Physikalisches Grundpraktikum für Physiker/innen Teil III. Kohärenz von Wellen (Newtonsche Ringe)

Größe: px
Ab Seite anzeigen:

Download "Physikalisches Grundpraktikum für Physiker/innen Teil III. Kohärenz von Wellen (Newtonsche Ringe)"

Transkript

1 Fachrichtungen der Physik UNIVERSITÄT DES SAARLANDES Physikalisches Grundpraktikum für Physiker/innen Teil III Kohärenz von Wellen (Newtonsche Ringe) WWW-Adresse Grundpraktikum Physik: 0http://grundpraktikum.physik.uni-saarland.de/ Kontaktadressen der Praktikumsleiter: Dr. Manfred Deicher Zimmer: 1.11, Gebäude E H1Hmanfred.deicher@tech-phys.uni-sb.de Telefon: 0681/ Dr. Patrick Huber Zimmer: 3.23, Gebäude E H2Hp.huber@physik.uni-saarland.de Telefon: 0681/

2 KW 2 KOHÄRENZ VON WELLEN Fragen Literaturhinweise beziehen sich auf Bücher, die in der Fachbibliothek Physik stehen. 1. Wie kann man experimentell "Interferenz gleicher Neigung" und "Interferenz gleicher Dicke" erzeugen? (Bergmann/Schäfer/Matossi, BSM, Band 3, Optik, S.239ff.) 2. Wie unterscheiden sich Aufbau, Wirkungsweise und physikalische Eigen-schaften von Interferenzfiltern und Farbglasfiltern? (Versuch "Optische Materialkonstanten" und BSM S.256ff.) 3. Wie sind Phasen- und Gruppengeschwindigkeit definiert? (BSM S.161) 4. Wie hängt bei senkrechtem Lichteinfall das Reflexionsvermögen an einer ebenen Grenzfläche mit den (absoluten) Brechungsindizes n 1 und n 2 der beiden Medien zusammen? 5. Worin liegt die Ursache der Kontrasterniedrigung der Ringe bei Aufgabe 2 im Vergleich zu Aufgabe 1? Welche Möglichkeiten hat man zur Kontrast-steigerung? 6. Inwiefern ist bei der Versuchsanordnung zur Erzeugung Newtonscher Ringe die räumliche Kohärenzbedingung erfüllt? 7. Wie ändert sich Gl.(16), wenn die Linse (z.b. wegen einiger Staubpartikel oder Kratzer) die Glasplatte nicht berührt, sondern in einem Abstand D über der Platte liegt? Literatur Born und Wolf: Principles of Optics : Wave packets and the group velocity, Elements of the theory of interference and interferometers. Gerthsen/Kneser/Vogel: Physik : Interferenz des Lichtes Bergmann/Schäfer/Matossi: Lehrbuch der Experimentalphysik, Band 3, Optik : Phasen-, Gruppen- und Frontgeschwindigkeit; Interferenz und Beugung Pohl: Optik und Atomphysik : Interferenz Frauenfelder/Huber: Physik II : Interferenz und Beugung L. Mandel, E. Wolf: Review of modern physics 37, 231

3 NEWTONSCHE RINGE KW 3 Anmerkung: Der Laser hat sowohl auf experimentellem wie auf theoretischem Gebiet starke Anstöße zur Weiterentwicklung der Physik geliefert (Eigenschaften elektromagnetischer Felder, Statistik von Vielteilchensystemen, Emissions- und Absorptionsvorgänge, nichtlineare Optik usw.). Wesentliche Eigenschaften des Laserlichtes kann man durch seine Kohärenz erklären. Darüber hinaus spielt der Kohärenzbegriff die entscheidende Rolle bei der Interferenz von Wellen aller Art. I. Grundlagen I.1 Die statistische Lichtquelle Mit geeigneten Sendern kann man streng periodische Schall- oder Radiowellen beliebig lange erzeugen. Ist die Sendergröße sehr viel kleiner als die Wellenlänge, so können Kugelwellen ausgesandt werden. In großem Abstand vom Sender kann man diese für kleine Raumwinkelbereiche durch ebene Wellen hinreichend genau nähern, die sich durch besonders einfache mathematische Beschreibung auszeichnen. Allgemein wird eine ebene monochromatische Welle gegeben durch die Gleichung A(x,t) = f 1 (ωt-kx) + f 2 (ωt+kx) (1) Wobei A die Amplitude, ω die Kreisfrequenz, t die Zeit, x die Ausbreitungsrichtung und k=ω/c die Wellenzahl bedeuten (c ist die Lichtgeschwindigkeit). Anders beim Licht, das von einem Atom im Gas, in einer Flüssigkeit oder einem Festkörper ausgesandt wird: Ein angeregtes Atom benötigt für die Rückkehr in den Grundzustand nur bis 10-8 s. Wann dasselbe Atom danach erneut Strahlung aussenden wird, ist völlig unbestimmt, die Emissionsakte sind voneinander statistisch unabhängige Vorgänge (daher "statistische" Lichtquelle). Dies gilt für die spontane Emission, also nicht für die induzierte Emission, auf der der Laser-Effekt beruht. Die Emissionsdauer Δt bestimmt die Länge l c des ausgesandten Wellenpaketes, es gilt: l c =c Δt (2) Nach Fourier läßt sich ein Wellenpaket durch Überlagerung von unendlich vielen ebenen monochromatischen Wellen aus einem Frequenzintervall Δν (der sogenannten Bandbreite) um eine mittlere Frequenz ν 0 herum beschreiben, und es gilt Δt Δν 1 (3)

4 KW 4 KOHÄRENZ VON WELLEN Die Bandbreite Δλ des Lichtes ergibt mit Gleichung (2): (3 ) l c λ 2 /Δλ I.2 Kohärenz Definition: Wir nennen Lichtbündel zueinander kohärent, wenn man durch lineare Superposition der Bündel zeitlich konstante (d.h. beobachtbare) Interferenzfiguren erzeugen kann. Aus dem Kontrast der Interferenzfiguren kann man den sog. Kohärenzgrad als ein Maß für den Betrag der Kohärenz herleiten: (4) v = Imax Imax + Imin Imin wobei I max und I min die zeitlichen Mittelwerte der Lichtintensitäten in benachbarten Interferenzmaxima und -minima sind. Man sieht, daß für den Kohärenzgrad gilt: 0 v 1 Die Theorie zeigt, daß der Kohärenzgrad im allgemeinen eine komplexe Größe ist. Das oben definierte v ist dann der Betrag des Kohärenzgrades. Die Extremfälle v=0 und v=1 nennt man Inkohärenz bzw. vollständige Kohärenz. Die Zwischenfälle bezeichnet man als partielle (teilweise) Kohärenz. I.3 Kohärenzzeit und Kohärenzlänge Sie wird durch ein Interferenzexperiment vom Michelson-Typ (z.b. Newtonscher Versuch) untersucht. Dazu spaltet man ein Lichtbündel in zwei Teile und vereinigt diese wieder, nachdem der eine Teil einen längeren Weg zurückgelegt hat als der zweite. Wird die Wegdifferenz d größer als die mittlere Länge der Wellenpakete lc, so entstehen keine zeitlich konstanten Interferenzstreifen mehr. Auf diese Weise kann man direkt die mittlere Länge der Wellenpakete messen. Man nennt diese Länge die Kohärenzlänge und die zugehörige Zeit Δt=l c /c die Kohärenzzeit. Kohärenz kann man beobachten, wenn die Zeitverzögerung Δt' zwischen beiden Teilbündeln kleiner ist als die Kohärenzzeit Δt, und mit Gl.(3) erhält man die zeitliche Kohärenzbedingung (5) Δt' Δν 1

5 NEWTONSCHE RINGE KW 5 I.4 Kohärenzfläche, räumliche Kohärenz Bei Beugungsexperimenten vom Youngschen Typ (Fig.1) tritt bei ausgedehnter Lichtquelle (Leuchtfläche F L ) als weiteres Problem hinzu, daß durch die Spaltöffnungen S 1 und S 2 zu jedem Punkt P in der Ebene E 2 Licht von verschiedenen Punkten der Lichtquelle gelangt. Wir wollen dabei annehmen, die Bandbreite des Lichtes sei klein: Δν<<ν 0. Damit die Interferenzfigur bei P, die von Licht des Punktes A 1 der Lichtquelle herrührt, sichtbar bleibt, dürfen sich die durch Licht anderer Orte (z.b. A 2 ) in P entstehenden Interferenzfiguren nur geringfügig von der ersten unterscheiden; genauer: Entsteht von A 1 in P ein Intensitätsmaximum, so darf von A 2 dort kein Minimum entstehen, da der Kontrast der Gesamt-Interferenzfigur verschwinden würde. Für die Differenz Δs der beiden Weglängenunterschiede Δ s 1 =A 1 S 1 P-A 1 S 2 P und Δs 2 =A 2 S 1 P-A 2 S 2 P muß also gelten Δs = Δs 1 -Δs 2 < λ/2 (6) Für den Spezialfall, daß A 1 und P auf der Symmetrieachse der Versuchsanordnung liegt, können wir Δs leicht berechnen (vgl. Fig.1): Es ist anschaulich klar, daß A 1 S 1 P=A 1 S 2 P, d.h. Δs 1 =0 ist. Weiter gilt AS = y (a+d) 2. Im Youngschen Experiment sind a<<y und d<<y, daher gilt die Näherung A 2 S 1 y(1+(a+d) 2 /(2y 2 )). Entsprechend gilt A 2 S 2 y(1+(a-d) 2 /(2y 2 )), und wir erhalten Δs 2 =2ad/y. Mit Gl.(6) folgt als Bedingung für die Sichtbarkeit der gesamten Interferenzfigur in der Umgebung von P: 2ad/y < λ/2 (7) Fig. 1

6 KW 6 KOHÄRENZ VON WELLEN Nun gilt 2a/y = 2tan(α/2) sin α und 2d/y = 2tan(β/2) sin β, so daß wir Gl.(7) auch schreiben können: (8a) a sin β < λ/2 bzw. (8b) d sin α < λ/2 Die Bedingung (8a) bzw. (8b) nennt man die räumliche Kohärenzbedingung. Gl.(8a) begrenzt die für kohärente Ausleuchtung des Doppelspaltes erlaubte Größe der Lichtquelle bei vorgegebenem Abstand y. Gl.(8b) dagegen gibt an, wie groß der kohärent ausgeleuchtete Bereich um Q in der Spaltebene E1 ist. Wir können daraus die kohärent ausgeleuchtete Fläche in der Spaltebene angeben. Der Einfachheit halber werden wir sie durch ein Quadrat annähern, da ja die Gln.(8) nur eine Größenrelation darstellen. Wir erhalten (9) F koh (y sin β) 2 Setzen wir für die obere Grenze in Gl.(8a) das Gleichheitszeichen, so können wir in Gl.(9) einsetzen und erhalten (10) Fkoh ( y λ) 2 2 y λ = 2a FL wobei F L = 4a 2 die Fläche der Lichtquelle sein soll. F koh nennt man die Kohärenzfläche im Abstand y von der Lichtquelle um den Punkt Q in der Ebene E 1. Die beiden Spaltöffnungen S 1 und S 2 müssen in dieser Fläche liegen, damit man in der Ebene E 2 in der Umgebung von P Interferenzstreifen beobachten kann. Anmerkung: Während die Kohärenzzeit eine Eigenschaft des Wellenpaketes und damit der Lichtquelle ist, hängt die Kohärenzfläche von der Geometrie der Versuchsanordnung ab. Zur Verbesserung der zeitlichen Kohärenz muß man die Bandbreite herabsetzen (z.b. durch Benutzung eines Farbfilters oder eines Monochromators), zur Verbesserung der räumlichen Kohärenz kann man z.b. den Abstand y zwischen Lichtquelle und Spaltebene vergrößern.

7 NEWTONSCHE RINGE KW 7 I.5 Kohärenzvolumen und Elementarbündel Wir wollen jetzt annehmen, das Lichtbündel bestehe aus fast ebenen quasimonochromatischen Wellen. Den Zylinder mit der Kohärenzfläche F koh als Grundfläche und der Kohärenzlänge l c als Höhe, wobei die Zylinderachse in Ausbreitungsrichtung liegt, nennt man das Kohärenzvolumen Vkoh = Fkoh lc = λ2 y2 c y2 λ4 = Δν FL FL Δλ (11) Wenn sich alle Wellen in demselben Polarisationszustand befinden, nennt man das Kohärenzvolumen auch Elementarbündel der fast ebenen, quasimonochromatischen Wellen. II. Spezialfälle II.1 Zwei Sinuswellen gleicher Frequenz Wählen wir nun aus einem Wellenpaket zwei Fourierkomponenten A 1 und A 2 aus, deren Überlagerung wir untersuchen wollen: sin( ω ) A = a sin( ω t k x ) A = a t k x ω 1 = ω 2 = ω k 1 = k 2 = k Mit den Additionstheoremen für den Sinus erhält man, wenn man zudem beachtet, daß die durch Überlagerung entstehende Welle A 3 wieder durch eine Sinusfunktion beschrieben wird: 2 3 a = a + a + 2a a cos k d, wobei k d = k (x 2 -x 1 ) die Phasendifferenz der beiden Wellen darstellt. Da sich die Intensität i der ebenen Welle aus den Amplituden zu i=c ε a 2 /(4π) (ε=dielektrizitätskonstante des Ausbreitungsmediums) ergibt, erhalten wir: i = i + i + 2 cos kd i i Für die Beobachtbarkeit von Interferenzfiguren ist der zeitliche Mittelwert der Intensitäten I entscheidend, da das Auge oder sonstige Nachweisgeräte sehr träge sind im Vergleich zur Schwingungsdauer des Lichtes. Ist die Phasendifferenz zeitlich konstant, so erhalten wir

8 KW 8 KOHÄRENZ VON WELLEN (12) = cos I I I kd I I Nehmen wir an, die Überlagerung sei in einem Newtonschen Interferenzversuch zustandegekommen. Dort wächst die Phasendifferenz kd monoton. Dabei ändert sich die Intensität I 3 periodisch zwischen Imax = I1+ I2 + 2 I1I2 und Imin = I1+ I2 2 I1I2. Sind speziell die Amplituden beider Wellen gleich (a 1 =a 2 ), so ist I max = 4I 1 und I min =0. Die beiden Wellen sind also vollständig kohärent zueinander, aus Gl.(4) folgt v = 1. Wechselt dagegen die Phasen-differenz mit der Zeit sehr rasch (d = d(t)), so wird das Zeitmittel des Inter-ferenzterms Null: 2 I I cos k d(t) = Als zeitlichen Mittelwert der resultierenden Intensität erhalten wir dann I 3 =I 1 +I 2. Die beiden Wellen sind also zueinander inkohärent, v = 0. Eine Zeitabhängigkeit der Phasendifferenz entsteht bei Lichtwellen z.b. dadurch, daß die Kohärenzlänge im Newton-Experiment überschritten wird. t II.2 Interferenz mit polychromatischem Licht a) Zwei Spektrallinien verschiedener Frequenz Das Licht soll aus zwei Spektrallinien verschiedener Frequenzen ω 1 und ω 2 bestehen, deren Wellenpakete wir in grober Näherung als monochromatische ebene Sinus- Wellenzüge gleicher Amplitude A beschreiben wollen: A = a sin( ω t k x+ ϕ ( t) ) A = a sin ω t k x+ ϕ ( t) ϕ 1 (t) und ϕ 2 (t) sind im allgemeinen zeitabhängige Phasen"konstanten": Sie werden für jeden einzelnen Wellenzug als konstant angenommen, können aber zwischen zwei aufeinanderfolgenden Zügen variieren. Bei der Überlagerung beider Wellen entsteht eine Welle, deren Amplitude sich räumlich und zeitlich ändert. Dieses Verhalten ist die Verallgemeinerung des aus der Schwingungslehre her bekannten Begriffs der Schwebung. Die Anwendung der Additionstheoreme liefert ( Ω Φ) ( ω ϕ ) B= A1+ A2 = 2a sin t Kx+ cos t kx+ mit Ω= ( ω + ω ) ω= ω ω K= ( k1+ k2) 2, k = ( k k ) Φ= ( ϕ1+ ϕ2) 2 und ϕ= ( ϕ ϕ ) 1 2 2, 1 2 2, 1 2 2,

9 NEWTONSCHE RINGE KW 9 Die Welle B werde in einem Newtonschen Interferenzversuch in zwei Teile B 1 und B 2 aufgespalten, wobei die Welle B 2 einen um d längeren optischen Weg zurücklegt, bevor die Wellen interferieren. Der Vereinfachung halber nehmen wir an, die Aufspaltung von B erfolge in gleiche (d.h. gleichintensive) Teile. Die beiden interferierenden Teilwellen sind dann ( Ω Φ) cos( ω ϕ ) B1 = asin t Kx+ t kx+ ( ) cos B2 = asin Ωt K x+ d + Φ ωt k x+ d + ϕ Der zeitliche Mittelwert der Gesamtintensität bei Überlagerung beider Teilwellen ergibt sich wieder zu ( 1 2) 2 t ( ) I = const B + B = const B + B + 2B B (13) = I 1 + I const B1B2 t t Wie unter II.1 ergibt sich die Gesamtintensität als Summe der Einzelintensitäten I 1 t und I 2 zuzüglich des Interferenzterms const' B 1 B 2. Für die Entstehung von beobachtbaren Interferenzfiguren ist letzterer entscheidend. Mit Hilfe der Additionstheoreme erhält man 2B B = const 2a cos kd cos Kd 1 2 t (14) Abb. 2 Abb.2 zeigt den aus den Gln.(13) und (14) folgenden Verlauf der zeitgemittelten Gesamtintensität als Funktion der Gangdifferenz d. Berechnet man nach Gl.(4) den Betrag des Kohärenzgrades, so findet man

10 KW 10 KOHÄRENZ VON WELLEN (15) v = cos(kd) Der Kohärenzgrad oszilliert also mit d zwischen 0 und 1, die Nullstellen liegen bei d m = π (2m+1)/(2k)= π (2m+1) c/(ω 1 - ω 2 ). Dieses Kohärenzverhalten wird in Aufgabe 3 untersucht werden. b) Spektrum ausgedehnter Bandbreite Die Betrachtung von II.2a kann man auch für Licht eines ausgedehnten Spektralbereichs durchführen. Dieser Spektralbereich sei rechteckig (vgl. Abb.3). Wir unterteilen ihn in quasimonochromatische Bereiche, die wir mit 1, 1', 2, 2', 3, 3' usw. durchnumerieren. Jedes Paar (n, n') können wir durch Wellen vom Typ der Gl.(13) beschreiben. Den zugehörigen Kohärenzgrad vn,n' finden wir wieder durch Gl.(15). Man sieht, daß min(d0(n,n'))=d0(1,1'), also bestimmt das Paar der am weitesten voneinander entfernten Linien (1,1'), d.h. die spektrale Bandbreite, den Kohärenzbereich v 0. Dieses Kohärenzverhalten wird in Aufgabe 4 untersucht werden. Abb. 3 II.3 Abschätzung der zeitlichen Kohärenz (vgl. Aufg.4) Wir betrachten einen ungedämpften Wellenzug der Länge l c =c Δt, der die folgende Form hat F(t) = f e -2 i t für t 0 t 0 π ν Δ 2 0 für t Δt 2 wobei f 0 =a eikx. Dieser Wellenzug ist sehr idealisiert, da von Atomen ausgesandte Wellenzüge stets gedämpft sind. Mit dem Fourierschen Integraltheorem

11 NEWTONSCHE RINGE KW iπνt F(t) = ϕν e dν - folgt dann + +2iπνt ϕν ()= Ft e dt - πνν 0 ϕν Δ πνν iπνν - t -i - Δt e 2iπν-ν + Δt 2 e πνν0 =f0 e 2i - t dt=f0 -Δt 2 2iπν-ν =f 0 e Für die Intensität gilt demnach i - t 0 t=+ Δt 2 t=-δt 2 ( πν ( ν0 ) Δ ) ( - ) Δt sin - t =f0 Δt πν ν0 ( πν ( ν0 ) Δ ) ( - ) Δt sin - t I πν ν0 Die erste Nullstelle der Intensität erscheint, wenn das Argument des Sinus-Terms gleich π ist, d.h. wenn Δν = ν ν 0 = 1 Δt gilt. Der effektive Frequenzbereich des Fourierspektrums ist also von der Größenordnung der reziproken Emissionsdauer eines einzelnen Wellenzuges. 2 III Aufgaben Aufgabe 1: Man bestimme den Krümmungsradius einer dünnen Konvexlinse durch Ausmessen der Radien der Newtonschen Ringe von z = 10 bis z = 20. Messung: Fällt fast monochromatisches Licht der Wellenlänge λ auf eine auf einer ebenen Glasplatte aufliegende, schwach gekrümmte Linse, so beobachtet man im reflektierten (wie auch im durchfallenden) Licht ein System konzentrischer, abwechselnd heller und dunkler Ringe, die sogenannten Newtonschen Ringe. Sie entstehen durch Interferenz der Teilbündel, welche an den die Schicht mit Brechungsindex n zwischen Linse und Glasplatte begrenzenden Oberflächen

12 KW 12 KOHÄRENZ VON WELLEN reflektiert werden. Zwischen dem Radius r z des dunklen Ringes z-ter Ordnung und dem Krümmungsradius R der Linse besteht der Zusammenhang (Herleitung in der angegebenen Literatur nachlesen!). z R (16) rz 2 = λ n Dabei ist n wie oben schon erwähnt der Brechungsindex. Diese Beziehung liefert eine Methode, durch Messung von r z den Krümmungsradius R zu bestimmen. Zur Beobachtung und Ausmessung der Ringe dient die Anordnung wie in Fig.4 skizziert. Fig.4 Das monochromatische Licht einer Na-Dampflampe Q der Wellenlänge λ=5893å wird durch eine schräggestellte Glasplatte P umgelenkt und fällt von oben auf das System Linse L/Glasplatte G. Die infolge der keilförmigen Schicht zwischen L und G entstehenden Interferenzen werden mittels eines Mikroskops M beobachtet. Das System Linse/Glasplatte liegt auf einem meßbar verschiebbaren Schlitten S, welcher ebenso wie das Mikroskop M Bestandteil eines Komparators ist. Verschiebt man S mittels der Komparatorspindel relativ zu M, so wandert das Ringsystem durch das Gesichtsfeld von M. Zur Bestimmung von r z bringt man zunächst die Mitte des Fadenkreuzes an das eine Ende eines Durchmessers des z-ten Ringes. r z ergibt sich dann aus der Verschiebung von S, die nötig ist, um die Fadenkreuzmitte mit dem gegenüberliegenden Ende des Durchmessers zur Deckung zu bringen. Die Verschiebung ist an der Trommel der Mikrometerspindel unmittelbar ablesbar.eine Umdrehung der Mikrometerspindel bewirkt eine Verschiebung des Schlittens um 1mm. Zur Ausmessung sämtlicher r z beginne man zweckmäßigerweise mit dem Ring größten Durchmessers (z = 20) und bestimme nacheinander die Positionen der aufeinanderfolgenden Minima abnehmender Ordnung bis z = 10 und anschließend die

13 NEWTONSCHE RINGE KW 13 Positionen der Minima der anderen Hälfte des Ringsystems von z = 10 bis z = 20. Wegen des toten Ganges der Mikrometerspindel ist darauf zu achten, daß diese immer in der gleichen Richtung gedreht wird. Für die Verläßlichkeit der Messung ist entscheidend, daß die Relativbewegung der Fadenkreuzmitte entlang eines Durchmessers des Ringsystems erfolgt. Zur Auswertung der Messung wird r z 2 gegen z graphisch aufgetragen und R aus der Steigung der resultierenden Geraden berechnet. Aufgabe 2: Man bestimme den Brechungsindex n von destilliertem Wasser. Messung: Diese Aufgabe zeigt, daß nicht der geometrische Wegunterschied δ sondern der optische Wegunterschied d=n δ für die Interferenz wesentlich ist. Analog zur ersten Aufgabe, bei der der Keil zwischen L und G mit Luft gefüllt war, wird nun ein Tropfen destilliertes Wasser mit einer Spritzflasche in den Keil gebracht und die Messung der Aufgabe 1 wiederholt. Zur Berechnung von n wird der dort ermittelte Wert von R benutzt. Aufgabe 3: Man bestimme die Wellenlängendifferenz Δλ = Spektrums. λ1 λ2 zweier Linien des Hg- Messung: Aus dem Licht einer Hg-Dampflampe werden durch ein Farbfilter zwei Linien mit den Wellenlängen λ 1 und λ 2 herausgefiltert. Man mißt die Lage der Sichtbarkeitsminima der mit den beiden Linien erzeugten dunklen Newtonschen Ringe. Dazu zählt man die Ringe bis zum ersten, zweiten, dritten und vierten Minimum der Sichtbarkeit der Newtonschen Ringe. Sichtbarkeitsminimum bedeutet v = 0. Aus Gl.(15) folgt für v=0: bzw. kd ( w ) π = ( w ) Δλ 2 1 λ 2 d =, 2 w = 1, 2, 3, 4 ist die Ordnung des entsprechenden Sichtbarkeitsminimums. Für den z- ten Newtonschen Ring gilt außerdem

14 KW 14 KOHÄRENZ VON WELLEN d ( z ) λ = z = 0, 1, 2,... ist die Ordnung der Newtonschen Ringe. Es ergibt sich mit der mittleren Wellenlänge λ = ( λ1 + λ2) 2 die Beziehung Δλ λ = ( 2w 1) ( 2z + 1) Wegen Δλ << λ1, λ2 kann man hier λ1 λ2 λ = 561 nm setzen. Aufgabe 4: Man bestimme die Kohärenzlänge l c von Licht mit verschiedenen spektralen Bandbreiten. a) weißes Licht: Als mittlere Wellenlänge wähle man λ = 555 nm, was dem Maximum der Farbempfindlichkeit des menschlichen Auges entspricht. Die Bandbreite der Augenempfindlichkeit ist etwa Δλ 100 nm (Halbwertsbreite). b) Blaufilter: λ=470 nm, Δλ = 60 nm c) Interferenzfilter: λ = 581 nm, Δλ = 13 nm d) Na-Dampflampe: λ = nm. Hier schätze man die durch die Versuchsanordnung (Linsendurchmesser) gegebene untere Grenze für l c ab. Messung: Man bestimme die Zahl der dunklen Ringe z max und errechne daraus l c. Dazu zeige man zunächst, daß lc = zmax λ. Die Ergebnisse vergleiche man mit den aus Gl.(2) folgenden theoretischen Werten für die Kohärenzlängen.

2. Wellenoptik Interferenz

2. Wellenoptik Interferenz . Wellenoptik.1. Interferenz Überlagerung (Superposition) von Lichtwellen i mit gleicher Frequenz, E r, t Ei r, i gleicher Wellenlänge, gleicher Polarisation und gleicher Ausbreitungsrichtung aber unterschiedlicher

Mehr

O9a Interferenzen gleicher Dicke

O9a Interferenzen gleicher Dicke Fakultät für Physik und Geowissenschaften Physikalisches Grundpraktikum O9a Interferenzen gleicher Dicke Aufgaben 1. Bestimmen Sie den Krümmungsradius einer konvexen Linsenfläche durch Ausmessen Newtonscher

Mehr

Intensitätsverteilung der Beugung am Spalt ******

Intensitätsverteilung der Beugung am Spalt ****** 5.10.801 ****** 1 Motivation Beugung am Spalt: Wellen breiten sich nach dem Huygensschen Prinzip aus; ihre Amplituden werden superponiert (überlagert). 2 Experiment Abbildung 1: Experimenteller Aufbau

Mehr

Interferenz und Beugung

Interferenz und Beugung Interferenz und Beugung In diesem Kapitel werden die Eigenschaften von elektromagnetischen Wellen behandelt, die aus der Wellennatur des Lichtes resultieren. Bei der Überlagerung zweier Wellen ergeben

Mehr

Versuch 4.1b: Interferenzrefraktor von Jamin

Versuch 4.1b: Interferenzrefraktor von Jamin PHYSIKALISCHES PRAKTIKUM FÜR FORTGESCHRITTENE Technische Universität Darmstadt Abteilung A: Institut für Angewandte Physik Versuch 4.1b: Interferenzrefraktor von Jamin Vorbereitung: Interferenzen gleicher

Mehr

Ferienkurs Experimentalphysik 3

Ferienkurs Experimentalphysik 3 Ferienkurs Experimentalphysik 3 Wintersemester 2014/2015 Thomas Maier, Alexander Wolf Lösung 3 Beugung und Interferenz Aufgabe 1: Seifenblasen a) Erklären Sie, warum Seifenblasen in bunten Farben schillern.

Mehr

Ferienkurs Experimentalphysik 3

Ferienkurs Experimentalphysik 3 Ferienkurs Experimentalphysik 3 Wintersemester 2014/2015 Thomas Maier, Alexander Wolf Lösung Probeklausur Aufgabe 1: Lichtleiter Ein Lichtleiter mit dem Brechungsindex n G = 1, 3 sei hufeisenförmig gebogen

Mehr

Physikalisches Praktikum II. Fabry-Perot-Resonator (FPR)

Physikalisches Praktikum II. Fabry-Perot-Resonator (FPR) Physikalisches Praktikum II Fabry-Perot-Resonator (FPR) Stichworte: Superposition von Wellen, Interferenz, Vielstrahlinterferenz, optische Weglänge, optische Wegdifferenz OPD, Gangunterschied, Kohärenz,

Mehr

Doppelspalt. Abbildung 1: Experimenteller Aufbau zur Beugung am Doppelspalt

Doppelspalt. Abbildung 1: Experimenteller Aufbau zur Beugung am Doppelspalt 5.10.802 ****** 1 Motivation Beugung am Doppelspalt: Wellen breiten sich nach dem Huygensschen Prinzip aus; ihre Amplituden werden superponiert (überlagert). Der Unterschied der Intensitätsverteilungen

Mehr

Gitter. Schriftliche VORbereitung:

Gitter. Schriftliche VORbereitung: D06a In diesem Versuch untersuchen Sie die physikalischen Eigenschaften eines optischen s. Zu diesen za hlen insbesondere die konstante und das Auflo sungsvermo gen. Schriftliche VORbereitung: Wie entsteht

Mehr

Beugung am Gitter mit Laser ******

Beugung am Gitter mit Laser ****** 5.10.301 ****** 1 Motiation Beugung am Gitter: Wellen breiten sich nach dem Huygensschen Prinzip aus; ihre Amplituden werden superponiert (überlagert). Die Beugung am Gitter erzeugt ein schönes Beugungsbild

Mehr

1 Beugungsmuster am Gitter. 2 Lautsprecher. 3 Der Rote Punkt am Mond. 4 Phasengitter

1 Beugungsmuster am Gitter. 2 Lautsprecher. 3 Der Rote Punkt am Mond. 4 Phasengitter 1 Beugungsmuster am Gitter Ein Gitter mit 1000 Spalten, dessen Spaltabstand d = 4, 5µm und Spaltbreite b = 3µm ist, werde von einer kohärenten Lichtquelle mit der Wellenlänge λ = 635nm bestrahlt. Bestimmen

Mehr

1. Bestimmen Sie die Phasengeschwindigkeit von Ultraschallwellen in Wasser durch Messung der Wellenlänge und Frequenz stehender Wellen.

1. Bestimmen Sie die Phasengeschwindigkeit von Ultraschallwellen in Wasser durch Messung der Wellenlänge und Frequenz stehender Wellen. Universität Potsdam Institut für Physik und Astronomie Grundpraktikum 10/015 M Schallwellen Am Beispiel von Ultraschallwellen in Wasser werden Eigenschaften von Longitudinalwellen betrachtet. Im ersten

Mehr

Vorlesung Messtechnik 2. Hälfte des Semesters Dr. H. Chaves

Vorlesung Messtechnik 2. Hälfte des Semesters Dr. H. Chaves Vorlesung Messtechnik 2. Hälfte des Semesters Dr. H. Chaves 1. Einleitung 2. Optische Grundbegriffe 3. Optische Meßverfahren 3.1 Grundlagen dρ 3.2 Interferometrie, ρ(x,y), dx (x,y) 3.3 Laser-Doppler-Velozimetrie

Mehr

Zentralabitur 2008 Physik Schülermaterial Aufgabe II ea Bearbeitungszeit: 300 min

Zentralabitur 2008 Physik Schülermaterial Aufgabe II ea Bearbeitungszeit: 300 min Thema: Experimente mit Interferometern Im Mittelpunkt der in den Aufgaben 1 und 2 angesprochenen Fragestellungen steht das Michelson-Interferometer. Es werden verschiedene Interferenzversuche mit Mikrowellen

Mehr

Übungsklausur. Optik und Wellenmechanik (Physik311) WS 2015/2016

Übungsklausur. Optik und Wellenmechanik (Physik311) WS 2015/2016 Übungsklausur Optik und Wellenmechanik (Physik311) WS 2015/2016 Diese Übungsklausur gibt Ihnen einen Vorgeschmack auf die Klausur am 12.02.2015. Folgende Hilfsmittel werden erlaubt sein: nicht programmierbarer

Mehr

Ferienkurs Experimentalphysik III

Ferienkurs Experimentalphysik III Ferienkurs Experimentalphysik III 24. Juli 2009 Vorlesung Mittwoch - Interferenz und Beugung Monika Beil, Michael Schreier 1 Inhaltsverzeichnis 1 Phasendierenz und Kohärenz 3 2 Interferenz an dünnen Schichten

Mehr

Überlagerung monochromatischer Wellen/Interferenz

Überlagerung monochromatischer Wellen/Interferenz Überlagerung monochromatischer Wellen/Interferenz Zwei ebene monochromatische Wellen mit gleicher Frequenz, gleicher Polarisation, überlagern sich mit einem sehr kleinen Relativwinkel ε auf einem Schirm

Mehr

Übungen zur Experimentalphysik 3

Übungen zur Experimentalphysik 3 Übungen zur Experimentalphysik 3 Prof. Dr. L. Oberauer Wintersemester 2010/2011 10. Übungsblatt - 10. Januar 2011 Musterlösung Franziska Konitzer (franziska.konitzer@tum.de) Aufgabe 1 ( ) (6 Punkte) a)

Mehr

Versuch 1: Interferometrie, Kohärenz und Fourierspektroskopie

Versuch 1: Interferometrie, Kohärenz und Fourierspektroskopie Versuch : nterferometrie, Kohärenz und Fourierspektroskopie Norbert Lindlein nstitut für Optik, nformation und Photonik (Max-Planck-Forschungsgruppe) Universität Erlangen-Nürnberg Staudtstr. 7/B, D-958

Mehr

Polarisation durch Reflexion

Polarisation durch Reflexion Version: 27. Juli 2004 Polarisation durch Reflexion Stichworte Erzeugung von polarisiertem Licht, linear, zirkular und elliptisch polarisiertes Licht, Polarisator, Analysator, Polarisationsebene, optische

Mehr

Interferenz und Beugung - Optische Instrumente

Interferenz und Beugung - Optische Instrumente Interferenz und Beugung - Optische Instrumente Martina Stadlmeier 25.03.2010 1 Inhaltsverzeichnis 1 Kohärenz 3 2 Interferenz 3 2.1 Interferenz an einer planparallelen Platte...............................

Mehr

Teil IV Diernstag, Wellen. Transversale und longitudinale Wellen Transversal nur im Festkörper möglich!

Teil IV Diernstag, Wellen. Transversale und longitudinale Wellen Transversal nur im Festkörper möglich! Teil IV Diernstag, 1.3.005 Wellen Was sind Wellen? Hier werden nur eindimensionale Wellen betrachtet. - Eine Bewegungsrichtung Wichtige Klassifikation der Wellen : Transversale und longitudinale Wellen

Mehr

Physikalisches Praktikum 3. Semester

Physikalisches Praktikum 3. Semester Torsten Leddig 30.November 2004 Mathias Arbeiter Betreuer: Dr.Hoppe Physikalisches Praktikum 3. Semester - Newtonsche Ringe - 1 1 Newtonsche Ringe: Aufgaben: Bestimmen Sie den Krümmungsradius R sowie den

Mehr

Beugung, Idealer Doppelspalt

Beugung, Idealer Doppelspalt Aufgaben 10 Beugung Beugung, Idealer Doppelspalt Lernziele - sich aus dem Studium eines schriftlichen Dokumentes neue Kenntnisse und Fähigkeiten erarbeiten können. - einen bekannten oder neuen Sachverhalt

Mehr

PROTOKOLL ZUM VERSUCH: NEWTONSCHE RINGE

PROTOKOLL ZUM VERSUCH: NEWTONSCHE RINGE PROTOKOLL ZUM VERSUCH: NEWTONSCHE RINGE CHRIS BÜNGER Betreuer: Dr. Enenkel Inhaltsverzeichnis 1. Versuchsbeschreibung 1 1.1. Ziel: 1 1.2. Aufgabe: 1 1.3. Verwendete Geräte: 1 2. Versuchsdurchführung 1

Mehr

Praktikum I PP Physikalisches Pendel

Praktikum I PP Physikalisches Pendel Praktikum I PP Physikalisches Pendel Hanno Rein Betreuer: Heiko Eitel 16. November 2003 1 Ziel der Versuchsreihe In der Physik lassen sich viele Vorgänge mit Hilfe von Schwingungen beschreiben. Die klassische

Mehr

Lösungen der Übungsaufgaben zum Experimentalphysik III Ferienkurs

Lösungen der Übungsaufgaben zum Experimentalphysik III Ferienkurs 1 Lösungen der Übungsaufgaben zum Experimentalphysik III Ferienkurs Max v. Vopelius, Matthias Brasse 25.02.2009 Aufgabe 1: Dreifachspalt Abbildung 1: Spalt Gegeben ist ein Dreifachspalt 1. Alle Spaltbreiten

Mehr

Lösung: a) b = 3, 08 m c) nein

Lösung: a) b = 3, 08 m c) nein Phy GK13 Physik, BGL Aufgabe 1, Gitter 1 Senkrecht auf ein optisches Strichgitter mit 100 äquidistanten Spalten je 1 cm Gitterbreite fällt grünes monochromatisches Licht der Wellenlänge λ = 544 nm. Unter

Mehr

3.9 Interferometer. 1 Theoretische Grundlagen

3.9 Interferometer. 1 Theoretische Grundlagen FCHHOCHSCHULE HNNOVER Physikalisches Praktikum 3.9. 3.9 Interferometer 1 Theoretische Grundlagen Licht ist eine elektromagnetische Strahlung mit sehr geringer Wellenlänge (auf den Welle - Teilchen - Dualismus

Mehr

Erfüllt eine Funktion f für eine feste positive Zahl p und sämtliche Werte t des Definitionsbereichs die Gleichung

Erfüllt eine Funktion f für eine feste positive Zahl p und sämtliche Werte t des Definitionsbereichs die Gleichung 34 Schwingungen Im Zusammenhang mit Polardarstellungen trifft man häufig auf Funktionen, die Schwingungen beschreiben und deshalb für den Ingenieur von besonderer Wichtigkeit sind Fast alle in der Praxis

Mehr

= p. sin(δ/2) = F (1 p 1) δ =2arcsin. λ 2m = ± δ. λ = λ 0 ± δ ) 4πm +1

= p. sin(δ/2) = F (1 p 1) δ =2arcsin. λ 2m = ± δ. λ = λ 0 ± δ ) 4πm +1 Übungsblatt 05 Grundkurs IIIa für Physiker, Wirtschaftsphysiker und Physik Lehramt 01., 07. und 08.07.00 1 Aufgaben 1. Das Fabry Perot Interferometer als Filter Ein Fabry Perot Interferometer der optischen

Mehr

Phasendifferenz, Dünnschichtinterferenz, Fabry-Perot-Interferometer

Phasendifferenz, Dünnschichtinterferenz, Fabry-Perot-Interferometer Aufgaben 9 Interferenz Phasendifferenz, Dünnschichtinterferenz, Fabry-Perot-Interferometer Lernziele - sich aus dem Studium eines schriftlichen Dokumentes neue Kenntnisse und Fähigkeiten erarbeiten können.

Mehr

Physik 4, Übung 2, Prof. Förster

Physik 4, Übung 2, Prof. Förster Physik 4, Übung, Prof. Förster Christoph Hansen Emailkontakt 4. April 03 Dieser Text ist unter dieser Creative Commons Lizenz veröffentlicht. Ich erhebe keinen Anspruch auf Vollständigkeit oder Richtigkeit.

Mehr

PN 1 Einführung in die Experimentalphysik für Chemiker und Biologen Karin Beer, Paul Koza, Nadja Regner, Thorben Cordes, Peter Gilch

PN 1 Einführung in die Experimentalphysik für Chemiker und Biologen Karin Beer, Paul Koza, Nadja Regner, Thorben Cordes, Peter Gilch PN 1 Einführung in die Experimentalphysik für Chemiker und Biologen.1.006 Karin Beer, Paul Koza, Nadja Regner, Thorben Cordes, Peter Gilch Lehrstuhl für BioMolekulare Optik Department für Physik Ludwig-Maximilians-Universität

Mehr

PN 1 Einführung in die Experimentalphysik für Chemiker und Biologen

PN 1 Einführung in die Experimentalphysik für Chemiker und Biologen PN 1 Einführung in die Experimentalphysik für Chemiker und Biologen 22.12.2006 Karin Beer, Paul Koza, Nadja Regner, Thorben Cordes, Peter Gilch Lehrstuhl für BioMolekulare Optik Department für Physik Ludwig-Maximilians-Universität

Mehr

Fourier Optik. Zeit. Zeit

Fourier Optik. Zeit. Zeit Fourier Optik Beispiel zur Fourier-Zerlegung: diskretes Spektrum von Sinus-Funktionen liefert in einer gewichteten Überlagerung näherungsweise eine Rechteckfunktion Sin t Sin 3t Sin 5t Sin 7t Sin 9t Sin

Mehr

konstruktive Interferenz: Phasendifferenz (der Einzelwellen) ist 0 oder ein ganzzahliges vielfaches von 2π.

konstruktive Interferenz: Phasendifferenz (der Einzelwellen) ist 0 oder ein ganzzahliges vielfaches von 2π. Theorie Licht zeigt sich in vielen Experimenten als elektromagnetische Welle. Die Vektoren von elektrischer und magnetischer Feldstärke stehen senkrecht aufeinander und auf der Ausbreitungsrichtung. Die

Mehr

Physik PHB3/4 (Schwingungen, Wellen, Optik) 6 INTERFERENZ

Physik PHB3/4 (Schwingungen, Wellen, Optik) 6 INTERFERENZ 35_InterferenzEinfuehrung_gleicheNeig_BA_W000x.doc - / 6 INTERFERENZ Einführung Überlagern sich zwei oder mehrere Wellen, kann es an verschieden Raumpunkten dabei zu einer Überhöhung oder Abschwächung

Mehr

FK Experimentalphysik 3, Lösung 3

FK Experimentalphysik 3, Lösung 3 1 Transmissionsgitter FK Experimentalphysik 3, Lösung 3 1 Transmissionsgitter Ein Spalt, der von einer Lichtquelle beleuchtet wird, befindet sich im Abstand von 10 cm vor einem Beugungsgitter (Strichzahl

Mehr

wir-sind-klasse.jimdo.com

wir-sind-klasse.jimdo.com 1. Einführung und Begriffe Eine vom Erreger (periodische Anregung) wegwandernde Störung heißt fortschreitende Welle. Die Ausbreitung mechanischer Wellen erfordert einen Träger, in dem sich schwingungsfähige

Mehr

Interferenz von Licht. Die Beugung von Lichtwellen an einem Doppelspalt erzeugt ein typisches Interferenzbild.

Interferenz von Licht. Die Beugung von Lichtwellen an einem Doppelspalt erzeugt ein typisches Interferenzbild. Interferenz von Licht Die Beugung von Lichtwellen an einem Doppelspalt erzeugt ein typisches Interferenzbild. Verbesserung der Sichtbarkeit? (1) kleinerer Spaltabstand b s~ 1 b (2) mehrere interferierende

Mehr

Übungsaufgaben zu Interferenz

Übungsaufgaben zu Interferenz Übungsaufgaben zu Interferenz ˆ Aufgabe 1: Interferenzmaxima Natrium der Wellenlänge λ = 589 nm falle senkrecht auf ein quadratisches Beugungsgitter mit der Seitenlänge cm mit 4000 Linien pro Zentimeter.

Mehr

5.9.4 Brechung von Schallwellen ****** 1 Motivation. 2 Experiment

5.9.4 Brechung von Schallwellen ****** 1 Motivation. 2 Experiment 5.9.4 ****** 1 Motivation Ein mit Kohlendioxid gefüllter Luftballon wirkt für Schallwellen als Sammellinse, während ein mit Wasserstoff gefüllter Ballon eine Zerstreuungslinse ergibt. Experiment Abbildung

Mehr

Verwandte Begriffe Huygens-Prinzip, Interferenz, Fraunhofer- und Fresnel-Beugung, Kohärenz, Laser.

Verwandte Begriffe Huygens-Prinzip, Interferenz, Fraunhofer- und Fresnel-Beugung, Kohärenz, Laser. Verwandte Begriffe Huygens-Prinzip, Interferenz, Fraunhofer- und Fresnel-Beugung, Kohärenz, Laser. Prinzip Ein Einfachspalt, Mehrfachspalte mit gleicher Breite und gleichem Abstand zueinander sowie Gitter

Mehr

2. Schulaufgabe aus der Physik

2. Schulaufgabe aus der Physik Q Kurs QPh0 2. Schulaufgabe aus der Physik Be max 50 BE Punkte am 22.06.207 Name : M U S T E R L Ö S U N G Konstanten: c Schall =340 m s,c Licht=3,0 0 8 m s.wie können Sie den Wellencharakter von Mikrowellenstrahlung

Mehr

5. Die gelbe Doppellinie der Na-Spektrallampe ist mit dem Gitter (1. und 2. Ordnung) zu messen und mit dem Prisma zu beobachten.

5. Die gelbe Doppellinie der Na-Spektrallampe ist mit dem Gitter (1. und 2. Ordnung) zu messen und mit dem Prisma zu beobachten. Universität Potsdam Institut für Physik und Astronomie Grundpraktikum O Gitter/Prisma Geräte, bei denen man von der spektralen Zerlegung des Lichts (durch Gitter bzw. Prismen) Gebrauch macht, heißen (Gitter-

Mehr

Übungen zur Experimentalphysik 3

Übungen zur Experimentalphysik 3 Übungen zur Experimentalphysik 3 Prof. Dr. L. Oberauer Wintersemester 2010/2011 5. Übungsblatt - 22.November 2010 Musterlösung Franziska Konitzer (franziska.konitzer@tum.de) Aufgabe 1 ( ) (8 Punkte) Ein

Mehr

Wo sind die Grenzen der geometrischen Optik??

Wo sind die Grenzen der geometrischen Optik?? In der Strahlen- oder geometrischen Optik wird die Lichtausbreitung in guter Näherung durch Lichtstrahlen beschrieben. Wo sind die Grenzen der geometrischen Optik?? Lichtbündel Lichtstrahl Lichtstrahl=

Mehr

12. Vorlesung. I Mechanik

12. Vorlesung. I Mechanik 12. Vorlesung I Mechanik 7. Schwingungen 8. Wellen transversale und longitudinale Wellen, Phasengeschwindigkeit, Dopplereffekt Superposition von Wellen 9. Schallwellen, Akustik Versuche: Wellenwanne: ebene

Mehr

Inhalte. Beugung. Fresnel-Huygens sches Prinzip Beugung an der Kante Fresnelsche Zonen Platte Poisson Fleck

Inhalte. Beugung. Fresnel-Huygens sches Prinzip Beugung an der Kante Fresnelsche Zonen Platte Poisson Fleck Beugung Inhalte Fresnel-Huygens sches Prinzip Beugung an der Kante Fresnelsche Zonen Platte Poisson Fleck Fresnel-Kirchhoff Theorie der Beugung Fresnel-Kirchhoff-Integral Fraunhofer (Fernfeld) Näherung

Mehr

An welche Stichwörter von der letzten Vorlesung können Sie sich noch erinnern?

An welche Stichwörter von der letzten Vorlesung können Sie sich noch erinnern? An welche Stichwörter von der letzten Vorlesung können Sie sich noch erinnern? Winkelvergrößerung einer Lupe Das Fernrohre Das Mikroskop m m = ges f f O e m = ( ) N f l fo fe N ln f f f f O e O e Abbildungsfehler

Mehr

Protokoll: Grundpraktikum II O6 - Newtonsche Ringe

Protokoll: Grundpraktikum II O6 - Newtonsche Ringe Protokoll: Grundpraktikum II O6 - Newtonsche Ringe Sebastian Pfitzner. März Durchführung: Anna Andrle (77), Sebastian Pfitzner (98) Arbeitsplatz: Platz Betreuer: Natalya Sheremetyeva Versuchsdatum:.. Abstract

Mehr

425 Polarisationszustand des Lichtes

425 Polarisationszustand des Lichtes 45 Polarisationszustand des Lichtes 1. Aufgaben 1.1 Bestimmen Sie den Polarisationsgrad von Licht nach Durchgang durch einen Glasplattensatz, und stellen Sie den Zusammenhang zwischen Polarisationsgrad

Mehr

Lloydscher Spiegelversuch

Lloydscher Spiegelversuch Lloydscher Spiegelversuch Lichtwellen können sich gegenseitig auslöschen, nämlich dann, wenn ein Berg der Welle auf ein Tal derselben trifft. Um das zu zeigen, benötigt man zwei im gleichen Takt und mit

Mehr

Othmar Marti Experimentelle Physik Universität Ulm

Othmar Marti Experimentelle Physik Universität Ulm Grundkurs IIIa für Physiker Othmar Marti Experimentelle Physik Universität Ulm Othmar.Marti@Physik.Uni-Ulm.de Vorlesung nach Tipler, Gerthsen, Hecht Skript: http://wwwex.physik.uni-ulm.de/lehre/gk3a-2002

Mehr

MICHELSON-INTERFEROMETER

MICHELSON-INTERFEROMETER Grundpraktikum der Physik Versuch Nr. 19 MICHELSON-INTERFEROMETER Versuchsziel: Quantitative Erfassung von Interferenzerscheinungen verschieden kohärenter Quellen. 1 1. Einführung Interferenz im Rahmen

Mehr

Gitterherstellung und Polarisation

Gitterherstellung und Polarisation Versuch 1: Gitterherstellung und Polarisation Bei diesem Versuch wollen wir untersuchen wie man durch Überlagerung von zwei ebenen Wellen Gttterstrukturen erzeugen kann. Im zweiten Teil wird die Sichtbarkeit

Mehr

Lösung zum Parabolspiegel

Lösung zum Parabolspiegel Lösung zum Parabolspiegel y s 1 s 2 Offensichtlich muss s = s 1 + s 2 unabhängig vom Achsenabstand y bzw. über die Parabelgleichung auch unabhängig von x sein. f F x s = s 1 + s 2 = f x + y 2 + (f x) 2

Mehr

PP Physikalisches Pendel

PP Physikalisches Pendel PP Physikalisches Pendel Blockpraktikum Frühjahr 2007 (Gruppe 2) 25. April 2007 Inhaltsverzeichnis 1 Einführung 2 2 Theoretische Grundlagen 2 2.1 Ungedämpftes physikalisches Pendel.......... 2 2.2 Dämpfung

Mehr

Physikalisches Grundpraktikum für Physiker/innen Teil III Kohärenz von Wellen (Newtonsche Ringe)

Physikalisches Grundpraktikum für Physiker/innen Teil III Kohärenz von Wellen (Newtonsche Ringe) Fachrichtungen der Physik UNIVERSITÄT DES SAARLANDES Physikalisches Grundpraktikum für Physiker/innen Teil III Kohärenz von Wellen (Newtonsche Ringe) WWW-Adresse Grundpraktikum Physik: 0Hhttp://grundpraktikum.physik.uni-saarland.de/

Mehr

Heute: Wellen, Überlagerung von Wellen, Dispersion, Fourier-Synthese, Huygenssche Prinzip, Kohärenz, Interferenz

Heute: Wellen, Überlagerung von Wellen, Dispersion, Fourier-Synthese, Huygenssche Prinzip, Kohärenz, Interferenz Roter Faden: Vorlesung 12+13+14: Heute: Wellen, Überlagerung von Wellen, Dispersion, Fourier-Synthese, Huygenssche Prinzip, Kohärenz, Interferenz Versuche: Huygens sche Prinzip, Schwebungen zweier Schwinggabel,

Mehr

NG Brechzahl von Glas

NG Brechzahl von Glas NG Brechzahl von Glas Blockpraktikum Frühjahr 2007 25. April 2007 Inhaltsverzeichnis 1 Einführung 2 2 Theoretische Grundlagen 2 2.1 Geometrische Optik und Wellenoptik.......... 2 2.2 Linear polarisiertes

Mehr

Versuch O04: Fraunhofer-Beugung an einem und mehreren Spalten

Versuch O04: Fraunhofer-Beugung an einem und mehreren Spalten Versuch O04: Fraunhofer-Beugung an einem und mehreren Spalten 5. März 2014 I Lernziele Huygen sches Prinzip und optische Interferenz Photoelektronik als Messmethode II Physikalische Grundlagen Grundlage

Mehr

Interferenz und Kohärenz

Interferenz und Kohärenz Ziele Interferenz und Kohärenz In diesem Versuch messen Sie die Kohärenzlänge unterschiedlicher Lichtquellen und beobachten die Schwebung zweier Lichtfelder sehr ähnlicher Wellenlänge. Fragen zur Vorbereitung

Mehr

Optik Licht als elektromagnetische Welle

Optik Licht als elektromagnetische Welle Optik Licht als elektromagnetische Welle k kx kx ky 0 k z 0 k x r k k y k r k z r y Die Welle ist monochromatisch. Die Wellenfronten (Punkte gleicher Wellenphase) stehen senkrecht auf dem Wellenvektor

Mehr

3.3 Polarisation und Doppelbrechung. Ausarbeitung

3.3 Polarisation und Doppelbrechung. Ausarbeitung 3.3 Polarisation und Doppelbrechung Ausarbeitung Fortgeschrittenenpraktikum an der TU Darmstadt Versuch durchgeführt von: Mussie Beian, Florian Wetzel Versuchsdatum: 8.6.29 Betreuer: Dr. Mathias Sinther

Mehr

Ferienkurs Teil III Elektrodynamik

Ferienkurs Teil III Elektrodynamik Ferienkurs Teil III Elektrodynamik Michael Mittermair 27. August 2013 1 Inhaltsverzeichnis 1 Elektromagnetische Schwingungen 3 1.1 Wiederholung des Schwingkreises................ 3 1.2 der Hertz sche Dipol.......................

Mehr

Versuchsanleitung: Fortgeschrittenenpraktikum der Physik für Biophysiker. Versuch: Optische Kohärenz-Tomographie (OCT)

Versuchsanleitung: Fortgeschrittenenpraktikum der Physik für Biophysiker. Versuch: Optische Kohärenz-Tomographie (OCT) Versuchsanleitung: Fortgeschrittenenpraktikum der Physik für Biophysiker Versuch: Optische Kohärenz-Tomographie (OCT) Grundlagen der Optischen Kohärenz-Tomographie (OCT) Bei der Optischen Kohärenz-Tomographie

Mehr

Einfache Experimente zu Koronen

Einfache Experimente zu Koronen KORONEN PHYSIKDIDAKTIK Einfache Experimente zu Koronen LES COWLEY PHILIP LAVEN MICHAEL VOLLMER Dieses Dokument ist eine Ergänzung zum Artikel Farbige Ringe um Sonne und Mond über Koronen in Physik in unserer

Mehr

OPTIK. Miles V. Klein Thomas E. Furtak. Übersetzt von A. Dorsel und T. Hellmuth. Springer-Verlag Berlin Heidelberg New York London Paris Tokyo

OPTIK. Miles V. Klein Thomas E. Furtak. Übersetzt von A. Dorsel und T. Hellmuth. Springer-Verlag Berlin Heidelberg New York London Paris Tokyo Miles V. Klein Thomas E. Furtak OPTIK Übersetzt von A. Dorsel und T. Hellmuth Mit 421 Abbildungen und 10 Tabellen Springer-Verlag Berlin Heidelberg New York London Paris Tokyo Inhaltsverzeichnis 1. Die

Mehr

Vorbereitung. (1) bzw. diskreten Wellenzahlen. λ n = 2L n. k n = nπ L

Vorbereitung. (1) bzw. diskreten Wellenzahlen. λ n = 2L n. k n = nπ L Physikalisches Fortgeschrittenenpraktikum Gitterschwingungen Vorbereitung Armin Burgmeier Robert Schittny 1 Theoretische Grundlagen Im Versuch Gitterschwingungen werden die Schwingungen von Atomen in einem

Mehr

5 Wellenüberlagerung und Interferenz

5 Wellenüberlagerung und Interferenz 5 Wellenüberlagerung und Interferenz Im Rahmen der linearen Optik ist die Wellengleichung eine lineare Gleichung und es gilt das Superpositionsgesetz, d.h., die elektrische Feldstärke an einem Ort zu einem

Mehr

Physikalisches Praktikum O 4 Debye-Sears Effekt

Physikalisches Praktikum O 4 Debye-Sears Effekt Physik-Labor Fachbereich Elektrotechnik und Informatik Fachbereich Mechatronik und Maschinenbau Physikalisches Praktikum O 4 Debye-Sears Effekt Versuchsziel Messung der Ultraschallwellenlänge. Literatur

Mehr

Mathematischer Vorkurs für Physiker WS 2012/13: Vorlesung 1

Mathematischer Vorkurs für Physiker WS 2012/13: Vorlesung 1 TU München Prof. P. Vogl Mathematischer Vorkurs für Physiker WS 2012/13: Vorlesung 1 Komplexe Zahlen Das Auffinden aller Nullstellen von algebraischen Gleichungen ist ein Grundproblem, das in der Physik

Mehr

Physikalisches Grundpraktikum Technische Universität Chemnitz

Physikalisches Grundpraktikum Technische Universität Chemnitz Physikalisches Grundpraktikum Technische Universität Chemnitz Protokoll «A3 - Atomspektren - BALMER-Serie» Martin Wolf Betreuer: DP Emmrich Mitarbeiter: Martin Helfrich

Mehr

Praktikum GI Gitterspektren

Praktikum GI Gitterspektren Praktikum GI Gitterspektren Florian Jessen, Hanno Rein betreut durch Christoph von Cube 9. Januar 2004 Vorwort Oft lassen sich optische Effekte mit der geometrischen Optik beschreiben. Dringt man allerdings

Mehr

Versuch Nr. 18 BEUGUNG

Versuch Nr. 18 BEUGUNG Grundpraktikum der Physik Versuch Nr. 18 BEUGUNG Versuchsziel: Justieren eines optischen Aufbaus. Bestimmung der Wellenlänge eines Lasers durch Ausmessen eines Beugungsmusters am Gitter. Ausmessen der

Mehr

Technische Universität Dresden Fachrichtung Physik K.Prokert 09/2001 M. Lange 12/2008. Diffusion. Physikalisches Praktikum. Inhaltsverzeichnis

Technische Universität Dresden Fachrichtung Physik K.Prokert 09/2001 M. Lange 12/2008. Diffusion. Physikalisches Praktikum. Inhaltsverzeichnis Technische Universität Dresden Fachrichtung Physik K.Prokert 9/ M. Lange /8 Physikalisches Praktikum Versuch: DI Diffusion Inhaltsverzeichnis. Aufgabenstellung. Grundlagen 3. Versuchsdurchführung 4. Hinweise

Mehr

Lichtbrechung / Lichtbeugung

Lichtbrechung / Lichtbeugung Lichtbrechung / Lichtbeugung 1. Aufgaben 1. Über die Beugung an einem Gitter sind die Wellenlängen ausgewählter Spektrallinien von Quecksilberdampf zu bestimmen. 2. Für ein Prisma ist die Dispersionskurve

Mehr

Versuch O08: Polarisation des Lichtes

Versuch O08: Polarisation des Lichtes Versuch O08: Polarisation des Lichtes 5. März 2014 I Lernziele Wellenoptik Longitudinal- und Transversalwellen Elektromagnetische Wellen II Physikalische Grundlagen Nachweismethode Elektromagnetische Wellen

Mehr

[c] = 1 m s. Erfolgt die Bewegung der Teilchen senkrecht zur Ausbreitungsrichtung der Welle, dann liegt liegt Transversalwelle vor0.

[c] = 1 m s. Erfolgt die Bewegung der Teilchen senkrecht zur Ausbreitungsrichtung der Welle, dann liegt liegt Transversalwelle vor0. Wellen ================================================================== 1. Transversal- und Longitudinalwellen ------------------------------------------------------------------------------------------------------------------

Mehr

Physik B2.

Physik B2. Physik B2 https://e3.physik.tudortmund.de/~suter/vorlesung/physik_a2_ws17/physik_a2_ws17.html 1 Wellen Welle = Ausbreitung einer Störung in einem kontinuierlichen Medium oder einer räumlich periodischen

Mehr

Resonator. Helium-Neon-Laser

Resonator. Helium-Neon-Laser 1 Der Laser Das Wort Laser besteht aus den Anfangsbuchstaben der englischen Bezeichnung Light Amplification by Stimulated Emission of Radiation, zu deutsch: Lichtverstärkung durch stimulierte Emission

Mehr

Experimentalphysik II Elektromagnetische Schwingungen und Wellen

Experimentalphysik II Elektromagnetische Schwingungen und Wellen Experimentalphysik II Elektromagnetische Schwingungen und Wellen Ferienkurs Sommersemester 2009 Martina Stadlmeier 10.09.2009 Inhaltsverzeichnis 1 Elektromagnetische Schwingungen 2 1.1 Energieumwandlung

Mehr

F R. = Dx. M a = Dx. Ungedämpfte freie Schwingungen Beispiel Federpendel (a) in Ruhe (b) gespannt: Auslenkung x Rückstellkraft der Feder

F R. = Dx. M a = Dx. Ungedämpfte freie Schwingungen Beispiel Federpendel (a) in Ruhe (b) gespannt: Auslenkung x Rückstellkraft der Feder 6. Schwingungen Schwingungen Schwingung: räumlich und zeitlich wiederkehrender (=periodischer) Vorgang Zu besprechen: ungedämpfte freie Schwingung gedämpfte freie Schwingung erzwungene gedämpfte Schwingung

Mehr

PRISMEN - SPEKTRALAPPARAT

PRISMEN - SPEKTRALAPPARAT Grundpraktikum der Physik Versuch Nr. 20 PRISMEN - SPEKTRALAPPARAT Versuchsziel: Bestimmung der Winkeldispersionskurve und des Auflösungsvermögens von Prismen. brechende Kante Ablenkwinkel einfallendes

Mehr

1. Die Abbildung zeigt den Strahlenverlauf eines einfarbigen

1. Die Abbildung zeigt den Strahlenverlauf eines einfarbigen Klausur Klasse 2 Licht als Wellen (Teil ) 26..205 (90 min) Name:... Hilfsmittel: alles verboten. Die Abbildung zeigt den Strahlenverlauf eines einfarbigen Lichtstrahls durch eine Glasplatte, bei dem Reflexion

Mehr

Physikklausur Nr.4 Stufe

Physikklausur Nr.4 Stufe Physikklausur Nr.4 Stufe 12 08.05.2009 Aufgabe 1 6/3/5/4 Punkte Licht einer Kaliumlampe mit den Spektrallinien 588nm und 766nm wird auf einen Doppelspalt des Spaltmittenabstands 0,1mm gerichtet. a.) Geben

Mehr

Physik-Praktikum: BUB

Physik-Praktikum: BUB Physik-Praktikum: BUB Einleitung Während man Lichtbrechung noch mit einer Modellvorstellung von Licht als Teilchen oder als Strahl mit materialabhängiger Ausbreitungsgeschwindigkeit erklären kann, ist

Mehr

Anhang C: Wellen. vorhergesagt 1916 (Albert Einstein) Entdeckung 2016 (LIGO-Kollaboration) Albert Einstein Christian Schwanenberger -

Anhang C: Wellen. vorhergesagt 1916 (Albert Einstein) Entdeckung 2016 (LIGO-Kollaboration) Albert Einstein Christian Schwanenberger - Anhang C: Wellen Computersimulation der von zwei sich umkreisenden Schwarzen Löchern ausgelösten Gravitationswellen in der Raum-Zeit (Illu.) Albert Einstein 1879-19 Physik-II vorhergesagt 1916 (Albert

Mehr

Zentralabitur 2011 Physik Schülermaterial Aufgabe I ga Bearbeitungszeit: 220 min

Zentralabitur 2011 Physik Schülermaterial Aufgabe I ga Bearbeitungszeit: 220 min Thema: Eigenschaften von Licht Gegenstand der Aufgabe 1 ist die Untersuchung von Licht nach Durchlaufen von Luft bzw. Wasser mit Hilfe eines optischen Gitters. Während in der Aufgabe 2 der äußere lichtelektrische

Mehr

Profilkurs Physik ÜA 08 Test D F Ks b) Welche Beugungsobjekte führen zu folgenden Bildern? Mit Begründung!

Profilkurs Physik ÜA 08 Test D F Ks b) Welche Beugungsobjekte führen zu folgenden Bildern? Mit Begründung! Profilkurs Physik ÜA 08 Test D F Ks. 2011 1 Test D Gitter a) Vor eine Natriumdampflampe (Wellenlänge 590 nm) wird ein optisches Gitter gehalten. Erkläre kurz, warum man auf einem 3,5 m vom Gitter entfernten

Mehr

Vorlesung Physik für Pharmazeuten PPh - 10a. Optik

Vorlesung Physik für Pharmazeuten PPh - 10a. Optik Vorlesung Physik für Pharmazeuten PPh - 10a Optik 15.01.2007 1 Licht als elektromagnetische Welle 2 E B Licht ist eine elektromagnetische Welle 3 Spektrum elektromagnetischer Wellen: 4 Polarisation Ein

Mehr

Versuch Nr. 22. Fresnelformeln

Versuch Nr. 22. Fresnelformeln Grundpraktikum der Physik Versuch Nr. 22 Fresnelformeln Versuchsziel: Die Fresnelformeln beschreiben, in welcher Weise sich ein polarisierter oder unpolarisierter Lichtstrahl verhält, wenn er auf die Grenzfläche

Mehr

Elektromagnetische Feldtheorie 2

Elektromagnetische Feldtheorie 2 Diplom-Vorprüfung Elektrotechnik und Informationstechnik Termin Sommersemester 09 Elektromagnetische Feldtheorie 2 Donnerstag, 06. 08. 2009, 12:00 13:00 Uhr Zur Beachtung: Zugelassene Hilfsmittel: Originalskript

Mehr

Referat Die Kohärenz des Lichts

Referat Die Kohärenz des Lichts Referat Die Kohärenz des Lichts Altes Gymnasium Bremen Leistungskurs Physik Jahrgang 12 Alexander Erlich 14. September 2007 1 INHALTSVERZEICHNIS 2 Inhaltsverzeichnis 1 Einleitung 3 2 Feststellungen aus

Mehr

Elektromagnetische Welle, Wellengleichung, Polarisation

Elektromagnetische Welle, Wellengleichung, Polarisation Aufgaben 4 Elektromagnetische Wellen Elektromagnetische Welle, Wellengleichung, Polarisation Lernziele - sich aus dem Studium eines schriftlichen Dokumentes neue Kenntnisse und Fähigkeiten erarbeiten können.

Mehr