertetabellen, Nullstellen und Schnittpunkten) (Textaufgaben)... 4 Vorbereitung auf die Arbeit Arbeit I zum Thema (Gruppe A und Gruppe B) Arbeit II zum Thema (Gruppe A und Gruppe B)... 6 Was weißt du, was kannst du?... 7 Lösungen Vorwort Das Thema Funktionen ist ein fester Bestandteil im Mathematikunterricht der Sekundarstufe. Aufgaben zu bewältigen, in denen es um funktionale Zusammenhänge geht, ist eine wichtige Kompetenz. Vor diesem Hintergrund befasst sich der vorliegende Band mit linearen Funktionen, den einfachen Funktionen. Zielsetzungen sind die Vermittlung, Festigung sowie Überprüfung von elementaren Grundkenntnissen zur genannten Thematik. Dargeboten werden unterschiedliche Arbeitsblätter, Lernspiele und Klassenarbeiten. Zu den Materialien werden jeweils im Anschluss die Lösungen angeführt. Alle vorliegenden Materialien entstanden aus der Unterrichtspraxis heraus. Wir wünschen Ihnen viel Freude und Erfolg beim Einsatz der Materialien. opiervorlagen Bestell-Nr. P11 56 Ihr Kohl-Verlag und Friedhelm Heitmann

4 Kartesisches Koordinatensstem und lineare Gleichungen Das kartesische Koordinatensstem ist nach dem französischen Mathematiker und Philosophen R. Descartes ( ) benannt, dessen Namen in lateinischer Sprache Cartesius lautet. Anstelle vom kartesischen Koordinatensstem wird manchmal auch vom rechtwinkligen Koordinatensstem gesprochen. Gegliedert wird das kartesische (= rechtwinklige) Koordinatensstem in 4 Gebiete, die als Quadranten bezeichnet werden. Die Quadranten werden entgegen dem Uhrzeigerverlauf von I bis IV gezählt. Im kartesischen Koordinatensstem wird die x-achse, die waagerecht verläuft, Abszissenachse genannt, die senkrechte -Achse Ordinatenachse. Punkte im kartesischen Koordinatensstem weisen jeweils eine x-koordinate (= x-wert) und eine -Koordinate (= -Wert) auf, wobei die x-koordinate zuerst angeführt wird. Einen positiven x-wert sowie einen positiven -Wert haben die Punkte im Quadranten I. Der x-wert und der -Wert sind im Quadranten III stets negativ. Funktionen sind eindeutige Zuordnungen. Jedem Element aus einer Menge ist zumindest ein Element aus einer anderen Menge genau zugeordnet. Zu einem x-wert gehört ein bestimmter -Wert. Der jeweilige x-wert und zugehörige -Wert bilden ein Wertepaar. Wertepaare lassen sich in Wertetabellen anführen. Funktionen werden als Gleichungen (z. B. = x + 1) angegeben und können im kartesischen Koordinatensstem wiedergegeben werden. Als einen Graphen bezeichnet man eine Funktionsgleichung, die im kartesischen Koordinatensstem zeichnerisch dargestellt wird. Funktionsgleichungen, in denen x und in keiner höheren Rechenart vorkommen, heißen lineare Funktionen. Der Graph einer linearen Funktion ist im kartesischen Koordinatensstem immer eine Gerade, er verläuft also geradlinig. Quadrant II Graph P ( ) Quadrant I 1 opiervorlagen Bestell-Nr. P x Quadrant III Graph Quadrant IV 4

5 Richtig oder falsch? Aufgabe 1: Kreuze entsprechend an, welche der folgenden Aussagen richtig und welche falsch sind! 1. Das kartesische Koordinatensstem ist nach dem deutschen Mathematiker und Philosophen Descartes benannt.. Für das kartesische Koordinatensstem wird ebenfalls die Bezeichnung rechtwinkliges Koordinatensstem gebraucht.. In 4 Quadranten (= Gebiete) wird das kartesische Koordinatensstem aufgeteilt. Richtig 4. Die Quadranten werden im Uhrzeigerverlauf von I bis IV gezählt. 5. Die x-achse wird auch als Abszissenachse, die -Achse als Ordinatenachse bezeichnet. 6. Bei der Angabe eines Punktes im kartesischen Koordinatensstem wird zuerst die -Koordinate und danach die x-koordinate genannt. 7. Im Quadranten I des kartesischen Koordinatensstems liegen die Punkte, die einen positiven x-wert und einen negativen -Wert aufweisen. 8. In einer Funktion ist jedem Element aus einer Menge zumindest ein Element aus einer anderen Menge eindeutig zugeordnet. 9. Ein Graph stellt eine Funktionsgleichung im kartesischen Koordinatensstem zeichnerisch dar. 10. Der Graph einer linearen Funktion verläuft waagerecht und senkrecht. Falsch Aufgabe : Verbessere nun die falschen Aussagen! opiervorlagen Bestell-Nr. P

6 Punkte im Koordinatensstem Im (kartesischen) Koordinatensstem wird die Lage von Punkten mit Hilfe von x- und -Werten beschrieben. Jedem Punkt ist ein bestimmter x-wert sowie -Wert zugeordnet. Der x-wert wird jeweils zuerst genannt, an zweiter Stelle der dazugehörige -Wert. Beispiele: A (5 ) D ( 4 ) 1 B (0 ) x D ( 6 ) 4 E (,5,5) Den jeweiligen x-wert und -Wert eines Punktes bezeichnet man als Koordinaten. coordinare (lateinisch) = zuordnen Der zusammengehörige x-wert und -Wert werden auch ein Wertepaar genannt. Wertepaare werden u. a. in Wertetabellen angegeben. Aufgabe 1: Notiere die Koordinaten (= x- und -Wert) der folgenden im Koordinatensstem eingetragenen Punkte! D ( ) 4 A ( ) C ( ) opiervorlagen Bestell-Nr. P B ( ) x E ( ) F ( ) 4 H ( ) 5

7 Aufgabe : Trage in das anschließende Koordinatensstem diese Punkte mit den Koordinaten ein! A ( 1), B (5 ), C (,5 ), D ( 6 0), E (,5 1,5), F (0 ), G (4,5), H (7,5,5) x 4 Aufgabe : Trage in das anschließende Koordinatensstem diese Punkte mit den Koordinaten ein! A (7 1), B (,5 1), C (,5,5), D (1,5,5), E (1,5 5), F ( 5), G (,5), H ( 4,5), I ( 4 1), J ( 8,5 1), K ( 6 ), L (4,5 ) Verbinde die einzelnen Punkte in alphabetischer Reihenfolge und anschließend L mit A. Welche Figur ist zu sehen? x opiervorlagen Bestell-Nr. P

8 Unterrichtsmaterialien in digitaler und in gedruckter Form Auszug aus: kinderleicht erlernen Das komplette Material finden Sie hier: School-Scout.de

Über die Bedeutung der zwei Zahlen m und x 1 für das Aussehen des Graphen wird an anderer Stelle informiert.

Über die Bedeutung der zwei Zahlen m und x 1 für das Aussehen des Graphen wird an anderer Stelle informiert. Lineare Funktionen - Term - Grundwissen Woran erkennt man, ob ein Funktionsterm zu einer Linearen Funktion gehört? oder Wie kann der Funktionsterm einer Linearen Funktion aussehen? Der Funktionsterm einer

Mehr

Lineare Funktionen y = m x + n Sekundarstufe I u. II Funktion ist monoton fallend, verläuft vom II. in den IV.

Lineare Funktionen y = m x + n Sekundarstufe I u. II Funktion ist monoton fallend, verläuft vom II. in den IV. LINEARE FUNKTIONEN heißt Anstieg oder Steigung heißt y-achsenabschnitt Graphen linearer Funktionen sind stets Geraden Konstante Funktionen Spezialfall Graphen sind waagerechte Geraden (parallel zur x-achse)

Mehr

Regel Die Steigung einer Funktion kann rechnerisch ermittelt werden, wenn mindestens zwei Punkte gegeben sind.

Regel Die Steigung einer Funktion kann rechnerisch ermittelt werden, wenn mindestens zwei Punkte gegeben sind. Funktionen Station 1 Bestimmung der Steigung einer Geraden durch zwei Punkte Die Steigung einer Funktion kann rechnerisch ermittelt werden, wenn mindestens zwei Punkte gegeben sind. m = f(x 2 ) f(x 1 )

Mehr

f. y = 0,2x g. y = 1,5x + 5 h. y = 4 6x i. y = 4 + 5,5x j. y = 0,5x + 3,5

f. y = 0,2x g. y = 1,5x + 5 h. y = 4 6x i. y = 4 + 5,5x j. y = 0,5x + 3,5 11. Lineare Funktionen Übungsaufgaben: 11.1 Zeichne jeweils den Graphen der zugehörigen Geraden a. y = 0,5x 0,25 b. y = 0,1x + 2 c. y = 2x 2 d. 2x + 4y 5 = 0 e. y = x f. y = 0,2x g. y = 1,5x + 5 h. y =

Mehr

Mathematik Einführungsphase. Plenum Lineare Funktionen. Lineare Funktionen. Eine kurze Wiederholung

Mathematik Einführungsphase. Plenum Lineare Funktionen. Lineare Funktionen. Eine kurze Wiederholung Lineare Funktionen Eine kurze Wiederholung Mathematik Einführungsphase Eine lineare Funktion ist zunächst einmal eine Funktion, d.h. eine eindeutige Zuordnung, bei der jedem x-wert aus einem Definitionsbereich

Mehr

Mathematik - Arbeitsblatt Lineare Funktionen

Mathematik - Arbeitsblatt Lineare Funktionen Mathematik - Arbeitsblatt Lineare Funktionen 1.(a) Welche der drei roten Graphen gehört zur Funktion == +5? Wie lautet die Funktionsgleichung des blauen Graphen? Bestimme rechnerisch die Nullstelle des

Mehr

Lernkontrolle Relationen, Funktionen, lineare Funktionen

Lernkontrolle Relationen, Funktionen, lineare Funktionen Lernkontrolle Relationen, Funktionen, lineare Funktionen A 1) Im folgenden Diagramm bedeuten A, B, C, D jeweils die Kinder einer Familie; die Pfeile drücken die Relation "hat als Schwester" aus. a) Wie

Mehr

Unterrichtsmaterialien in digitaler und in gedruckter Form. Auszug aus: Kohls Grammatik-Trainer 2 - Deklination & Konjugation

Unterrichtsmaterialien in digitaler und in gedruckter Form. Auszug aus: Kohls Grammatik-Trainer 2 - Deklination & Konjugation Unterrichtsmaterialien in digitaler und in gedruckter Form Auszug aus: Kohls Grammatik-Trainer 2 - Deklination & Konjugation Das komplette Material finden Sie hier: Download bei School-Scout.de Kohls Grammatik-Trainer

Mehr

Werratalschule Heringen Gesamtschule mit gymnasialer Oberstufe. Aufgaben zur Wiederholung und Vertiefung

Werratalschule Heringen Gesamtschule mit gymnasialer Oberstufe. Aufgaben zur Wiederholung und Vertiefung Werratalschule Heringen Gesamtschule mit gymnasialer Oberstufe Aufgaben zur Wiederholung und Vertiefung Mathematik Einführungsphase gymnasiale Oberstufe Seite 1 Hinweise zum Umgang mit dem Aufgabenmaterial

Mehr

Funktionen in der Mathematik

Funktionen in der Mathematik R. Brinkmann http://brinkmann-du.de Seite 05.0.008 Funktionen in der Mathematik Bei der mathematischen Betrachtung natürlicher, technischer oder auch alltäglicher Vorgänge hängt der Wert einer Größe oft

Mehr

Einführungsphase Mathematik. Thema: Quadratische Funktionen. quadratische Gleichungen

Einführungsphase Mathematik. Thema: Quadratische Funktionen. quadratische Gleichungen Thema: Quadratische Funktionen quadratische Gleichungen Normalform einer linearen Funktion Normalform einer quadratischen Funktion Handelt es sich um quadratische Funktionen??? Ja, denn a = 3, b = 0, c

Mehr

FUNKTIONEN. ein Leitprogramm für die Berufsmaturität

FUNKTIONEN. ein Leitprogramm für die Berufsmaturität FUNKTIONEN ein Leitprogramm für die Berufsmaturität von Johann Berger 2000 Inhaltsverzeichnis Einleitung 3 Arbeitsanleitung 3 1 Der Funktionsbegriff 3 2 Lineare 6 3 Quadratische 10 EINLEITUNG Dieses Leitprogramm

Mehr

Lineare Funktionen. Klasse 8 Aufgabenblatt für Lineare Funktionen Datum: Donnerstag,

Lineare Funktionen. Klasse 8 Aufgabenblatt für Lineare Funktionen Datum: Donnerstag, Lineare Funktionen Aufgabe 1: Welche der folgenden Abbildungen stellen eine Funktion dar? Welche Abbildungen stellen eine lineare Funktion dar? Ermittle für die linearen Funktionen eine Funktionsgleichung.

Mehr

Grundwissen Mathematik Klasse 8

Grundwissen Mathematik Klasse 8 Grundwissen Mathematik Klasse 8 1. Funktionen allgemein (Mathehelfer 2: S.47) Erstellen einer Wertetabelle bei gegebener Funktionsgleichung Zeichnen des Funktionsgraphen Ablesen von Wertepaaren ( x / f(x)

Mehr

Übungsaufgaben zur Linearen Funktion

Übungsaufgaben zur Linearen Funktion Übungsaufgaben zur Linearen Funktion Aufgabe 1 Bestimmen Sie den Schnittpunkt der beiden Geraden mit den Funktionsgleichungen f 1 (x) = 3x + 7 und f (x) = x 13! Aufgabe Bestimmen Sie den Schnittpunkt der

Mehr

Bestimme dazu die Nullstellen, Scheitelpunkt und Schnittpunkt mit der y-achse und ergänze evtl. einige Punkte durch eine Wertetabelle.

Bestimme dazu die Nullstellen, Scheitelpunkt und Schnittpunkt mit der y-achse und ergänze evtl. einige Punkte durch eine Wertetabelle. Klasse Art Schwierigkeit Mathematisches Schema Nr. 9 Üben xx Quadratische Funktion 1 Skizziere den Graphen der durch y = 0,5 x 2 + x - 4 gegebenen quadratischen Funktion. Bestimme dazu die Nullstellen,

Mehr

Inhalt: Die vorliegenden Folienvorlagen enthalten folgende Elemente:

Inhalt: Die vorliegenden Folienvorlagen enthalten folgende Elemente: Inhalt:. Punkte im Koordinatensstem....................................... Funktionen und ihre Schaubilder..................................... Punktprobe und Koordinaten berechnen...............................

Mehr

1 Koordinatensystem. Grundlagen der Funktionentheorie Lineare Funktionen. Schuljahr 2016/2017. Inhalt

1 Koordinatensystem. Grundlagen der Funktionentheorie Lineare Funktionen. Schuljahr 2016/2017. Inhalt Berufskolleg Marienschule Lippstadt Schule der Sekundarstufe II mit gymnasialer Oberstufe - staatlich anerkannt - Schuljahr 06/07 Kurs: Mathematik AHR Kurslehrer: Langenbach Grundlagen der Funktionentheorie

Mehr

Expertenpuzzle Quadratische Funktionen

Expertenpuzzle Quadratische Funktionen Phase 1 Lösung für die Expertengruppe I Im Folgenden sollen die in IR definierten Funktionen a : x x, b : x x 0,5, c : x x und d: x x 3 untersucht werden. Die Abbildung zeigt den Graphen G a von a, also

Mehr

1. Das Koordinatensystem

1. Das Koordinatensystem Liebe Schülerin! Lieber Schüler! In den folgenden Unterrichtseinheiten wirst du die Unterrichtssoftware GeoGebra kennen lernen. Mit ihrer Hilfe kannst du verschiedenste mathematische Objekte zeichnen und

Mehr

Aufgabensammlung zum Üben Blatt 1

Aufgabensammlung zum Üben Blatt 1 Aufgabensammlung zum Üben Blatt 1 Seite 1 Lineare Funktionen ohne Parameter: 1. Die Gerade g ist durch die Punkte A ( 3 4 ) und B( 2 1 ) festgelegt, die Gerade h durch die Punkte C ( 5 3 ) und D ( -2-2

Mehr

Üben. Lineare Funktionen. Lösung. Lineare Funktionen

Üben. Lineare Funktionen. Lösung. Lineare Funktionen Zeichne die drei Graphen jeweils in dasselbe Koordinatensstem und beschreibe, worin sich die Graphen jeweils gleichen und worin sie sich unterscheiden. a) b) f : x x f : x x f f f : x : x : x x x x 0,

Mehr

Lineare Funktionen. 6. Zeichne die zu den Funktionen gehörenden Graphen in ein Koordinatensystem und berechne ihren gemeinsamen Schnittpunkt.

Lineare Funktionen. 6. Zeichne die zu den Funktionen gehörenden Graphen in ein Koordinatensystem und berechne ihren gemeinsamen Schnittpunkt. FrauOelschlägel Mathematik8 Lineare Funktionen Ü Datum 1. Die Punkte A 0 4 und liegen auf der Geraden h. und Q8,5,5 B10 0 liegen auf der Geraden g, die Punkte P 0,5 11 Bestimme durch Rechnung die Funktionsgleichungen

Mehr

Download. Hausaufgaben: Lineare Funktionen und Gleichungen. Üben in drei Differenzierungsstufen. Otto Mayr. Downloadauszug aus dem Originaltitel:

Download. Hausaufgaben: Lineare Funktionen und Gleichungen. Üben in drei Differenzierungsstufen. Otto Mayr. Downloadauszug aus dem Originaltitel: Download Otto Mar Hausaufgaben: Lineare Funktionen und Gleichungen Üben in drei Differenzierungsstufen Downloadauszug aus dem Originaltitel: Hausaufgaben: Lineare Funktionen und Gleichungen Üben in drei

Mehr

Einführung in die linearen Funktionen. Autor: Benedikt Menne

Einführung in die linearen Funktionen. Autor: Benedikt Menne Einführung in die linearen Funktionen Autor: Benedikt Menne Inhaltsverzeichnis Vorwort... 3 Allgemeine Definition... 3 3 Bestimmung der Steigung einer linearen Funktion... 4 3. Bestimmung der Steigung

Mehr

Funktionen. 1. Einführung René Descartes Cartesius (Frankreich, )

Funktionen. 1. Einführung René Descartes Cartesius (Frankreich, ) Mathematik bla Funktionen 1. Einführung 167 René Descartes Cartesius (Frankreich, 1596-1650)...führt das kartesische Koordinatensystem ein. Er beschreibt einen Punkt als ein Paar von reellen Zahlen und

Mehr

6 Bestimmung linearer Funktionen

6 Bestimmung linearer Funktionen 1 Bestimmung linearer Funktionen Um die Funktionsvorschrift einer linearen Funktion zu bestimmen, muss man ihre Steigung ermitteln. Dazu sind entweder Punkte gegeben oder man wählt zwei Punkte P 1 ( 1

Mehr

Graph der linearen Funktion

Graph der linearen Funktion Graph der linearen Funktion Im unten stehenden Diagramm sind die Grafen der Funktionen f und g gezeichnet (a) Stelle die Gleichungen von f und g auf und berechne die Nullstellen der beiden Funktionen (b)

Mehr

Unterrichtsmaterialien in digitaler und in gedruckter Form. Auszug aus: Die Russische Revolution Das komplette Material finden Sie hier:

Unterrichtsmaterialien in digitaler und in gedruckter Form. Auszug aus: Die Russische Revolution Das komplette Material finden Sie hier: Unterrichtsmaterialien in digitaler und in gedruckter Form Auszug aus: Das komplette Material finden Sie hier: School-Scout.de Ab 8. Schuljahr Friedhelm Heitmann Die Russische Revolution 1917 Klar strukturierte

Mehr

Die Steigung m ist ein Quotient zweier Differenzen und heißt daher Differenzenquotient.

Die Steigung m ist ein Quotient zweier Differenzen und heißt daher Differenzenquotient. Seite Definition lineare Funktion Eine Funktion f mit dem Funktionsterm f(x) = m x + b, also der Funktionsgleichung y = m x + b, heißt lineare Funktion. Ihr Graph G f ist eine Gerade mit der Steigung m

Mehr

1 Benenne Gemeinsamkeiten und Unterschiede der beiden Graphen und gib die zugehörigen Funktionsgleichungen an.

1 Benenne Gemeinsamkeiten und Unterschiede der beiden Graphen und gib die zugehörigen Funktionsgleichungen an. Teste dich! - (/6) Benenne Gemeinsamkeiten und Unterschiede der beiden Graphen und gib die zugehörigen Funktionsgleichungen an. 0 Cornelsen Verlag, Berlin. Alle Rechte vorbehalten. Gemeinsamkeiten: Beide

Mehr

Zusammenfassung und Wiederholung zu Geraden im IR ²

Zusammenfassung und Wiederholung zu Geraden im IR ² Seite 1 von 5 Definition einer Geraden Wir zeichnen mithilfe einer Wertetabelle den Graphen der linearen Funktion f mit f 0,5 1. Fülle hierzu die Wertetabelle fertig aus: 4 3 1 0 1 3 4 f f4 0,54 1 3...,5...

Mehr

Unterrichtsmaterialien in digitaler und in gedruckter Form. Auszug aus: Lernwerkstatt: Napoleon Bonaparte - Der Herrscher über Europa

Unterrichtsmaterialien in digitaler und in gedruckter Form. Auszug aus: Lernwerkstatt: Napoleon Bonaparte - Der Herrscher über Europa Unterrichtsmaterialien in digitaler und in gedruckter Form Auszug aus: Lernwerkstatt: Napoleon Bonaparte - Der Herrscher über Europa Das komplette Material finden Sie hier: School-Scout.de 6.-10. Schuljahr

Mehr

Lineare Funktionen. 1 Proportionale Funktionen 3 1.1 Definition... 3 1.2 Eigenschaften... 3. 2 Steigungsdreieck 3

Lineare Funktionen. 1 Proportionale Funktionen 3 1.1 Definition... 3 1.2 Eigenschaften... 3. 2 Steigungsdreieck 3 Lineare Funktionen Inhaltsverzeichnis 1 Proportionale Funktionen 3 1.1 Definition............................... 3 1.2 Eigenschaften............................. 3 2 Steigungsdreieck 3 3 Lineare Funktionen

Mehr

Unterrichtsmaterialien in digitaler und in gedruckter Form. Auszug aus: bungen zum Leseverstehen (Vera Deutsch)

Unterrichtsmaterialien in digitaler und in gedruckter Form. Auszug aus: bungen zum Leseverstehen (Vera Deutsch) Unterrichtsmaterialien in digitaler und in gedruckter Form Auszug aus: bungen zum Leseverstehen (Vera 8 2017 - Deutsch) Das komplette Material finden Sie hier: School-Scout.de Titel: Übungen zum Leseverstehen

Mehr

Unterrichtsmaterialien in digitaler und in gedruckter Form. Auszug aus: Lineare Gleichungssysteme ohne Schwierigkeiten lösen

Unterrichtsmaterialien in digitaler und in gedruckter Form. Auszug aus: Lineare Gleichungssysteme ohne Schwierigkeiten lösen Unterrichtsmaterialien in digitaler und in gedruckter Form Auszug aus: Das komplette Material finden Sie hier: School-Scout.de S 1 Dr. Beate Bathe-Peters, Berlin Käseteller Muffins backen Fotos im gesamten

Mehr

Unterrichtsmaterialien in digitaler und in gedruckter Form. Auszug aus: Lernwerkstatt: Ernährung im Alltag`- Wie man sich gesund ernährt

Unterrichtsmaterialien in digitaler und in gedruckter Form. Auszug aus: Lernwerkstatt: Ernährung im Alltag`- Wie man sich gesund ernährt Unterrichtsmaterialien in digitaler und in gedruckter Form Auszug aus: Lernwerkstatt: Ernährung im Alltag`- Wie man sich gesund ernährt Das komplette Material finden Sie hier: School-Scout.de 4.-10. Schuljahr

Mehr

Demo für

Demo für Aufgabensammlung Mit ausführlichen Lösungen Geradengleichungen und lineare Funktionen Zeichnen von Geraden in vorgefertigte Koordinatensysteme Aufstellen von Geradengleichungen Schnitt von Geraden Die

Mehr

DOWNLOAD. Vertretungsstunden Mathematik Klasse: Lineare Funktionen. Marco Bettner/Erik Dinges. Downloadauszug aus dem Originaltitel:

DOWNLOAD. Vertretungsstunden Mathematik Klasse: Lineare Funktionen. Marco Bettner/Erik Dinges. Downloadauszug aus dem Originaltitel: DOWNLOAD Marco Bettner/Erik Dinges Vertretungsstunden Mathematik 8 8. Klasse: auszug aus dem Originaltitel: Gehört der Punkt zum Funktionsgraph?. Betrachte die Funktion y = x +. Gehört der Punkt P(/5)

Mehr

Klassenarbeit Mathematik SF11S Gruppe A NAME:

Klassenarbeit Mathematik SF11S Gruppe A NAME: R. Brinkmann http://brinkmann-du.de Seite 8.0.008 Klassenarbeit Mathematik..00 SFS Gruppe A NAME: Beachten Sie: Der Rechenweg bzw. Begründungen für Ihre Ergebnisse müssen immer erkennbar sein! Zu jeder

Mehr

Arbeitsblatt Mathematik 1 (Funktionen) 1. Aufgabe Skizzieren Sie die Graphen der folgenden linearen Funktionen:

Arbeitsblatt Mathematik 1 (Funktionen) 1. Aufgabe Skizzieren Sie die Graphen der folgenden linearen Funktionen: Fachhochschule Nordwestschweiz (FHNW) Hochschule für Technik Institut für Mathematik und Naturwissenschaften Arbeitsblatt Mathematik 1 (Funktionen) Dozent: - Brückenkurs Mathematik / Physik 2016 Lineare

Mehr

4.1. Aufgaben zu linearen Funktionen

4.1. Aufgaben zu linearen Funktionen .. Aufgaben zu linearen Funktionen Aufgabe : Koordinatensystem a) Gib die Koordinaten der Punkte P - P 8 in dem rechts abgebildeten Koordinatensystem an. b) Markiere die Punkte A( ); B( ); C( ); D( );

Mehr

Gleichsetzungsverfahren

Gleichsetzungsverfahren Funktion Eine Funktion ist eine Zuordnung, bei der zu jeder Größe eines ersten Bereichs (Ein gabegröße) genau eine Größe eines zweiten Bereichs (Ausgabegröße) gehört. Eine Funktion wird durch eine Funktionsvorschrift

Mehr

Die folgende Abbildung zeigt dir, wie man mit Hilfe des Brennstrahls und des Parallelstrahls das Bild bestimmen kann.

Die folgende Abbildung zeigt dir, wie man mit Hilfe des Brennstrahls und des Parallelstrahls das Bild bestimmen kann. Begleitmaterial zum Modul Bruchgleichungen Die folgende Abbildung zeigt dir, wie man mit Hilfe des Brennstrahls und des Parallelstrahls das Bild bestimmen kann.. Führe eine entsprechende Konstruktion selbst

Mehr

Zuordnungen. 2 x g: y = x + 2 h: y = x 1 4

Zuordnungen. 2 x g: y = x + 2 h: y = x 1 4 Zuordnungen Bei Zuordnungen wird jedem vorgegebenen Wert aus einem Bereich ein Wert aus einem anderen Bereich zugeordnet. Zuordnungen können z.b. durch Wertetabellen, Diagramme oder Rechenvorschriften

Mehr

Gleichungen Lösen. Ein graphischer Blick auf Gleichungen

Gleichungen Lösen. Ein graphischer Blick auf Gleichungen Gleichungen Lösen Was bedeutet es, eine Gleichung zu lösen? Was ist überhaupt eine Gleichung? Eine Gleichung ist, grundsätzlich eine Aussage über zwei mathematische Terme, dass sie gleich sind. Ein Term

Mehr

Unterrichtsmaterialien in digitaler und in gedruckter Form. Auszug aus: Aufsatz kinderleicht - Fabeln und Märchen

Unterrichtsmaterialien in digitaler und in gedruckter Form. Auszug aus: Aufsatz kinderleicht - Fabeln und Märchen Unterrichtsmaterialien in digitaler und in gedruckter Form Auszug aus: Aufsatz kinderleicht - Fabeln und Märchen Das komplette Material finden Sie hier: School-Scout.de Grundschule Friedhelm R. Kohl &Heitmann

Mehr

Mathemathik-Prüfungen

Mathemathik-Prüfungen M. Arend Stand Juni 2005 Seite 1 1980: Mathemathik-Prüfungen 1980-2005 1. Eine zur y-achse symmetrische Parabel 4.Ordnung geht durch P 1 (0 4) und hat in P 2 (-1 1) einen Wendepunkt. 2. Diskutieren Sie

Mehr

TK II Mathematik 2. Feststellungsprüfung Nachprüfung Arbeitszeit: 120 Minuten

TK II Mathematik 2. Feststellungsprüfung Nachprüfung Arbeitszeit: 120 Minuten . Feststellungsprüfung Nachprüfung 19.0.005 1. Untersuchen Sie die Funktion p ( ) = + 16 auf Monotonie und geben Sie auf Grund dieses Ergebnisses die Lage des Scheitels an. (10. Der Graph einer ganz rationalen

Mehr

Lineare Funktion Aufgaben und Lösungen

Lineare Funktion Aufgaben und Lösungen Lineare Funktion Aufgaben und Lösungen http://www.fersch.de Klemens Fersch. November 0 Inhaltsverzeichnis Ursprungsgerade. y = m x...................................................... Aufgaben.................................................

Mehr

Geraden. Somit scheiden die Gerade im Punkt N(-b/m; 0) die x-achse.

Geraden. Somit scheiden die Gerade im Punkt N(-b/m; 0) die x-achse. Geraden Eine Gerade wird durch eine Gleichung der Form y = mÿx + b bzw. f(x) = mÿx + b beschrieben. Die Schreibweise f(x) = wird teils erst in der Oberstufe verwendet. b ist der y- Achsenabschnitt, d.h.

Mehr

Lineare Funktionen Auftrag 1: Bearbeitung mit dem GTR (grafikfähigen Taschenrechner)

Lineare Funktionen Auftrag 1: Bearbeitung mit dem GTR (grafikfähigen Taschenrechner) Lineare Funktionen Auftrag : Ein Wasserwerk verlangt von seinen Kunden jährlich eine Grundgebühr von,0. Für einen m³ Wasser muss man 0,80 und zudem 0,0 Kanalgebühren bezahlen. a) Notiere eine passende

Mehr

Expertenpuzzle Quadratische Funktionen

Expertenpuzzle Quadratische Funktionen Phase 1 Aufgaben für die Expertengruppe I Im Folgenden sollen die in IR definierten Funktionen a : x x, b : x x 0,5, c : x x und d: x x 3 untersucht werden. Die Abbildung zeigt den Graphen G a von a, also

Mehr

MATHEMATIK G10. (1) Bestimme die Gleichung der Geraden durch die beiden Punkte

MATHEMATIK G10. (1) Bestimme die Gleichung der Geraden durch die beiden Punkte (c) A( 1 1 ) geht. 1 MATHEMATIK G10 GERADEN (1) Bestimme die Gleichung der Geraden durch die beiden Punkte P und Q: a) P ( 5), Q(4 7) b) P (3 11), Q(3, 1) c) P (3 5), Q( 1 7) d) P ( 0), Q(0 3) e) P (3

Mehr

1.1 Direkte Proportionalität

1.1 Direkte Proportionalität Beziehungen zwischen Größen. Direkte Proportionalität Bei einer direkten Proportionalität wird dem doppelten, dreifachen,...wert der einen Größe x der doppelte, dreifache,... Wert der anderen Größe y zugeordnet.

Mehr

Übungen zu Kurvenscharen

Übungen zu Kurvenscharen Übungen zu Kurvenscharen. Gegeben ist die Geradenschar g t : = (t ) ( t) + 9 (t 9) mit D(g t ) = R, t R. a) Zeichnen Sie die Graphen der Funktionen g und g in ein Koordinatensstem. b) Geben Sie die Schnittpunkte

Mehr

Funktionsgleichung, Wertetabelle, Funktionsgraph

Funktionsgleichung, Wertetabelle, Funktionsgraph Johanna Harnischfeger (Hg.), Heiner Juen (Hg.) Funktionsgleichung, Wertetabelle, Funktionsgraph Fertige Unterrichtsstunden zum Thema Funktionen Nach der Lernmethodik von Dr. Heinz Klippert Downloadauszug

Mehr

Arbeitsblätter zur Vergleichsklausur EF. Aufgabe 1 Bestimme die Lösungen der folgenden Gleichungen möglichst im Kopf.

Arbeitsblätter zur Vergleichsklausur EF. Aufgabe 1 Bestimme die Lösungen der folgenden Gleichungen möglichst im Kopf. Arbeitsblätter zur Vergleichsklausur EF Arbeitsblatt I.1 Nullstellen Aufgabe 1 Bestimme die Lösungen der folgenden Gleichungen möglichst im Kopf. Beachte den Satz: Ein Produkt wird null, wenn einer der

Mehr

Unterrichtsmaterialien in digitaler und in gedruckter Form. Auszug aus: Der Nationalsozialismus - Die Geschichte einer Katastrophe

Unterrichtsmaterialien in digitaler und in gedruckter Form. Auszug aus: Der Nationalsozialismus - Die Geschichte einer Katastrophe Unterrichtsmaterialien in digitaler und in gedruckter Form Auszug aus: Der Nationalsozialismus - Die Geschichte einer Katastrophe Das komplette Material finden Sie hier: School-Scout.de 7.-10. Schuljahr

Mehr

1. Gegeben sind die Scheitelpunkte von Parabeln. Gib die Funktionsgleichungen an. a) S(-3/5) b) S(-1/-8) c) S(1/-0,5) d) S(0,5/0,2)

1. Gegeben sind die Scheitelpunkte von Parabeln. Gib die Funktionsgleichungen an. a) S(-3/5) b) S(-1/-8) c) S(1/-0,5) d) S(0,5/0,2) Vermischte Übungen (1) Verschiebung der Normalparabel 1. Gegeben sind die Scheitelpunkte von Parabeln. Gib die Funktionsgleichungen an. a) S(-3/5) b) S(-1/-8) c) S(1/-0,5) d) S(0,5/0,). In der Abbildung

Mehr

Mathematik EF. Bernhard Scheideler

Mathematik EF. Bernhard Scheideler Mathematik EF Bernhard Scheideler Stand: 7. September 20 Inhaltsverzeichnis Die Kurvendiskussion. Stetigkeit und Differenzierbarkeit:....................2 Standardsymmetrie:............................

Mehr

2. Mathematik-Schularbeit für die 5. Klasse Autor: Gottfried Gurtner

2. Mathematik-Schularbeit für die 5. Klasse Autor: Gottfried Gurtner . Mathematik-Schularbeit für die 5. Klasse Autor: Gottfried Gurtner Arbeitszeit: 50 Minuten Lernstoff: Mathematische Grundkompetenzen: AG1.1 Wissen über die Zahlenmengen,,, verständig einsetzen können

Mehr

Unterrichtsmaterialien in digitaler und in gedruckter Form. Auszug aus: Wochenplan Deutsch / 3. Schuljahr. Das komplette Material finden Sie hier:

Unterrichtsmaterialien in digitaler und in gedruckter Form. Auszug aus: Wochenplan Deutsch / 3. Schuljahr. Das komplette Material finden Sie hier: Unterrichtsmaterialien in digitaler und in gedruckter Form Auszug aus: Wochenplan Deutsch / 3. Schuljahr Das komplette Material finden Sie hier: School-Scout.de 3. Schuljahr Sabine Hauke Wochenplan Deutsch

Mehr

R. Brinkmann Seite

R. Brinkmann  Seite R. Brinkmann http://brinkmann-du.de Seite 9..8 Linearen Funktion Aus der Sekundarstufe I sind Ihnen die Graphen linearer Funktionen als Geraden bekannt und deren Funktionsgleichungen als Geradengleichungen.

Mehr

11 Üben X Affine Funktionen 1.01

11 Üben X Affine Funktionen 1.01 Üben X Aine Funktionen.0 Zeichne die Graphen zu olgenden Funktionsgleichungen! + + d c b a Augabenkarte von MUED Lösung X Aine Funktionen.0 + + d c b a Üben X Aine Funktionen.0 Bestimme die Funktionsgleichung

Mehr

Unterrichtsmaterialien in digitaler und in gedruckter Form. Auszug aus:

Unterrichtsmaterialien in digitaler und in gedruckter Form. Auszug aus: Unterrichtsmaterialien in digitaler und in gedruckter Form Auszug aus: Grundlagen der Integralrechnung: Übungsaufgaben zur Berechnung unbestimmter und bestimmter Integrale Das komplette Material finden

Mehr

1. Vereinfache wie im Beispiel: 3. Vereinfache wie im Beispiel: 4. Schreibe ohne Wurzel wie im Beispiel:

1. Vereinfache wie im Beispiel: 3. Vereinfache wie im Beispiel: 4. Schreibe ohne Wurzel wie im Beispiel: 1. Zahlenmengen Wissensgrundlage Aufgabenbeispiele Gib die jeweils kleinstmögliche Zahlenmenge an, welche die Zahl enthält? R Q Q oder All diejenigen Zahlen, die sich nicht mehr durch Brüche darstellen

Mehr

Name: Klasse: Datum: Klassenarbeit Wachstumsvorgänge Kl10-Gruppe B

Name: Klasse: Datum: Klassenarbeit Wachstumsvorgänge Kl10-Gruppe B Name: Klasse: Datum: Teil B Klassenarbeit Wachstumsvorgänge Kl0-Gruppe B. Gegeben ist die Exponentialfunktion y=f x =0.8 2 x ; x R. (9P) a) Geben Sie die folgenden Eigenschaften dieser Funktion an! Wertebereich,

Mehr

+ 2. Bruchgleichungen

+ 2. Bruchgleichungen Bruchgleichungen Gleichungen mit einer Lösungsvariablen im Nenner eines Bruchs heißen Bruchgleichungen. Definitionsmenge: Nenner 0 Lösungsweg: 1. Multiplikation mit dem Hauptnenner 2. Äquivalenzumformungen

Mehr

Unterrichtsmaterialien in digitaler und in gedruckter Form. Auszug aus: Religion und Ethik - Kurz, knapp und klar! / Band 1

Unterrichtsmaterialien in digitaler und in gedruckter Form. Auszug aus: Religion und Ethik - Kurz, knapp und klar! / Band 1 Unterrichtsmaterialien in digitaler und in gedruckter Form Auszug aus: Religion und Ethik - Kurz, knapp und klar! / Band 1 Das komplette Material finden Sie hier: School-Scout.de Inhaltsverzeichnis Seite

Mehr

Name: Klasse: Datum: Klassenarbeit Wachstumsvorgänge Kl10-Gruppe A

Name: Klasse: Datum: Klassenarbeit Wachstumsvorgänge Kl10-Gruppe A Name: Klasse: Datum: Teil B Klassenarbeit Wachstumsvorgänge Kl10-Gruppe A 1. Gegeben ist die Exponentialfunktion y=f x = 0,5 x ; x R. (9P) a) Geben Sie die folgenden Eigenschaften dieser Funktion an! Wertebereich,

Mehr

Ergänzungsprüfung. zum Erwerb der Fachhochschulreife (technische Ausbildungsrichtung)

Ergänzungsprüfung. zum Erwerb der Fachhochschulreife (technische Ausbildungsrichtung) Ergänzungsprüfung zum Erwerb der Fachhochschulreife 005 Prüfungsfach: Mathematik (technische Ausbildungsrichtung) Prüfungstag: Donnerstag, 16. Juni 005 Prüfungsdauer: 09:00-1:00 Uhr Hilfsmittel: elektronischer,

Mehr

Unterrichtsmaterialien in digitaler und in gedruckter Form. Auszug aus: Olympische Spiele früher & heute. Das komplette Material finden Sie hier:

Unterrichtsmaterialien in digitaler und in gedruckter Form. Auszug aus: Olympische Spiele früher & heute. Das komplette Material finden Sie hier: Unterrichtsmaterialien in digitaler und in gedruckter Form Auszug aus: Das komplette Material finden Sie hier: School-Scout.de Sekundarstufe Friedhelm Heitmann Olympische Spiele früher & heute Ein Quantensprung

Mehr

Lineare Funktionen. Übungszirkel Mathematik 8. Klasse Realschule

Lineare Funktionen. Übungszirkel Mathematik 8. Klasse Realschule Naturwissenschaft Lisa Müller Lineare Funktionen. Übungszirkel Mathematik 8. Klasse Realschule Unterrichtsentwurf Lerngruppe: 8a Fach: Mathematik Unterrichtsentwurf Thema der Unterrichtseinheit: Lineare

Mehr

Übungsaufgaben zu quadratischen Gleichungen und Parabeln

Übungsaufgaben zu quadratischen Gleichungen und Parabeln Übungsaufgaben zu quadratischen Gleichungen und Parabeln Binomische Formeln:. binomische Formel: ( a + b) = a + ab + b. binomische Formel:. binomische Formel: ( a b) = a ab + b ( a + b)(a b) = a b Lösungsformel

Mehr

Funktionsgleichung in ABC-Form Funktionsgleichung in Scheitelform Funktionsgleichung in Nullstellenform. y 2 x 2x 3 2 ausklammern. Binom.

Funktionsgleichung in ABC-Form Funktionsgleichung in Scheitelform Funktionsgleichung in Nullstellenform. y 2 x 2x 3 2 ausklammern. Binom. Parabel zeichnen Parabel zeichnen Schritt für Schrittanleitungen unter www.fraengg.ch Klasse, GeoGebra) Funktionsgleichung in ABC-Form Funktionsgleichung in Scheitelform Funktionsgleichung in Nullstellenform

Mehr

9 Funktionen und ihre Graphen

9 Funktionen und ihre Graphen 57 9 Funktionen und ihre Graphen Funktionsbegriff Eine Funktion ordnet jedem Element aus einer Menge D f genau ein Element aus einer Menge W f zu. mit = f(), D f Die Menge aller Funktionswerte nennt man

Mehr

Unterrichtsmaterialien in digitaler und in gedruckter Form. Auszug aus: Politik - Grundwissen kurz, knapp und klar!

Unterrichtsmaterialien in digitaler und in gedruckter Form. Auszug aus: Politik - Grundwissen kurz, knapp und klar! Unterrichtsmaterialien in digitaler und in gedruckter Form Auszug aus: - Grundwissen kurz, knapp und klar! Das komplette Material finden Sie hier: School-Scout.de Inhaltsverzeichnis Vorwort 6 1 2 3 4 5

Mehr

Vorbereitungsmappe. Grundlagen vor dem Eintritt in die 11. Klasse FOS / 12. Klasse BOS

Vorbereitungsmappe. Grundlagen vor dem Eintritt in die 11. Klasse FOS / 12. Klasse BOS Vorbereitungsmappe Grundlagen vor dem Eintritt in die 11. Klasse FOS / 12. Klasse BOS Liebe Schülerinnen und Schüler, vor dem Eintritt in die 11. Klasse FOS / 12. Klasse BOS stellt sich vor allem im Fach

Mehr

Unterrichtsmaterialien in digitaler und in gedruckter Form. Auszug aus: Mathe zum Schmunzeln - Übungsheft / 1. Schuljahr

Unterrichtsmaterialien in digitaler und in gedruckter Form. Auszug aus: Mathe zum Schmunzeln - Übungsheft / 1. Schuljahr Unterrichtsmaterialien in digitaler und in gedruckter Form Auszug aus: Mathe zum Schmunzeln - Übungsheft / 1. Schuljahr Das komplette Material finden Sie hier: School-Scout.de 1. Schuljahr Friedhelm Lynn-Sven

Mehr

WM.3.1 Die Polynomfunktion 1. Grades

WM.3.1 Die Polynomfunktion 1. Grades WM.3.1 Die Polynomfunktion 1. Grades Wenn zwischen den Elementen zweier Mengen D und W eine eindeutige Zuordnungsvorschrift vorliegt, dann ist damit eine Funktion definiert (s. Abb1.), Abb1. wobei D als

Mehr

Minimalziele Mathematik

Minimalziele Mathematik Jahrgang 5 o Kopfrechnen, Kleines Einmaleins o Runden und Überschlagrechnen o Schriftliche Grundrechenarten in den Natürlichen Zahlen (ganzzahliger Divisor, ganzzahliger Faktor) o Umwandeln von Größen

Mehr

Unterrichtsmaterialien in digitaler und in gedruckter Form. Auszug aus: Kindheit & Kinderarbeit. Das komplette Material finden Sie hier:

Unterrichtsmaterialien in digitaler und in gedruckter Form. Auszug aus: Kindheit & Kinderarbeit. Das komplette Material finden Sie hier: Unterrichtsmaterialien in digitaler und in gedruckter Form Auszug aus: Kindheit & Kinderarbeit Das komplette Material finden Sie hier: School-Scout.de Sekundarstufe Friedhelm Heitmann Kindheit & Kinderarbeit

Mehr

CAS-Einheit: Formen der Funktionsgleichung bei rationalen Funktionen

CAS-Einheit: Formen der Funktionsgleichung bei rationalen Funktionen CAS-Einheit: Formen der Funktionsgleichung bei rationalen Funktionen Die folgende Bildfolg zeigt, wie man Funktionsgraphen mit dem CAS-Rechner zeichnen kann: Aufgaben Lasse mit Hilfe des CAS-Rechners die

Mehr

Eingangstest Mathematik Jgst.11

Eingangstest Mathematik Jgst.11 SINUS-Set Projekt F3 Erfinden Sie zu dem abgebildeten Graphen eine Sachsituation, die durch den Graphen dargestellt wird. Gehen Sie dabei auch auf den Verlauf des Graphen ein! Zeit in F4 In der Abbildung

Mehr

2.2 Funktionen 1.Grades

2.2 Funktionen 1.Grades . Funktionen.Grades (Thema aus dem Bereich Analysis) Inhaltsverzeichnis Was ist eine Funktion.Grades? Die Steigung einer Geraden. Die Definition der Steigung.................................... Die Berechnung

Mehr

Wertetabelle : x 0 0,5 1 2 3 4 0,5 1. y = f(x) = x 2 0 0,25 1 4 9 16 0,25 1. Graph der Funktion :

Wertetabelle : x 0 0,5 1 2 3 4 0,5 1. y = f(x) = x 2 0 0,25 1 4 9 16 0,25 1. Graph der Funktion : Quadratische Funktionen ================================================================= 1. Die Normalparabel Die Funktion f : x y = x, D = R, heißt Quadratfunktion. Wertetabelle : x 0 0,5 1 3 4 0,5 1

Mehr

Vorbereitungskurs Mathematik

Vorbereitungskurs Mathematik Vorbereitungskurs Mathematik Grundlagen für das Unterrichtsfach Mathematik für die Fachhochschulreifeprüfung Zweijährige Höhere Berufsfachschule Berufsoberschule I Duale Berufsoberschule Inhalt 0. Vorwort...

Mehr

F u n k t i o n e n Lineare Funktionen

F u n k t i o n e n Lineare Funktionen F u n k t i o n e n Lineare Funktionen Dieses Muster entstand aus der Drehung einer Geraden um einen kleinen Kreis. Dieser kleine Kreis dreht wiederum um einen grösseren Kreis. ADSL Internetanschlüsse

Mehr

Lineare Gleichungssysteme mit zwei Variablen

Lineare Gleichungssysteme mit zwei Variablen Lineare Gleichungssysteme mit zwei Variablen Anna Heynkes 4.11.2005, Aachen Enthält eine Gleichung mehr als eine Variable, dann gibt es unendlich viele mögliche Lösungen und jede Lösung besteht aus so

Mehr

Arbeitsblatt 4: Kurvendiskussion - Von Skizzen zu Extremstellen-Bedingungen

Arbeitsblatt 4: Kurvendiskussion - Von Skizzen zu Extremstellen-Bedingungen Arbeitsblatt 4: Kurvendiskussion - Von Skizzen zu Etremstellen-Bedingungen Häufig sind Ableitungsfunktionsterme leichter zu handhaben als die Terme der Ausgangsfunktonen, weil sie niedrigere Eponenten

Mehr

Quadratische Funktionen (Parabeln)

Quadratische Funktionen (Parabeln) Quadratische Funktionen (Parabeln) Aufgabe: Gegeben ist die quadratische Funktion = () x. Berechne mit Hilfe einer Wertetabelle die Funktionswerte von bis + im Abstand 0,. Zeichne anschließend die Punkte

Mehr

Unterrichtsmaterialien in digitaler und in gedruckter Form. Auszug aus: Übungen zum Hörverstehen (Lernstandserhebung - Deutsch, Klasse 8)

Unterrichtsmaterialien in digitaler und in gedruckter Form. Auszug aus: Übungen zum Hörverstehen (Lernstandserhebung - Deutsch, Klasse 8) Unterrichtsmaterialien in digitaler und in gedruckter Form Auszug aus: Übungen zum Hörverstehen (Lernstandserhebung - Deutsch, Klasse 8) Das komplette Material finden Sie hier: School-Scout.de SCHOOL-SCOUT

Mehr

Relationen / Lineare Funktionen

Relationen / Lineare Funktionen Relationen / Lineare Funktionen Relationen Werden Elemente aus einer Menge X durch eine Zuordnungsvorschrift anderen Elementen aus einer Menge Y zugeordnet, so wird durch diese Zuordnungsvorschrift eine

Mehr

Flächenberechnung mit Integralen. Flächenberechnung mit Integralen. Flächenberechnung mit Integralen. Flächenberechnungen mit Integralen

Flächenberechnung mit Integralen. Flächenberechnung mit Integralen. Flächenberechnung mit Integralen. Flächenberechnungen mit Integralen Flächenberechnungen mit Integralen Aufgabe 1: Gegeben sei die Funktion = 44. = 44 Aufgaben und Lösungen a) Berechnen Sie die Fläche, die die Kurve mit den Koordinatenachsen einschließt. b) Berechnen Sie

Mehr

Unterrichtsmaterialien in digitaler und in gedruckter Form. Auszug aus: Freizeitverhalten - Den Alltag sinnvoll gestalten

Unterrichtsmaterialien in digitaler und in gedruckter Form. Auszug aus: Freizeitverhalten - Den Alltag sinnvoll gestalten Unterrichtsmaterialien in digitaler und in gedruckter Form Auszug aus: - Den Alltag sinnvoll gestalten Das komplette Material finden Sie hier: School-Scout.de Ab 6. Schuljahr Friedhelm Heitmann Den Alltag

Mehr

1. Lineare Funktionen und lineare Gleichungen

1. Lineare Funktionen und lineare Gleichungen Liebe Schülerin! Lieber Schüler! In den folgenden Unterrichtseinheiten wirst du die Unterrichtssoftware GeoGebra kennen lernen. Mit ihrer Hilfe kannst du verschiedenste mathematische Objekte zeichnen und

Mehr

Unterrichtsmaterialien in digitaler und in gedruckter Form. Auszug aus: Lernwerkstatt: Der Weltraum. Das komplette Material finden Sie hier:

Unterrichtsmaterialien in digitaler und in gedruckter Form. Auszug aus: Lernwerkstatt: Der Weltraum. Das komplette Material finden Sie hier: Unterrichtsmaterialien in digitaler und in gedruckter Form Auszug aus: : Der Weltraum Das komplette Material finden Sie hier: School-Scout.de Inhalt Vorwort 4 Seite 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

Mehr

Parabeln - quadratische Funktionen

Parabeln - quadratische Funktionen Parabeln - quadratische Funktionen Roland Heynkes 9.11.005, Aachen Das Gleichsetzungsverfahren und die davon abgeleiteten Einsetzungs- und Additionsverfahren kennen wir als Methoden zur Lösung linearer

Mehr

1. Mathematik-Schularbeit für die 5. Klasse Autor: Gottfried Gurtner

1. Mathematik-Schularbeit für die 5. Klasse Autor: Gottfried Gurtner 1. Mathematik-Schularbeit für die 5. Klasse Autor: Gottfried Gurtner Arbeitszeit: 50 Minuten Lernstoff: Mathematische Grundkompetenzen: AG1.1 Wissen über die Zahlenmengen,,, verständig einsetzen können

Mehr