Schwingungen und Wellen Teil I

Größe: px
Ab Seite anzeigen:

Download "Schwingungen und Wellen Teil I"

Transkript

1 Schwingungen und Wellen Teil I Einleitung Arten von Schwingungen Lösung der Differentialgleichung Wichtige Größen Das freie ungedämpfte und gedämpfte Feder-Masse-System Ausbreitung von Wellen Allgemeine Wellengleichung Stehende Welle Erläuterungen: Interferenz, Amplitudenmodulation, Frequenzmodulation Zusammenfassung: Wichtige Größen Physik, SS 016 1

2 Literatur M. Alonso, E.J. Finn, Physik, Oldenbourg Verlag, 3. Auflage, 000. F. Herrmann, Mechanik, Skripten für Experimentalphysik, Abteilung für Didaktik der Physik, Universität Karlsruhe, Auflage 003. F. Kuypers, Physik für Ingenieure 1. Mechanik und Thermodynamik, WILEY- VCH Verlag,. Auflage 00. W. Höger, Mechatronik, Skript, Fachhochschule München, WS 003 / 004. Demtröder, Experimentalphysik 1, Mechanik und Wärme, Springer Verlag, 6. Auflage 013. Physik, SS 016

3 1. Einleitung: Schwingungen Eine Schwingung liegt vor, wenn sich der Wert einer physikalischen Größe periodisch ändert, z.b. der Impuls eines Pendels, Die Auslenkung des Pendels, die Auslenkung einer Feder, elektrische Stromstärke in einem Schwingkreis usw. Die gleichförmige Kreisbewegung ist ein periodischer Vorgang. Die gleichförmige Kreisbewegung besitzt eine konstante Periodendauer T bzw. eine konstante Frequenz f. Beispiele für Schwingungssysteme: Ungedämpfte Federpendel, gedämpfte Federpendel, Erzwungene Schwingung. Physik, SS 016 3

4 . Arten von Schwingungen ungedämpft gedämpft erzwungen D m D m Q D m m & x&+ D x = 0 R=1/C Stoßdämpfer m & x + C x& + D x = 0 R=1/C m && x + C x& + Dx= F0 cosωt Physik, SS 016 4

5 . Arten von Schwingungen ungedämpft gedämpft erzwungen L C L C R L u 0 cosωt C 1 U && + U = 0 L C 1 1 U & + U& + U = 0 RC LC 1 1 U&& + U& + U = U0 cosωt RC LC Physik, SS 016 5

6 . Arten von Schwingungen Freie Schwingungen, die Schwingung wird einmalig angeregt und verläuft dann ohne weitere äußere Anregungen. Die Frequenz ist konstant und durch Systemgrößen bestimmt. Gedämpfte Schwingungen, es treten Reibungskräfte auf. Der Oszillator verliert dauernd Energie. Ungedämpfte Schwingungen sind Grenzfälle, die in der Praxis nicht vorkommen, jedoch für das Studium von Schwingungsvorgängen sehr wichtig sind und oft als Näherungen eingesetzt werden. Erzwungene Schwingungen, Oszillator wird von äußerer periodischer Kraft zu Schwingungen angeregt. Schwingt der Oszillator mit der Frequenz der äußeren Kraft, dann bezeichnet man das schwingende System als Resonator. Physik, SS 016 6

7 3. Lösung der Differentialgleichung für ungedämpfte Schwingung Mechanik ungedämpft D m A ω f T ϕ D : Amplitude : Kreisfrequenz : Frequenz : Periodendauer : Phase : Federkonstante 3. Newtonsche Gesetz auf die Masse: m & x&= F D mit F D = D x(t ) m & x&+ D x = 0 Lösung der Differentialgleichung x 0 (t ) = A sin( ω t +ϕ ) Physik, SS 016 7

8 4. Wichtige Größen Plattenspieler Quelle: Natur und Technik, Physik, Sekundarstufe 1 Quelle: Natur und Technik, Physik, Sekundarstufe 1 Schattenbilder von Stift und Pendel werden in Deckung gebracht. Schattenbilder von Stift und Feder-Masse werden in Deckung gebracht. Physik, SS 016 8

9 4. Wichtige Größen Quelle: Natur und Technik, Physik, Sekundarstufe 1 Physik, SS 016 9

10 4. Wichtige Größen: Harmonische Schwingung Quelle: Natur und Technik, Physik, Sekundarstufe 1 Bei einer harmonischen Schwingung ist nach jeweils gleichbleibender Zeitspanne t = T der gleiche Schwingungszustand erreicht. T = Periodendauer (Schwingungsdauer). Harmonische Schwingung: Einen Bewegungsablauf, der der seitlichen Projektion einer gleichförmigen Kreisbewegung gleicht nennt man harmonische Schwingung. Physik, SS

11 4. Wichtige Größen: Harmonische Schwingung Harmonische Schwingung: Periodischer Vorgang, dessen Verlauf durch eine Sinus- oder Kosinusfunktion beschrieben wird. Beide Funktionen unterscheiden sich durch eine Phasenverschiebung von 90 (π/). Dabei beschreibt u(t) die Zustandsvariable des Systems zur Zeit t. Die physikalische Bedeutung von u(t) hängt vom betrachteten System ab (Weg- oder Winkelkoordinate, Spannung, elektrisches oder magnetisches Feld u.s.w.). u(t ) A u(t ) = Acos( ω t + ϕ ) 0 t A 1 π T = = f ω Physik, SS

12 4. Wichtige Größen: Phasenverschiebung Versuch: Der Stift beginnt seine Bewegung bei Punkt 1. Zur gleichen Zeit startet das Federmassesystem in Punkt 3 zu schwingen. Die Schattenbilder kommen nicht mehr zur Deckung! Quelle: Natur und Technik, Physik, Sekundarstufe 1 Phasenverschiebung: Schwingungen mit gleicher Schwingungsdauer sind phasenverschoben, wenn ihre maximalen Auslenkungen (Amplituden) zu verschiedenen Zeiten erreicht werden. Phasenverschobene Schwingungen Physik, SS 016 1

13 5. Freie ungedämpfte Schwingungen: Mathematisches Pendel Faden mit Masse, dabei ist der Faden in der Länge immer gleich groß, nicht dehnbar! Reibungsfreie Aufhängung des Pendels. Keine Reibung. Die Beschreibung erfolgt durch die Fadenlänge l und Masse m des Pendels, Auslenkwinkel θ(t) zwischen Lot und ausgelenktem Pendel zur Zeit t oder die horizontale Auslenkung x(t) des Pendelkörpers zur Zeit t: θ ( t ) = θ0 cos( ω t + ϕ ) l cosθ l h F T mg Physik, SS

14 5. Freie ungedämpfte Schwingungen: Mathematisches Pendel Beweis: F T = mg sinθ F T = ma T mit a T d θ = l dt l cosθ l d θ mat = ml = mg sinθ dt d θ l + g sinθ = 0 dt Für kleine Schwingungsamplituden gilt: h F T mg sinθ θ d θ l + g θ = 0 dt Differentialgleichung mit ω = g l und T = π l g Physik, SS

15 5. Freie ungedämpfte Schwingungen: Physikalische Pendel Physikalisches Pendel: Jeder starre Körper, der unter der Wirkung der Schwerkraft frei um eine horizontale Achse schwingt. Schwingungsperiode bei kleiner Amplitude: T = π J mgb Länge des mathemetischen Pendels, reduzierte Pendellänge, weil ein mathematisches Pendel dieser Länge, die gleiche Periode besitzt. ZZ' C l J : : : : Horizontale Achse Schwerpunkt Reduzierte Pendellänge Trägheitsmoment l = J mb Physik, SS 016 Quelle: M. Alonso, E. J. Finn 15

16 5. Freie ungedämpfte Schwingungen: Physikalische Pendel Beweis: Drehmoment auf den Körper wirkend: τ = mgb sinθ Wenn J das Trägheitsmoment ist um die Z-Achse und für die Winkelbeschleunigung α gilt: d θ α = und mit Jα = τ z dt J d θ = mgb sinθ dt Quelle: M. Alonso, E. J. Finn Für kleine Amplituden sinθ θ d θ = dt mgb θ J Physik, SS

17 5. Freie ungedämpfte Schwingungen: Physikalische Pendel d θ = dt mgb θ J d θ mgb + θ = 0 dt J Quelle: M. Alonso, E. J. Finn Die Schwingungsbewegung ist harmonisch und es gilt für die Winkelgeschwindigkeit ω: ω = mgb J T = π J mgb Physik, SS

18 5. Freie ungedämpfte Schwingungen: Torsionspendel Torsionspendel: Der Körper bewegt sich frei wie in der Abbildung gezeigt. Für das Drehmoment gilt: κ J : Torsionskoeff. des Drahtes : Trägheitsmoment um die Achse OC τ = κθ Wird der Körper losgelassen, führt das Drehmoment τ zur Schwingung um die Gerade OC. T = π J κ Quelle: M. Alonso, E. J. Finn Wir können dieses Ergebnis zur Bestimmung des Trägheitsmomentes eines Körpers verwenden, wenn der Torsionskoeffizient κ bekannt ist und wir den Körper schwingen lassen mit der Periodendauer T. Physik, SS

19 5. Freie ungedämpfte Schwingungen: Torsionspendel Beweis: Bewegungsgleichung aufgestellt ergibt: Quelle: M. Alonso, E. J. Finn d θ d θ κ J = κθ + θ = 0 dt dt J ω = κ J T = π J κ Physik, SS

20 6. Ausbreitung von Wellen v Welle, Schwingung in einer Feder v Welle, Schwingung in einem Gas v Welle, Schwingung in einem Seil Quelle: Alonso, Finn; Physik Physik, SS 016 0

21 6. Ausbreitung von Wellen: Translation der Funktion ξ(x) ohne Formänderung Ausbreitung der Welle nach rechts ξ Ausbreitung der Welle nach links v v ξ v v Wellen die sich in entgegengesetzten Richtungen ausbreiten, führen bei Interferenz zu additiven Überlagerungen X X X X Uberlagerung X X X X ξ = f ( x vt ) ξ = f ( x + vt ) ξ = ( x vt ) + f ( x vt) f1 + Physik, SS 016 1

22 6. Ausbreitung von Wellen Ein besonders interessanter Fall ist der in dem ξ(x,t) eine sinusförmige, d.h., eine harmonische Funktion ist. π ξ( x,t ) = ξ0 sin ( x vt ) λ mit π k = λ ξ 0 ω v T λ k : Amplitude : Kreisfrequenz : Ausbreitungsgeschw. : Periodendauer : Wellenlänge : Wellenzahl ξ( x,t ) = ξ0 sin(kx ω t ) oder ξ( x,t ) = ξ0 cos( ωt kx) Da der Sinus zum Cosinus nur um π/ phasenverschoben ist. Physik, SS 016

23 6. Ausbreitung von Wellen: Wellenlänge Die Wellenlänge λ ist die Entfernung, um die die Wellenausbreitung in einer Periode fortschreitet. Dargestellt ist die veränderliche Größe ξ in Abhängigkeit vom Ort. Hier kann es sich z.b., um den Druck oder die Dichte, die sich mit dem Ort ändern handeln (z.b. Druckwelle im Rohr). ξ λ λ = v T = v 1 f λ ξ 0 λ x Physik, SS 016 3

24 6. Ausbreitung von Wellen t = t 0 Harmonische Welle, die sich nach rechts ausbreitet. Sie legt in der Zeit T (Periodendauer) die Entfernung λ zurück. T t = t0 + 4 T t = t0 + 3T t = t0 + 4 t = t0 + T Quelle: Alonso, Finn; Physik Physik, SS 016 4

25 7. Allgemeine Wellengleichung ξ( x,t ) 1 = x v ξ( x,t ) t Lösung der allgemeinen Wellengleichung: ξ( x,t ) = f1 ( x vt ) + f( x+ vt ) f 1 ( ), f ( ) sind beliebige Funktionen, die durch die Anregung (Randbedingung) an der Stelle x = 0 bestimmt werden. Partikuläre Lösung der allgemeinen Wellengleichung: π π ( x,t ) = ξ0 cos( x ωt ) mit = k als Wellenzahl ξ ± λ λ Physik, SS 016 5

26 7. Allgemeine Wellengleichung: Licht als elektromagnetische Welle Die Felder sind in Phase und stehen senkrecht aufeinander. Die Welle breitet sich senkrecht zum E-Feld und B-Feld fort. r r ξ ( x,t ) 1 ξ( x,t ) = ξ( x,t ) = E( x,t ) oder B( x,t ) v x = r E( x,t ) = x 1 µ ε 0 0 v v 1 r E( x,t ) µ t t 0 = 1, r B( x,t ) = x H m ε 0 v 1 r B( x,t ) t = 0, As Vm ε 0 µ 0 v E B : elektr. Feldkonstante : magn. Feldkonstante : Ausbreitungsgeschw. : Elektrisches Feld : Magnetisches Feld Quelle: Paul A. Tipler; Physik Physik, SS 016 6

27 8. Stehende Wellen Stehende Wellen, entstehen durch Überlagerung zweier Wellen mit gleicher Frequenz, gleicher Amplitude und gleichem Phasenwinkel, aber entgegengesetzter Laufrichtung. Die Wellenzahlvektoren beider Wellen sind betragsgleich und antiparallel. Mathematische Beschreibung: ( y 1 y r,t ) = r (,t ) = r r Acos( k ω t ) r r Acos( k ω t ) Die Minima und Maxima der stehenden Welle sind ortsfest. Schwingungsknoten: Bezeichnung für ein ortsfestes Minimum einer stehenden Welle. Schwingungsbauch: Bezeichnung für ein ortsfestes Maximum einer stehenden Welle. r r r r r (,t ) = y (,t ) + y (,t ) = Acos( ω t )cos( k ) y 1 Quelle: Stöcker: Taschenbuch der Physik Physik, SS 016 7

28 8. Stehende Wellen: Zwei fester Enden Stehende Wellen, entstehen durch Überlagerung zweier Wellen mit gleicher Frequenz, gleicher Amplitude und gleichem Phasenwinkel, aber entgegengesetzter Laufrichtung. Die Wellenzahlvektoren beider Wellen sind betragsgleich und antiparallel. Quelle: Stöcker: Taschenbuch der Physik Physik, SS 016 8

29 9. Interferenz Bezeichnung für die bei der Überlagerung verschiedener Wellen auftretenden Phänomene. Im engeren Sinn spricht man nur dann von Interferenz, wenn die überlagerten Wellen kohärent sind. Kohärente Wellen, zwei Wellen sind kohärent, wenn ihre Phasendifferenz zeitunabhängig ist. Physik, SS 016 9

30 9. Amplitudenmodulierte Welle Die Amplitude der hochfrequenten Trägerschwingung wird zeitabhängig verändert nach folgender Funktion: â Â( t ) =  + â cosω t = Â(1 + cosω t )  â Definition: m = Modulationsgrad  Damit ist die modulierte hochfrequente Trägerschwingung: A( t ) = Â(1 + mcosω t )cos Ω t Sinusförmig amplitudenmodulierte Schwingung Ω >> ω Hüllkurve â ω Ω Â Â: Trägeramplitude, â: Amplitudenhub m = â / Â: Modulationsgrad t Funktionsschaltbild zur Erzeugung einer in der Amplitude modulierten Schwingung a( t ) = â cosω t 1 /  â cosω t cos Ω t Âcos Ω t A( t ) = Â(1 + m cosω t )cos Ω t ~ Generator zur Erzeugung der Trägerschwingung Physik, SS

31 9. Frequenzmodulierte Welle Die Frequenzmodulation ist eine mögliche Form der A(t) Modulation der Phase Φ (t) einer harmonischen Schwingung A(t) =Â cos Φ (t). Man erzeugt eine in der Frequenz modulierte t Schwingung mit einem Oszillator, dessen Ω(t) Eigenfrequenz durch ein elektrisches Signal zeitabhängig verändert werden kann. t A(t) : Frequenzmodulierte Schwingung Ω Ω ( t ) = Ω + h1( t ) h 1 ( t ) ~ a( t ) = â cosω t Ω(t): Momentanfrequenz h0 Ω ist die Kreisfrequenz der unmodulierten hochfrequenten Schwingung; h 1 (t) ist proportional zum niederfrequenten Nachrichtensignal a(t). Ω Ω ( t ) = Ω + Ω cosω t heißt Frequenzhub; Ω ~ â π dφ ( t ) Ω Ω Wegen Ω ( t ) = ist Φ ( t ) = Ω t + sinω t Def: η = : Modulationsindex dt ω ω A( t ) = Âcos( Ω t +η sinω t ) Zeitfunktion der frequenzmodulierten Schwingung. Physik, SS

32 10. Zusammenfassung: Wichtige Größen Periodendauer T : Der kürzeste Zeitabschnitt, nach dem sich ein periodischer Vorgang wiederholt, ist seine Periodendauer T oder Schwingungsdauer. Frequenz f : Die Frequenz f eines periodischen Vorgangs kann aus dem Kehrwert der Periodendauer T ermittelt werden. f = 1/T in Hz (Herz) Amplitude : Maximale Auslenkung aus einer Ruhelage (z.b. Pendel). Phasenverschiebung ρ : Schwingungsbewegungen mit gleicher Schwingungsdauer sind dann gegeneinander phasenverschoben, wenn ihre entsprechneden maximalen Auslenkungen zu verschiedenen Zeitpunkten erreicht werden. Physik, SS 016 3

F R. = Dx. M a = Dx. Ungedämpfte freie Schwingungen Beispiel Federpendel (a) in Ruhe (b) gespannt: Auslenkung x Rückstellkraft der Feder

F R. = Dx. M a = Dx. Ungedämpfte freie Schwingungen Beispiel Federpendel (a) in Ruhe (b) gespannt: Auslenkung x Rückstellkraft der Feder 6. Schwingungen Schwingungen Schwingung: räumlich und zeitlich wiederkehrender (=periodischer) Vorgang Zu besprechen: ungedämpfte freie Schwingung gedämpfte freie Schwingung erzwungene gedämpfte Schwingung

Mehr

Experimentalphysik E1

Experimentalphysik E1 Experimentalphysik E1 Gedämpfte & erzwungene Schwingungen Alle Informationen zur Vorlesung unter : http://www.physik.lmu.de/lehre/vorlesungen/index.html 16. Dez. 16 Harmonische Schwingungen Auslenkung

Mehr

8. Periodische Bewegungen

8. Periodische Bewegungen 8. Periodische Bewegungen 8.1 Schwingungen 8.1.1 Harmonische Schwingung 8.1.2 Schwingungsenergie 9.1.3 Gedämpfte Schwingung 8.1.4 Erzwungene Schwingung 8. Periodische Bewegungen Schwingung Zustand y wiederholt

Mehr

Physik III im Studiengang Elektrotechnik

Physik III im Studiengang Elektrotechnik Physik III im Studiengang Elektrotechnik - Schwingungen und Wellen - Prof. Dr. Ulrich Hahn SS 28 Mechanik elastische Wellen Schwingung von Bauteilen Wasserwellen Akustik Elektrodynamik Schwingkreise elektromagnetische

Mehr

Einführung in die Physik

Einführung in die Physik Einführung in die Physik für Pharmazeuten und Biologen (PPh) Mechanik, Elektrizitätslehre, Optik Übung : Vorlesung: Tutorials: Montags 13:15 bis 14 Uhr, Liebig-HS Montags 14:15 bis 15:45, Liebig HS Montags

Mehr

Vorlesung Physik für Pharmazeuten und Biologen

Vorlesung Physik für Pharmazeuten und Biologen Vorlesung Physik für Pharmazeuten und Biologen Schwingungen Mechanische Wellen Akustik Freier harmonischer Oszillator Beispiel: Das mathematische Pendel Bewegungsgleichung : d s mg sinϕ = m dt Näherung

Mehr

Eine Kreis- oder Rotationsbewegung entsteht, wenn ein. M = Fr

Eine Kreis- oder Rotationsbewegung entsteht, wenn ein. M = Fr Dynamik der ebenen Kreisbewegung Eine Kreis- oder Rotationsbewegung entsteht, wenn ein Drehmoment:: M = Fr um den Aufhängungspunkt des Kraftarms r (von der Drehachse) wirkt; die Einheit des Drehmoments

Mehr

Physik III im Studiengang Elektrotechnik

Physik III im Studiengang Elektrotechnik Physik III im Studiengang Elektrotechnik - harmonische Schwingungen - Prof. Dr. Ulrich Hahn WS 216/17 kinematische Beschreibung Auslenkungs Zeit Verlauf: ( t) ˆ cost Projektion einer gleichförmigen Kreisbewegung

Mehr

Physik 1 für Ingenieure

Physik 1 für Ingenieure Physik 1 für Ingenieure Othmar Marti Experimentelle Physik Universität Ulm Othmar.Marti@Physik.Uni-Ulm.de Skript: http://wwwex.physik.uni-ulm.de/lehre/physing1 Übungsblätter und Lösungen: http://wwwex.physik.uni-ulm.de/lehre/physing1/ueb/ue#

Mehr

Das führt zu einer periodischen Hin- und Herbewegung (Schwingung) Applet Federpendel (http://www.walter-fendt.de)

Das führt zu einer periodischen Hin- und Herbewegung (Schwingung) Applet Federpendel (http://www.walter-fendt.de) Elastische SCHWINGUNGEN (harmonische Bewegung) Eine Masse sei reibungsfrei durch elastische Kräfte in einer Ruhelage fixiert Wenn aus der Ruhelage entfernt wirkt eine rücktreibende Kraft Abb. 7.1 Biologische

Mehr

9. Periodische Bewegungen

9. Periodische Bewegungen Inhalt 9.1 Schwingungen 9.1.2 Schwingungsenergie 9.1.3 Gedämpfte Schwingung 9.1.4 Erzwungene Schwingung 9.1 Schwingungen 9.1 Schwingungen Schwingung Zustand y wiederholt sich in bestimmten Zeitabständen

Mehr

9 Periodische Bewegungen

9 Periodische Bewegungen Schwingungen Schwingung Zustand y wiederholt sich in bestimmten Zeitabständen Mit Schwingungsdauer (Periode, Periodendauer) T Welle Schwingung breitet sich im Raum aus Zustand y wiederholt sich in Raum

Mehr

Ferienkurs Teil III Elektrodynamik

Ferienkurs Teil III Elektrodynamik Ferienkurs Teil III Elektrodynamik Michael Mittermair 27. August 2013 1 Inhaltsverzeichnis 1 Elektromagnetische Schwingungen 3 1.1 Wiederholung des Schwingkreises................ 3 1.2 der Hertz sche Dipol.......................

Mehr

Klassische und relativistische Mechanik

Klassische und relativistische Mechanik Klassische und relativistische Mechanik Othmar Marti 13. 02. 2008 Institut für Experimentelle Physik Physik, Wirtschaftsphysik und Lehramt Physik Seite 2 Physik Klassische und relativistische Mechanik

Mehr

Formelsammlung: Physik I für Naturwissenschaftler

Formelsammlung: Physik I für Naturwissenschaftler Formelsammlung: Physik I für Naturwissenschaftler 1 Was ist Physik? Stand: 13. Dezember 212 Physikalische Größe X = Zahl [X] Einheit SI-Basiseinheiten Mechanik Zeit [t] = 1 s Länge [x] = 1 m Masse [m]

Mehr

Inhalt der Vorlesung A1

Inhalt der Vorlesung A1 PHYSIK Physik A/B1 A WS SS 17 13/14 Inhalt der Vorlesung A1 1. Einführung Methode der Physik Physikalische Größen Übersicht über die vorgesehenen Themenbereiche. Teilchen A. Einzelne Teilchen Beschreibung

Mehr

4.3 Schwingende Systeme

4.3 Schwingende Systeme Dieter Suter - 217 - Physik B3 4.3 Schwingende Systeme Schwingungen erhält man immer dann, wenn die Kraft der Auslenkung entgegengerichtet ist. Ist sie außerdem proportional zur Kraft, so erhält man eine

Mehr

Probestudium der Physik 2011/12

Probestudium der Physik 2011/12 Probestudium der Physik 2011/12 1 Schwingungen und Wellen: Einführung in die mathematischen Grundlagen 1.1 Die Sinus- und die Kosinusfunktion Die Sinusfunktion lässt sich genauso wie die Kosinusfunktion

Mehr

ÜBUNGSAUFGABEN PHYSIK SCHWINGUNGEN KAPITEL S ZUR. Institut für Energie- und Umwelttechnik Prof. Dr. Wolfgang Kohl UND WELLEN.

ÜBUNGSAUFGABEN PHYSIK SCHWINGUNGEN KAPITEL S ZUR. Institut für Energie- und Umwelttechnik Prof. Dr. Wolfgang Kohl UND WELLEN. ÜBUNGSAUFGABEN ZUR PHYSIK KAPITEL S SCHWINGUNGEN UND WELLEN Institut für Energie- und Umwelttechnik Prof. Dr. Wolfgang Kohl IEUT 10/05 Kohl 1. Schwingungen 10/2005-koh 1. Welche Auslenkung hat ein schwingender

Mehr

Experimentalphysik 1

Experimentalphysik 1 Technische Universität München Fakultät für Physik Ferienkurs Experimentalphysik 1 WS 016/17 Übung 4 Ronja Berg (ronja.berg@ph.tum.de) Katharina Scheidt (katharina.scheidt@tum.de) A. Übungen A.1. Schwingung

Mehr

1. Klausur in K2 am

1. Klausur in K2 am Name: Punkte: Note: Ø: Kernfach Physik Abzüge für Darstellung: Rundung:. Klausur in K am 0.0. Achte auf die Darstellung und vergiss nicht Geg., Ges., Formeln, Einheiten, Rundung...! Angaben: Schallgeschwindigkeit

Mehr

SCHWINGUNGEN WELLEN. Schwingungen Resonanz Wellen elektrischer Schwingkreis elektromagnetische Wellen

SCHWINGUNGEN WELLEN. Schwingungen Resonanz Wellen elektrischer Schwingkreis elektromagnetische Wellen Physik für Pharmazeuten SCHWINGUNGEN WELLEN Schwingungen Resonanz elektrischer Schwingkreis elektromagnetische 51 5.1 Schwingungen Federpendel Auslenkung x, Masse m, Federkonstante k H d xt ( ) Bewegungsgleichung:

Mehr

Physik 2. Schwingungen.

Physik 2. Schwingungen. 2 Physik 2. Schwingungen. SS 18 2. Sem. B.Sc. CH Diese Präsentation ist lizenziert unter einer Creative Commons Namensnennung Nicht-kommerziell Weitergabe unter gleichen Bedingungen 4.0 International Lizenz

Mehr

WELLEN im VAKUUM. Kapitel 10. B t E = 0 E = B = 0 B. E = 1 c 2 2 E. B = 1 c 2 2 B

WELLEN im VAKUUM. Kapitel 10. B t E = 0 E = B = 0 B. E = 1 c 2 2 E. B = 1 c 2 2 B Kapitel 0 WELLE im VAKUUM In den Maxwell-Gleichungen erscheint eine Asymmetrie durch Ladungen, die Quellen des E-Feldes sind und durch freie Ströme, die Ursache für das B-Feld sind. Im Vakuum ist ρ und

Mehr

Elektrische Schwingungen und Wellen

Elektrische Schwingungen und Wellen Einführung in die Physik II für Studierende der Naturwissenschaften und Zahnheilkunde Sommersemester 2007 VL #4 am 0.07.2007 Vladimir Dyakonov Elektrische Schwingungen und Wellen Wechselströme Wechselstromgrößen

Mehr

Anleitung zum Physikpraktikum für Oberstufenlehrpersonen Resonanz (R) Herbstsemester Physik-Institut der Universität Zürich

Anleitung zum Physikpraktikum für Oberstufenlehrpersonen Resonanz (R) Herbstsemester Physik-Institut der Universität Zürich Anleitung zum Physikpraktikum für Oberstufenlehrpersonen Resonanz (R) Herbstsemester 2016 Physik-Institut der Universität Zürich Inhaltsverzeichnis 4 Resonanz (R) 4.1 4.1 Einleitung........................................

Mehr

Lineare Systeme mit einem Freiheitsgrad

Lineare Systeme mit einem Freiheitsgrad Höhere Technische Mechanik Lineare Systeme mit einem Freiheitsgrad Prof. Dr.-Ing. Ulrike Zwiers, M.Sc. Fachbereich Mechatronik und Maschinenbau Hochschule Bochum WS 2009/200 Übersicht. Grundlagen der Analytischen

Mehr

Lösung zu Übungsblatt 11

Lösung zu Übungsblatt 11 PN1 - Physik 1 für Cheiker und Biologen Prof. J. Lipfert WS 2016/17 Übungsblatt 11 Lösung zu Übungsblatt 11 Aufgabe 1 Torsionspendel. Henry Cavendish nutzte zur Bestiung der Gravitationskonstante den unten

Mehr

Hochschule Düsseldorf University of Applied Sciences. 22. Dezember 2016 HSD. Physik. Schwingungen

Hochschule Düsseldorf University of Applied Sciences. 22. Dezember 2016 HSD. Physik. Schwingungen Physik Schwingungen Zusammenfassung Mechanik Physik Mathe Einheiten Bewegung Bewegung 3d Newtons Gesetze Energie Gravitation Rotation Impuls Ableitung, Integration Vektoren Skalarprodukt Gradient Kreuzprodukt

Mehr

Physik für Oberstufenlehrpersonen. Frühjahrssemester Schwingungen und Wellen

Physik für Oberstufenlehrpersonen. Frühjahrssemester Schwingungen und Wellen Physik für Oberstufenlehrpersonen Frühjahrssemester 2018 Schwingungen und Wellen Zum Einstieg in das neue Semester Schwingungen Schwingungen spielen bei natürlichen Prozessen bedeutende Rolle: -Hören und

Mehr

Vorbereitung: Pendel. Marcel Köpke Gruppe

Vorbereitung: Pendel. Marcel Köpke Gruppe Vorbereitung: Pendel Marcel Köpke Gruppe 7 10.1.011 Inhaltsverzeichnis 1 Augabe 1 3 1.1 Physikalisches Pendel.............................. 3 1. Reversionspendel................................ 6 Aufgabe

Mehr

Experimentalphysik E1

Experimentalphysik E1 Experimentalphysik E1 Erzwungene & gekoppelte Schwingungen Alle Informationen zur Vorlesung unter : http://www.physik.lmu.de/lehre/vorlesungen/index.html 10. Jan. 016 Gedämpfte Schwingungen m d x dt +

Mehr

1. Bestimmen Sie die Phasengeschwindigkeit von Ultraschallwellen in Wasser durch Messung der Wellenlänge und Frequenz stehender Wellen.

1. Bestimmen Sie die Phasengeschwindigkeit von Ultraschallwellen in Wasser durch Messung der Wellenlänge und Frequenz stehender Wellen. Universität Potsdam Institut für Physik und Astronomie Grundpraktikum 10/015 M Schallwellen Am Beispiel von Ultraschallwellen in Wasser werden Eigenschaften von Longitudinalwellen betrachtet. Im ersten

Mehr

Vorlesung 10+11: Roter Faden:

Vorlesung 10+11: Roter Faden: Vorlesung 10+11: Roter Faden: Heute: Harmonische Schwingungen Erzwungene Schwingungen Resonanzen Gekoppelte Schwingungen Schwebungen, Interferenzen Versuche: Computersimulation, Pohlsches Rad, Film Brücke,

Mehr

Lösung zu Übungsblatt 12

Lösung zu Übungsblatt 12 PN - Physik für Cheiker und Biologen Prof. J. Lipfert WS 208/9 Übungsblatt 2 Lösung zu Übungsblatt 2 Aufgabe Reinhold Messner schwingt in den Bergen: Reinhold Messner öchte den Mount Everest besteigen

Mehr

Einführung in die Physik I. Schwingungen und Wellen 1

Einführung in die Physik I. Schwingungen und Wellen 1 Einführung in die Physik I Schwingungen und Wellen O. von der Lühe und U. Landgraf Schwingungen Periodische Vorgänge spielen in eine große Rolle in vielen Gebieten der Physik E pot Schwingungen treten

Mehr

Protokoll. zum Physikpraktikum. Versuch Nr.: 3 Gekoppelte Schwingungen. Gruppe Nr.: 1

Protokoll. zum Physikpraktikum. Versuch Nr.: 3 Gekoppelte Schwingungen. Gruppe Nr.: 1 Protokoll zum Physikpraktikum Versuch Nr.: 3 Gekoppelte Schwingungen Gruppe Nr.: 1 Theoretische Grundlagen Mathematisches Pendel: Bei einem mathematischen Pendel ist ein Massepunkt an einem Ende eines

Mehr

Musterlösungen (ohne Gewähr)

Musterlösungen (ohne Gewähr) Seite /9 Frage ( Punkte) Eine Waschmaschine hat einen mit Feder und Dämpfer gelagerten Motor (Masse m), an dem ohne Unwucht die Trommel befestigt ist. Wieviel Wäsche m u kann geschleudert werden, wenn

Mehr

Klassische und relativistische Mechanik

Klassische und relativistische Mechanik Klassische und relativistische Mechanik Othmar Marti 15. 02. 2008 Institut für Experimentelle Physik Physik, Wirtschaftsphysik und Lehramt Physik Seite 2 Physik Klassische und relativistische Mechanik

Mehr

5 Schwingungen und Wellen

5 Schwingungen und Wellen 5 Schwingungen und Wellen Schwingung: Regelmäßige Bewegung, die zwischen zwei Grenzen hin- & zurückführt Zeitlich periodische Zustandsänderung mit Periode T ψ ψ(t) [ ψ(t-τ)] Wellen: Periodische Zustandsänderung

Mehr

Schwingungen. a. Wie lautet die Gleichung für die Position der Masse als Funktion der Zeit? b. Die höchste Geschwindigkeit des Körpers.

Schwingungen. a. Wie lautet die Gleichung für die Position der Masse als Funktion der Zeit? b. Die höchste Geschwindigkeit des Körpers. Schwingungen Aufgabe 1 Sie finden im Labor eine Feder. Wenn Sie ein Gewicht von 100g daran hängen, dehnt die Feder sich um 10cm. Dann ziehen Sie das Gewicht 6cm herunter von seiner Gleichgewichtsposition

Mehr

M13. Gekoppeltes Pendel

M13. Gekoppeltes Pendel M3 Gekoppeltes Pendel In diesem Versuch werden die Schwingungen von zwei Pendeln untersucht, die durch eine Feder miteinander gekoppelt sind. Für verschiedene Kopplungsstärken werden die Schwingungsdauern

Mehr

10. Vorlesung EP I. Mechanik 7. Schwingungen (freie, gedämpfte und erzwungene Schwingung, Resonanz, Schwebung)

10. Vorlesung EP I. Mechanik 7. Schwingungen (freie, gedämpfte und erzwungene Schwingung, Resonanz, Schwebung) 10. Vorlesung EP I. Mechanik 7. Schwingungen (freie, gedämpfte und erzwungene Schwingung, Resonanz, Schwebung) Versuche: Pendel mit zwei Längen Sandpendel ohne/mit Dämpfung erzwungene Schwingung mit ω

Mehr

Experimentalphysik II Elektromagnetische Schwingungen und Wellen

Experimentalphysik II Elektromagnetische Schwingungen und Wellen Experimentalphysik II Elektromagnetische Schwingungen und Wellen Ferienkurs Sommersemester 2009 Martina Stadlmeier 10.09.2009 Inhaltsverzeichnis 1 Elektromagnetische Schwingungen 2 1.1 Energieumwandlung

Mehr

14. Mechanische Schwingungen und Wellen

14. Mechanische Schwingungen und Wellen 14. Mechanische Schwingungen und Wellen Schwingungen treten in der Technik in vielen Vorgängen auf mit positiven und negativen Effekten (z. B. Haarrisse, Achsbrüche etc.). Deshalb ist es eine wichtige

Mehr

Die Phasenkonstante ) 2. Loslassen nach Auslenkung. Anstoßen in Ruhelage: -0,500,00 5,00 10,00 15,00 2,00 1,50 1,00 0,50 0,00.

Die Phasenkonstante ) 2. Loslassen nach Auslenkung. Anstoßen in Ruhelage: -0,500,00 5,00 10,00 15,00 2,00 1,50 1,00 0,50 0,00. Die Phasenkonstante Auslenkung 2,50 2,00 1,50 1,00 0,50 0,00-0,500,00 5,00 10,00 15,00-1,00-1,50-2,00-2,50 Zeit Loslassen nach Auslenkung. y y0 sin( t ) 2 2 Auslenkung 2,50 2,00 1,50 1,00 0,50 0,00-0,500,00

Mehr

1.2 Schwingungen von gekoppelten Pendeln

1.2 Schwingungen von gekoppelten Pendeln 0 1. Schwingungen von gekoppelten Pendeln Aufgaben In diesem Experiment werden die Schwingungen von zwei Pendeln untersucht, die durch eine Feder miteinander gekoppelt sind. Für verschiedene Kopplungsstärken

Mehr

(a) Transformation auf die generalisierten Koordinaten (= Kugelkoordinaten): ẏ = l cos(θ) θ sin(ϕ) + l sin(θ) cos(ϕ) ϕ.

(a) Transformation auf die generalisierten Koordinaten (= Kugelkoordinaten): ẏ = l cos(θ) θ sin(ϕ) + l sin(θ) cos(ϕ) ϕ. Karlsruher Institut für Technologie Institut für Theorie der Kondensierten Materie Theoretische Physik B - Lösungen SS 10 Prof. Dr. Aleander Shnirman Blatt 5 Dr. Boris Narozhny, Dr. Holger Schmidt 11.05.010

Mehr

Übungen zu Physik I für Physiker Serie 12 Musterlösungen

Übungen zu Physik I für Physiker Serie 12 Musterlösungen Übungen zu Physik I für Physiker Serie 1 Musterlösungen Allgemeine Fragen 1. Warum hängt der Klang einer Saite davon ab, in welcher Entfernung von der Mitte man sie anspielt? Welche Oberschwingungen fehlen

Mehr

Felder und Wellen Übung 11 WS 2018/2019

Felder und Wellen Übung 11 WS 2018/2019 Christoph Füllner Felder und Wellen Übung 11 WS 2018/2019 Institute of Photonics and Quantum Electronics (IPQ), Department of Electrical Engineering and Information Technology (ETIT) KIT The Research University

Mehr

9. Periodische Bewegungen

9. Periodische Bewegungen 9.2 Wellen Inhalt 9.2 Wellen 9.2.1 Harmonische Welle 9.2.2 Interferenz von Wellen 9.2.3 Wellenpakete 9.2.3 Stehende Wellen 9.2 Wellen 9.2 Wellen 9.2 Wellen Störung y breitet sich in Raum x und Zeit t aus.

Mehr

III. Gekoppelte Schwingungen und Wellen 1. Komplexe Schwingungen 1.1. Review: harmonischer Oszillator

III. Gekoppelte Schwingungen und Wellen 1. Komplexe Schwingungen 1.1. Review: harmonischer Oszillator III. Gekoppelte Schwingungen und Wellen 1. Komplexe Schwingungen 1.1. Review: harmonischer Oszillator Hooksches Gesetz Harmonisches Potential allgemeine Lösung Federpendel Fadenpendel Feder mit Federkonstante

Mehr

Schwingungen. Inhaltsverzeichnis. TU München Experimentalphysik 1 DVP Vorbereitungskurs. Andreas Brenneis; Rebecca Saive; Felicitas Thorne

Schwingungen. Inhaltsverzeichnis. TU München Experimentalphysik 1 DVP Vorbereitungskurs. Andreas Brenneis; Rebecca Saive; Felicitas Thorne TU München Experimentalphysik 1 DVP Vorbereitungskurs Andreas Brenneis; Rebecca Saive; Felicitas Thorne Schwingungen Donnerstag, der 31.07.008 Inhaltsverzeichnis 1 Einleitung: Schwingungen und Wellen 1

Mehr

Schwingwagen ******

Schwingwagen ****** 5.3.0 ****** Motivation Ein kleiner Wagen und zwei Stahlfedern bilden ein schwingungsfähiges System. Ein Elektromotor mit Exzenter lenkt diesen Wagen periodisch aus seiner Ruhestellung aus. Die Antriebsfrequenz

Mehr

Versuch III. Drehpendel. Oliver Heinrich. Bernd Kugler Abgabe:

Versuch III. Drehpendel. Oliver Heinrich. Bernd Kugler Abgabe: Versuch III Drehpendel Oliver Heinrich oliver.heinrich@uni-ulm.de Bernd Kugler berndkugler@web.de 12.10.2006 Abgabe: 03.11.2006 Betreuer: Alexander Berg 1 Inhaltsverzeichnis 1 Theoretische Grundlagen 3

Mehr

Ferienkurs Experimentalphysik 1

Ferienkurs Experimentalphysik 1 Ferienkurs Experimentalphysik 1 Julian Seyfried Wintersemester 2014/2015 1 Seite 2 Inhaltsverzeichnis 3 Energie, Arbeit und Leistung 3 3.1 Energie.................................. 3 3.2 Arbeit...................................

Mehr

Praktikum I PP Physikalisches Pendel

Praktikum I PP Physikalisches Pendel Praktikum I PP Physikalisches Pendel Hanno Rein Betreuer: Heiko Eitel 16. November 2003 1 Ziel der Versuchsreihe In der Physik lassen sich viele Vorgänge mit Hilfe von Schwingungen beschreiben. Die klassische

Mehr

Aufgaben zu Teil F, Kapitel 2

Aufgaben zu Teil F, Kapitel 2 Aufgaben zu Teil F, Kapitel 2 1. Fragen und Verständnisaufgaben a) Was verstehen Sie unter einem harmonischen Oszillator? b) Was ist Resonanz? Was ist ein Resonator (Gummiseil, Schall, Licht)? c) Studieren

Mehr

Physik 1 für Ingenieure

Physik 1 für Ingenieure Physik 1 für Ingenieure Othmar Marti Experimentelle Physik Universität Ulm Othmar.Marti@Physik.Uni-Ulm.de Skript: http://wwwex.physik.uni-ulm.de/lehre/physing1 Übungsblätter und Lösungen: http://wwwex.physik.uni-ulm.de/lehre/physing1/ueb/ue#

Mehr

PN 1 Einführung in die Experimentalphysik für Chemiker und Biologen Karin Beer, Paul Koza, Nadja Regner, Thorben Cordes, Peter Gilch

PN 1 Einführung in die Experimentalphysik für Chemiker und Biologen Karin Beer, Paul Koza, Nadja Regner, Thorben Cordes, Peter Gilch PN 1 Einführung in die Experimentalphysik für Chemiker und Biologen.1.006 Karin Beer, Paul Koza, Nadja Regner, Thorben Cordes, Peter Gilch Lehrstuhl für BioMolekulare Optik Department für Physik Ludwig-Maximilians-Universität

Mehr

PN 1 Einführung in die Experimentalphysik für Chemiker und Biologen

PN 1 Einführung in die Experimentalphysik für Chemiker und Biologen PN 1 Einführung in die Experimentalphysik für Chemiker und Biologen 22.12.2006 Karin Beer, Paul Koza, Nadja Regner, Thorben Cordes, Peter Gilch Lehrstuhl für BioMolekulare Optik Department für Physik Ludwig-Maximilians-Universität

Mehr

Schwingungen. Harmonische Schwingungen. t Anharmonische Schwingungen. S. Alexandrova FDIBA TU Sofia 1

Schwingungen. Harmonische Schwingungen. t Anharmonische Schwingungen. S. Alexandrova FDIBA TU Sofia 1 Schwingungen Harmonische Schwingungen x t Anharmonische Schwingungen x x t S. Alexandrova FDIBA TU Sofia 1 t ANHARMONISCHE SCHWINGUNGEN EHB : Kraft F = -k(x-x o ) Potentielle Energie: E p E p Parabel mit

Mehr

120 Gekoppelte Pendel

120 Gekoppelte Pendel 120 Gekoppelte Pendel 1. Aufgaben 1.1 Messen Sie die Schwingungsdauer zweier gekoppelter Pendel bei gleichsinniger und gegensinniger Schwingung. 1.2 Messen Sie die Schwingungs- und Schwebungsdauer bei

Mehr

Anfänger-Praktikum I WS 11/12. Michael Seidling Timo Raab. Praktikumsbericht: Gekoppelte Pendel

Anfänger-Praktikum I WS 11/12. Michael Seidling Timo Raab. Praktikumsbericht: Gekoppelte Pendel Anfänger-Praktikum I WS 11/1 Michael Seidling Timo Raab Praktikumsbericht: Gekoppelte Pendel 1 Inhaltsverzeichnis Inhaltsverzeichnis I. Einführung 4 II. Grundlagen 4 1. Harmonische Schwingung 4. Gekoppelte

Mehr

Schwingungen und Wellen

Schwingungen und Wellen Aufgaben 1 Schwingungen und Wellen Lernziel - Problemstellungen zu Schwingungen und Wellen analysieren und lösen können. Aufgaben 1.1 a) Erdbeben können sich in der Erdkruste sowohl durch Longitudinalwellen

Mehr

7. Periodische Bewegungen Physik für E-Techniker. 7.2 Wellen Harmonische Welle Wellenpakete. Doris Samm FH Aachen

7. Periodische Bewegungen Physik für E-Techniker. 7.2 Wellen Harmonische Welle Wellenpakete. Doris Samm FH Aachen 7. Periodische Bewegungen 7.2 Wellen 7.2.1 Harmonische Welle 7.2.2 Interferenz von Wellen 7.2.3 Wellenpakete 723 7.2.3 Stehende Wellen 7.2 Wellen Störung y breitet sich in Raum x und Zeit t aus. y = f(t)

Mehr

PP Physikalisches Pendel

PP Physikalisches Pendel PP Physikalisches Pendel Blockpraktikum Frühjahr 2007 (Gruppe 2) 25. April 2007 Inhaltsverzeichnis 1 Einführung 2 2 Theoretische Grundlagen 2 2.1 Ungedämpftes physikalisches Pendel.......... 2 2.2 Dämpfung

Mehr

Lösung der harmonischen Oszillator-Gleichung

Lösung der harmonischen Oszillator-Gleichung Lösung der harmonischen Oszillator-Gleichung Lucas Kunz 8. Dezember 016 Inhaltsverzeichnis 1 Physikalische Herleitung 1.1 Gravitation................................... 1. Reibung.....................................

Mehr

Stärkt Euch und bereitet Euch gut vor... Die Übungsaufgaben bitte in den nächsten Tagen (in Kleingruppen) durchrechnen! Am werden sie von Herrn

Stärkt Euch und bereitet Euch gut vor... Die Übungsaufgaben bitte in den nächsten Tagen (in Kleingruppen) durchrechnen! Am werden sie von Herrn Stärkt Euch und bereitet Euch gut vor... Die Übungsaufgaben bitte in den nächsten Tagen (in Kleingruppen) durchrechnen! Am 4.11. werden sie von Herrn Hofstaetter in den Übungen vorgerechnet. Vom Weg zu

Mehr

Lösungen Aufgabenblatt 11

Lösungen Aufgabenblatt 11 Ludwig Maximilians Universität München Fakultät für Physik Lösungen Aufgabenblatt 11 Übungen E1 Mechanik WS 2017/2018 ozent: Prof. r. Hermann Gaub Übungsleitung: r. Martin Benoit und r. Res Jöhr Verständnisfragen

Mehr

F r = m v2 r. Bewegt sich der Körper mit der konstanten Winkelgeschwindigkeit ω = 2π, T

F r = m v2 r. Bewegt sich der Körper mit der konstanten Winkelgeschwindigkeit ω = 2π, T Kreisbewegung ================================================================== Damit sich ein Körper der Masse m auf einer Kreisbahn vom Radius r, dannmuss die Summe aller an diesem Körper angreifenden

Mehr

2 Mechanische Schwingungen und Wellen. 2.1 Mechanische Schwingungen

2 Mechanische Schwingungen und Wellen. 2.1 Mechanische Schwingungen 2 Mechanische Schwingungen und Wellen 2.1 Mechanische Schwingungen 2.1.1 Harmonische Schwingungen Federpendel, Fadenpendel 2.1.2 Gedämpfte Schwingungen 2.1.3 Erzwungene Schwingungen 2.2 Wellen 2.2.1 Transversale

Mehr

M 10 Resonanz und Phasenverschiebung bei der mechanischen Schwingung

M 10 Resonanz und Phasenverschiebung bei der mechanischen Schwingung Fakultät für Physik und Geowissenschaften Physikalisches Grundpraktikum M 1 esonanz und Phasenverschiebung bei der mechanischen Schwingung Aufgaben 1. Bestimmen Sie die Frequenz der freien gedämpften Schwingung

Mehr

III. Schwingungen und Wellen

III. Schwingungen und Wellen III. Schwingungen und Wellen III.1 Schwingungen Physik für Mediziner 1 Schwingungen Eine Schwingung ist ein zeitlich periodischer Vorgang Schwingungen finden im allgemeinen um eine stabile Gleichgewichtslage

Mehr

Vorbereitung. Resonanz. Carsten Röttele. 17. Januar Drehpendel, freie Schwingungen 3. 2 Drehpendel, freie gedämpfte Schwingungen 3

Vorbereitung. Resonanz. Carsten Röttele. 17. Januar Drehpendel, freie Schwingungen 3. 2 Drehpendel, freie gedämpfte Schwingungen 3 Vorbereitung Resonanz Carsten Röttele 17. Januar 01 Inhaltsverzeichnis 1 Drehpendel, freie Schwingungen 3 Drehpendel, freie gedämpfte Schwingungen 3 3 Messung der Winkelrichtgröße D 4 4 Drehpendel, erzwungene

Mehr

Harmonische Schwingungen

Harmonische Schwingungen Kapitel 6 Harmonische Schwingungen Von periodisch spricht man, wenn eine feste Dauer zwischen wiederkehrenden ähnlichen oder gleichen Ereignissen besteht. Von harmonisch spricht man, wenn die Zeitentwicklung

Mehr

HARMONISCHE SCHWINGUNGEN

HARMONISCHE SCHWINGUNGEN HARMONISCHE SCHWINGUNGEN Begriffe für Schwingungen: Die Elongation γ ist die momentane Auslenkung. Die Amplitude r ist die maximale Auslenkung aus der Gleichgewichtslage (r >0). Die Schwingungsdauer T

Mehr

2. Schwingungen eines Einmassenschwingers

2. Schwingungen eines Einmassenschwingers Baudynamik (Master) SS 2017 2. Schwingungen eines Einmassenschwingers 2.1 Freie Schwingungen 2.1.1 Freie ungedämpfte Schwingungen 2.1.2 Federzahlen und Federschaltungen 2.1.3 Freie gedämpfte Schwingungen

Mehr

Ferienkurs Experimentalphysik Übung 4 - Musterlösung

Ferienkurs Experimentalphysik Übung 4 - Musterlösung Ferienkurs Experimentalphysik 1 1 Übung 4 - Musterlösung 1. Feder auf schiefer Ebene (**) Auf einer schiefen Ebene mit Neigungswinkel α = befindet sich ein Körper der Masse m = 1 kg. An dem Körper ist

Mehr

Physik I Einführung in die Physik Mechanik

Physik I Einführung in die Physik Mechanik Physik I Einführung in die Physik Mechanik Winter 00/003, Prof. Thomas Müller, Universität Karlsruhe Lösung 13; Letztes Lösungsblatt 1. Torsionspendel (a) Vergleichen Sie die Größen rehwinkel ϕ, Winkelgeschwindigkeit

Mehr

Formelsammlung - Stand: Größe SI-Einheit Abkürzung

Formelsammlung - Stand: Größe SI-Einheit Abkürzung Formelsammlung - Stand: 20.04.2010 1 1 Messung 1.1 physikalische Größen und Einheiten Basisgrößen mit SI-Einheiten Größe SI-Einheit Abkürzung Länge Meter m Masse Kilogramm kg Zeit Sekunden s elektrische

Mehr

Skript zum Ferienkurs Experimentalphysik 1

Skript zum Ferienkurs Experimentalphysik 1 Skript zum Ferienkurs Experimentalphysik 1 Christoph Buhlheller, Rebecca Saive, David Franke Florian Hrubesch, Wolfgang Simeth, Wolfhart Feldmeier 17. Februar 009 Inhaltsverzeichnis 1 Einleitung: Schwingungen

Mehr

Kapitel 5: Mechanische Wellen

Kapitel 5: Mechanische Wellen Kapitel 5: Mechanische Wellen 5.1 Was sind Wellen? 5.2 Beschreibung der eindimensionalen Wellenausbreitung 5.3 Harmonische Wellen 5.4 Berechnung der Ausbreitungsgeschwindigkeit 5.5 Wellen im Festkörper

Mehr

Grund- und Angleichungsvorlesung Schwingungen.

Grund- und Angleichungsvorlesung Schwingungen. 3 Grund- und Angleichungsvorlesung Physik. Schwingungen. WS 17/18 1. Sem. B.Sc. LM-Wissenschaften Themen 6 Parameter einer Schwingung Harmonischer Oszillator Gedämpfter harmonischer Oszillator Resonanz

Mehr

Probestudium der Physik 2011/12

Probestudium der Physik 2011/12 Probestudium der Physik 2011/12 Karsten Kruse 2. Mechanische Schwingungen und Wellen - Theoretische Betrachtungen 2.1 Der harmonische Oszillator Wir betrachten eine lineare Feder mit der Ruhelänge l 0.

Mehr

Probestudium - Schwingungen und Wellen Ralf Seemann. 18. Dezember 2010

Probestudium - Schwingungen und Wellen Ralf Seemann. 18. Dezember 2010 Probestudium - Schwingungen und Wellen Ralf Seemann 18. Dezember 2010 1 Contents 1 Schwingungen 1 1.1 Kreisbewegung........................ 1 1.2 Lineare harmonische Schwingung.............. 2 1.3 Freie

Mehr

Drehprüfung. Biophysikalische Grundlagen. Stefan Langenberg

Drehprüfung. Biophysikalische Grundlagen. Stefan Langenberg Drehprüfung Biophysikalische Grundlagen Stefan Langenberg Optokinetik Ermittlung der GLP (Geschwindigkeit der langsamen Phase) Projektion eines Streifenmusters auf einen Schirm, videonystagmographische

Mehr

Schwingungen, Impuls und Energie, Harmonische Schwingung, Pendel

Schwingungen, Impuls und Energie, Harmonische Schwingung, Pendel Aufgaben 17 Schwingungen Schwingungen, Impuls und Energie, Harmonische Schwingung, Pendel Lernziele - sich aus dem Studium eines schriftlichen Dokumentes neue Kenntnisse erarbeiten können. - verstehen,

Mehr

Physikalisches Grundpraktikum Abteilung Mechanik

Physikalisches Grundpraktikum Abteilung Mechanik M6 Physikalisches Grundpraktikum Abteilung Mechanik Resonanzkurven 1 Vorbereitung Physikalische Größen der Rotationsbewegung, Zusammenhang zwischen Drehmoment, Winkelbeschleunigung und Trägheitsmoment,

Mehr

Physik für Mediziner und Zahnmediziner

Physik für Mediziner und Zahnmediziner Physik für Mediziner und Zahnmediziner Vorlesung 07 Prof. F. Wörgötter (nach M. Seibt) -- Physik für Mediziner und Zahnmediziner 1 Kontrollfragen Zeichnen Sie den typischen Verlauf einer Verformungskurve

Mehr

Resonanz Versuchsvorbereitung

Resonanz Versuchsvorbereitung Versuche P1-1,, Resonanz Versuchsvorbereitung Thomas Keck, Gruppe: Mo-3 Karlsruhe Institut für Technologie, Bachelor Physik Versuchstag: 0.1.010 1 1 Vorwort Im Praktikumsversuch,,Resonanz geht es um freie

Mehr

TONTECHNIK HÖREN // SCHALLWANDLER // IMPULSANTWORT UND FALTUNG // DIGITALE SIGNALE // MEHRKANALTECHNIK // TONTECHNISCHE PRAXIS

TONTECHNIK HÖREN // SCHALLWANDLER // IMPULSANTWORT UND FALTUNG // DIGITALE SIGNALE // MEHRKANALTECHNIK // TONTECHNISCHE PRAXIS 4., aktualisierte Auflage thomas GÖRNE TONTECHNIK HÖREN // SCHALLWANDLER // IMPULSANTWORT UND FALTUNG // DIGITALE SIGNALE // MEHRKANALTECHNIK // TONTECHNISCHE PRAXIS 18 1 Schall und Schwingungen 1.1 Mechanische

Mehr

[c] = 1 m s. Erfolgt die Bewegung der Teilchen senkrecht zur Ausbreitungsrichtung der Welle, dann liegt liegt Transversalwelle vor0.

[c] = 1 m s. Erfolgt die Bewegung der Teilchen senkrecht zur Ausbreitungsrichtung der Welle, dann liegt liegt Transversalwelle vor0. Wellen ================================================================== 1. Transversal- und Longitudinalwellen ------------------------------------------------------------------------------------------------------------------

Mehr

Übungsaufgaben Physik II

Übungsaufgaben Physik II Fachhochschule Dortmund Blatt 1 1. Ein Auto hat leer die Masse 740 kg. Eine Nutzlast von 300 kg senkt den Wagen in den Radfedern um 6 cm ab. Welche Periodendauer hat die vertikale Schwingung, die der Wagen

Mehr

Was gibt es in Vorlesung 6 zu lernen?

Was gibt es in Vorlesung 6 zu lernen? Was gibt es in Vorlesung 6 zu lernen? Beispiele für Schwingfähige Systeme - Federpendel - Schwerependel - Torsionspendel Energiebilanz Schwingungen gedämpfte Schwingungen - in der Realität sind praktisch

Mehr

Gekoppelte Schwingkreise verhalten sich wie gekoppelte mechanische Pendel

Gekoppelte Schwingkreise verhalten sich wie gekoppelte mechanische Pendel 1.3.8.5 Gekoppelte Schwingkreise verhalten sich wie gekoppelte mechanische Pendel Zwei induktiv gekoppelte LC-Kreise verhalten sich analog zu zwei gekoppelten Federn/Pendeln. Wie in der Mechanik kommt

Mehr

Formelsammlung: Physik I für Naturwissenschaftler

Formelsammlung: Physik I für Naturwissenschaftler Formelsammlung: Physik I für Naturwissenschaftler 1 Was ist Physik? Stand: 24. Januar 213 Physikalische Größe X = Zahl [X] Einheit SI-Basiseinheiten Mechanik Zeit [t] = 1 s Länge [x] = 1 m Masse [m] =

Mehr