7.2 Energiebilanz bei chemischen Stoffumwandlungen

Größe: px
Ab Seite anzeigen:

Download "7.2 Energiebilanz bei chemischen Stoffumwandlungen"

Transkript

1 7.2 Energiebilanz bei chemischen Stoffumwandlungen Betrachtung eines Reaktionsgefäßes mit eintretenden Edukten und austretenden Produkten am Beispiel der Verbrennung eines Brennstoffes mit Luft (kinetische und potentielle Energien vernachlässigt) Indizes: B Brennstoff, L Luft u unverbrannt, b - verbrannt 7.2-1

2 Bilanzen Masse: Energie: (Annahme: Änderungen der kinetischen und potentiellen Energien sollen vernachlässigt werden) Entropie: 7.2-2

3 Energetische und entropische Zustände von Stoffgemischen sind im Allgemeinen kompliziert Mehrstoffthermodynamik (siehe auch Kapitel 8) Deshalb sollen folgendevereinfachungen : - chemische Reaktionen nur in der Gasphase - Gasphase als Mischung idealer Gase Dann gilt für die Enthalpie H einer Mischung aus k Gaskomponenten mit den spezifischen Enthalpien h i (T) der Komponenten einfach (jede Gaskomponente der Mischung verhält sich so, als ob die anderen Komponenten nicht anwesend wären, Satz von Gibbs): 7.2-3

4 7.2.1 Energiebilanz Am Eintritt: Massenbrüche: Am Austritt analog: Bei der Bestimmung der Enthalpien h i ist zu beachten, dass die chemisch gebundene Energie berücksichtigt wird, weshalb die verschiedenen chemischen Komponenten unterschiedliche Referenzenthalpien besitzen. Dies ist bei der Berechnung von Enthalpiedifferenzen zu berücksichtigen

5 7.2.2 Die Bildungsenthalpie als Referenzenthalpie Annahme: Enthalpie eines Gemisches idealer Gase Molare Enthalpie Die einzelnen chemischen Komponenten besitzen unterschiedliche molare Referenzenthalpien h m,i, die in die Energiebilanz eingehen und deshalb nicht ref mehr willkürlich festgelegt werden können. Die Referenzenthalpien werden beim Referenzzustand mit T ref = 298,15 K und p ref = 1 bar definiert sind, so dass für ideale Gase bei einer Temperatur T gilt: Mit den spezifischen Wärmekapazität bei konstantem Druck: 7.2-5

6 Reaktionsenthalpie Definition: Die molare Größe mit bezeichnet die bei einer Reaktion umgesetzte Enthalpie. Dieser Zusammenhang gilt für beliebige Temperaturen. Beispiel: Endotherme *) Bildungsreaktion von Methan aus Synthesegas *) endotherm bedeutet, dass bei der Reaktion Energie aufgenommen wird Gesucht: die absoluten molaren Enthalpien der Komponenten im Referenzzustand 7.2-6

7 Nullpunkte (Referenzpunkte) der Elemente Baukastensystem: Die Referenzenthalpien h m,i,ref von gasförmigen H 2, N 2, und O 2 sowie festem C(f) und Edelgasen werden willkürlich zu Null festgesetzt. Die chemisch gebundene molare Enthalpie von gasförmigem Methan im Referenzzustand würde aus dem (u. U. fiktiven) Umsatz von unter Standardbedingungen folgen: (vergl. Tabelle ) Es zeigt sich, dass der Umsatz exotherm ist, d.h. es würde die spezifische Enthalpie Dh m,ch frei, wenn Methan aus fester Kohle und gasförmigem Wasserstoff unter den 4,ref Standardbedingungen gebildet würde exotherme Reaktion

8 Die gesuchte Referenzenthalpie ist identisch mit der Standardreaktionsenthalpie bei der Bildung von Methan aus festem Kohlenstoff und gasförmigem Wasserstoff. Die Reaktionsenthalpie wird deshalb auch als Standardbildungsenthalpie bezeichnet. Standardreaktionsenthalpien lassen sich für real ablaufende Reaktionen messen, indem man die Wärmemengen, die bei der Reaktion frei werden, misst (z.b. Temperaturänderung im Kalorimeter). Die theoretische Bestimmung von Standard-Reaktionsenthalpien erfordert rechenintensive quantenmechanische Methoden

9 In ähnlicher Weise gilt für CO 2 bei T=T ref und H 2 O Da Enthalpien Zustandsgrößen und damit wegunabhängig sind, können die Reaktionsenthalpien anderer Reaktion aus den Standardbildungsenthalpien der beteiligten Komponenten berechnet werden Hessscher Satz

10 Somit wird bei der Verbrennungsreaktion bei konstanter Temperatur T = T ref die molare Standardreaktionsenthalpie frei. Da Dh m,ref < 0 ist wird dabei nochmals (wie schon bei der Bildung von CH 4 aus C(f) und H 2 ) Hessscher Satz Wärme frei exotherme Reaktion

11 Referenzenthalpien für Gase bei T ref = 298,15 K M i [kg/kmol] 1 H 2 2,016 0 h i,m,ref [kj/mol] 2 H 2 O 18, ,826 3 H 2 O 2 34, ,105 4 NO 30,008 90,290 5 NO 2 46,008 33,095 6 N 2 28, N 2 O 44,016 82,048 8 O 16, ,194 9 O 2 32, O 3 48, ,674 M i [kg/kmol] h i,m,ref [kj/mol] 11 CH 2 O 30, , CH 2 OH 31,035-58, CH 4 16,043-74, CH 3 OH 32, , CO 28, , CO 2 44, , C 2 H 6 30,070-84, C 2 H 4 28,054 52, C 3 H 8 44, , C 7 H , ,

12 Die Enthalpiedifferenz bei einer Temperatur T T ref enthält den chemisch gebundenen und den thermischen Anteil der Enthalpiedifferenz. Annahme: Brennstoff (B) und Luft (L) im unverbrannten Zustand (u) auf gleicher Temperatur T u

13 Aufteilung in Referenzanteil und fühlbaren Wärmen mit liefert: In Dh chem gehen die Massenbrüche der an der Reaktion beteiligten chemischen Komponenten und deren Referenzenthalpien ein, während zu Dh therm die Enthalpiedifferenzen gegenüber dem Referenzzustand beitragen

14 Berechnung von Dh chem bei vollständiger Verbrennung Aus (vergl ) folgt nach Integration zwischen den Zuständen u und b (vergl ) Die Reaktionsgleichung kann so geschrieben werden, dass für den Brennstoff ist. Bei vollständiger Verbrennung von mageren Gemischen kann darüber hinaus Y B,b = 0 gesetzt werden. (vollständige Verbrennung)

15 Berechnung von Dh therm bei vollständiger Verbrennung Im Allgemeinen aus Tabellen für h i (T). Für ideale Gase oder bei isobaren Prozessen gilt: Bei der Verbrennung in Luft ist der Anteil des Stickstoffs (etwa 80%) dominierend. Näherungsweise können für die Verbrennung von Kohlenwasserstoffen in Luft temperatur- und speziesgemittelte Wärmekapazitäten eingesetzt werden. Als Zahlenwert ergibt sich:

16 7.2.3 Die adiabate Verbrennungstemperatur Mit der Annahme und der erläuterten Näherung ergibt sich: Adiabate Verbrennungstemperatur

17 7.2.4 Der Heizwert Unterer Heizwert (ohne Kondensation von H 2 O): (Einheit: 10 3 kj/kg) Bei T=T ref gilt: Der obere Heizwert H o berücksichtigt auch die bei der Kondensation von H 2 O freiwerdende zusätzliche Enthalpie

18 Beispiel: Adiabate Verbrennungstemperatur von gasförmigem n-heptan in Luft bei stöchiometrischer Zusammensetzung Reaktionsgleichung: Reaktionsenthalpie: Adiabate Verbrennungstemperatur: Stöchiometrischer Massenbruch (vgl ):

19 Unverbranntes Gemisch (Näherung für Luft): Eingesetzt in (**): Aus (*): Feuerungen erreichen demgegenüber typisch etwa 1500 K. Das hat mehrere Ursachen: Die spezifische Wärmekapazitäten nehmen mit zunehmender Temperatur zu, die Verbrennung ist nicht vollständig, und es existieren Verluste, wie z.b. durch Strahlungswärmeaustausch der Flamme mit der Umgebung. Zudem werden technische Verbrennungsvorgänge meistens mager eingestellt

20 7.3 Entropiebilanz bei chemischen Stoffumwandlungen, Irreversibilität der Verbrennung Bilanz: Vereinfachungen wie bisher: - chemische Reaktionen nur in der Gasphase - Gasphase als Mischung idealer Gase 7.3-1

21 Anders als die Enthalpien sind die Entropien der Gaskomponenten druckabhängig. Es gilt aber wieder der Satz von Gibbs, nachdem jede Komonente sich so verhält, als ob sie das Volumen alleine ausfüllt. Das heißt, dass die Entropie mit dempartialdruck zu berechnen ist: Entsprechend für molare Entropien: Die Partialdrücke p i berechnen sich für ideale Gase aus dem Molenbruch der Mischung mit dem Gesamtdruck p (Daltonsches Gesetz): 7.3-2

22 Festlegung des Referenzpunktes T ref, p ref für die Entropie Referenztemperatur: Für die Entropien wird der Referenzpunkt anders als bei den Enthalpien immer bei T ref = 0 K festgesetzt. Der Grund dafür, dass der absolute Nullpunkt gewählt wird, ist das Nernstsches Wärmetheorem, nach dem die Entropie aller Stoffe am absoluten Nullpunkt gleich Null ist Quantenmechanik. Damit entfällt die Notwendigkeit einer stoffabhängigen Festlegung der Referenzentropien, wie wir dies bei den Referenzanthalpien durchführen mussten

23 Referenzdruck: Als Referenzdruck wird p ref = p 0 = 1 bar beibehalten. Da die Entropie auch bei idealen Gasen druckabhängig ist, hat es sich eingebürgert, den Referenzdruck durch eine hochgestellte 0 zu vermerken. Bei Benutzung von verschiedenen Tabellenwerken beachte man, ob die jeweils angegebenen Referenzpunkte übereinstimmen. (Insbesondere die Referenztemperaturen in den Enthalpietabellen unterscheiden sich von Werk zu Werk.) 7.3-4

24 Die Betrachtung der Entropien ist wesentlich bei der Beurteilung, ob Stoffumwandlungsvorgänge unter gegebenen Bedingungen freiwillig ablaufen sowie bei der Bestimmung von Reaktionsgleichgewichten Kapitel 8. Hier wollen wir kurz die Irreversibilitäten von Verbrennungsprozessen und die damit verbundenen Exergieverluste ansprechen. Der Verbrennungsprozess ist nicht umkehrbar, daher wird die Exergie von Brennstoff und Oxidator in die geringere Exergie der Produkte abgewertet. Diese Exergiedifferenz stellt die aus dem Verbrennungsprozess maximal gewinnbare Arbeit dar. Die Zusammenhänge können am h,s-diagramm anschaulich dargestellt werden

25 Darstellung der Exergieverluste im h,s-diagramm für adiabate Verbrennung Bezugsmasse: Masse des Gemisches vor oder nach der Verbrennung Wir erhalten dann: Umgebungszustand: Zustand der Verbrennungsprodukte (Abgas) bei T u, p u Exergie der Enthalpie: 7.3-6

26 h,s-diagramm der adiabaten Verbrennung *) Wegen T 2 > T 1 = T u ist die Isobare der Abgase stets steiler als die Isobare der Edukte. Daraus ergibt sich, dass bei adiabater Verbrennung die Exergieverluste bei höherer Brennraumeintrittstemperatur, Prozess 1 2, geringer werden. Bei einer Abgastemperatur T A > T u geht mit dem Abgas der Exergiestrom e ha zusätzlich verloren. *) die h,s-diagramme der Gemische von Edukten und Produkten sind passend übereinandergelegt! 7.3-7

Produkten am Beispiel der Verbrennung eines Brennstoffes mit Luft. Massen-, Energie- und Entropieströme treten in die Kammer ein bzw. aus.

Produkten am Beispiel der Verbrennung eines Brennstoffes mit Luft. Massen-, Energie- und Entropieströme treten in die Kammer ein bzw. aus. 7.2 Energiebilanz bei chemischen Stoffumwandlungen 2.2-1 Betrachtung eines Reaktionsgefäßes mit eintretenden Edukten und austretenden Produkten am Beispiel der Verbrennung eines Brennstoffes mit Luft Massen-,

Mehr

Massen-, Energie- und Entropieströme treten in die Kammer ein bzw. aus.

Massen-, Energie- und Entropieströme treten in die Kammer ein bzw. aus. 2.2 Energiebilanz bei chemischen Stoffumwandlungen 2.2-1 Betrachtung eines Reaktionsgefäßes mit eintretenden Edukten und austretenden Produkten am Beispiel der Verbrennung eines Brennstoffes mit Luft.

Mehr

2.1 Massenbilanz bei chemischen Stoffumwandlungen. 2.2 Energiebilanz bei chemischen Stoffumwandlungen

2.1 Massenbilanz bei chemischen Stoffumwandlungen. 2.2 Energiebilanz bei chemischen Stoffumwandlungen Inhalt von Kapitel 2 2.1-0 2. Chemische Stoffumwandlungen 2.1 Massenbilanz bei chemischen Stoffumwandlungen 2.2 Energiebilanz bei chemischen Stoffumwandlungen 2.2.1 Energiebilanz 2.2.2 Die Bildungsenthalpie

Mehr

Übung 2. Ziel: Bedeutung/Umgang innere Energie U und Enthalpie H verstehen

Übung 2. Ziel: Bedeutung/Umgang innere Energie U und Enthalpie H verstehen Ziel: Bedeutung/Umgang innere Energie U und Enthalpie H verstehen Wärmekapazitäten isochore/isobare Zustandsänderungen Standardbildungsenthalpien Heizwert/Brennwert adiabatische Flammentemperatur WS 2013/14

Mehr

Übung 3. Ziel: Bedeutung/Umgang innere Energie U und Enthalpie H verstehen (Teil 2) Verständnis des thermodynamischen Gleichgewichts

Übung 3. Ziel: Bedeutung/Umgang innere Energie U und Enthalpie H verstehen (Teil 2) Verständnis des thermodynamischen Gleichgewichts Ziel: Bedeutung/Umgang innere Energie U und Enthalpie H verstehen (Teil 2) adiabatische Flammentemperatur Verständnis des thermodynamischen Gleichgewichts Definition von K X, K c, K p Berechnung von K

Mehr

Übung 1. Göksel Özuylasi Tel.: Torsten Methling Tel.

Übung 1. Göksel Özuylasi   Tel.: Torsten Methling   Tel. Göksel Özuylasi Email: goeksel.oezuylasi@dlr.de Tel.: 0711 6862 8098 Torsten Methling Email: torsten.methling@dlr.de Tel.: 0711 6862 277 WS 2013/14 Übung - Einführung in die Verbrennung - Özuylasi, Methling

Mehr

Thermo Dynamik. Mechanische Bewegung (= Arbeit) Wärme (aus Reaktion) maximale Umsetzung

Thermo Dynamik. Mechanische Bewegung (= Arbeit) Wärme (aus Reaktion) maximale Umsetzung Thermo Dynamik Wärme (aus Reaktion) Mechanische Bewegung (= Arbeit) maximale Umsetzung Aussagen der Thermodynamik: Quantifizieren von: Enthalpie-Änderungen Entropie-Änderungen Arbeit, maximale (Gibbs Energie)

Mehr

PC I Thermodynamik G. Jeschke FS Lösung zur Übung 12

PC I Thermodynamik G. Jeschke FS Lösung zur Übung 12 PC I Thermodynamik G. Jeschke FS 2015 Lösung zur Übung 12 12.1 Die Hydrierung von Ethen zu Ethan a) Die Reaktionsenthalpie ist direkt aus den in der Aufgabenstellung tabellierten Standardbildungsenthalpien

Mehr

Institut für Physikalische Chemie Albert-Ludwigs-Universität Freiburg

Institut für Physikalische Chemie Albert-Ludwigs-Universität Freiburg Institut für hysikalische Chemie Albert-Ludwigs-Universität Freiburg Lösungen zum 0. Übungsblatt zur Vorlesung hysikalische Chemie I SS 04 rof. Dr. Bartsch 0. L Die freie Standardreaktionsenthalpie der

Mehr

Chemie Klausur

Chemie Klausur Chemie Klausur 12.1 1 21. Oktober 2002 Aufgaben Aufgabe 1 1.1. Definiere: Innere Energie, Enthalpieänderung, Volumenarbeit, Standard-Bildungsenthalpie, molare Standard- Bildungsenthalpie. 4 VP 1.2. Stelle

Mehr

2.11 Innere Energie und Enthalpie für Gasgemische

2.11 Innere Energie und Enthalpie für Gasgemische 2.11 Innere Energie und Enthalpie für Gasgemische Komponenten: Partielle spezifische und partielle molare innere Energie der Komponente: u i, u i,m Partielle spezifische und partielle molare innere Enthalpie

Mehr

Aufgabe 1: Theorie Punkte

Aufgabe 1: Theorie Punkte Aufgabe 1: Theorie.......................................... 30 Punkte (a) (2 Punkte) In einen Mischer treten drei Ströme ein. Diese haben die Massenströme ṁ 1 = 1 kg/s, ṁ 2 = 2 kg/s und ṁ 3 = 2 kg/s.

Mehr

Thermochemie. Arbeit ist das Produkt aus wirkender Kraft F und Weglänge s. w = F s 1 J = 1 Nm = 1 kgm 2 /s 2

Thermochemie. Arbeit ist das Produkt aus wirkender Kraft F und Weglänge s. w = F s 1 J = 1 Nm = 1 kgm 2 /s 2 Thermochemie Energie ist die Fähigkeit, Arbeit zu leisten. E pot = m g h E kin = ½ m v 2 Arbeit ist das Produkt aus wirkender Kraft F und Weglänge s. w = F s 1 J = 1 Nm = 1 kgm 2 /s 2 Eine wirkende Kraft

Mehr

Thermodynamik. Thermodynamik ist die Lehre von den Energieänderungen im Verlauf von physikalischen und chemischen Vorgängen.

Thermodynamik. Thermodynamik ist die Lehre von den Energieänderungen im Verlauf von physikalischen und chemischen Vorgängen. Thermodynamik Was ist das? Thermodynamik ist die Lehre von den Energieänderungen im Verlauf von physikalischen und chemischen Vorgängen. Gesetze der Thermodynamik Erlauben die Voraussage, ob eine bestimmte

Mehr

Inhaltsverzeichnis. Formelzeichen...XIII. 1 Einleitung Einheiten physikalischer Größen...3

Inhaltsverzeichnis. Formelzeichen...XIII. 1 Einleitung Einheiten physikalischer Größen...3 Inhaltsverzeichnis Formelzeichen...XIII 1 Einleitung...1 2 Einheiten physikalischer Größen...3 3 Systeme...6 3.1 Definition von Systemen...6 3.2 Systemarten...7 3.2.1 Geschlossenes System...7 3.2.2 Offenes

Mehr

a) Welche der folgenden Aussagen treffen nicht zu? (Dies bezieht sind nur auf Aufgabenteil a)

a) Welche der folgenden Aussagen treffen nicht zu? (Dies bezieht sind nur auf Aufgabenteil a) Aufgabe 1: Multiple Choice (10P) Geben Sie an, welche der Aussagen richtig sind. Unabhängig von der Form der Fragestellung (Singular oder Plural) können eine oder mehrere Antworten richtig sein. a) Welche

Mehr

Modul BCh 1.2 Praktikum Anorganische und Analytische Chemie I

Modul BCh 1.2 Praktikum Anorganische und Analytische Chemie I Institut für Anorganische Chemie Prof. Dr. R. Streubel Modul BCh 1.2 Praktikum Anorganische und Analytische Chemie I Vorlesung für die Studiengänge Bachelor Chemie und Lebensmittelchemie Im WS 08/09 Die

Mehr

Übungsaufgaben Technische Thermodynamik

Übungsaufgaben Technische Thermodynamik Gernot Wilhelms Übungsaufgaben Technische Thermodynamik 2., aktualisierte Auflage Mit 36 Beispielen und 154 Aufgaben HANSER Inhaltsverzeichnis 1 Grundlagen der Thermodynamik 11 1.1 Aufgabe der Thermodynamik

Mehr

Hans Dieter Baehr. Thermodynamik. Eine Einführung in die Grundlagen und ihre technischen Anwendungen. Vierte, berichtigte Auflage

Hans Dieter Baehr. Thermodynamik. Eine Einführung in die Grundlagen und ihre technischen Anwendungen. Vierte, berichtigte Auflage Hans Dieter Baehr Thermodynamik Eine Einführung in die Grundlagen und ihre technischen Anwendungen Vierte, berichtigte Auflage Mit 271 Abbildungen und zahlreichen Tabellen sowie 80 Beispielen Springer-Verlag

Mehr

In der Mehrzahl der technischen Verbrennungsprozesse überwiegt die getrennte Zufuhr von Brennstoff und Sauerstoff in den Brennraum.

In der Mehrzahl der technischen Verbrennungsprozesse überwiegt die getrennte Zufuhr von Brennstoff und Sauerstoff in den Brennraum. 7 Laminare und turbulente Diffusionsflammen In der Mehrzahl der technischen Verbrennungsprozesse überwiegt die getrennte Zufuhr von Brennstoff und Sauerstoff in den Brennraum. Erst im Brennraum findet

Mehr

Inhaltsverzeichnis. Formelzeichen. 1 Einleitung 1. 2 Einheiten physikalischer Größen 3

Inhaltsverzeichnis. Formelzeichen. 1 Einleitung 1. 2 Einheiten physikalischer Größen 3 Formelzeichen XIII 1 Einleitung 1 2 Einheiten physikalischer Größen 3 3 Systeme 7 3.1 Definition von Systemen 7 3.2 Systemarten 8 3.2.1 Geschlossenes System 8 3.2.2 Offenes System 9 3.2.3 Adiabates System

Mehr

Lösung Übungsserie 3

Lösung Übungsserie 3 Institut für Energietechnik Laboratorium für Aerothermochemie und Verbrennungssysteme Prof. Dr. onstantinos Boulouchos Lösung Übungsserie 3 Chemisches Gleichgewicht & Exergie Formeln Molare Entropie (ideales

Mehr

Musterlösung Übung 9

Musterlösung Übung 9 Musterlösung Übung 9 Aufgabe 1: Chlorierung von Phosphotrichlorid a) Von 1 mol ursprünglichem PCl 3 und Cl 2 wären 0.515 mol zu PCl 5 reagiert und 0.485 mol verblieben. Mit x i = n i ergeben sich die Molenbrüche

Mehr

Thermodynamik des Kraftfahrzeugs

Thermodynamik des Kraftfahrzeugs Cornel Stan Thermodynamik des Kraftfahrzeugs Mit 200 Abbildungen und 7 Tabellen Springer Inhaltsverzeichnis Liste der Formelzeichen XV 1 Grundlagen der Technischen Thermodynamik 1 1.1 Gegenstand und Untersuchungsmethodik

Mehr

PC I Thermodynamik J. Stohner/M. Quack Sommer Übung 12

PC I Thermodynamik J. Stohner/M. Quack Sommer Übung 12 PC I Thermodynamik J. Stohner/M. Quack Sommer 2006 Übung 12 Ausgabe: Dienstag, 20. 6. 2006 Rückgabe: Dienstag, 27. 6. 2006 (vor Vorlesungsbeginn) Besprechung: Freitag, 30.6./Montag, 3.7.2006 (in der Übungsstunde)

Mehr

Bruttoreaktionen sagen nichts darüber aus, wie der Umsatz tatsächlich abläuft.

Bruttoreaktionen sagen nichts darüber aus, wie der Umsatz tatsächlich abläuft. 7. Chemische Stoffumwandlungen 7.1 Massenbilanz bei chemischen Stoffumwandlungen Bruttoreaktionen, z. B. die Knallgasreaktion H 2 + ½ O 2 = H 2 O, beschreiben die Mengenverhätnisse beim Umsatz H 2 zu O

Mehr

Wolfgang Heidemann. Technische Thermodynamik. Kompaktkurs für das Bachelorstudium. Wl LEY-VCH. Verlag GmbH & Co. KGaA

Wolfgang Heidemann. Technische Thermodynamik. Kompaktkurs für das Bachelorstudium. Wl LEY-VCH. Verlag GmbH & Co. KGaA Wolfgang Heidemann Technische Thermodynamik Kompaktkurs für das Bachelorstudium Wl LEY-VCH Verlag GmbH & Co. KGaA Inhaltsverzeichnis Vorwort XI Nomenklatur XIII 1 Einleitung 1 1.1 Technische Thermodynamik

Mehr

Die Innere Energie U

Die Innere Energie U Die Innere Energie U U ist die Summe aller einem System innewohnenden Energien. Es ist unmöglich, diese zu berechnen. U kann nicht absolut angegeben werden! Differenzen in U ( U) können gemessen werden.

Mehr

8.2 Thermodynamische Gleichgewichte, insbesondere Gleichgewichte in Mehrkomponentensystemen Mechanisches und thermisches Gleichgewicht

8.2 Thermodynamische Gleichgewichte, insbesondere Gleichgewichte in Mehrkomponentensystemen Mechanisches und thermisches Gleichgewicht 8.2 Thermodynamische Gleichgewichte, insbesondere Gleichgewichte in Mehrkomponentensystemen Mechanisches und thermisches Gleichgewicht 8.2-1 Stoffliches Gleichgewicht Beispiel Stickstoff Sauerstoff: Desweiteren

Mehr

3.2 Thermodynamische Gleichgewichte in Mehrkomponentensystemen

3.2 Thermodynamische Gleichgewichte in Mehrkomponentensystemen Inhalt Kapitel 3 3.0-1 3. Mehrkomponentensysteme 3.1 Partielle molare Zustandsgrößen 3.2 Thermodynamische Gleichgewichte in Mehrkomponentensystemen Das Chemische Potential reiner Stoffe und von Stoffen

Mehr

Klaus Lucas. Thermodynamik. Die Grundgesetze der Energie- und Stoffumwandlungen. 7. korrigierte Auflage. Springer

Klaus Lucas. Thermodynamik. Die Grundgesetze der Energie- und Stoffumwandlungen. 7. korrigierte Auflage. Springer Klaus Lucas Thermodynamik Die Grundgesetze der Energie- und Stoffumwandlungen 7. korrigierte Auflage Springer Inhaltsverzeichnis 1. Allgemeine Grundlagen 1 1.1 Energie- und Stoffumwandlungen 1 1.1.1 Energieumwandlungen

Mehr

Verbrennungsenergie und Bildungsenthalpie

Verbrennungsenergie und Bildungsenthalpie Praktikum Physikalische Chemie I 1. Januar 2016 Verbrennungsenergie und Bildungsenthalpie Guido Petri Anastasiya Knoch PC111/112, Gruppe 11 Aufgabenstellung Die Bildungsenthalpie von Salicylsäure wurde

Mehr

Eine chemische Reaktion läuft ab, wenn reaktionsfähige Teilchen mit genügend Energie zusammenstoßen.

Eine chemische Reaktion läuft ab, wenn reaktionsfähige Teilchen mit genügend Energie zusammenstoßen. 1) DEFINITIONEN DIE CHEMISCHE REAKTION Eine chemische Reaktion läuft ab, wenn reaktionsfähige Teilchen mit genügend Energie zusammenstoßen. Der Massenerhalt: Die Masse ändert sich im Laufe einer Reaktion

Mehr

Aufgabe 1 (60 Punkte, TTS & TTD1) Bitte alles LESBAR verfassen!!!

Aufgabe 1 (60 Punkte, TTS & TTD1) Bitte alles LESBAR verfassen!!! Aufgabe (60 Punkte, TTS & TTD) Bitte alles LESBAR verfassen!!!. In welcher Weise ändern sich intensive und extensive Zustandsgrößen bei der Zerlegung eines Systems in Teilsysteme?. Welche Werte hat der

Mehr

Lehrbuch der Thermodynamik

Lehrbuch der Thermodynamik Ulrich Nickel Lehrbuch der Thermodynamik Eine verständliche Einführung PhysChem Verlag Erlangen U. Nickel VII Inhaltsverzeichnis 1 GRUNDLAGEN DER THERMODYNAMIK 1 1.1 Einführung 1 1.2 Materie 2 1.3 Energie

Mehr

Physikalische Chemie 1 (Thermodyn. u. Elektrochemie) SS09 - Blatt 1 von 13. Klausur PC 1. Sommersemester :15 bis 11:45.

Physikalische Chemie 1 (Thermodyn. u. Elektrochemie) SS09 - Blatt 1 von 13. Klausur PC 1. Sommersemester :15 bis 11:45. Physikalische Chemie 1 (Thermodyn. u. Elektrochemie) SS09 - Blatt 1 von 13 Klausur PC 1 Sommersemester 2009 03.08.2007 10:15 bis 11:45 Name: Vorname: geb. am: in: Matrikelnummer: Unterschrift: Für die

Mehr

8.5 Das Reaktionsgleichgewicht. Für eine Bruttoreaktion gilt: Wdhl.: Stoffumwandlungen und Gleichgewicht aus Kap. 8.3

8.5 Das Reaktionsgleichgewicht. Für eine Bruttoreaktion gilt: Wdhl.: Stoffumwandlungen und Gleichgewicht aus Kap. 8.3 8.5 Das Reaktionsgleichgewicht Wdhl.: Stoffumwandlungen und Gleichgewicht aus Kap. 8.3 Die Teilchenzahlen in einem System können sich durch Stoffumwandlungen zum Beispiel verbunden mit chemischen Reaktionen

Mehr

Thermodynamik des Kraftfahrzeugs

Thermodynamik des Kraftfahrzeugs Thermodynamik des Kraftfahrzeugs Bearbeitet von Cornel Stan 1. Auflage 2012. Buch. xxiv, 598 S. Hardcover ISBN 978 3 642 27629 3 Format (B x L): 15,5 x 23,5 cm Gewicht: 1087 g Weitere Fachgebiete > Technik

Mehr

Lösung zum Fragenteil. Frage 1 (4 Punkte) Der Wirkungsgrad ändert sich nicht, wegen. η th = 1 T 1 T 2. = 1 p 2

Lösung zum Fragenteil. Frage 1 (4 Punkte) Der Wirkungsgrad ändert sich nicht, wegen. η th = 1 T 1 T 2. = 1 p 2 Klausurlösungen Thermodynamik II WS 2011/2012 Fragenteil Lösung zum Fragenteil Frage 1 (4 Punkte) Der Wirkungsgrad ändert sich nicht, wegen η th = 1 T 1 T 2 = 1 ( p1 p 2 )κ 1 κ Frage 2 (4 Punkte) Das Verhältnis

Mehr

Lehrbuch der Thermodynamik

Lehrbuch der Thermodynamik Ulrich Nickel Lehrbuch der Thermodynamik Eine verständliche Einführung Ж HANSER Carl Hanser Verlag München Wien VII Inhaltsverzeichnis 1 GRUNDBEGRIFFE DER THERMODYNAMIK 1 Einführung 1 Systeme 3 offene

Mehr

Der 1. Hauptsatz. Energieerhaltung:

Der 1. Hauptsatz. Energieerhaltung: Der 1. Hauptsatz Energieerhaltung: Bei einer Zustandsänderung tauscht das betrachtete System Energie ( W, Q mit seiner Umgebung aus (oft ein Wärmereservoir bei konstantem. Für die Energiebilanz gilt: U

Mehr

Reaktion und Energie

Reaktion und Energie Reaktion und Energie Grundsätzliches Bei chemischen Reaktionen werden die Atome der Ausgangsstoffe neu angeordnet, d. h. Bindungen werden gespalten und neu geknüpft. Die Alltasgserfahrung legt nahe, dass

Mehr

Klausur Technische Chemie SS 2008 Prof. M. Schönhoff // PD Dr. C. Cramer-Kellers Klausur zur Vorlesung

Klausur Technische Chemie SS 2008 Prof. M. Schönhoff // PD Dr. C. Cramer-Kellers Klausur zur Vorlesung Klausur zur Vorlesung Technische Chemie: Reaktionstechnik 14.7.2008 10.00 Uhr bis 12.00 Uhr Name, Vorname Geburtsdatum Studiengang/Semester Matrikelnummer Hinweis: Alle Ansätze und Rechenwege sind mit

Mehr

Lösungsvorschlag zu Übung 11

Lösungsvorschlag zu Übung 11 PCI Thermodynamik G. Jeschke FS 2015 Lösungsvorschlag zu Übung 11 (Version vom 28.04.2015) Aufgabe 1 Alle Reaktionsgleichgewichte stellen sich bei 1000 K ein, damit sind alle Komponenten stets gasförmig.

Mehr

A 2.6 Wie ist die Zusammensetzung der Flüssigkeit und des Dampfes eines Stickstoff-Sauerstoff-Gemischs

A 2.6 Wie ist die Zusammensetzung der Flüssigkeit und des Dampfes eines Stickstoff-Sauerstoff-Gemischs A 2.1 Bei - 10 o C beträgt der Dampfdruck des Kohlendioxids 26,47 bar, die Dichte der Flüssigkeit 980,8 kg/m 3 und die Dichte des Dampfes 70,5 kg/m 3. Bei - 7,5 o C beträgt der Dampfdruck 28,44 bar. Man

Mehr

Enthalpie H (Wärmeinhalt, Wärmefunktion)

Enthalpie H (Wärmeinhalt, Wärmefunktion) Enthalpie H (Wärmeinhalt, Wärmefunktion) U = Q + W Innere Energie: Bei konstantem Volumen ablaufende Zustandsänderung (isochorer Prozess, dv=) W=p V= U=Q v Bei Zustandsänderung unter konstantem Druck (isobarer

Mehr

6.4.2 VerdampfenundEindampfen... 427 6.4.3 Destillieren und Rektifizieren... 430 6.4.4 Absorbieren... 436

6.4.2 VerdampfenundEindampfen... 427 6.4.3 Destillieren und Rektifizieren... 430 6.4.4 Absorbieren... 436 Inhaltsverzeichnis 1 Allgemeine Grundlagen... 1 1.1 Thermodynamik... 1 1.1.1 Von der historischen Entwicklung der Thermodynamik 1 1.1.2 WasistThermodynamik?... 9 1.2 SystemundZustand... 11 1.2.1 SystemundSystemgrenzen...

Mehr

Zweiter Hauptsatz der Thermodynamik

Zweiter Hauptsatz der Thermodynamik Zweiter Hauptsatz der hermodynamik Spontan ablaufende Prozesse: Expansion von ideale Gasen Diffusion Wärmeaustausch Der 2. Hauptsatz der hermodynamik liefert Kriterien, mit deren Hilfe sich die Richtung

Mehr

3.4 Chemische Reaktionen und Reaktionsgleichgewichte Diskussion der chemischen Reaktionsbereitschaft einer Mischung

3.4 Chemische Reaktionen und Reaktionsgleichgewichte Diskussion der chemischen Reaktionsbereitschaft einer Mischung Inhalt von Abschnitt 3.4 3.4-0 3.4 Chemische Reaktionen und Reaktionsgleichgewichte 3.4.1 Diskussion der chemischen Reaktionsbereitschaft einer Mischung 3.4.2 Die Änderung der freien Enthalpie und die

Mehr

Thermodynamik I. Sommersemester 2012 Kapitel 2, Teil 1. Prof. Dr. Ing. Heinz Pitsch

Thermodynamik I. Sommersemester 2012 Kapitel 2, Teil 1. Prof. Dr. Ing. Heinz Pitsch Thermodynamik I Sommersemester 2012 Kapitel 2, Teil 1 Prof. Dr. Ing. Heinz Pitsch Kapitel 2, Teil 1: Übersicht 2 Zustandsgrößen 2.1 Thermische Zustandsgrößen 2.1.1 Masse und Molzahl 2.1.2 Spezifisches

Mehr

Verbrennungsrechnung als kinetischer Simulationsansatz

Verbrennungsrechnung als kinetischer Simulationsansatz Verbrennungsrechnung als kinetischer Simulationsansatz Simulationsansatz mit CHEMCAD Die Daten für Flammpunkt, Zündtemperatur, Explosionsgrenzen diverser Stoffe sind weitestgehend bekannt. Methoden zur

Mehr

8. Mehrkomponentensysteme. 8.1 Partielle molare Größen. Experiment 1 unter Umgebungsdruck p:

8. Mehrkomponentensysteme. 8.1 Partielle molare Größen. Experiment 1 unter Umgebungsdruck p: 8. Mehrkomponentensysteme 8.1 Partielle molare Größen Experiment 1 unter Umgebungsdruck p: Fügen wir einer Menge Wasser n mit Volumen V (molares Volumen v m =V/n) bei einer bestimmten Temperatur T eine

Mehr

Lehrbuch der Thermodynamik

Lehrbuch der Thermodynamik Ulrich Nickel Lehrbuch der Thermodynamik Eine verständliche Einführung PhysChem Verlag Erlangen U.Nickel Vll Inhaltsverzeichnis 1 GRUNDLAGEN DER THERMODYNAMIK 1 1.1 Einführung l 1.2 Materie ' 2 1.3 Energie

Mehr

Spezialfälle. BOYLE-MARIOTT`sches Gesetz p V = n R T bei T, n = konstant: p V = const. GAY-LUSSAC`sches Gesetz. bei V, n = konstant: p = const.

Spezialfälle. BOYLE-MARIOTT`sches Gesetz p V = n R T bei T, n = konstant: p V = const. GAY-LUSSAC`sches Gesetz. bei V, n = konstant: p = const. Spezialfälle BOYLE-MARIOTT`sches Gesetz p V = n R T bei T, n = konstant: p V = const. GAY-LUSSAC`sches Gesetz p V = n R T bei V, n = konstant: p = const. T Druck Druck V = const. Volumen T 2 T 1 Temperatur

Mehr

Thermodynamik II - Übung 1. Nicolas Lanzetti

Thermodynamik II - Übung 1. Nicolas Lanzetti Thermodynamik II - Übung 1 Nicolas Lanzetti Nicolas Lanzetti 08.03.2016 1 Hinweise zu der Übung Name: Nicolas Lanzetti; 6. Semester Maschinenbau; Mail: Raum: ML F39; Zeit: Dienstag, 13:15-15:00; Alle Unterlagen:

Mehr

Thermodynamik I. Sommersemester 2012 Kapitel 3, Teil 3. Prof. Dr.-Ing. Heinz Pitsch

Thermodynamik I. Sommersemester 2012 Kapitel 3, Teil 3. Prof. Dr.-Ing. Heinz Pitsch Thermodynamik I Sommersemester 2012 Kapitel 3, Teil 3 Prof. Dr.-Ing. Heinz Pitsch Kapitel 3, Teil 2: Übersicht 3 Energiebilanz 3.3 Bilanzgleichungen 3.3.1 Massebilanz 3.3.2 Energiebilanz und 1. Hauptsatz

Mehr

Bevor man sich an diesen Hauptsatz heranwagt, muss man sich über einige Begriffe klar sein. Dazu gehört zunächst die Energie.

Bevor man sich an diesen Hauptsatz heranwagt, muss man sich über einige Begriffe klar sein. Dazu gehört zunächst die Energie. Thermodynamik 1 1.Hauptsatz der Thermodynamik Bevor man sich an diesen Hauptsatz heranwagt, muss man sich über einige Begriffe klar sein. Dazu gehört zunächst die Energie. Energie ist die Fähigkeit Arbeit

Mehr

3.4 Chemische Reaktionen und Reaktionsgleichgewichte Diskussion der chemischen Reaktionsbereitschaft einer Mischung

3.4 Chemische Reaktionen und Reaktionsgleichgewichte Diskussion der chemischen Reaktionsbereitschaft einer Mischung Inhalt von Abschnitt 3.4 3.4-0 3.4 Chemische Reaktionen und Reaktionsgleichgewichte 3.4.1 Diskussion der chemischen Reaktionsbereitschaft einer Mischung 3.4.2 Die Änderung der freien Enthalpie und die

Mehr

Thermodynamik 2 Klausur 23. Februar 2012

Thermodynamik 2 Klausur 23. Februar 2012 Thermodynamik 2 Klausur 23. Februar 2012 Bearbeitungszeit: 120 Minuten Umfang der Aufgabenstellung: 5 nummerierte Seiten Alle Unterlagen zu Vorlesung und Übung sowie Lehrbücher und Taschenrechner sind

Mehr

Molzahl: n = N/N A [n] = mol N ist die Anzahl der Atome oder Moleküle des Stoffes. Molmasse oder Molekularmasse: M [M ]= kg/kmol

Molzahl: n = N/N A [n] = mol N ist die Anzahl der Atome oder Moleküle des Stoffes. Molmasse oder Molekularmasse: M [M ]= kg/kmol 2. Zustandsgrößen 2.1 Die thermischen Zustandsgrößen 2.1.1. Masse und Molzahl Reine Stoffe: Ein Mol eines reinen Stoffes enthält N A = 6,02214. 10 23 Atome oder Moleküle, N A heißt Avogadro-Zahl. Molzahl:

Mehr

Treibstoffe der Raumfahrt. SS 2014 Vorlesung Einführung in die Verbrennung - Aigner, Riedel 0

Treibstoffe der Raumfahrt. SS 2014 Vorlesung Einführung in die Verbrennung - Aigner, Riedel 0 Treibstoffe der Raumfahrt SS 2014 Vorlesung Einführung in die Verbrennung - Aigner, Riedel 0 Treibstoffe in der Raumfahrt Ziel: Großer Schub F, bzw. spezifischer Impuls v 2 groß Schub bestimmt durch Brennstoffe

Mehr

Welche Aussage kann mit Hilfe des chemischen Gleichgewichtes über die Entstehungsgeschwindigkeit

Welche Aussage kann mit Hilfe des chemischen Gleichgewichtes über die Entstehungsgeschwindigkeit Klausur H005 (Grlagen der motorischen Verbrennung) Aufgabe 1.) Welche Aussage kann mit Hilfe des chemischen Gleichgewichtes über die Entstehungsgeschwindigkeit von Stickoxid (NO x ) getroffen werden (Begründung)?

Mehr

NAME, Vorname Matr.-Nr. Studiengang. Prüfung am im Fach Thermodynamik II

NAME, Vorname Matr.-Nr. Studiengang. Prüfung am im Fach Thermodynamik II NAME, Vorname Matr.-Nr. Studiengang ÈÖÓ º Öº¹ÁÒ º º Ë Ñ ØÞ Prüfung am 12. 08. 2014 im Fach Thermodynamik II Fragenteil ohne Hilfsmittel erreichbare Punktzahl: 20 Dauer: 15 Minuten Regeln Nur eine eindeutige

Mehr

Thermodynamik 2 Klausur 19. September 2012

Thermodynamik 2 Klausur 19. September 2012 Thermodynamik 2 Klausur 19. September 2012 Bearbeitungszeit: 120 Minuten Umfang der Aufgabenstellung: 5 nummerierte Seiten Alle Unterlagen zu Vorlesung und Übung sowie Lehrbücher und Taschenrechner sind

Mehr

Musterlösung Übungsserie 5

Musterlösung Übungsserie 5 Institut für Energietechnik Laboratorium für Aerothermochemie und Verbrennungssysteme Prof. Dr. Konstantinos Boulouchos Musterlösung Übungsserie 5 Aufgabe 1 Brennstoffzellen 1. Schreibe die Reaktionsgleichungen

Mehr

Grundlagen der Physiologie

Grundlagen der Physiologie Grundlagen der Physiologie Bioenergetik www.icbm.de/pmbio Energieformen Von Lebewesen verwertete Energieformen o Energie ist etwas, das Arbeit ermöglicht. o Lebewesen nutzen nur zwei Formen: -- Licht --

Mehr

NAME, Vorname Matr.-Nr. Studiengang. Prüfung am im Fach Technische Thermodynamik II

NAME, Vorname Matr.-Nr. Studiengang. Prüfung am im Fach Technische Thermodynamik II NAME, Vorname Studiengang Prof. Dr.-Ing. Gerhard Schmitz Prüfung am 14. 03. 2019 im Fach Technische Thermodynamik II Fragenteil ohne Hilfsmittel erreichbare Punktzahl: 20 Dauer: 15 Minuten Regeln Fragen

Mehr

Thermodynamik I. Sommersemester 2012 Kapitel 3, Teil 2. Prof. Dr. Ing. Heinz Pitsch

Thermodynamik I. Sommersemester 2012 Kapitel 3, Teil 2. Prof. Dr. Ing. Heinz Pitsch Thermodynamik I Sommersemester 2012 Kapitel 3, Teil 2 Prof. Dr. Ing. Heinz Pitsch Kapitel 3, Teil 2: Übersicht 3 Energiebilanz 3.3Bilanzgleichungen 3.3.1Massenbilanz 3.3.2 Energiebilanz und 1. Hauptsatz

Mehr

A 1.1 a Wie groß ist das Molvolumen von Helium, flüssigem Wasser, Kupfer, Stickstoff und Sauerstoff bei 1 bar und 25 C?

A 1.1 a Wie groß ist das Molvolumen von Helium, flüssigem Wasser, Kupfer, Stickstoff und Sauerstoff bei 1 bar und 25 C? A 1.1 a Wie groß ist das Molvolumen von Helium, flüssigem Wasser, Kupfer, Stickstoff und Sauerstoff bei 1 bar und 25 C? (-> Tabelle p) A 1.1 b Wie groß ist der Auftrieb eines Helium (Wasserstoff) gefüllten

Mehr

Verbrennungstechnik. 1. Brennstoffe. 1.Brennstoffe. 2.Heizwert. 2.1 Oberer Heizwert 2.2 Unterer Heizwert. 3.Verbrennungsvorgang

Verbrennungstechnik. 1. Brennstoffe. 1.Brennstoffe. 2.Heizwert. 2.1 Oberer Heizwert 2.2 Unterer Heizwert. 3.Verbrennungsvorgang Verbrennungstechnik 1.Brennstoffe.Heizwert.1 Oberer Heizwert. Unterer Heizwert.Verbrennungsvorgang.1 Verbrennungsgleichungen 4.Ermittlung von Sauerstoff-, Luftbedarf u. Rauchgasmenge 5.Verbrennungskontrolle

Mehr

8.2 Thermodynamische Gleichgewichte, insbesondere Gleichgewichte in Mehrkomponentensystemen Mechanisches und thermisches Gleichgewicht

8.2 Thermodynamische Gleichgewichte, insbesondere Gleichgewichte in Mehrkomponentensystemen Mechanisches und thermisches Gleichgewicht 8.2 Thermodynamische Gleichgewichte, insbesondere Gleichgewichte in Mehrkomponentensystemen Mechanisches und thermisches Gleichgewicht 8.2-1 Stoffliches Gleichgewicht Beispiel Stickstoff Sauerstoff: Desweiteren

Mehr

Energetik und Kinetik chemischer Reaktionen

Energetik und Kinetik chemischer Reaktionen Energetik und Kinetik chemischer Reaktionen Reaktionsenergetik als Teil der Thermodynamik - wann läuft eine chemische Reaktion freiwillig ab? - in welchem Umfang läuft eine Reaktion ab? - wie viel Energie

Mehr

Energie und chemische Reaktion. Was ist Energie? Welche Einheit hat Energie?

Energie und chemische Reaktion. Was ist Energie? Welche Einheit hat Energie? Was ist Energie? Welche Einheit hat Energie? Was ist Energie? Es gibt verschiedene Formen von Energie, die ineinander überführt werden können. Energie kann jedoch nicht vernichtet oder erzeugt. Es gibt

Mehr

Probeklausur STATISTISCHE PHYSIK PLUS

Probeklausur STATISTISCHE PHYSIK PLUS DEPARTMENT FÜR PHYSIK, LMU Statistische Physik für Bachelor Plus WS 2011/12 Probeklausur STATISTISCHE PHYSIK PLUS NAME:... MATRIKEL NR.:... Bitte beachten: Schreiben Sie Ihren Namen auf jedes Blatt; Schreiben

Mehr

Einführung in die Physikalische Chemie Teil 2: Makroskopische Phänomene und Thermodynamik

Einführung in die Physikalische Chemie Teil 2: Makroskopische Phänomene und Thermodynamik Einführung in die Physikalische Chemie Teil 2: Makroskopische Phänomene und Thermodynamik Kapitel 7: Boltzmann-Verteilung Kapitel 8: Statistische Beschreibung makroskopischer Grössen Kapitel 9: Thermodynamik:

Mehr

2. Fluide Phasen. 2.1 Die thermischen Zustandsgrößen Masse m [m] = kg

2. Fluide Phasen. 2.1 Die thermischen Zustandsgrößen Masse m [m] = kg 2. Fluide Phasen 2.1 Die thermischen Zustandsgrößen 2.1.1 Masse m [m] = kg bestimmbar aus: Newtonscher Bewegungsgleichung (träge Masse): Kraft = träge Masse x Beschleunigung oder (schwere Masse) Gewichtskraft

Mehr

Inhaltsverzeichnis. 1 Grundlagen der Thermodynamik l VII

Inhaltsverzeichnis. 1 Grundlagen der Thermodynamik l VII VII Inhaltsverzeichnis 1 Grundlagen der Thermodynamik l 1.1 Einfahrung 1 1.2 Materie 2 1.3 Energie 2 1.3.1 Vorbemerkungen 2 1.3.2 Kinetische und potentielle Energie 3 1.3.3 Äußere und Innere Energie 4

Mehr

Thermodynamik I. Sommersemester 2012 Kapitel 2, Teil 2. Prof. Dr. Ing. Heinz Pitsch

Thermodynamik I. Sommersemester 2012 Kapitel 2, Teil 2. Prof. Dr. Ing. Heinz Pitsch Thermodynamik I Sommersemester 2012 Kapitel 2, Teil 2 Prof. Dr. Ing. Heinz Pitsch Kapitel 2, Teil 2: Übersicht 2 Zustandsgrößen 2.3 Bestimmung von Zustandsgrößen 2.3.1 Bestimmung der Phase 2.3.2 Der Sättigungszustand

Mehr

Repetitorium. Thermodynamik. 3., überarbeitete und ergänzte Auflage. von. Wilhelm Schneider. unter Mitarbeit von. Stefan Haas und Karl Ponweiser

Repetitorium. Thermodynamik. 3., überarbeitete und ergänzte Auflage. von. Wilhelm Schneider. unter Mitarbeit von. Stefan Haas und Karl Ponweiser Repetitorium Thermodynamik 3., überarbeitete und ergänzte Auflage von Wilhelm Schneider unter Mitarbeit von Stefan Haas und Karl Ponweiser Oldenbourg Verlag München Inhaltsverzeichnis 1 Grundbegriffe 1

Mehr

ÜBUNGEN ZUR VORLESUNG Physikalische Chemie I (PC I) (Prof. Meerholz, Hertel, Klemmer) Blatt 14,

ÜBUNGEN ZUR VORLESUNG Physikalische Chemie I (PC I) (Prof. Meerholz, Hertel, Klemmer) Blatt 14, ÜBUNGEN ZUR VORLESUNG Physikalische Chemie I (PC I) (Prof. Meerholz, Hertel, Klemmer) Blatt 14, 12.02.2016 Aufgabe 1 Kreisprozesse Mit einem Mol eines idealen, monoatomaren Gases (cv = 3/2 R) wird, ausgehend

Mehr

XI. Thermodynamik einfacher chemischer Reaktionen. - Reaktionstechnik - Verbrennung - Wasseraufbereitung - Brennstoffzellen - etc.

XI. Thermodynamik einfacher chemischer Reaktionen. - Reaktionstechnik - Verbrennung - Wasseraufbereitung - Brennstoffzellen - etc. XI. Thermodynamik einfacher chemischer Reaktionen Technische Thermodynamik Anwendung: Fragestellung: - Reaktionstechnik - Verbrennung - Wasseraufbereitung - Brennstoffzellen - etc. - Bestimmung der Stoffströme

Mehr

Bernhard Härder. Einführung in die PHYSIKALISCHE CHEMIE ein Lehrbuch Chemische Thermodynamik W/ WESTAR.P WISSENSCHAFTEN. Skripte, Lehrbücher Band 2

Bernhard Härder. Einführung in die PHYSIKALISCHE CHEMIE ein Lehrbuch Chemische Thermodynamik W/ WESTAR.P WISSENSCHAFTEN. Skripte, Lehrbücher Band 2 Bernhard Härder Einführung in die PHYSIKALISCHE CHEMIE ein Lehrbuch Chemische Thermodynamik Skripte, Lehrbücher Band 2 W/ WESTAR.P WISSENSCHAFTEN Inhaltsverzeichnis Vorwort zur ersten Auflage Vorwort zur

Mehr

Technische Thermodynamik

Technische Thermodynamik Heinz Herwig Christian H Kautz Technische Thermodynamik Studium Inhaltsverzeichnis Vorwort 11 Kapitel 1 Das Buch und sein Konzept 13 1.1 Umfang des vorliegenden Buches 14 1.2 Inhalt des vorliegenden Buches

Mehr

Kleine Formelsammlung Technische Thermodynamik

Kleine Formelsammlung Technische Thermodynamik Kleine Formelsammlung Technische Thermodynamik von Prof. Dr.-Ing. habil. Hans-Joachim Kretzschmar und Prof. Dr.-Ing. Ingo Kraft unter Mitarbeit von Dr.-Ing. Ines Stöcker 2., aktualisierte Auflage Fachbuchverlag

Mehr

Übung 6. Allgemeine Chemie I Herbstsemester O(l) H 3. (g), (4) G 0 R = ( 32.89) kj/mol ( ) kj/mol (5) G 0 R = 101.

Übung 6. Allgemeine Chemie I Herbstsemester O(l) H 3. (g), (4) G 0 R = ( 32.89) kj/mol ( ) kj/mol (5) G 0 R = 101. Übung 6 Allgemeine Chemie I Herbstsemester 01 1. Aufgabe MM Aufgabe 1.10 Wir betrachten zuerst den Fall X = F. Reaktionsgleichung: BX 3 (g) + 3 H O(l) H 3 BO 3 (aq) + 3 HX(g) (X = F oder Cl) G 0 R = i

Mehr

Klausur zur Vorlesung Thermodynamik

Klausur zur Vorlesung Thermodynamik Institut für Thermodynamik 18. März 2011 Technische Universität Braunschweig Prof. Dr. Jürgen Köhler Klausur zur Vorlesung Thermodynamik Für alle Aufgaben gilt: Der Rechen- bzw. Gedankengang muss stets

Mehr

- 1 - Thermochemie. Chemische Reaktionen sind Stoffumsetzungen. Stoffumsetzungen sind immer mit Energieumsetzungen verbunden

- 1 - Thermochemie. Chemische Reaktionen sind Stoffumsetzungen. Stoffumsetzungen sind immer mit Energieumsetzungen verbunden - 1 - Thermochemie Chemische Reaktionen sind Stoffumsetzungen Stoffumsetzungen sind immer mit Energieumsetzungen verbunden Energie wird aufgenommen oder freigesetzt Die umgesetzte Energie kann in verschiedenen

Mehr

Thermodynamik. Eine Einführung in die Grundlagen. Von. Dr.-Ing. Hans Dieter Baehr. o. Professor an der Technischen Hochschule Braunschweig

Thermodynamik. Eine Einführung in die Grundlagen. Von. Dr.-Ing. Hans Dieter Baehr. o. Professor an der Technischen Hochschule Braunschweig Thermodynamik Eine Einführung in die Grundlagen und ihre technischen Anwendungen Von Dr.-Ing. Hans Dieter Baehr o. Professor an der Technischen Hochschule Braunschweig Mit 325 Abbildungen und zahlreichen

Mehr

Abiturvorbereitung Energetik

Abiturvorbereitung Energetik Abiturvorbereitung Energetik Folgende Fragen sind an Chemie-Abiturfragen aus Baden-Württemberg angelehnt, wurden jedoch aus didaktischen Gründen in der Aufgabenstellung ergänzt, modifiziert oder gekürzt.

Mehr

Thermodynamik I Klausur 1

Thermodynamik I Klausur 1 Aufgabenteil / 100 Minuten Name: Vorname: Matr.-Nr.: Das Aufgabenblatt muss unterschrieben und zusammen mit den (nummerierten und mit Namen versehenen) Lösungsblättern abgegeben werden. Nicht nachvollziehbare

Mehr

Thermodynamik II - Übung 1. Cornelius von Einem

Thermodynamik II - Übung 1. Cornelius von Einem Thermodynamik II - Übung 1 Cornelius von Einem C. von Einem 05.03.2019 1 Hinweise zu der Übung Name: Cornelius von Einem 2. Semester Master Maschienenbau Mail: Raum: IFW A36 Zeit: Dienstag, 13:15-15:00

Mehr

Stellen Sie für die folgenden Reaktionen die Gleichgewichtskonstante K p auf: 1/2O 2 + 1/2H 2 OH H 2 + 1/2O 2 H 2 O

Stellen Sie für die folgenden Reaktionen die Gleichgewichtskonstante K p auf: 1/2O 2 + 1/2H 2 OH H 2 + 1/2O 2 H 2 O Klausur H2004 (Grundlagen der motorischen Verbrennung) 2 Aufgabe 1.) Stellen Sie für die folgenden Reaktionen die Gleichgewichtskonstante K p auf: 1/2O 2 + 1/2H 2 OH H 2 + 1/2O 2 H 2 O Wie wirkt sich eine

Mehr

Liste der Formelzeichen. A. Thermodynamik der Gemische 1

Liste der Formelzeichen. A. Thermodynamik der Gemische 1 Inhaltsverzeichnis Liste der Formelzeichen XV A. Thermodynamik der Gemische 1 1. Grundbegriffe 3 1.1 Anmerkungen zur Nomenklatur von Mischphasen.... 4 1.2 Maße für die Zusammensetzung von Mischphasen....

Mehr