Aufgaben zu den Würfen. Aufgaben

Größe: px
Ab Seite anzeigen:

Download "Aufgaben zu den Würfen. Aufgaben"

Transkript

1 Aufaben zu den Würfen Aufaben. Ein Körper wird i der Gecwindikei 8 - nac oben eworfen. Vo Lufwiderand ee an ab. Berecnen Sie die Wurföe und die Zei bi zu Erreicen de öcen Punke der Ban. Berecnen Sie die Wurfzei und die Aufreffecwindikei.. Ein Sein fäll au der Höe 8 enkrec zur Erde. Gleiczeii wird on unen ein zweier Sein i der Gecwindikei 3 - enkrec oc eworfen. a) Nac welcer Zei und in welcer Höe flieen die beiden Seine aneinander orbei? b) In welce zeilicen Aband reffen die beiden Seine auf de Boden auf? c) Welce Anfanecwindikei üe der zweie Sein aben, wenn beide zu leicer Zei auf de Boden aufreffen ollen? 3. Ein Ball oll on eine Sarpunk o in eine 6. enferne und,5 über de Sarpunk eleene Öffnun eworfen werden, da er dor waaerec anko. Wie roß üen Abwurfwinkel und Abwurfecwindikei ein? (E il: ina coa in a). In eine Doe wurden drei Löcer ebor, eine in Höenie und die anderen beiden yeric dazu. Berecne: a) die Aufluecwindikei b) die Gleicun der Auwurfparabel c) die Wurfweie w Beweie: d) da w für ½ H aial i e) da w(h-) w() 5. Zur Garenbewäerun wird in eine Beäler, der 3 l fa, Reenwaer aufefanen und i Hilfe einer Pupe und eine Halbzollclauc zu den bedürfien Pflanzen eleie. Häl an den Sclauc in Höe de Erdboden und priz crä nac oben, riff der Sral in aial 63 c Enfernun auf den Boden. Wieiel Lier Waer koen pro Minue zu den Pflanzen? (Der örende Einflu de Lufwiderande wird ernacläi, o da die Ban de Waerral eine Wurfparabel i) 6. Eine Kuel oll auf in einer enfernen Bur den Pulerur in Höe reffen. Die Kanone cieß die Kuel i einer Anfanecwindikei on 7 / ab. Wie roß u der Abcuwinkel ein?

2 Löunen. e.: 8 e.:,,, Löun: Bei enkrecen Wurf berecne ic die Wurföe: 8 9,8 6,5 Die dafür benöie Zei i: 8 9,8,83 Anwor: Die Wurfzei i die doppele Zei, die bi zu Gipfelpunk benöi wird, alo 3,6. Da der enkrece Wurf yeric i, i die Aufreffecwindikei enau o roß wie die Abwurfecwindikei, nur eben in eneen eezer Ricun. Der Körper flie 6,5 oc und benöi dafür,8. Er flie inea 3,6 und ko i 8 / unen wieder an.

3 . e.: 3 8 e.:, Löun: a) Beide Körper reffen ic zu Zeipunk, bi dain ind beide die leice Zei unerwe. Der We de einen plu den We de anderen erib zuaen die Geaöe on 8. + Die Beweun ei der freie Fall on oben nac unen, die Beweun der enkrece Wurf on unen nac oben. Dai kann an die We-Zei-Geeze aufellen: In die ere Gleicun über die Wee eineez erib da: + Da die beiden Zeien leic ind, kann an den eren een den lezen Suanden kürzen:, Die Höe über de Boden berecne ic au de We-Zei-Geez de enkrecen Wurfe: 6,,65 9,8,65 3 Die beiden Körper reffen ic 6, über de Boden. Zur Probe kann an noc den Fallwe de anderen Körper berecnen:,86,65 9,8 Beide Wee zuaen ind wieder 8.

4 b) E werden die einzelnen Fluzeien berecne.. Für den freien Fall: 6 9,8,8. Für den enkrecen Wurf: Die eae Fludauer i da doppele der Seizei. 6 9,8,65 Der zeilice Aband zwicen de Aufreffen beider Seine berä dai:,65,8,37 c) Die eae Fludauer de zweien Seine u der Fludauer de eren Seine enprecen: 6,8

5 3. e.: Löun:,5 e.:, w 6 Wurfweie bei cräen Wurf: in( ) w in w ( ) Wurföe bei cräen Wurf: in in Gleicezen der beiden Gleicunen und nac de Winkel uellen: w in ( ) in in in ( ) w inco w inin w co an w 6,6 Für die Berecnun der Abwurfecwindikei kann an eine der beiden Gleicunen für erwenden. in w ( ) in Anwor: Der Abwurfwinkel u 6,6 ein, die Abwurfecwindikei berä /.

6 . a) Die kineice Enerie de aufließenden Waer i leic der poenziellen Enerie o Waerpieel H bi zur Aufluöffnun in Höe. E E kin po (H ) (H ) Diee Gecwindikei enpric der Gecwindikei, die ein Körper äe, wenn er au der Höe (H ) frei fallen würde. b) Die Gleicun der Aufluparabel i die Gleicun für einen waaerecen Wurf i der Anfanöe und der Abwurfecwindikei au a). y + y (H ) y (H ) + + c) Die Gleicun für die Wurfparabel wird zur Berecnun der Wurfweie benuz. Der Waerral erreic den Boden bei y. Dann i w. w + (H ) w (H ) w (H ) d) E oll ezei werden, da w für ½ H aial wird. Da Maiu der Wurfweie lie or, wenn die. Ableiun der Wurfweie den Wer a. w w' H H (H ) H (H ) H (H ) H e) E il H - und w (H ) w w w (H(H )) (H ) (H ) (H )

7 5. e.: Löun: d " e.: V w,63 5 Die bei Durceern on Roren und Scläucen üblice Anabe in Zoll u in c uerecne werden. E il: Zoll " inc 5, Dai a ein Halbzollclauc einen Durceer on,7. Zur Berecnun der Mene, die in einer Minue au de Sclauc läuf, u an die Auriecwindikei wien. Dai kann berecne werden, wie iel Meer Sclauc in einer Minue leerlaufen. Über den Durceer wird noc die Quercnifläce de Sclauce berecne und dai eräl an da euce Voluen. Der Flu de Waerral kann al cräer Wurf berace werden. Da Abwurf- und Aufreffelle in leicer Höe lieen, erreic an bei eine Abwurfwinkel on 5 die aiale Weie. Die Gleicun zur Becreibun der Wurfparabel laue: y an co In dieer Gleicun ind alle Größen außer die Abwurfecwindikei bekann. Alo u nac dieer ueell werden. Da die Abwurf- und Aufreffelle leic ind, i y. y an co ( y an) y an y an co,8 ( y an) ( an5,63 ) co co,63 co 9,8 co 5

8 Da Waer priz alo i,8 / oder ewa 8,9 k/ au de Sclauc. In einer Minue ind da 9 Sclauc, die leer laufen. Der Quercni de Sclaue i kreirund, o da er ic wir fol berecnen lä: π A d π 3 A (,7 ) A,7 A,7 c Muliplizier an diee Fläce (in Meern!) i der Läne der Waeräule au der eren Berecnun, eräl an die Waerene, die in einer Minue au de Sclauc läuf: V A l V,7 V,89 V 8,9l 3 9 Anwor: Hinwei: Die Aufaben lä ic auc löen, wenn an die Gleicun für die Wurfweie bei cräen Wurf erwende. Sie leie ic ja au der alleeinen Gleicun er. In der Minue werden 9 Lier Waer epup. Da ind in der Sunde ewa l. I Propek der Pupe werden 8 l in einer Sunde erprocen, da i aber nic berückici, da bei ir der Sclauc eine Läne on a.

9 6. e.: Löun: e.: 7 Die Beweunleicun für den cräen Wurf in -Ricun () laue: co und in y-ricun () in Mi der lezen Gleicun eräl an: in + in in + in + + in Da in der eren Gleicun aber der Coinu eforder i, u an ucreiben: in + co co in co +

10 Da ez an in die ere Gleicun ein: + und ell e nac u. + ( ) + ( ) ( + ) Ja, wie weier? Man wäl jez: und ko zu einer quadraicen Gleicun: + + ( ) ( + ) Nun könne an da in eine Noralfor uwandeln und löen. Man kann aber auc er al Zalen einezen. Da ereinfac ewali:,6 + 73,8 95, ,355 97,755 ± 97,755 ± 88,78 86, , , Da ind aber noc nic die eucen Zeien. Die Zeien ereben ic au: 3,6565 3,

11 Mi dieen Zeien kann an über die ere Gleicun die Abcuwinkel berecnen: co co 77,9 7,8 Scnell noc die Probe. Wenn alle rici war, u ic i der zweien Gleicun die Höe on berecnen laen: in,, Si und feri. Anwor: Die Kuel kann uner eine Winkel on 77.9 oder on 7,8 abecoen werden.

c) Berechne aus dieser die mechanische Arbeit, die bei ebener Strecke nötig ist, um dieses Fahrzeug 100 km weit zu bewegen.

c) Berechne aus dieser die mechanische Arbeit, die bei ebener Strecke nötig ist, um dieses Fahrzeug 100 km weit zu bewegen. Aufben Arbei und Enerie 547. Ein Tnk oll i Hilfe einer Pupe i Wer efüll werden. Der Tnk für den Scluc zwei Anclüe, oben und unen. Wie eräl e ic i der durc die Pupe zu erriceen Arbei, u den Tnk olländi

Mehr

V Welche Leistung bringt ein Mensch beim Fahrrad Fahren? Einleitung (Hier wird erklärt, warum der Versuch durchgeführt wird)

V Welche Leistung bringt ein Mensch beim Fahrrad Fahren? Einleitung (Hier wird erklärt, warum der Versuch durchgeführt wird) AB Energie Leiung Scüler, Seie 1 V Welce Leiung bring ein Menc bei arrad aren? Einleiung (Hier wird erklär, waru der Veruc durcgefür wird) Mecanice Energie E wird dann auf einen Körper überragen, wenn

Mehr

Aufgaben Arbeit und Energie

Aufgaben Arbeit und Energie Aufgaben Arbei und Energie 547. Ein Tank oll i Hilfe einer Pupe i aer gefüll werden. Der Tank ha für den Schlauch zwei Anchlüe, oben und unen. ie verhäl e ich i der durch die Pupe zu verricheen Arbei,

Mehr

2. Ein U-Boot hat eine Ausstiegsöffnung mit einem Durchmesser von 0,6 m. Mit welcher Kraft drückt das Wasser in 20 m Tiefe auf den Verschlussdeckel?

2. Ein U-Boot hat eine Ausstiegsöffnung mit einem Durchmesser von 0,6 m. Mit welcher Kraft drückt das Wasser in 20 m Tiefe auf den Verschlussdeckel? Schwerdruck, Auftrieb. In allen 5 Gefäßen teht die Flüikeit leich hoch. Verleiche folende Drücke a Boden der Gefäße iteinander: a) p, p, p b) p, p c) p, p 5. Ein U-Boot hat eine Autieöffnun it eine Durcheer

Mehr

Mechanik 1.Gleichförmige Bewegung 1

Mechanik 1.Gleichförmige Bewegung 1 Mecanik 1.Gleicförige Bewegung 1 1. Geradlinige, gleicförige Bewegung (Bewegung it kontanter Gecwindigkeit) Zeit: 1 Unterricttunde 45 Minuten 2700 Sekunden 1 Sculjar entält etwa 34 Doppeltunden 68 Unterricttunden

Mehr

Physikalische Größe = Zahlenwert Einheit

Physikalische Größe = Zahlenwert Einheit Phyikaliche Grundlagen - KOMPAKT 1. Phyikaliche Größen, Einheien und Gleichungen 1.1 Phyikaliche Größen Um die Ar ( Qualiä) und da Aumaß ( Quaniä) phyikalicher Eigenchafen und Vorgänge bechreiben und mi

Mehr

PHYSIK Wurfbewegungen 1

PHYSIK Wurfbewegungen 1 PHYSIK Wurfbewegungen 1 Senkrechter Wurf nach unten Senkrechter Wurf nach oben Datei Nr. 9111 Auführliche Löungen und Drucköglichkeit nur auf CD Friedrich W. Buckel Augut Internatgynaiu Schloß Torgelow

Mehr

Arbeit = Kraft Weg. Formelzeichen: W Einheit: 1 N 1 m = 1 Nm = 1 J Joule ( dschul ) Beispiel: Flaschenzug. F zeigt.

Arbeit = Kraft Weg. Formelzeichen: W Einheit: 1 N 1 m = 1 Nm = 1 J Joule ( dschul ) Beispiel: Flaschenzug. F zeigt. Kraftwandler Die Energie al Eraltunggröße Ein Kraftwandler it eine mecanice Anordnung, die eine Kraft wirken lät, welce größer it al die Kraft, die aufgewendet wird (oder umgekert). Beipiel: lacenzug Aufgewendete

Mehr

Aufgaben zu den Newtonsche Gesetzen

Aufgaben zu den Newtonsche Gesetzen Aufgaben zu den ewtonce Geetzen. Zwei Maen von = 8 und = ängen an den Enden eine Seil, da über eine fete Rolle it vernacläigbarer Mae gefürt it. a) Wie groß it die Becleunigung de al reibungfrei angenoenen

Mehr

Schaltung mit MOS-Transistor. Schaltung mit MOS-Transistor. Schaltung mit MOS-Transistor-Lösung. Schaltung mit MOS-Transistor-Lösung

Schaltung mit MOS-Transistor. Schaltung mit MOS-Transistor. Schaltung mit MOS-Transistor-Lösung. Schaltung mit MOS-Transistor-Lösung Schaung mi MOSranior In id 8 i eine Verärkerchaung mi dem MOSranior dargee. er ranior o im akiven ereich mi einem Srom I = m berieben werden. ranior Parameer ind bekann: GS = = V, n cox und W. V L Weiere

Mehr

Formelsammlung Mechanik

Formelsammlung Mechanik oellun Mechnik Beufliche Gniu chobechule oellun Phik Mechnik Heinich-Enuel-Meck-Schule Dd Snd: 8..8 oellun Mechnik Beufliche Gniu chobechule Gößen und Einheien de Mechnik oel e de Einheien Beziehun zwichen

Mehr

PHYSIK Geradlinige Bewegungen 3

PHYSIK Geradlinige Bewegungen 3 7 PHYSIK Geradlinige Bewegungen 3 Gleichäßig bechleunigte Bewegungen it Anfanggechwindigkeit Datei Nr. 93 Friedrich W. Buckel Juli Internatgynaiu Schloß Torgelow Inhalt Grundlagen: Bechleunigte Bewegungen

Mehr

3 Ebene elektromagnetische Wellen

3 Ebene elektromagnetische Wellen 3 bene elekomagneisce Wellen nscaulice Besceibung 6 3 bene elekomagneisce Wellen In diesem bscni weden ebene elekomagneisce Wellen in omogenen Medien beandel. Dabei sollen die fü die Besceibung elekomagneisce

Mehr

7 Arbeit, Energie, Leistung

7 Arbeit, Energie, Leistung Seite on 6 7 Abeit, Enegie, Leitung 7. Abeit 7.. Begiffekläung Abeit wid ie dann eictet, wenn ein Köpe unte de Einflu eine äußeen Kaft läng eine ege ecoben, becleunigt ode efot wid. 7.. Eine kontante Kaft

Mehr

Techn. Physik. Formelsammmlung. zum Lehrfach Technische Physik von. P. Heinrich

Techn. Physik. Formelsammmlung. zum Lehrfach Technische Physik von. P. Heinrich [Geerbliche Schule] [Öhrinen] echn. Phyik achchule für echnik Machinenechnik Sand: r. 008 orelalun zu Lehrfach echniche Phyik on P. Heinrich Diee Manukri dien zur Unerüzun de Unerriche i o.a. ach und i

Mehr

Beispiellösungen zu Blatt 84

Beispiellösungen zu Blatt 84 µatheaticher κorrepondenz- zirkel Matheatiche Intitut Georg-Augut-Univerität Göttingen Aufgabe 1 Beipiellöungen zu Blatt 84 Welche der folgenden Zahlen it größer? 2009 + 2010 + 2010 + 2009, 2009 + 2009

Mehr

Mechanik 2. Addition von Geschwindigkeiten 1

Mechanik 2. Addition von Geschwindigkeiten 1 Mechanik. Addition on Gechwindigkeiten 1. Addition on Gechwindigkeiten Wa beeinflut die Gechwindigkeit de Boote? a. Wind b. Waergechwindigkeit Haben beide die gleiche Richtung, o addieren ie ich. Haben

Mehr

PN Handwerk. GC-Online UGL-Schnittstelle Schnelleinstieg

PN Handwerk. GC-Online UGL-Schnittstelle Schnelleinstieg PN Handwek GC-Onine UGL-Schniee Schnenieg Inha GC-Onine UGL-Schniee... 3 Gundneungen fü den auomaichen Daenauauch... 3 Daanom-Daen aben... 4 Akionen de Handweke... 7 Beeung (Liefeaag)... 7 Abaag... 7 Abaag

Mehr

Rapid Control Prototyping

Rapid Control Prototyping Rapid orol Prooypig Alexader Kuzieov THM Üerich Modellildug dyaicher Syee Ideifiaio dyaicher Syee Modellaierer Ewurf vo Regelreie Modellaiere Te Echzeifähige Ipleeierug Rapid orol Prooypig: Ziele Aufelle

Mehr

FOS: Lösungen Aufgaben zu Arbeit, Energie, Leistung und dem Wirkungsgrad

FOS: Lösungen Aufgaben zu Arbeit, Energie, Leistung und dem Wirkungsgrad R. Brinkann http://brinkann-du.de Seite 5..03 FOS: Löungen Aufgaben zu Arbeit, Energie, Leitung und de Wirkunggrad. Welche Größen betien die Arbeit in der Phyik? Wie wird die Arbeit berechnet und in welchen

Mehr

Vier-Felder-Tafel. Medizinische Tests sind grundsätzlich mit zwei Fehlern behaftet: 1. Erkrankte werden als gesund, 2. Gesunde als krank eingestuft.

Vier-Felder-Tafel. Medizinische Tests sind grundsätzlich mit zwei Fehlern behaftet: 1. Erkrankte werden als gesund, 2. Gesunde als krank eingestuft. Vier-Felder-Tafel Mediziniche Tet ind grundätzlich mit zwei Fehlern behaftet:. Erkrankte werden al geund, 2. Geunde al krank eingetuft. Der. Fehler wird üblicherweie (nicht nur von Tet-Entwicklern) in

Mehr

Gebiet Basisgröße Formelzeichen Basiseinheit Einheitenzeichen

Gebiet Basisgröße Formelzeichen Basiseinheit Einheitenzeichen 141 Phik I Einfühun Die Phik i ein Teilebie de Nuwienchfen und bechäfi ich mi de lebloen Umwel. In de Phik wid euch, die Geezmäßikeien de unbeleben Meie duch Beobchunen und Meunen zu efen und in eine mhemichen

Mehr

Arbeit - Energie - Reibung

Arbeit - Energie - Reibung Die nachfolgenden Aufgaben und Definitionen ind ein erter intieg in diee Thea. Hier wird unterchieden zwichen den Begriffen Arbeit und nergie. Verwendete Forelzeichen ind in der Literatur nicht ier einheitlich

Mehr

Differentialgleichungen

Differentialgleichungen Differentialgleichungen Teilnehmer: Phili Bannach Heinrich-Hertz-Oberchule) Levin Keller Herder-Oberchule) Phili Kende Herder-Oberchule) Carten Kubbernuh Andrea-Oberchule) Giang Nguyen Herder-Oberchule)

Mehr

IX. Lagrange-Formulierung der Elektrodynamik

IX. Lagrange-Formulierung der Elektrodynamik IX. Lagrange-Formulierung der Elekrodynamik In diesem Kapiel wird gezeig, dass die Maxwell Lorenz-Gleihungen der Elekrodynamik hergeleie werden können, wenn dem Sysem {Punkladung + elekromagneihes Feld}

Mehr

Zwei Rechenbeispiele für die einfache lineare Regression

Zwei Rechenbeispiele für die einfache lineare Regression Einfache Regression mi Ecel Prof. Dr. Peer von der Lippe Zwei Rechenbeispiele für die einfache lineare Regression 1.1. Daen 1. Mindeslöhne Beispiel 1 Ennommen aus Rolf Ackermann, pielball des Lobbyisen,

Mehr

Schriftliche Prüfung Schuljahr: 2008/2009 Schulform: Gymnasium. Mathematik

Schriftliche Prüfung Schuljahr: 2008/2009 Schulform: Gymnasium. Mathematik Ministerium für Bildung, Jugend und Sport Prüfungen am Ende der Jargangsstufe 10 Scriftlice Prüfung Sculjar: 2008/2009 Sculform: Matematik Allgemeine Arbeitsinweise Die Prüfungszeit beträgt 160 Minuten.

Mehr

In welcher Zeit könnte der Sportwagen demnach von 0 auf 100 km beschleunigen?

In welcher Zeit könnte der Sportwagen demnach von 0 auf 100 km beschleunigen? Arbeit, Leitung und Wirkunggrad und Energie. Welche Leitung erbringt ein Auto da bei einer geamten Fahrwidertandkraft von 200 N mit einer Gechwindigkeit von 72 km fährt? h 2: Ein Latkran wird mit einem

Mehr

B06A DAMPFDRUCK VON WASSER B06A

B06A DAMPFDRUCK VON WASSER B06A B06A DAMPFDRUCK VON WASSER B06A 1. ZIELE Wir aten euchtere Lut aus als ein. Müssen wir daür Enerie auwenden? Waru werden die Kartoeln in eine Dapdrucktop schneller ar? Was passiert, wenn Wasser verdapt?

Mehr

6. Die Exponentialfunktionen (und Logarithmen).

6. Die Exponentialfunktionen (und Logarithmen). 6- Funktionen 6 Die Eponentialfunktionen (und Logaritmen) Eine ganz wictige Klasse von Funktionen f : R R bilden die Eponentialfunktionen f() = c ep( ) = c e, ier sind, c feste reelle Zalen (um Trivialfälle

Mehr

Bericht zur Prüfung im Oktober 2009 über Grundprinzipien der Versicherungs- und Finanzmathematik (Grundwissen)

Bericht zur Prüfung im Oktober 2009 über Grundprinzipien der Versicherungs- und Finanzmathematik (Grundwissen) Berich zur Prüfung i Okober 9 über Grundrinziien der Versicherungs- und Finanzaheaik (Grundwissen Peer lbrech (Mannhei 6 Okober 9 wurde zu vieren Mal eine Prüfung i Fach Grundrinziien der Versicherungs-

Mehr

Checkliste Einkommensteuererklärung

Checkliste Einkommensteuererklärung Checklise Einkommenseuererklärung Persönliche Sammdaen enfäll Haben sich Änderungen im Bereich Ihrer persönlichen Daen (Konfession, Adresse, Beruf, Familiensand, Bankverbindung, Kinder und deren Beäigung

Mehr

Jann Strybny. Ohne Panik Strömungsmechanik!

Jann Strybny. Ohne Panik Strömungsmechanik! Jann Strbn One Panik Strömunsmecanik! Jann Strbn One Panik Strömunsmecanik! Ein Lernbuc ur Prüfunsorbereitun, um uffriscen und Nacsclaen mit Cartoons on Olier Romber 4., überarbeitete und erweiterte uflae

Mehr

II. Metalle. 1. Mechanische Eigenschaften. Cu, Ag, Au, Al, Ni, Pb, Pt Li, Na, K, Cr, Mo, Ta, W 910 C

II. Metalle. 1. Mechanische Eigenschaften. Cu, Ag, Au, Al, Ni, Pb, Pt Li, Na, K, Cr, Mo, Ta, W 910 C II. Mealle In diesem Kapiel wollen wir uns zunächs kurz den mechanischen und elekrischen Eienschafen der Mealle zuwenden, danach aber insbesondere auf eierunen einehen. Den bschluss bilde ein wiederum

Mehr

Hilfe zum neuen Online-Shop

Hilfe zum neuen Online-Shop Hilfe zum neuen Online-Sop Hier finden Sie umfassend bescrieben, wie Sie sic in unserem neuen Sop zurectfinden. Wenn Sie Fragen zur Kunden-Nr., Kunden-ID oder zum Passwort aben, rufen Sie uns bitte an:

Mehr

Formelsammlung. Fachangestellte für Bäderbetriebe Meister für Bäderbetriebe. Inhalt

Formelsammlung. Fachangestellte für Bäderbetriebe Meister für Bäderbetriebe. Inhalt Forelsalung Facangestellte für Bäderbetriebe Meister für Bäderbetriebe Erstellt von Dipl.-Ing. (FH) Wolfgang Hetteric, BVS it Ergänzungen von Dipl.-Ing. (FH) Peter Vltavsky, BS Lindau Inalt llgeeine Mecanik...

Mehr

SERVICE NEWSLETTER. Einführung in die Mechanik Teil 2: Kinematik (2)

SERVICE NEWSLETTER. Einführung in die Mechanik Teil 2: Kinematik (2) Einührung in ie Mechanik Teil : Kinemaik Ausgabe: 9 / 4 In iesem Teil er Reihe wollen wir anhan eines Zahlenbeispiels en Deomaionsgraienen als zenrale Größe zur Beschreibung er Deormaion in er Kinemaik

Mehr

Bericht zur Prüfung im Oktober 2007 über Finanzmathematik und Investmentmanagement

Bericht zur Prüfung im Oktober 2007 über Finanzmathematik und Investmentmanagement Berich zur Prüfung im Okober 7 über Finanzmahemaik und Invesmenmanagemen (Grundwissen) Peer Albrech (Mannheim) Am 5 Okober 7 wurde zum zweien Mal eine Prüfung im Fach Finanzmahemaik und Invesmenmanagemen

Mehr

Preisliste w a r e A u f t r a g 8. V e r t r b 8. P C K a s s e 8. _ D a t a n o r m 8. _ F I B U 8. O P O S 8. _ K a s s a b u c h 8. L o h n 8. L e t u n g 8. _ w a r e D n s t l e t u n g e n S c h

Mehr

1000 Dinge, an die zu denken ist, wenn Microsoft Office SharePoint Server 2007 implementiert werden soll

1000 Dinge, an die zu denken ist, wenn Microsoft Office SharePoint Server 2007 implementiert werden soll 1000 Dinge, an die zu denken ist, wenn Microsoft Office SharePoint Server 2007 implementiert werden soll 1 0 0 0 Di n g e, a n di e z u d e n k e n ist, w e n n M i c r o s o f t O f f i c e S h a r e

Mehr

Zur Datenqualität primärstatistischer Erhebungen

Zur Datenqualität primärstatistischer Erhebungen Zur Daenqualä prmärsasscer Erebungen Henrc Srecker Emer. o. Professor Dr. rer. na. Henrc Srecker, Unversä Tübngen und Honorarprofessor der Ludwg-Maxmlans-Unversä Müncen, Rosensr., D 839 Sarnberg be Müncen.

Mehr

1. Mathematische Grundlagen und Grundkenntnisse

1. Mathematische Grundlagen und Grundkenntnisse 8 1. Mahemaische Grundlagen und Grundkennnisse Aufgabe 7: Gegeben sind: K = 1; = 18; p = 1 (p.a.). Berechnen Sie die Zinsen z. 18 1 Lösung: z = 1 = 5 36 Man beache, dass die kaufmännische Zinsformel als

Mehr

4 ARBEIT UND LEISTUNG

4 ARBEIT UND LEISTUNG 10PS/TG - MECHANIK P. Rendulić 2008 ARBEIT UND LEISTUNG 27 4 ARBEIT UND LEISTUNG 4.1 Mehnihe Abei 4.1.1 Definiion de Abei enn ein Köpe une de Einwikung eine konnen Kf die Seke in egihung zuükleg, dnn wid

Mehr

Binäre Suchbäume. 6. Binäre Suchbäume. Einfügen in binären Suchbäumen

Binäre Suchbäume. 6. Binäre Suchbäume. Einfügen in binären Suchbäumen 6. Binäre Sucbäume Natürlice binäre Sucbäume - Begriffe und Definitionen - Grundoperationen: Einfügen, sequentielle Suce, direkte Suce, öscen - Bestimmung der mittleren Zugriffskosten Balancierte Binärbäume

Mehr

Grundlagen der Informatik III Wintersemester 2010/2011

Grundlagen der Informatik III Wintersemester 2010/2011 Grundlagen der Informatik III Winteremeter 2010/2011 Wolfgang Heene, Patrik Schmittat 8. Aufgabenblatt mit Löungvorchlag 10.01.2011 Hinwei: Der Schnelltet und die Aufgaben ollen in den Übunggruppen bearbeitet

Mehr

Stochastische Überraschungen beim Spiel BINGO

Stochastische Überraschungen beim Spiel BINGO Stochatiche Überrachungen beim Spiel BINGO NORBERT HENZE, KARLSRUHE, UND HANS HUMENBERGER, WIEN Zuammenfaung: In dieem Beitrag wird da bekannte Spiel BINGO erläutert und näher analyiert. Augehend vom konkreten

Mehr

6. Klasse 1. Schularbeit 1999-10-20 Gruppe A + 40.! Bestimme das Monotonieverhalten und berechen den Grenzwert! 4 Punkte

6. Klasse 1. Schularbeit 1999-10-20 Gruppe A + 40.! Bestimme das Monotonieverhalten und berechen den Grenzwert! 4 Punkte 6. Klae 1. Schularbeit 1999-10-0 Gruppe A 1) Betrachte da Wettrennen zwichen Achille und der Schildkröte für folgende Angaben: Gechwindigkeit von Achille 10 m, Gechwindigkeit der Schildkröte m Vorprung

Mehr

1 Kinematik der geradlinigen Bewegung eines Punktes 1.1 Freier Fall; Geschwindigkeit, Fallzeit, kinematische Diagramme

1 Kinematik der geradlinigen Bewegung eines Punktes 1.1 Freier Fall; Geschwindigkeit, Fallzeit, kinematische Diagramme Inhal / Übersich der Aufgaben mi Lösungen XI Aufgabe Erläuerung "Info"-Bild Seie 1 1 Kinemaik der geradlinigen Bewegung eines Punkes 1.1 Freier Fall; Geschwindigkei, Fallzei, kinemaische Diagramme 5 1.2

Mehr

Wärmestrom. Wärmeleitung. 19.Nov.09. Ende. j u. Dieses wird zweckmäßiger pro Einheitsfläche definiert:

Wärmestrom. Wärmeleitung. 19.Nov.09. Ende. j u. Dieses wird zweckmäßiger pro Einheitsfläche definiert: Winteseeste 009 / 00 FK Wäeleitung I teodynaiscen Gleicgewict: Sind die beiden Seiten auf untesciedlice Tep., so fließt ein Wäesto. Diese ist popotional zu Tepeatudiffeenz TT -T, zu Quescnittsfläce A,

Mehr

Ihr lieben Hirten, fürchtet euch nicht

Ihr lieben Hirten, fürchtet euch nicht Ihr lieben Hirten, fürchtet euch nicht Andreas Hammerschmidt Ihr lie- ben Hir- ten, ihr lie- ben, fürch- tet euch nicht, 10 sie- he, ich ver- kün- di- ge euch Freu- de, Freu- de, Freu- de, gro- ße Freu-

Mehr

Wer nur den lieben Gott läßt walten

Wer nur den lieben Gott läßt walten Wer nur den lieben Gott läßt walten Nr. 1 Choral Felix Mendelssohn-Bartholdi Soprano/ Violino 1 Mein Gott, du weißt am al- ler- be- sten das, was mir Alto/ Violino 2 Mein Gott, du weißt am al- ler- be-

Mehr

Working Paper Eigenkapitalunterlegung von Kreditrisiken bei Banken und die Auswirkungen auf die Fremdkapitalkosten von Kreditnehmern

Working Paper Eigenkapitalunterlegung von Kreditrisiken bei Banken und die Auswirkungen auf die Fremdkapitalkosten von Kreditnehmern econtor www.econtor.eu er Open-Acce-Pubikationerver der ZBW Leibniz-Informationzentrum Wirtcaft Te Open Acce Pubication Server of te ZBW Leibniz Information Centre for Economic ippe, Peter Working Paper

Mehr

Berücksichtigung naturwissenschaftlicher und technischer Gesetzmäßigkeiten. Industriemeister Metall / Neu

Berücksichtigung naturwissenschaftlicher und technischer Gesetzmäßigkeiten. Industriemeister Metall / Neu Fragen / Themen zur Vorbereiung auf die mündliche Prüfung in dem Fach Berücksichigung naurwissenschaflicher und echnischer Gesezmäßigkeien Indusriemeiser Meall / Neu Die hier zusammengesellen Fragen sollen

Mehr

Versuch 16 (früher I9) Aufbauten 16/36 (früher I7a/I7b) Logikschaltungen mit dem Bipolartransistor

Versuch 16 (früher I9) Aufbauten 16/36 (früher I7a/I7b) Logikschaltungen mit dem Bipolartransistor Hochchule Augburg Veruch 16 (früher I9) Aufbauten 16/36 (früher I7a/I7b) Logikchaltungen mit dem Bipolartranitor Phyikaliche Praktikum Die Funktionweie von Bipolartranitoren ollte vor Veruch 9 im Theorieteil

Mehr

INHALTSVERZEICHNIS 1 DAS WIRKLICHE VERHALTEN DER STOFFE 2 2 HETEROGENE ZUSTANDSGEBIETE 3. 2.1 Gemische 3. 2.2 Dampfgehalt 3. 2.

INHALTSVERZEICHNIS 1 DAS WIRKLICHE VERHALTEN DER STOFFE 2 2 HETEROGENE ZUSTANDSGEBIETE 3. 2.1 Gemische 3. 2.2 Dampfgehalt 3. 2. INHSERZEIHNIS S IRKIHE ERHEN ER SOFFE HEEROGENE ZUSNSGEBIEE 3. Geche 3. afgehalt 3.3 Sezfche olue v 3. Ethale 3.5 Etoe.6 af/ga Geche, Feuchte uft 3 ÄREÜBERRGUNG 6 3. äeletug 6 3. äeübegag 7 3.3 äeübetagug

Mehr

Eigenkapitalunterlegung von Kreditrisiken bei Banken und die Auswirkungen auf die Fremdkapitalkosten von Kreditnehmern 1

Eigenkapitalunterlegung von Kreditrisiken bei Banken und die Auswirkungen auf die Fremdkapitalkosten von Kreditnehmern 1 Eigenkapitaunteregung von Kreditriiken bei Banken und die Auwirkungen auf die Fremdkapitakoten von Kreditnemern 1 Peter ippe * ovember 2002 1 Für wertvoe ikuionbeiträge danke ic Sönke Pinkernee. * Prof.

Mehr

P r ä s e n t a t i o n s - S y s t e m R E V O L U T I O N I N M O B I L E R A R C H I T E K T U R

P r ä s e n t a t i o n s - S y s t e m R E V O L U T I O N I N M O B I L E R A R C H I T E K T U R P r ä s e n t a t i o n s - S y s t e m R E V O L U T I O N I N M O B I L E R A R C H I T E K T U R T e c h n i k P r i n z i p 4-5 I n d e x M i n i - S t ä n d e M e s s e s t ä n d e M u l t i m e d

Mehr

Nenne verschiedene Energieformen. Nenne zu einem Beispiel aus deiner Umgebung, welche Energieformen ineinander umgewandelt werden.

Nenne verschiedene Energieformen. Nenne zu einem Beispiel aus deiner Umgebung, welche Energieformen ineinander umgewandelt werden. Grundwissenskatalog zu Pysik 8.Jargangsstufe, Seite von 5 Carl-Friedric Gauß Gymnasium Scwandorf Stand: Sept. 0 Wissen Können Beispiele, Ergänzungen Energie Energie kann in versciedenen Formen vorkommen.

Mehr

½ Achtung: 2. Montage. 1. Funktion

½ Achtung: 2. Montage. 1. Funktion W Bus ON Prog. Kapiel 7 Schalakoren 7.5 Schalakor 8-fach Schalakor REG-K/8x23/6 mi Handbeäigung Ar.-Nr. 647893 REG-K/8x23/6 mi HandbeäigungKapiel 7SchalakorenAr.-Nr.647893Sand /37.5Schalakor 8-fach Schalakor

Mehr

Importeure chemischer Produkte.

Importeure chemischer Produkte. c a k u o P c is m C ic z k i ic S H G u Gfak zu io a m fo I Wici Impou cc u ll s H fü zicu Pouk. GHS i u, wlwi iilic Gfakzicu Das vo UNO iiii Sysm GHS zu Eisufu u Kzicu vo Cmikali s als Abküzu fü Globally

Mehr

Informationen zur Kennzahlenanalyse und Unternehmensbewertung

Informationen zur Kennzahlenanalyse und Unternehmensbewertung Informationen zur Kennzalenanalyse und Unternemensbewertung Liquidität Kennzal Formel Sollwert Kommentar Cas Ratio (Liquiditätsgrad 1) ü 20-30% Widerspiegelt die Bezieung zwiscen Flüssigen Mitteln (inkl

Mehr

Veranstaltung. Logistik und Materialfluss (Lagerlogistik), Sommersemester 2013

Veranstaltung. Logistik und Materialfluss (Lagerlogistik), Sommersemester 2013 Veranstaltung Logistik und Materialfluss (Lagerlogistik), Sommersemester 203 Übung 4: Tema: Statisce Losgröße Andler Modell Los (lot) : Menge eines Produktes, die one Unterbrecung gefertigt wird. Losgröße(lotsize):

Mehr

Sage Office Line Umsatzsteuererhöhung 2007

Sage Office Line Umsatzsteuererhöhung 2007 Sage Office Line Umatzteuererhöhung 2007 Ohne audrückliche chriftliche Erlaubni dürfen weder da Handbuch noch Auzüge darau mit mechanichen oder elektronichen Mitteln, durch Fotokopieren oder auf irgendeine

Mehr

HÖHERE TECHNISCHE BUNDESLEHRANSTALT SAALFELDEN Höhere Abteilung für Elektrotechnik und Informationstechnik. Angewandte Physik APH.

HÖHERE TECHNISCHE BUNDESLEHRANSTALT SAALFELDEN Höhere Abteilung für Elektrotechnik und Informationstechnik. Angewandte Physik APH. HÖHERE TECHNISCHE BUNDESLEHRNSTLT SLELDEN Höere bteilun für Elektrotecnik und Inforationstecnik newandte Pysik PH orelsalun Micael WLSER 3. uflae 003 Inaltserzeicnis lleeines...4. Das Griecisce labet...4.

Mehr

rüv-getestet DasDo-it-yoursetf-Magazin +q;* &,',, -*# Sonderdruck 9 Werkstatt-Sauger * Mr(nRcHER Testsieger: lillffii TESTSIEGER ..

rüv-getestet DasDo-it-yoursetf-Magazin +q;* &,',, -*# Sonderdruck 9 Werkstatt-Sauger * Mr(nRcHER Testsieger: lillffii TESTSIEGER .. üv- DD--y-Mz +q;* &' "4 -*# S l M 1112007 9 W-S T * M(RHER T: % TESTSEGER TEST & TECHNK Tä;P;'G Sz ü E ü W? 0 vll v -Ml ü w ü E? S l w T w Mä Sä Pxpü p - zw j Dzp v l : A v Spä wä A Ewz K M P 200 E ['ä

Mehr

( ) ( ) ( ) Wärmetechnik II Formelsammlung Stand: 19.09.2006. δ λ. δ λ 4 Q. Prof. Dr.-Ing. G. Wilhelms. R Q Δt. Temperaturverteilung: 1.

( ) ( ) ( ) Wärmetechnik II Formelsammlung Stand: 19.09.2006. δ λ. δ λ 4 Q. Prof. Dr.-Ing. G. Wilhelms. R Q Δt. Temperaturverteilung: 1. Wäeechni II Foesung Sn: 9.09.006 Po. D.-Ing. G. Wihes Wäeeiung: Fouiesches Gesez: Wäewiesn: Eene Wn: Tepeuveeiung: ) ( ) ( Wäesoiche: Wäeso: Wäeeiwiesn: Wäeso uch eine ehschichige Wn: ) (. Zyinische Wn:

Mehr

Liebe Lehrerin, lieber Lehrer, dieses Unterrichtsmaterial ist speziell auf die Boardstory und das Buch ool" Ope

Liebe Lehrerin, lieber Lehrer, dieses Unterrichtsmaterial ist speziell auf die Boardstory und das Buch ool Ope Ab heute ind wir ol Liebe Lehrerin, lieber Lehrer, diee Unterrihtmaterial it peziell auf die Boardtory und da Buh "Ab heute in ind wir r oo " von Suan Ope pel-götz augelegt. Die Arbeitblätter untertützen

Mehr

Getreide-Lagersilos "Made by NEUERO" für Innen- und Außenaufstellung

Getreide-Lagersilos Made by NEUERO für Innen- und Außenaufstellung mit Typprüfug vrzikt Ausfürug st abil Kostruktio o Frtigugsqualit ät Flacprofilirug dr Siloplatt, dadurc größr St abilit ät ud bssr gigt für Vrdlugsprodukt, z. B. S aatgut agpasst Blüftugssystm ud Blüftugsvtilator

Mehr

Übungsaufgaben zur Finanzmathematik - Lösungen

Übungsaufgaben zur Finanzmathematik - Lösungen Wshfsmhemk II Übugsufgbe zu Fzmhemk - Lösuge. Ee Bk lok m dem Agebo " W vedoppel h pl Jhe!! ". ) Welhe Vezsug bee Ihe de Bk? ( ) Edkpl od. Ede : Lufze od. Läge des Algezeumes Zse " Zseszsehug" z. B.: (

Mehr

3.2 Festlegung der relevanten Brandszenarien

3.2 Festlegung der relevanten Brandszenarien B Anwendungsbeispiel Berechnungen Seie 70.2 Feslegung der relevanen Brandszenarien Eine der wichigsen Aufgaben beim Nachweis miels der Ingenieurmehoden im Brandschuz is die Auswahl und Definiion der relevanen

Mehr

Benutzerhandbuch. Odette 95

Benutzerhandbuch. Odette 95 S Kirhofallee 74 D - 24114 Kiel Tel +49-431-600578-0 Fax +49-431-600578-11 Email Support@bartoft.com www.bartoft.com Benutzerhandbu Odette 95 für Window 9x, 200x, NT, XP 2001-2004 S Die Informationen in

Mehr

Luftdichte und Luftfeuchte

Luftdichte und Luftfeuchte M2 Luftdichte und Luftfeuchte Durch äun werden Masse und Volumen der Luft in einem Glaskolben bestimmt und unter Berücksichtiun des Luftdrucks und der Luftfeuchtikeit die Luftnormdichte berechnet. 1. Theoretische

Mehr

Die Inhalte des Studiums zum Bachelor of Arts bzw. zum Master of Arts ergeben sich gemäß den Anlagen 1 und 2 zu dieser Studienordnung.

Die Inhalte des Studiums zum Bachelor of Arts bzw. zum Master of Arts ergeben sich gemäß den Anlagen 1 und 2 zu dieser Studienordnung. Neufaung de Studienodnung (Satzung) fü den Bachelo- und den konekutiven Mate-Studiengang de Witchaftinfomatik am Fachbeeich Witchaft de Fachhochchule Kiel Aufgund de 86 Ab. 7 de Hochchulgeetze (HSG) in

Mehr

ASKUMA-Newsletter. 7. Jahrgang. Juni 2008 bis April 2009

ASKUMA-Newsletter. 7. Jahrgang. Juni 2008 bis April 2009 ASKUMA-Newsletter Juni 2008 bis April 2009 ASKUMA Newsletter - 1 - INHALTSVERZEICHNIS INHALTSVERZEICHNIS...2 AUSGABE JUNI 2008...3 Inhaltsverzeichnis... 3 Artikel... 4 AUSGABE AUGUST 2008...11 Inhaltsverzeichnis...

Mehr

Anleitung zum Applet Schiefer Wurf

Anleitung zum Applet Schiefer Wurf Anleitung zum Applet: Schiefer Wurf 1 Anleitung zum Applet Schiefer Wurf Bearbeitung von: Mathias Hartner SS 2009 Studiengang: Elektronik und Informationstechnik Betreuung durch: Prof. Dr. Wilhelm Kleppmann

Mehr

Schülerpraktika im BIBB Leitfaden für Betreuer/-innen

Schülerpraktika im BIBB Leitfaden für Betreuer/-innen Schülerpraktika im BIBB Leitfaden für Betreuer/-innen Einleitung Den richtigen Beruf zu finden, braucht Zeit. Oftmals werden Eltern, Verwandte und Freunde befragt und die eigenen Stärken und Schwächen

Mehr

Kundeninformationen zu Secure Mail

Kundeninformationen zu Secure Mail Kreiparkae Trauntein-Trotberg -1- Kreiparkae Trauntein-Trotberg Allgemeine Kaum einer macht ich beim Verenden einer E-Mail Gedanken über die Sicherheit. Dabei it eine normale E- Mail ungefähr o icher und

Mehr

B ü r o S o f t w a r e

B ü r o S o f t w a r e B ü r w a r e EINFACH - CLEVER - ARBEITEN Alle Büraugaben m Handumdrehen erledgen. Beres 6.500 Klen- und Melberebe verrauen au b! b Inrmansbla www.bs.a www.b.de ee 1 vn 7 M b haben e jeden Vrgang m Gr

Mehr

Lehrstuhl für Finanzierung

Lehrstuhl für Finanzierung Lehrsuhl für Finanzierung Klausur im Fach Finanzmanagemen im Winersemeser 1998/99 1. Aufgabe Skizzieren Sie allgemein die von Kassenhalungsproblemen miels (sochasischer) dynamischer Programmierung! Man

Mehr

Es ist Sternsingerzeit

Es ist Sternsingerzeit Es ist Sternsinzeit G C G C H G Glo Wie Wie Wie - ri - a! Es ist C: Lied Nr. 1 Text & Musik: aniela icker Rechte über Kindermissionswerk weit! G zeit! C G G G7 Glo-ri - a, Glo-ri - a, Glo - ri - a! Öff-t

Mehr

Inhalt. Vision ME Benutzerhandbuch s

Inhalt. Vision ME Benutzerhandbuch s Benutzerhandbuch Inhalt 1. Einleitung...2 1.1. Automatiche Anmeldung bei Viion ME...2 2. Schüler dazu einladen, einer Klae beizutreten...3 2.1. Schüler in der Klae anzeigen...6 2.2. Die App au Schülericht...7

Mehr

Nachtrag Nr. 71 a. gemäß 10 Verkaufsprospektgesetz (in der vor dem 1. Juli 2005 geltenden Fassung) Unvollständigen Verkaufsprospekt

Nachtrag Nr. 71 a. gemäß 10 Verkaufsprospektgesetz (in der vor dem 1. Juli 2005 geltenden Fassung) Unvollständigen Verkaufsprospekt London Brnch Nchrg Nr. 71 gemäß 10 Verkufsprospekgesez (in der vor dem 1. Juli 2005 gelenden Fssung) vom 6. Novemer 2006 zum Unvollsändigen Verkufsprospek vom 31. März 2005 üer Zerifike uf * üer FlexInves

Mehr

Marktdaten-Management zwischen Anspruch und Realität. Lars Zimmer, Geschäftsführer - dacoma GmbH

Marktdaten-Management zwischen Anspruch und Realität. Lars Zimmer, Geschäftsführer - dacoma GmbH Marktdaten-Management zwichen Anpruch und Realität Lar Zimmer, Gechäftführer - dacoma GmbH Marktdaten-Management Zwichen Anpruch und Realität Lar Zimmer Gründer und Gechäftführer dacoma GmbH Gründung 1999

Mehr

Optische Abbildung mit Einzel- und Tandemobjektiven

Optische Abbildung mit Einzel- und Tandemobjektiven Optische Abbilung mit Einzel- un Tanemobjektiven. Wirkungsgra einer Abbilung mit einem Einzelobjektiv Mit einem Einzelobjektiv wir ein strahlener egenstan er Fläche A [m ] un er Ausstrahlung M W m au ein

Mehr

G u t fü r m ic h e in L e b e n la n g. M a rin a D ie in g 1 8.0 6.0 9 S e ite 1

G u t fü r m ic h e in L e b e n la n g. M a rin a D ie in g 1 8.0 6.0 9 S e ite 1 G u t fü r m ic h e in L e b e n la n g. S e ite 1 - G iro k o n to - S p a re n - K re d it - K fw -S tu d ie n k re d it - S ta a tlic h e F ö rd e ru n g - V e rs ic h e ru n g e n S e ite 2 G iro k

Mehr

Du hast schon einige Möglichkeiten kennen gelernt, um einen Satz in eine Frage zu verwandeln:

Du hast schon einige Möglichkeiten kennen gelernt, um einen Satz in eine Frage zu verwandeln: Fragen mit do/doe Du hat chon einige Möglichkeiten kennen gelernt, um einen Satz in eine Frage zu verwandeln: Bp.: We can play football in the garden. Can we play football in the garden? I mut learn the

Mehr

1. Masse und Gewicht

1. Masse und Gewicht Vorbereitungkur Phyik Mechanik und Wärmelehre D. Ortner 006 1. Mae und Gewicht Wenn Sie gefragt werden nach Ihrem Gewicht, werden Sie wie elbtvertändlich antworten: 60 kg, 65 kg, 70 kg uw. Da it für den

Mehr

CPB Software AG: Der neue Weg zum Kunden

CPB Software AG: Der neue Weg zum Kunden betbanking.at bet banking Da Bankenmagazin ISSN 2077 9410 10. Jahrgang Augut-September 2014 Euro: 8, # 197 # Augut-September 2014 CPB Software AG: Der neue Weg zum Kunden Seite 16 Mobile Betreuung mittel

Mehr

PowerPoint-Grundlagen

PowerPoint-Grundlagen PowerPoint-Grundlagen Pow erpoint ist eine leistungsfähige Anw endung für die Erstellung von Präsentationen. Wenn Sie diese Anw endung auf effektive Weise nutzen möchten, müssen Sie sich jedoch zunächst

Mehr

Kapitelübersicht. Kapitel. Kapitalwert und Endwert. 4.1 Der Ein-Perioden-Fall: Barwert. 4.1 Der Ein-Perioden-Fall: Barwert

Kapitelübersicht. Kapitel. Kapitalwert und Endwert. 4.1 Der Ein-Perioden-Fall: Barwert. 4.1 Der Ein-Perioden-Fall: Barwert -0 - Kapiel Kapialwe und Endwe Kapielübesich. De Ein-Peioden-Fall. De Meh-Peioden-Fall. Diskonieung. Veeinfachungen.5 De Unenehmenswe.6 Zusammenfassung und Schlussfolgeungen -. De Ein-Peioden-Fall: Endwe

Mehr

Bericht zur Prüfung im Oktober 2006 über Finanzmathematik und Investmentmanagement

Bericht zur Prüfung im Oktober 2006 über Finanzmathematik und Investmentmanagement Berich zur Prüfung im Okober 006 über Finnzmhemik und Invesmenmngemen Grundwissen Peer Albrech Mnnheim Am 07. Okober 006 wurde zum ersen Ml eine Prüfung im Fch Finnzmhemik und Invesmenmngemen nch PO III

Mehr

Einführung in die Robotik Differentialsantrieb. Mohamed Oubbati Institut für Neuroinformatik. Tel.: (+49) 731 / 50 24153 mohamed.oubbati@uni-ulm.

Einführung in die Robotik Differentialsantrieb. Mohamed Oubbati Institut für Neuroinformatik. Tel.: (+49) 731 / 50 24153 mohamed.oubbati@uni-ulm. Einfühung in ie Roboik Diffeeniasanieb Mohame Oubbai Insiu fü Neuoinfomaik Te.: +49) 731 / 5 24153 mohame.oubbai@uni-um.e 27. 11. 212 D. Oubbai, Einfühung in ie Roboik Neuoinfomaik, Uni-Um) Diffeeniaanieb

Mehr

= T. 1.1. Jährliche Ratentilgung. 1.1. Jährliche Ratentilgung. Ausgangspunkt: Beispiel:

= T. 1.1. Jährliche Ratentilgung. 1.1. Jährliche Ratentilgung. Ausgangspunkt: Beispiel: E Tilgugsrechug.. Jährliche Raeilgug Ausgagspuk: Bei Raeilgug wird die chuldsumme (Newer des Kredis [Aleihe, Hypohek, Darleh]) i gleiche Teilberäge T geilg. Die Tilgugsrae läss sich ermiel als: T =.. Jährliche

Mehr

ssionspapiere der zeppelin university u schnitt diskussionspapiere der zepp

ssionspapiere der zeppelin university u schnitt diskussionspapiere der zepp zeppelin university Hochschule zwischen Wirtschaft, Kultur und Politik ussionspapiere der zeppelin university zu schnitt diskussionspapiere der zepp lin university zu schnitt diskussionspa iere der zeppelin

Mehr

CORNELIUS DÄMMRICH AUSBILDUNG / KÖNNEN 01 / 09 ICH BIN 24 JAHRE ALT UND LEBE IN KÖLN.NACH ABSOLVIERTE ICH 2012 EIN BACHELORSTUDIUM UNFOLD 3D

CORNELIUS DÄMMRICH AUSBILDUNG / KÖNNEN 01 / 09 ICH BIN 24 JAHRE ALT UND LEBE IN KÖLN.NACH ABSOLVIERTE ICH 2012 EIN BACHELORSTUDIUM UNFOLD 3D 01 / 09 CORNELIUS DÄMMRICH AUSBILDUNG / KÖNNEN ICH BIN 24 JAHRE ALT UND LEBE IN KÖLN.NACH S O F T WA R E MEINER P H O T O S H O P, I N D E S I G N, A F T E R E F F E C T S, P R E M I E R E AUSBILDUNG ZUM

Mehr

Abi Technik M Allgemeine Aufgaben

Abi Technik M Allgemeine Aufgaben Aufgaben 1 Zum Einsieg 1.1 Ein Krafwerk produzier an einem Tag durchschnilich 900 MW elekrische Leisung. Wie viel elekrische Leisung liefer es während einer Minue? 2 HP 2003/04-3 Dampfkrafwerk 2.1 Das

Mehr

Optimale Absicherung. für gesetzlich Versicherte. Betriebliche Krankenversicherung. f ü r M it. Je tz t ex

Optimale Absicherung. für gesetzlich Versicherte. Betriebliche Krankenversicherung. f ü r M it. Je tz t ex Optimal Absichung fü gstzlich Vsicht Btiblich Kanknvsichung o t il g ba V U n s c h l a a b it!! f ü M it s ic h n k lu s iv J tz t x io K o n d it n n Btiblich Kanknvsichung Kanknzusatzvsichungn fü gstzlich

Mehr

Denn er hat seinen Engeln befohlen Psalm 91, 11-12

Denn er hat seinen Engeln befohlen Psalm 91, 11-12 Soran I+II Alt I+II Tenor I+II Bass I+II Denn Denn Denn Denn Allegretto non troo Denn s geln ohlen s s s s Psalm 91, 1112 geln ohlen Э r geln ohlen Э r geln geln oh len Э oh len Э r r 7 allen allen allen.

Mehr

Parametrische Koordinatenposition (r, θ, φ) auf der Kugeloberfläche mit einem Radius r ... θ π. φ π/2. Based on material by Werner Purgathofer

Parametrische Koordinatenposition (r, θ, φ) auf der Kugeloberfläche mit einem Radius r ... θ π. φ π/2. Based on material by Werner Purgathofer Bse o mteril y Werer rgthofer er/ber 8.4-8.5 8.8-8. 8.-8. Möglihe D-Ojetreräsettio Grhishe Szee eihlte solie geometrishe Ojete Bäme Blme Wole Felse Wsser Reräsettioe Oerflähe Iemoelle rozerle Moelle hysilish

Mehr

RWTH Aachen, Lehrstuhl für Informatik IX Kapitel 3: Suchen in Mengen - Datenstrukturen und Algorithmen - 51

RWTH Aachen, Lehrstuhl für Informatik IX Kapitel 3: Suchen in Mengen - Datenstrukturen und Algorithmen - 51 RWTH Aacen, Lerstul für Informatik IX Kapitel 3: Sucen in Mengen - Datenstrukturen und Algoritmen - 51 Sucbäume Biser betractete Algoritmen für Suce in Mengen Sortierte Arrays A B C D - Nur sinnvoll für

Mehr