SAP Predictive Challenge - Lösung. DI Walter Müllner, Dr. Ingo Peter, Markus Tempel 22. April 2015

Größe: px
Ab Seite anzeigen:

Download "SAP Predictive Challenge - Lösung. DI Walter Müllner, Dr. Ingo Peter, Markus Tempel 22. April 2015"

Transkript

1 SAP Predictive Challenge - Lösung DI Walter Müllner, Dr. Ingo Peter, Markus Tempel 22. April 2015

2 Teil II - Lösung Teil II-1: Fachbereich (automated mode) Teil II-2: Experte (PAL HANA) Teil II-3: Vergleich der Ergebnisse (mittels Lumira-Visualisierung) 2015 SAP SE or an SAP affiliate company. All rights reserved. Customer 2

3 Unser Beispiel: Kundenabwanderung bei Service Providern Kundenabwanderung ist ein Risiko für Service Provider Kundenabwanderung bedeutet für den Service Provider Verlust von Umsatz Kosten für das Halten und das Zurückgewinnen von Kunden Werbungskosten Unsicherheiten bei der Planung und Budgetierung Studien haben gezeigt, dass die Kosten für das Behalten von Kunden bei weitem höher sind als die Kosten für das Zurückgewinnen von Kunden. Deshalb ist es durchaus sinnvoll, abwanderungswillige Kunden früh genug zu erkennen, um geeignete Gegenmaßnahmen (Sonderangebote, ) zu ergreifen SAP SE or an SAP affiliate company. All rights reserved. Customer 3

4 Vorgehensweise: CRISP-DM Cross-Industry Standard Process for Data Mining: Business Understanding Data Understanding Data Preparation Modeling Evaluation Deployment Business Understanding Ziel: Erkenne möglichst viele potentielle Abwanderer anhand bestimmter Merkmale Ein Fehlalarm (d.h. ein loyaler Kunde, der fälschlicherweise als potentieller Abwanderer identifiziert worden ist) ist weniger teuer als eine verpasste Chance (d.h. ein potentieller Abwanderer, der nicht erkannt worden ist) SAP SE or an SAP affiliate company. All rights reserved. Customer 4

5 Datenextrakt und Verstehen der Daten Telekom Daten aus R-Package C50 data(churn) Trainingsdaten: 3333 Datensätze Testdaten: 1667 Datensätze Aufbau der Daten: 19 Merkmale / Prädiktoren / Features 1 binäres Ziel Churner / potentieller Abwanderer: no / yes 483 potentielle Abwanderer (Churner) stehen loyalen Kunden gegenüber (14,5% : 85,5%) Datentypen sind teils Nominal: z.b. state 51 alphanumerische Ausprägungen, international_plan binär yes/no Stetig: in BW-Sprache Kennzahlen 2015 SAP SE or an SAP affiliate company. All rights reserved. Customer 5

6 Teil II-1: Fachbereich (automated mode) SAP Predictive Analytics (automated mode) 2015 SAP SE or an SAP affiliate company. All rights reserved. Customer 6

7 Vorbereitung der Daten / Datenbeschreibung Automated Mode: Keine Annahmen notwendig bezüglich der Verteilung der Input Variablen Keine Annahmen notwendig bezüglich re-codierung, Normalisierung, etc., der Variablen (das wird automatisch gemacht) Keine Annahmen nötig bezüglich missing Values Sofern bekannt, werden die jeweiligen missing Values in der Datenbeschreibung angegeben, das Werkzeug kümmert sich um deren richtige Behandlung Keine Annahmen nötig bezüglich eventueller Korrelationen zwischen den Variablen, das wird vom Werkzeug automatisch behandelt Keine spezielle Vorgehensweise nötig, was das Finden des beste Modells betrifft: es werden eine große Anzahl von Modellen gleichzeitig errechnet und bewertet, ausgewählt wir dasjenige, das die höchste predictive Power bei gleichzeitig bester Generalisierungsfähigkeit hat SAP SE or an SAP affiliate company. All rights reserved. Customer 7

8 Datentypen und Interpretation der Variablen 2015 SAP SE or an SAP affiliate company. All rights reserved. Customer 8

9 Spezifikation des Modells (was möchte ich ermitteln) 2015 SAP SE or an SAP affiliate company. All rights reserved. Customer 9

10 Ergebnismodell nach mehreren Iterationsschritten 2015 SAP SE or an SAP affiliate company. All rights reserved. Customer 10

11 Anwendung des Modells auf die Testdaten Siehe später: HANA SQL Code wird generiert und am Ende werden alle Modelle (Automated und Expert Mode) miteinander verglichen 2015 SAP SE or an SAP affiliate company. All rights reserved. Customer 11

12 Teil II-2: Experte (PAL HANA) SAP HANA Predictive Analytics Library (PAL) 2015 SAP SE or an SAP affiliate company. All rights reserved. Customer 12

13 Vorbereitung der Daten Problematik Ungleichmäßige Verteilung der potentiellen Abwanderer und loyalen Kunden: 14,5% potentielle Abwanderer stehen 85,5% loyalen Kunden gegenüber. Gütemerkmale, wie z.b. die Genauigkeit oder Präzision bringen nicht viel, weil sie das Ergebnis zu Gunsten der loyalen Kunden verzerren. Die korrekte Klassifizierung der Minorität hat größere Bedeutung als jene der Mehrheitsklasse. Ein loyaler Kunde, der fälschlicherweise als potentieller Abwanderer klassifiziert wurde (Fehlalarm) kostet weit weniger als ein nicht erkannter potentieller Abwanderer (verpasste Chance) Prädiktoren, die u.u. nicht alle notwendig sind (in diesem Beispiel mit 19 Prädiktoren eigentlich wenige; es gibt Beispiele mit mehreren Tausend Prädiktoren): Prädiktoren, die keinen Beitrag zum Ergebnis liefern (keine Bedeutung) Korrelation zwischen Prädiktoren liefern unstabile Modelle Es sollen solche Prädiktoren im Modell verwendet werden, die notwendig sind, um ein optimales Ergebnis zu liefern (Feature Selektion) SAP SE or an SAP affiliate company. All rights reserved. Customer 13

14 Unterstützte Algorithmen in SAP HANA PAL, Stand SPS09 Association Analysis Apriori Apriori Lite FP-Growth KORD Top K Rule Discovery Classification Analysis CART C4.5 Decision Tree Analysis CHAID Decision Tree Analysis K Nearest Neighbour Logistic Regression Neural Network - Back-Propagation Naïve Bayes Support Vector Machine Regression Multiple Linear Regression Polynomial Regression Exponential Regression Bi-Variate Geometric Regression Bi-Variate Logarithmic Regression Cluster Analysis ABC Classification DBSCAN K-Means K-Medoid Clustering K-Medians Kohonen Self Organized Maps Agglomerate Hierarchical Affinity Propagation Time Series Analysis Single Exponential Smoothing Double Exponential Smoothing Triple Exponential Smoothing Forecast Smoothing ARIMA/ARIMA-X Brown Exponential Smoothing Croston Method Forecast Accuracy Measure Linear Regression with Damped Trend and Seasonal Adjust** Probability Distribution Distribution Fit Cumulative Distribution Function Quantile Function Outlier Detection Inter-Quartile Range Test (Tukey s Test) Variance Test Anomaly Detection Link Prediction Common Neighbors Jaccard s Coefficient Adamic/Adar Katzβ Data Preparation Sampling Random Distribution Sampling Binning Scaling Partitioning Principal Component Analysis (PCA) Statistic Functions (Univariate) Mean, Median, Variance, Standard Deviation Kurtosis Skewness Statistic Functions (Multivariate) Covariance Matrix Pearson Correlations Matrix Chi-squared Tests: - Test of Quality of Fit - Test of Independence F-test (variance equal test) Other Weighted Scores Table Substitute Missing Values 2015 SAP SE or an SAP affiliate company. All rights reserved. Customer 14

15 Modellierung der Lösung mit SAP HANA PAL Modellierung der Klassifikation von potentiellen Abwanderern mit einer Funktion aus HANA PAL Stratifiziertes Sampling der Trainingsdaten (Eine Klasse entspricht einem Stratum): Die Anzahl der loyalen Kunden in den Trainingsdaten wird über Zufallsgenerator verringert, damit das Ungleichgewicht zwischen Abwanderern und loyalen Kunden entschärft wird. L 1 -regularisierte logistische Regression (Lasso) wird als Algorithmus gewählt: Logistische Regression liefert Wahrscheinlichkeiten zurück, die die Zuordnung zu einer Klasse bestimmen. Die L 1 -Regularisierung hat den Vorteil, dass der Algorithmus selber die notwendigen Prädiktoren auswählt (Feature Selection) Optimierung des W-Schwellwerts für potentielle Abwanderer: Es wird die Distanz der Erkennungsrate von Abwanderern zur Fehlalarmrate maximiert (Youden J Index). Analog könnte eine Kostenfunktion minimiert werden. Ergebnis ist ein Modell mit drei Parametern: Prozentsatz p der loyalen Kunden in den Trainingsdaten für das Training des Modells Parameter λ zur Verringerung der Prädiktoren (Lasso) W-Schwellwert zur Optimierung der Erkennungsrate von Abwanderern Jene Kombination dieser drei Parameter, die den Youden J Index maximiert, wurde über eine SAP HANA Stored Procedure ermittelt (10-fache Kreuzvalidierung) SAP SE or an SAP affiliate company. All rights reserved. Customer 15

16 Ergebnis für HANA PAL Logistische Regression HANA hdbflowgraph-container für Sampling und Training der logistischen Regression. Ergebnis der Parameter Optimierung Confusion Matrix des PAL Modells Trefferrate: 88,40 % Cv-Youden J Index: 58,80% 2015 SAP SE or an SAP affiliate company. All rights reserved. Customer 16

17 Zusammenfassung der Modelle 2015 SAP SE or an SAP affiliate company. All rights reserved. Customer 17

18 Zusammenfassung der Modelle Youden J = 59,34% 2015 SAP SE or an SAP affiliate company. All rights reserved. Customer 18

19 Zusammenfassung der Modelle Youden J = 59,34% cv-youden J = 58,80% 2015 SAP SE or an SAP affiliate company. All rights reserved. Customer 19

20 Ansprechpartner Dr. Ingo Peter Solution Architect Big Data DI Walter Müllner Presales Expert DWH/BI M E M E 2015 SAP SE or an SAP affiliate company. All rights reserved.

Predictive Maintenance Effizientere Instandhaltung durch die Verknüpfung von IT/OT-Daten

Predictive Maintenance Effizientere Instandhaltung durch die Verknüpfung von IT/OT-Daten Predictive Maintenance Effizientere Instandhaltung durch die Verknüpfung von IT/OT-Daten Klaus Vogelgesang / Custom Development & Strategic Projects SAP SE SAP-Forum für die Versorgungswirtschaft, 4. 5.

Mehr

Einige Grundbegriffe der Statistik

Einige Grundbegriffe der Statistik Einige Grundbegriffe der Statistik Philipp Mitteröcker Basic terms Statistik (statistics) stammt vom lateinischen statisticum ( den Staat betreffend ) und dem italienischen statista ( Staatsmann" oder

Mehr

SAP Predictive Maintenance and Service. Gero Bieser, IBU Utilities, SAP AG Februar 2015

SAP Predictive Maintenance and Service. Gero Bieser, IBU Utilities, SAP AG Februar 2015 SAP Predictive Maintenance and Service Gero Bieser, IBU Utilities, SAP AG Februar 2015 Agenda Warum Predictive Maintenance? Die SAP Lösung Predictive Maintenance and Service Ausblick auf weitere Entwicklungen

Mehr

Echtzeiterkennung von Cyber-Angriffen auf IT-Infrastrukturen. Frank Irnich SAP Deutschland

Echtzeiterkennung von Cyber-Angriffen auf IT-Infrastrukturen. Frank Irnich SAP Deutschland Echtzeiterkennung von Cyber-Angriffen auf IT-Infrastrukturen Frank Irnich SAP Deutschland SAP ist ein globales Unternehmen... unser Fokusgebiet... IT Security für... 1 globales Netzwerk > 70 Länder, >

Mehr

Oracle Data Mining 11.2

<Insert Picture Here> Oracle Data Mining 11.2 Oracle Data Mining 11.2 Maik Sandmann Oracle Deutschland B.V. & Co. KG Maik.Sandmann@oracle.com The preceding is intended to outline our general product direction. It is intended

Mehr

Motivation. Themenblock: Data Preprocessing. Einsatzgebiete für Data Mining I. Modell von Gianotti und Pedreschi

Motivation. Themenblock: Data Preprocessing. Einsatzgebiete für Data Mining I. Modell von Gianotti und Pedreschi Motivation Themenblock: Data Preprocessing We are drowning in information, but starving for knowledge! (John Naisbett) Was genau ist Datenanalyse? Praktikum: Data Warehousing und Data Mining Was ist Data

Mehr

Fortgeschrittenes Programmieren mit R. Christoph Beck. Di, 14:00-15:30 (3065)

Fortgeschrittenes Programmieren mit R. Christoph Beck. Di, 14:00-15:30 (3065) Christoph Beck Di, 14:00-15:30 (3065) Packages / Pakete in R Pakete in R Erweiterungen der (Basis)-Funktionalitäten in R Basis-Pakete Zusätzliche Pakete Base packages base Base R functions (and datasets

Mehr

Umgang mit und Ersetzen von fehlenden Werten bei multivariaten Analysen

Umgang mit und Ersetzen von fehlenden Werten bei multivariaten Analysen Umgang mit und Ersetzen von fehlenden Werten bei multivariaten Analysen Warum überhaupt Gedanken machen? Was fehlt, ist doch weg, oder? Allgegenwärtiges Problem in psychologischer Forschung Bringt Fehlerquellen

Mehr

Motivation. Themenblock: Klassifikation. Binäre Entscheidungsbäume. Ansätze. Praktikum: Data Warehousing und Data Mining.

Motivation. Themenblock: Klassifikation. Binäre Entscheidungsbäume. Ansätze. Praktikum: Data Warehousing und Data Mining. Motivation Themenblock: Klassifikation Praktikum: Data Warehousing und Data Mining Ziel Item hat mehrere Attribute Anhand von n Attributen wird (n+)-tes vorhergesagt. Zusätzliches Attribut erst später

Mehr

Was ist Data Mining... in der Fundraising Praxis?

Was ist Data Mining... in der Fundraising Praxis? Was ist Data Mining...... in der Fundraising Praxis? Erkennen von unbekannten Mustern in sehr grossen Datenbanken (> 1000 GB) wenige und leistungsfähige Verfahren Automatisierung Erkennen von unbekannten

Mehr

Datenschätze heben: Data Mining Carsten Czarski Leitender Systemberater Business Unit Database ORACLE Deutschland GmbH

<Insert Picture Here> Datenschätze heben: Data Mining Carsten Czarski Leitender Systemberater Business Unit Database ORACLE Deutschland GmbH Datenschätze heben: Data Mining Carsten Czarski Leitender Systemberater Business Unit Database ORACLE Deutschland GmbH Agenda Data Mining... erste Schritte... Der Data Mining-Ansatz

Mehr

Proseminar - Data Mining

Proseminar - Data Mining Proseminar - Data Mining SCCS, Fakultät für Informatik Technische Universität München SS 2012, SS 2012 1 Data Mining Pipeline Planung Aufbereitung Modellbildung Auswertung Wir wollen nützliches Wissen

Mehr

Knowledge Discovery in Datenbanken I (IN5042)

Knowledge Discovery in Datenbanken I (IN5042) Knowledge Discovery in Datenbanken I (IN5042) Titel Knowledge Discovery in Databases I Typ Vorlesung mit Übung Credits 6 ECTS Lehrform/SWS 3V + 2Ü Sprache Deutsch Modulniveau Master Arbeitsaufwand Präsenzstunden

Mehr

This document is for informational purposes. It is not a commitment to deliver any material, code, or functionality, and should not be relied upon in

This document is for informational purposes. It is not a commitment to deliver any material, code, or functionality, and should not be relied upon in This document is for informational purposes. It is not a commitment to deliver any material, code, or functionality, and should not be relied upon in making purchasing decisions. The development, release,

Mehr

Eine Einführung in R: Hochdimensionale Daten: n << p Teil II

Eine Einführung in R: Hochdimensionale Daten: n << p Teil II Eine Einführung in R: Hochdimensionale Daten: n

Mehr

Predictive Modeling Markup Language. Thomas Morandell

Predictive Modeling Markup Language. Thomas Morandell Predictive Modeling Markup Language Thomas Morandell Index Einführung PMML als Standard für den Austausch von Data Mining Ergebnissen/Prozessen Allgemeine Struktur eines PMML Dokuments Beispiel von PMML

Mehr

Education Day 2012. Wissensgold aus Datenminen: wie die Analyse vorhandener Daten Ihre Performance verbessern kann! Education Day 2012 11.10.

Education Day 2012. Wissensgold aus Datenminen: wie die Analyse vorhandener Daten Ihre Performance verbessern kann! Education Day 2012 11.10. Wissensgold aus Datenminen: wie die Analyse vorhandener Daten Ihre Performance verbessern kann! 11.10.2012 1 BI PLUS was wir tun Firma: BI plus GmbH Giefinggasse 6/2/7 A-1210 Wien Mail: office@biplus.at

Mehr

Data Mining-Modelle und -Algorithmen

Data Mining-Modelle und -Algorithmen Data Mining-Modelle und -Algorithmen Data Mining-Modelle und -Algorithmen Data Mining ist ein Prozess, bei dem mehrere Komponenten i n- teragieren. Sie greifen auf Datenquellen, um diese zum Training,

Mehr

Mit In-Memory Technologie zu neuen Business Innovationen. Stephan Brand, VP HANA P&D, SAP AG May, 2014

Mit In-Memory Technologie zu neuen Business Innovationen. Stephan Brand, VP HANA P&D, SAP AG May, 2014 Mit In-Memory Technologie zu neuen Business Innovationen Stephan Brand, VP HANA P&D, SAP AG May, 2014 SAP Medical Research Insights : Forschung und Analyse in der Onkologie SAP Sentinel : Entscheidungsunterstützung

Mehr

Methoden & Tools für die Expressionsdatenanalyse. Vorlesung Einführung in die Bioinformatik - Expressionsdatenanalyse U. Scholz & M.

Methoden & Tools für die Expressionsdatenanalyse. Vorlesung Einführung in die Bioinformatik - Expressionsdatenanalyse U. Scholz & M. Methoden & Tools für die Expressionsdatenanalyse U. Scholz & M. Lange Folie #7-1 Vorgehensmodell Expressionsdatenverarbeitung Bildanalyse Normalisierung/Filterung Datenauswertung U. Scholz & M. Lange Folie

Mehr

Methodological Training in Statistical Data Mining

Methodological Training in Statistical Data Mining Bern, Schweiz, im Juli 2011 Montag, 3. Oktober bis Mittwoch, 5. Oktober 2011 in Bern, Schweiz Sehr geehrte Damen und Herren, Data Mining Techniken und Methoden werden heute in den verschiedensten Unternehmen

Mehr

Vorlesungsplan. Von Naïve Bayes zu Bayesischen Netzwerk- Klassifikatoren. Naïve Bayes. Bayesische Netzwerke

Vorlesungsplan. Von Naïve Bayes zu Bayesischen Netzwerk- Klassifikatoren. Naïve Bayes. Bayesische Netzwerke Vorlesungsplan 17.10. Einleitung 24.10. Ein- und Ausgabe 31.10. Reformationstag, Einfache Regeln 7.11. Naïve Bayes, Entscheidungsbäume 14.11. Entscheidungsregeln, Assoziationsregeln 21.11. Lineare Modelle,

Mehr

Einführung in Support Vector Machines (SVMs)

Einführung in Support Vector Machines (SVMs) Einführung in (SVM) Januar 31, 2011 Einführung in (SVMs) Table of contents Motivation Einführung in (SVMs) Outline Motivation Vektorrepräsentation Klassifikation Motivation Einführung in (SVMs) Vektorrepräsentation

Mehr

Projektaufgaben Block 2

Projektaufgaben Block 2 Kurs BZQ III - Stochastikpraktikum WS 2013/14 Humboldt-Universität zu Berlin Randolf Altmeyer Philip-Moritz Eckert Projektaufgaben Block 2 Abgabe: bis 10.12.2013 Zur Einstimmung (freiwillig, ohne Abgabe)

Mehr

Text Mining Praktikum. Durchführung: Andreas Niekler Email: aniekler@informatik.uni-leipzig.de Zimmer: Paulinum (P) 818

Text Mining Praktikum. Durchführung: Andreas Niekler Email: aniekler@informatik.uni-leipzig.de Zimmer: Paulinum (P) 818 Text Mining Praktikum Durchführung: Andreas Niekler Email: aniekler@informatik.uni-leipzig.de Zimmer: Paulinum (P) 818 Rahmenbedingungen Gruppen von 2- (max)4 Personen Jede Gruppe erhält eine Aufgabe Die

Mehr

Exploration und Klassifikation von BigData

Exploration und Klassifikation von BigData Exploration und Klassifikation von BigData Inhalt Einführung Daten Data Mining: Vorbereitungen Clustering Konvexe Hülle Fragen Google: Riesige Datenmengen (2009: Prozessieren von 24 Petabytes pro Tag)

Mehr

Eine Echtzeit-Plattform für das Smart Grid. Gero Bieser, IBU Utilities, SAP AG Februar 2015

Eine Echtzeit-Plattform für das Smart Grid. Gero Bieser, IBU Utilities, SAP AG Februar 2015 Eine Echtzeit-Plattform für das Smart Grid Gero Bieser, IBU Utilities, SAP AG Februar 2015 Agenda Warum eignet sich die SAP HANA Plattform insbesondere für Anwendungen im Smart Grid? Beispiel: Analyse

Mehr

ehealth und Big Data: Herausforderung oder Chance? Stephan Schindewolf, SAP SE, September 14, 2015 Public

ehealth und Big Data: Herausforderung oder Chance? Stephan Schindewolf, SAP SE, September 14, 2015 Public ehealth und Big Data: Herausforderung oder Chance? Stephan Schindewolf, SAP SE, September 14, 2015 Public ehealth: Bereitstellung von Patientendaten Unterschiedliche Formate, keine konsoliderte Sicht Bereitstellung

Mehr

Anwendung von Ensemble Methoden für Klassifikationsaufgaben Marcus Hudec marcus.hudec@univie.ac.at

Anwendung von Ensemble Methoden für Klassifikationsaufgaben Marcus Hudec marcus.hudec@univie.ac.at Anwendung von Ensemble Methoden für Klassifikationsaufgaben Marcus Hudec marcus.hudec@univie.ac.at Österreichische Statistiktage 2011 Graz, 7.- 9. September 2011 Vorbemerkungen Ensemble Methoden für Klassifikationsaufgaben

Mehr

Software EMEA Performance Tour 2013. 17.-19 Juni, Berlin

Software EMEA Performance Tour 2013. 17.-19 Juni, Berlin Software EMEA Performance Tour 2013 17.-19 Juni, Berlin Accenture s High Performance Analytics Demo-Umgebung Dr, Holger Muster (Accenture), 18. Juni 2013 Copyright 2012 Hewlett-Packard Development Company,

Mehr

Analytisches Fundraising

Analytisches Fundraising Analytisches Fundraising Vorgehen, Verfahren, Werkzeuge DiaSys. Marketing Engineering AG, Wankdorffeldstr.102, 3014 Bern 031 922 31 50, zuercher@diasys.ch Analytisches Fundraising Inhaltsverzeichnis Datenbankgestütztes

Mehr

Lösung zu Kapitel 11: Beispiel 1

Lösung zu Kapitel 11: Beispiel 1 Lösung zu Kapitel 11: Beispiel 1 Eine Untersuchung bei 253 Personen zur Kundenzufriedenheit mit einer Einzelhandelskette im Südosten der USA enthält Variablen mit sozialstatistischen Daten der befragten

Mehr

Zukunftsträchtige Potentiale: Predictive Analysis mit SAP HANA & SAP BO

Zukunftsträchtige Potentiale: Predictive Analysis mit SAP HANA & SAP BO innovation@work Zukunftsträchtige Potentiale: Predictive Analysis mit SAP HANA & SAP BO thinkbetter AG Florian Moosmann 8. Mai 2013 1 Agenda Prädiktive Analyse Begriffsdefinition Herausforderungen Schwerpunktbereiche

Mehr

Darstellung der Rotation 2,85 / 0,08 1 / 3,5 3,62 / 0,40. α = 67,76 -1 / -1 -2,08 / 0,23-1,30 / 0,55

Darstellung der Rotation 2,85 / 0,08 1 / 3,5 3,62 / 0,40. α = 67,76 -1 / -1 -2,08 / 0,23-1,30 / 0,55 Darstellung der Rotation 2,85 /,8 1 / 3,5 3,62 /,4 α = 67,76-1 / -1-2,8 /,23-1,3 /,55 Material für die Übungen zur Hauptkomponenten- und Faktoranalyse Principal Components Analysis Analysis Summary Data

Mehr

Ideen der Informatik. Maschinelles Lernen. Kurt Mehlhorn Adrian Neumann Max-Planck-Institut für Informatik

Ideen der Informatik. Maschinelles Lernen. Kurt Mehlhorn Adrian Neumann Max-Planck-Institut für Informatik Ideen der Informatik Maschinelles Lernen Kurt Mehlhorn Adrian Neumann Max-Planck-Institut für Informatik Übersicht Lernen: Begriff Beispiele für den Stand der Kunst Spamerkennung Handschriftenerkennung

Mehr

Do you know what K-Means for your Business?

Do you know what K-Means for your Business? Do you know what K-Means for your Business? Cluster-Analysen mit Oracle Harald Erb Oracle Business Analytics & Big Data Kontakt Harald Erb Principal Sales Consultant Information Architect Kontakt +49 (0)6103

Mehr

Workshop Aktuelle Entwicklungen bei der Auswertung von Fernerkundungsdaten für forstliche Aufgabenstellungen

Workshop Aktuelle Entwicklungen bei der Auswertung von Fernerkundungsdaten für forstliche Aufgabenstellungen Workshop Aktuelle Entwicklungen bei der Auswertung von Fernerkundungsdaten für forstliche Aufgabenstellungen Schätzung von Holzvorräten und Baumartenanteilen mittels Wahrscheinlichkeitsmodellen Haruth

Mehr

Industrie 4.0 Predictive Maintenance. Kay Jeschke SAP Deutschland AG & Co. KG., Februar, 2014

Industrie 4.0 Predictive Maintenance. Kay Jeschke SAP Deutschland AG & Co. KG., Februar, 2014 Industrie 4.0 Predictive Maintenance Kay Jeschke SAP Deutschland AG & Co. KG., Februar, 2014 Anwendungsfälle Industrie 4.0 Digitales Objektgedächtnis Adaptive Logistik Responsive Manufacturing Intelligenter

Mehr

Data Mining @ Netezza mit IBM SPSS

Data Mining @ Netezza mit IBM SPSS Michael Ridder Senior Technical Sales Professional Predictiv Analytics Data Mining @ Netezza mit IBM SPSS Software Wir ertrinken in Informationen, aber wir hungern nach Wissen. John Naisbitt Trendforscher

Mehr

Methodological Training in Statistical Data Mining

Methodological Training in Statistical Data Mining Bern, Schweiz, im März 2009 Montag, 7. September bis Mittwoch, 9. September 2009 in der Villa Boveri in Baden, Schweiz Sehr geehrte Damen und Herren, Data Mining Techniken und Methoden werden heute in

Mehr

Testen und Metriken. Einige Fehler. Fehler vermeiden. Andreas Zeller Universität des Saarlandes Microsoft Research. http://www.st.cs.uni-sb.

Testen und Metriken. Einige Fehler. Fehler vermeiden. Andreas Zeller Universität des Saarlandes Microsoft Research. http://www.st.cs.uni-sb. Testen und Metriken Andreas Zeller Universität des Saarlandes Microsoft Research http://www.st.cs.uni-sb.de/ Einige Fehler Fehler vermeiden Spezifizieren Beweisen Gegenlesen Testen Module Welche sollte

Mehr

Data-Mining: Ausgewählte Verfahren und Werkzeuge

Data-Mining: Ausgewählte Verfahren und Werkzeuge Fakultät Informatik Institut für Angewandte Informatik Lehrstuhl Technische Informationssysteme Data-Mining: Ausgewählte Verfahren und Vortragender: Jia Mu Betreuer: Dipl.-Inf. Denis Stein Dresden, den

Mehr

Clustering Seminar für Statistik

Clustering Seminar für Statistik Clustering Markus Kalisch 03.12.2014 1 Ziel von Clustering Finde Gruppen, sodas Elemente innerhalb der gleichen Gruppe möglichst ähnlich sind und Elemente von verschiedenen Gruppen möglichst verschieden

Mehr

Personalisierung. Der Personalisierungsprozess Nutzerdaten erheben aufbereiten auswerten Personalisierung. Data Mining.

Personalisierung. Der Personalisierungsprozess Nutzerdaten erheben aufbereiten auswerten Personalisierung. Data Mining. Personalisierung Personalisierung Thomas Mandl Der Personalisierungsprozess Nutzerdaten erheben aufbereiten auswerten Personalisierung Klassifikation Die Nutzer werden in vorab bestimmte Klassen/Nutzerprofilen

Mehr

Einführung in Data Mining mit Weka. Philippe Thomas Ulf Leser

Einführung in Data Mining mit Weka. Philippe Thomas Ulf Leser Einführung in Data Mining mit Weka Philippe Thomas Ulf Leser Data Mining Drowning in Data yet Starving for Knowledge Computers have promised us a fountain of wisdom but delivered a flood of data The non

Mehr

Einführung in das Maschinelle Lernen I

Einführung in das Maschinelle Lernen I Einführung in das Maschinelle Lernen I Vorlesung Computerlinguistische Techniken Alexander Koller 26. Januar 2015 Maschinelles Lernen Maschinelles Lernen (Machine Learning): äußerst aktiver und für CL

Mehr

1 Predictive Analytics mit Random Forest

1 Predictive Analytics mit Random Forest Predictive Analytics Demokratie im Wald 1 Agenda 1. Predictive Analytics Übersicht 2. Random Forest Grundkonzepte und Anwendungsfelder 3. Entscheidungsbaum Classification and Regression Tree (CART) 4.

Mehr

MS SQL Server 2012 (4)

MS SQL Server 2012 (4) MS SQL Server 2012 (4) Data Mining, Analyse und multivariate Verfahren Marco Skulschus Jan Tittel Marcus Wiederstein Webseite zum Buch: http://vvwvv.comelio-medien.com/buch-kataiog/ms sql_server/ms sql

Mehr

Big Data Umgang mit personenbezogenen Daten im Kontext von digitalen Gesundheits-Akten und Archivierungslösungen

Big Data Umgang mit personenbezogenen Daten im Kontext von digitalen Gesundheits-Akten und Archivierungslösungen Big Data Umgang mit personenbezogenen Daten im Kontext von digitalen Gesundheits-Akten und Archivierungslösungen Dr. med. Peter Langkafel MBA General Manager Public Sector / Healthcare MEE (Middle and

Mehr

Data Mining mit der SEMMA Methodik. Reinhard Strüby, SAS Institute Stephanie Freese, Herlitz PBS AG

Data Mining mit der SEMMA Methodik. Reinhard Strüby, SAS Institute Stephanie Freese, Herlitz PBS AG Data Mining mit der SEMMA Methodik Reinhard Strüby, SAS Institute Stephanie Freese, Herlitz PBS AG Data Mining Data Mining: Prozeß der Selektion, Exploration und Modellierung großer Datenmengen, um Information

Mehr

PMML Predictive Modeling Markup Language

PMML Predictive Modeling Markup Language PMML Predictive Modeling Markup Language Thomas Morandell 30/01/2003 1. Index 1. Index... 2 2. Einführung... 3 2.1. Definition Data Mining... 3 2.2. Motivation für Standards in Data Mining... 3 3. PMML

Mehr

Azure Machine Learning

Azure Machine Learning Azure Machine Learning Alexander Wechsler Wechsler Consulting GmbH & Co. KG Was ist Machine Learning? Technologie zur Vorhersage Ermittlung von Wahrscheinlichkeiten mit Hilfe von Mustern in großen Datenmengen

Mehr

Ermittlung und Berechnung von Schadendreiecken mit HANA Live und R-Integration

Ermittlung und Berechnung von Schadendreiecken mit HANA Live und R-Integration Ermittlung und Berechnung von Schadendreiecken mit HANA Live und R-Integration Matthias Beyer-Grandisch, Presales Senior Specialist, SAP Mai, 2015 Public DEMO Die Demo zeigt unter Verwendung von HANA Live

Mehr

Visualisierung hochdimensionaler Daten. Hauptseminar SS11 Michael Kircher

Visualisierung hochdimensionaler Daten. Hauptseminar SS11 Michael Kircher Hauptseminar SS11 Inhalt Einführung zu hochdimensionalen Daten Visualisierungsmöglichkeiten dimensionale Teilmengen dimensionale Schachtelung Achsenumgestaltung Algorithmen zur Dimensionsreduktion Zusammenfassung

Mehr

Data Mining mit Rapidminer im Direktmarketing ein erster Versuch. Hasan Tercan und Hans-Peter Weih

Data Mining mit Rapidminer im Direktmarketing ein erster Versuch. Hasan Tercan und Hans-Peter Weih Data Mining mit Rapidminer im Direktmarketing ein erster Versuch Hasan Tercan und Hans-Peter Weih Motivation und Ziele des Projekts Anwendung von Data Mining im Versicherungssektor Unternehmen: Standard

Mehr

Eine computergestützte Einführung mit

Eine computergestützte Einführung mit Thomas Cleff Deskriptive Statistik und Explorative Datenanalyse Eine computergestützte Einführung mit Excel, SPSS und STATA 3., überarbeitete und erweiterte Auflage ^ Springer Inhaltsverzeichnis 1 Statistik

Mehr

Vortrag zum Paper Results of the Active Learning Challenge von Guyon, et. al. Sören Schmidt Fachgebiet Knowledge Engineering

Vortrag zum Paper Results of the Active Learning Challenge von Guyon, et. al. Sören Schmidt Fachgebiet Knowledge Engineering Vortrag zum Paper Results of the Active Learning Challenge von Guyon, et. al. Sören Schmidt Fachgebiet Knowledge Engineering 11.12.2012 Vortrag zum Paper Results of the Active Learning Challenge von Isabelle

Mehr

Selected Topics in Machine Learning and Reverse Engineering

Selected Topics in Machine Learning and Reverse Engineering Selected Topics in Machine Learning and Reverse Engineering Dozenten: Prof. Dr. Fabian Theis Email: theis@ma.tum.de Prof. Dr. Oliver Junge Raum: 02.08.040? Tel.: +49 (89) 289 17987, Email: junge@ma.tum.de

Mehr

TNS EX A MINE BehaviourForecast Predictive Analytics for CRM. TNS Infratest Applied Marketing Science

TNS EX A MINE BehaviourForecast Predictive Analytics for CRM. TNS Infratest Applied Marketing Science TNS EX A MINE BehaviourForecast Predictive Analytics for CRM 1 TNS BehaviourForecast Warum BehaviourForecast für Sie interessant ist Das Konzept des Analytischen Customer Relationship Managements (acrm)

Mehr

SAP Strategie für Analytics Highlights und Innovationen

SAP Strategie für Analytics Highlights und Innovationen SAP Strategie für Analytics Highlights und Innovationen Andreas Forster, Predictive Solution Advisor Mohamed Abdel Hadi, VP Presales Analytics Germany 2005 2013 St. Peter s Square Visitors at public viewing

Mehr

Deskription, Statistische Testverfahren und Regression. Seminar: Planung und Auswertung klinischer und experimenteller Studien

Deskription, Statistische Testverfahren und Regression. Seminar: Planung und Auswertung klinischer und experimenteller Studien Deskription, Statistische Testverfahren und Regression Seminar: Planung und Auswertung klinischer und experimenteller Studien Deskriptive Statistik Deskriptive Statistik: beschreibende Statistik, empirische

Mehr

Seminar Text- und Datamining Datamining-Grundlagen

Seminar Text- und Datamining Datamining-Grundlagen Seminar Text- und Datamining Datamining-Grundlagen Martin Hacker Richard Schaller Künstliche Intelligenz Department Informatik FAU Erlangen-Nürnberg 23.05.2013 Gliederung 1 Klassifikationsprobleme 2 Evaluation

Mehr

WEKA A Machine Learning Interface for Data Mining

WEKA A Machine Learning Interface for Data Mining WEKA A Machine Learning Interface for Data Mining Frank Eibe, Mark Hall, Geoffrey Holmes, Richard Kirkby, Bernhard Pfahringer, Ian H. Witten Reinhard Klaus Losse Künstliche Intelligenz II WS 2009/2010

Mehr

Data Mining Bericht. Analyse der Lebenssituation der Studenten. der Hochschule Wismar. Zur Veranstaltung. Business Intelligence

Data Mining Bericht. Analyse der Lebenssituation der Studenten. der Hochschule Wismar. Zur Veranstaltung. Business Intelligence Data Mining Bericht Analyse der Lebenssituation der Studenten der Hochschule Wismar Zur Veranstaltung Business Intelligence Eingereicht von: Mohamed Oukettou 108 208 Maxim Beifert 118 231 Vorgelegt von:

Mehr

Statistics, Data Analysis, and Simulation SS 2015

Statistics, Data Analysis, and Simulation SS 2015 Mainz, June 11, 2015 Statistics, Data Analysis, and Simulation SS 2015 08.128.730 Statistik, Datenanalyse und Simulation Dr. Michael O. Distler Dr. Michael O. Distler

Mehr

Entfesseln Sie Ihr Potential als Realzeit-Unternehmen!

Entfesseln Sie Ihr Potential als Realzeit-Unternehmen! Entfesseln Sie Ihr Potential als Realzeit-Unternehmen! CC NOW 2013-19.9.13 in Düsseldorf Klaus-J. Zschaage authensis AG stellen Sie sich vor Seite 2 stellen Sie sich vor was ist dafür zu tun? Seite 3 Geschäftsoptimierung

Mehr

Termin3 Klassifikation multispektraler Daten unüberwachte Verfahren

Termin3 Klassifikation multispektraler Daten unüberwachte Verfahren Ziel Termin3 Klassifikation multispektraler Daten unüberwachte Verfahren Einteilung (=Klassifikation) der Pixel eines multispektralen Datensatzes in eine endliche Anzahl von Klassen. Es sollen dabei versucht

Mehr

Data Mining und Knowledge Discovery in Databases

Data Mining und Knowledge Discovery in Databases Data Mining und Knowledge Discovery in Databases Begriffsabgrenzungen... Phasen der KDD...3 3 Datenvorverarbeitung...4 3. Datenproblematik...4 3. Möglichkeiten der Datenvorverarbeitung...4 4 Data Mining

Mehr

ML-Werkzeuge und ihre Anwendung

ML-Werkzeuge und ihre Anwendung Kleine Einführung: und ihre Anwendung martin.loesch@kit.edu (0721) 608 45944 Motivation Einsatz von maschinellem Lernen erfordert durchdachtes Vorgehen Programmieren grundlegender Verfahren aufwändig fehlerträchtig

Mehr

SAP IT Summit Österreich 21. April 2015 Einsatzplanung im Serviceumfeld mit SAP Multiresource Scheduling

SAP IT Summit Österreich 21. April 2015 Einsatzplanung im Serviceumfeld mit SAP Multiresource Scheduling SAP IT Summit Österreich 21. April 2015 Einsatzplanung im Serviceumfeld mit SAP Multiresource Scheduling Miguel von Rotz Solution Manager EMEA Einleitung Multi - Ressourcen Management Teams / Arbeitsplätze

Mehr

Seminar Textmining SS 2015 Grundlagen des Maschinellen Lernens

Seminar Textmining SS 2015 Grundlagen des Maschinellen Lernens Seminar Textmining SS 2015 Grundlagen des Maschinellen Lernens Martin Hacker Richard Schaller Künstliche Intelligenz Department Informatik FAU Erlangen-Nürnberg 17.04.2015 Entscheidungsprobleme beim Textmining

Mehr

Knowledge Discovery. Lösungsblatt 1

Knowledge Discovery. Lösungsblatt 1 Universität Kassel Fachbereich Mathematik/nformatik Fachgebiet Wissensverarbeitung Hertie-Stiftungslehrstuhl Wilhelmshöher Allee 73 34121 Kassel Email: hotho@cs.uni-kassel.de Tel.: ++49 561 804-6252 Dr.

Mehr

BIG DATA ANALYTICS VON DER FELDDATENANALYSE ZUM QUALITÄTSFRÜHWARNSYSTEM RAINER KENT VOGT - SAS INSTITUTE GMBH

BIG DATA ANALYTICS VON DER FELDDATENANALYSE ZUM QUALITÄTSFRÜHWARNSYSTEM RAINER KENT VOGT - SAS INSTITUTE GMBH BIG DATA ANALYTICS VON DER FELDDATENANALYSE ZUM QUALITÄTSFRÜHWARNSYSTEM RAINER KENT VOGT - SAS INSTITUTE GMBH QUALITÄT ZÄHLT DIE KUNDENWAHRNEHMUNG ENTSCHEIDET 91% 91% of unhappy customers unzufriedener

Mehr

PPC und Data Mining. Seminar aus Informatik LV-911.039. Michael Brugger. Fachbereich der Angewandten Informatik Universität Salzburg. 28.

PPC und Data Mining. Seminar aus Informatik LV-911.039. Michael Brugger. Fachbereich der Angewandten Informatik Universität Salzburg. 28. PPC und Data Mining Seminar aus Informatik LV-911.039 Michael Brugger Fachbereich der Angewandten Informatik Universität Salzburg 28. Mai 2010 M. Brugger () PPC und Data Mining 28. Mai 2010 1 / 14 Inhalt

Mehr

Industrie 4.0 22.07.2014

Industrie 4.0 22.07.2014 Industrie 4.0 Georg Weissmüller 22.07.2014 Senior Consultant Fertigungsindustrie Agenda Überblick Industrie 4.0/Anwendungsfälle Intelligenter Service Augmented Reality Diskussion 2014 SAP AG or an SAP

Mehr

Towards Automated Analysis of Business Processes for Financial Audits

Towards Automated Analysis of Business Processes for Financial Audits Towards Automated Analysis of Business Processes for Financial Audits Michael Werner Universität Hamburg michael.werner@wiso.uni hamburg.de Max Brauer Allee 60 22765 Hamburg StB Prof. Dr. Nick Gehrke Nordakademie

Mehr

VL Algorithmische BioInformatik (19710) WS2013/2014 Woche 16 - Mittwoch. Annkatrin Bressin Freie Universität Berlin

VL Algorithmische BioInformatik (19710) WS2013/2014 Woche 16 - Mittwoch. Annkatrin Bressin Freie Universität Berlin VL Algorithmische BioInformatik (19710) WS2013/2014 Woche 16 - Mittwoch Annkatrin Bressin Freie Universität Berlin Vorlesungsthemen Part 1: Background Basics (4) 1. The Nucleic Acid World 2. Protein Structure

Mehr

Verborgene Schätze heben

Verborgene Schätze heben Verborgene Schätze heben Data Mining mit dem Microsoft SQL Server Martin Oesterer Leiter Vertrieb HMS Analytical Software GmbH Data Mining. Was ist eigentlich wichtig? Data Mining ist: die Extraktion von

Mehr

MEHR ANALYTICS FÜR MEHR ANWENDER DR. GERHARD SVOLBA COE ANALYTICS DACH WIEN, 11. JUNI 2015

MEHR ANALYTICS FÜR MEHR ANWENDER DR. GERHARD SVOLBA COE ANALYTICS DACH WIEN, 11. JUNI 2015 MEHR ANALYTICS FÜR MEHR ANWENDER DR. GERHARD SVOLBA COE ANALYTICS DACH WIEN, 11. JUNI 2015 DAS ERWARTET SIE IN MEINEM VORTRAG Neue Anforderungen, neue Herausforderungen, neue Möglichkeiten Software Demo:

Mehr

Large Scale Data Management

Large Scale Data Management Large Scale Data Management Beirat für Informationsgesellschaft / GOING LOCAL Wien, 21. November 2011 Prof. Dr. Wolrad Rommel FTW Forschungszentrum Telekommunikation Wien rommel@ftw.at Gartner's 2011 Hype

Mehr

Digitale Transformation - Ihre Innovationsroadmap

Digitale Transformation - Ihre Innovationsroadmap Digitale Transformation - Ihre Innovationsroadmap Anja Schneider Head of Big Data / HANA Enterprise Cloud Platform Solutions Group, Middle & Eastern Europe, SAP User Experience Design Thinking New Devices

Mehr

Inhaltsverzeichnis. a. Standorte...3 1. Data Mining... 6. b. Impressum... 23. i. Einsatzbereiche und Nutzen...6. ii. Konzepte und Techniken...

Inhaltsverzeichnis. a. Standorte...3 1. Data Mining... 6. b. Impressum... 23. i. Einsatzbereiche und Nutzen...6. ii. Konzepte und Techniken... 2 Inhaltsverzeichnis a. Standorte...3 1. Data Mining... 6 i. Einsatzbereiche und Nutzen...6 ii. Konzepte und Techniken...8 iii. Mit IBM SPSS Modeler...10 iv. Mit MS Excel 2010...12 v. Mit MS SQL Server

Mehr

SAP Predictive Analytics

SAP Predictive Analytics SAP Predictive Analytics Wissen, was morgen läuft Rebekka Ketterer, Presales Business Intelligence & Predictive Analytics 23.04.2015 Informationen sammeln und nutzen Was wir sammeln Was wir davon nutzen

Mehr

Universität Dortmund Integrating Knowledge Discovery into Knowledge Management

Universität Dortmund Integrating Knowledge Discovery into Knowledge Management Integrating Knowledge Discovery into Knowledge Management Katharina Morik, Christian Hüppe, Klaus Unterstein Univ. Dortmund LS8 www-ai.cs.uni-dortmund.de Overview Integrating given data into a knowledge

Mehr

Sentiment Analysis (SA) Robert Bärhold & Mario Sänger Text Analytics WS 2012/13 Prof. Leser

Sentiment Analysis (SA) Robert Bärhold & Mario Sänger Text Analytics WS 2012/13 Prof. Leser Sentiment Analysis (SA) Robert Bärhold & Mario Sänger Text Analytics WS 2012/13 Prof. Leser Gliederung Einleitung Problemstellungen Ansätze & Herangehensweisen Anwendungsbeispiele Zusammenfassung 2 Gliederung

Mehr

Eine neue Hoffnung - Watson Analytics verschmilzt mit Cognos BA. Erik Purwins

Eine neue Hoffnung - Watson Analytics verschmilzt mit Cognos BA. Erik Purwins Eine neue Hoffnung - Watson Analytics verschmilzt mit Cognos BA Erik Purwins Watson Kognitiv Cloud Security Open Data PPI AG 02.03.2016 > 2 Watson Analytics Cloud Security Open Data Social Media Wetterdaten

Mehr

Proseminar - Data Mining

Proseminar - Data Mining Proseminar - Data Mining SCCS, Fakultät für Informatik Technische Universität München SS 2014, SS 2014 1 Data Mining: Beispiele (1) Hausnummererkennung (Klassifikation) Source: http://arxiv.org/abs/1312.6082,

Mehr

Übungsserie Nr. 10 mit Lösungen

Übungsserie Nr. 10 mit Lösungen Übungsserie Nr. 10 mit Lösungen 1 Ein Untersuchungsdesign sieht einen multivariaten Vergleich einer Stichprobe von Frauen mit einer Stichprobe von Männern hinsichtlich der Merkmale X1, X2 und X3 vor (Codierung:

Mehr

BOARD Deutschland GmbH

BOARD Deutschland GmbH BOARD Deutschland GmbH Roger Schymik Senior PreSales Consultant BOARD Deutschland GmbH Better decisions. Better business. Der Wendepunkt WETTBEWERBSFÄHIGKEIT BI & CPM WENDEPUNKT Entscheidungs -effektivität

Mehr

Auswertung mit dem Statistikprogramm SPSS: 30.11.05

Auswertung mit dem Statistikprogramm SPSS: 30.11.05 Auswertung mit dem Statistikprogramm SPSS: 30.11.05 Seite 1 Einführung SPSS Was ist eine Fragestellung? Beispiel Welche statistische Prozedur gehört zu welcher Hypothese? Statistische Berechnungen mit

Mehr

Text Mining 4. Seminar Klassifikation

Text Mining 4. Seminar Klassifikation Text Mining 4. Seminar Klassifikation Stefan Bordag 1. Klassifikation Stringklassifikation (männliche-weibliche Vornamen) Dokument klassifikation Bayesian Neuronal network (Decision tree) (Rule learner)

Mehr

0 Einführung: Was ist Statistik

0 Einführung: Was ist Statistik 0 Einführung: Was ist Statistik 1 Datenerhebung und Messung 2 Univariate deskriptive Statistik 3 Multivariate Statistik 4 Regression 5 Ergänzungen Explorative Datenanalyse EDA Auffinden von Strukturen

Mehr

Risiken bei der Analyse sehr großer Datenmengen. Dr. Thomas Hoppe

Risiken bei der Analyse sehr großer Datenmengen. Dr. Thomas Hoppe Risiken bei der Analyse sehr großer Datenmengen Dr. Thomas Hoppe Datenaufbereitung Datenanalyse Data Mining Data Science Big Data Risiken der Analyse Sammlung Integration Transformation Fehlerbereinigung

Mehr

Eine Einführung in R: Hochdimensionale Daten: n << p Teil II

Eine Einführung in R: Hochdimensionale Daten: n << p Teil II Eine Einführung in R: Hochdimensionale Daten: n

Mehr

The integration of business intelligence and knowledge management

The integration of business intelligence and knowledge management The integration of business intelligence and knowledge management Seminar: Business Intelligence Ketevan Karbelashvili Master IE, 3. Semester Universität Konstanz Inhalt Knowledge Management Business intelligence

Mehr

Einführung in die Statistik mir R

Einführung in die Statistik mir R Einführung in die Statistik mir R ww w. syn t egris.de Überblick GESCHÄFTSFÜHRUNG Andreas Baumgart, Business Processes and Service Gunar Hofmann, IT Solutions Sven-Uwe Weller, Design und Development Jens

Mehr

Softwaremanufaktur AW-SYSTEMS Kompetenzprofil Nugget

Softwaremanufaktur AW-SYSTEMS Kompetenzprofil Nugget Softwaremanufaktur AW-SYSTEMS Kompetenzprofil Nugget Ansprechpartner/in: Frau Anja Klimek Tel. +49 (5341) 29359-20 E-Mail: a.klimek@aw-systems.net Website: www.aw-systems.net AW-SYSTEMS GmbH Moränenweg

Mehr

Time Series Data Mining

Time Series Data Mining Time Series Data Mining Mihai Paunescu Cpyright 2010, SAS Institute Inc. All rights reserved. Was ist Data Mining? Verhalten = f(merkmale) Cpyright 2010, SAS Institute Inc. All rights reserved. Statische

Mehr