x A, x / A x ist (nicht) Element von A. A B, A B A ist (nicht) Teilmenge von B. A B, A B A ist (nicht) echte Teilmenge von B.

Größe: px
Ab Seite anzeigen:

Download "x A, x / A x ist (nicht) Element von A. A B, A B A ist (nicht) Teilmenge von B. A B, A B A ist (nicht) echte Teilmenge von B."

Transkript

1 SBP Mathe Grundkurs 1 # 0 by Clifford Wolf # 0 Antwort Diese Lernkarten sind sorgfältig erstellt worden, erheben aber weder Anspruch auf Richtigkeit noch auf Vollständigkeit. Das Lernen mit Lernkarten funktioniert nur wenn die Inhalte bereits einmal verstanden worden sind. Ich warne davor diese Lernkarten nur stur auswendig zu lernen. SBP Mathe Grundkurs 1 Diese und andere Lernkarten können von heruntergeladen werden. Viel Erfolg bei der SBP Mathe Grundkurs 1 Prüfung! Clifford Wolf Diese Lernkarten stehen unter der CC BY-NC-SA Lizenz. SBP Mathe Grundkurs 1 # 1 by Clifford Wolf Mengenoperationen # 1 Antwort x A, x / A x ist (nicht) Element von A. A B, A B A ist (nicht) Teilmenge von B. A B, A B A ist (nicht) echte Teilmenge von B. A B = {x x A x B} = Schnittmenge A B = {x x A x B} = Vereinigungsmenge A \ B = {x x A x / B} = Differenzmenge A B = {(x, y) x A y B} = Produktmenge SBP Mathe Grundkurs 1 # 2 by Clifford Wolf Logische Operationen # 2 Antwort A B Äquivalenz (gleichbedeutind mit) A B Implikation (daraus folgt) A B Konjunktion (und) A B Disjunktion (oder) A B Antivalenz (ungleich, entweder-oder) A Negation (nicht) A : B Allquantor (fuer alle A gilt B) A : B Existenz (es gibt ein A fuer das B gilt) SBP Mathe Grundkurs 1 # 3 by Clifford Wolf # 3 Antwort natürliche Zahlen N = {0, 1, 2, 3,...} (N = {1, 2, 3,...})

2 SBP Mathe Grundkurs 1 # 4 by Clifford Wolf # 4 Antwort ganze Zahlen Z = {..., 3, 2, 1, 0, 1, 2, 3,...} (Z = {..., 3, 2, 1}) SBP Mathe Grundkurs 1 # 5 by Clifford Wolf # 5 Antwort rationale Zahlen Q = { z z Z, n N } n Q + = {q q Q, q > 0} Q = {q q Q, q < 0} SBP Mathe Grundkurs 1 # 6 by Clifford Wolf # 6 Antwort reelle Zahlen R = alle Zahlen auf der Zahlengerade Untermengen: R +, R, R + 0, R 0 SBP Mathe Grundkurs 1 # 7 by Clifford Wolf # 7 Antwort Assoziativgesetze (Addition und Multiplikation) a + (b + c) = (a + b) + c a (b c) = (a b) c

3 SBP Mathe Grundkurs 1 # 8 by Clifford Wolf # 8 Antwort Kommutativgesetze (Addition und Multiplikation) a + b = b + a a b = b a SBP Mathe Grundkurs 1 # 9 by Clifford Wolf # 9 Antwort Distributivgesetz der Multiplikation a (b + c) = a b + a c SBP Mathe Grundkurs 1 # 10 by Clifford Wolf # 10 Antwort Äquivialenzumformungen der Multiplikation a b = c a = c b b = c a SBP Mathe Grundkurs 1 # 11 by Clifford Wolf # 11 Antwort Äquivialenzumformungen der Addition a + b = c a = c b b = c a

4 SBP Mathe Grundkurs 1 # 12 by Clifford Wolf # 12 Antwort eine lineare Gleichung ist eine Gleichung mit den Variablen x n der Gestalt Definition: lineare Gleichung ax 1 + bx = k. Die Lösungsmenge eines linearen Gleichungssystems ist die Schnittmenge der Lösungsmengen der einzelnen Gleichungen. SBP Mathe Grundkurs 1 # 13 by Clifford Wolf # 13 Antwort Gauss sches Eliminationsverfahren ax 1 + bx 2 = c d dx 1 + ex 2 = f a adx 1 + bdx 2 = dc adx 1 aex 2 = af = (ad ad)x 1 +(bx ae)x 2 = dc af (bx ae)x 2 = dc af SBP Mathe Grundkurs 1 # 14 by Clifford Wolf # 14 Antwort Definition: Betrag a = { a a 0 a a < 0 SBP Mathe Grundkurs 1 # 15 by Clifford Wolf # 15 Antwort Definition: lineare Funktion f(x) = kx + d f(0) = d, f(x + 1) f(x) = k der Graph von f ist eine Gerade mit der Steigung k.

5 SBP Mathe Grundkurs 1 # 16 by Clifford Wolf # 16 Antwort f(x) = k x + d 2-Punkt Formel für lineare Funktion k = f(x 2) f(x 1 ) x 2 x 1 d = f(x) k x SBP Mathe Grundkurs 1 # 17 by Clifford Wolf # 17 Antwort Definition: direkte und indirekte Proportionalität direkte Proportionalität: f(x) = k x indirekte Proportionalität: f(x) = k x SBP Mathe Grundkurs 1 # 18 by Clifford Wolf # 18 Antwort Konstante Faktoren bei direkter und indirekter Proportionalität bei direkter Proportionalität: f(x) = k x f(a x) = a f(x) bei indirekter Proportionalität: f(x) = k x f(a x) = f(x) a SBP Mathe Grundkurs 1 # 19 by Clifford Wolf # 19 Antwort streng monoton steigend (wachsend): x 2 > x 1 f(x 2 ) > f(x 1 ) Definition: (streng) monoton steigend/fallend streng monoton fallend (abnehmend): x 2 > x 1 f(x 2 ) < f(x 1 ) monoton steigend (wachsend): x 2 > x 1 f(x 2 ) f(x 1 ) monoton fallend (abnehmend): x 2 > x 1 f(x 2 ) f(x 1 )

6 SBP Mathe Grundkurs 1 # 20 by Clifford Wolf # 20 Antwort f : A R, A R Definition: Graph einer reellen Funktion G = {(x; y) x A, y = f(x)} G = Graph der reellen Funktion f SBP Mathe Grundkurs 1 # 21 by Clifford Wolf # 21 Antwort Potenzieren von Ungleichungen a < b a n < b n wenn a, b R + 0 und n R+. SBP Mathe Grundkurs 1 # 22 by Clifford Wolf # 22 Antwort Mon+: Monotoniegesetz der Addition a < b a + c < b + c (a, b, c R) SBP Mathe Grundkurs 1 # 23 by Clifford Wolf # 23 Antwort Mon pos: Monotoniegesetze der Multiplikation Mon neg: a < b a c < b c c > 0 a < b a c > b c c < 0 (a, b, c R)

7 SBP Mathe Grundkurs 1 # 24 by Clifford Wolf # 24 Antwort Kehrwert und Negation bei Ungleichungen mit 0 0 < a 0 < 1 a 0 < a 0 > a 0 < a < b 0 < 1 b < 1 a (a, b R) SBP Mathe Grundkurs 1 # 25 by Clifford Wolf # 25 Antwort a < b c < d a + c < b + d Addition und Multiplikation von Ungleichungen (a, b, c, d R) a < b c < d a c < b d (a R b, c, d R + ) SBP Mathe Grundkurs 1 # 26 by Clifford Wolf # 26 Antwort Transitivgesetz der Ordnungsrelation a < b b < c a < c SBP Mathe Grundkurs 1 # 27 by Clifford Wolf # 27 Antwort (a + b = a 2 + 2ab + b 2 Formeln für Quadrat-Binome (a b = a 2 2ab + b 2 (a + b) (a b) = a 2 b 2

8 SBP Mathe Grundkurs 1 # 28 by Clifford Wolf # 28 Antwort x 2 + px + q = 0 Lösungsformel und Strategie fuer x 2 + px + q = 0 x 2 + px = q x 2 + px + ( p 2 = ( p 2 q ( x + p 2 = ( p 2 q x = p 2 ± ( p 2 q SBP Mathe Grundkurs 1 # 29 by Clifford Wolf # 29 Antwort x 2 + px + q = 0 x = p 2 ± ( p 2 q Wie viele Lösungen hat x 2 + px + q = 0? 2 Lösungen in R wenn 1 Lösung in R wenn keine Lösung in R wenn ( p 2 q > 0 ( p 2 q = 0 ( p 2 q < 0 D = ( p 2 q = Diskriminante SBP Mathe Grundkurs 1 # 30 by Clifford Wolf # 30 Antwort Seien α 1 und α 2 Lösungen von Satz von VIETA dann gilt fuer alle x R: x 2 + px + q = 0 x 2 + px + q = (x α 1 ) (x α 2 ) mit α 1 + α 2 = p und α 1 α 2 = q. SBP Mathe Grundkurs 1 # 31 by Clifford Wolf # 31 Antwort ax 2 + bx + c = 0 Lösungsformel für ax 2 + bx + c = 0 x = b± b 2 4ac 2a

9 SBP Mathe Grundkurs 1 # 32 by Clifford Wolf # 32 Antwort Definition von Polynomfunktion f(x) = a n x n + a n 1 x n a 2 x 2 + a 1 x + a 0 n = Grad der Polynomfunktion SBP Mathe Grundkurs 1 # 33 by Clifford Wolf # 33 Antwort Sei f eine Polynomfunktion n-ten Grades und α R eine Nullstelle von f, dann gibt es eine Polynomfunktion g (n 1)-ten Grades, so dass für alle x R gilt: f(x) = (x α) g(x) Abspalten eines Linearfaktors Methoden zur Ermittlung der Koeffizienten von g: Koeffizientenvergleich Polynomdivision SBP Mathe Grundkurs 1 # 34 by Clifford Wolf # 34 Antwort Beispiel - allgemeines Polynom dritter Ordnung: a 3 x 3 + a 2 x 2 + a 1 x + a 0 = (x α) (b 2 x 2 + b 1 x + b 0 ) = Methode des Koeffizientenvergleichs = b 2 x 3 +b z x 2 +b 0 x αb 2 x 2 αb 1 x αb 0 = = b }{{} 2 x 3 + (b 1 αb 2 ) x 2 + (b 0 αb 1 ) x + ( αb 0 ) }{{}}{{}}{{} a 3 a 2 a 1 a 0 b 2 = a 3, b 1 = a 2 + αb 2, b 0 = a 1 + αb 1, αb 0 = a 0 }{{} Kontrolle SBP Mathe Grundkurs 1 # 35 by Clifford Wolf # 35 Antwort Satz von Horner a n b n = (a b) (a n 1 + a n 2 b + + ab n 2 + b n 1 ) Beweis durch Ausmultiplizieren: alle Terme in der Mitte fallen weg.

10 SBP Mathe Grundkurs 1 # 36 by Clifford Wolf # 36 Antwort Potenz-Funktion = wiederholtes multiplizieren: Definition der Potenz-Funktion x n = } x x x {{ x x } n mal x = Basis, n = Exponent SBP Mathe Grundkurs 1 # 37 by Clifford Wolf # 37 Antwort Wurzel-Funktion = Umkehrung der Potenz-Funktion: Definition der Wurzel-Funktion x n = a x = n a SBP Mathe Grundkurs 1 # 38 by Clifford Wolf # 38 Antwort n a k = ( n a ) k Wurzeln von Potenzen SBP Mathe Grundkurs 1 # 39 by Clifford Wolf # 39 Antwort Potenzen mit Exponenten kleiner 1 a 1 n = n a a 0 = 1 a n = 1 a n

11 SBP Mathe Grundkurs 1 # 40 by Clifford Wolf # 40 Antwort Exponenten aus Q a k n = n a k = ( n a ) k SBP Mathe Grundkurs 1 # 41 by Clifford Wolf # 41 Antwort Potenzieren von Potenzen ( a k ) n = a k n SBP Mathe Grundkurs 1 # 42 by Clifford Wolf # 42 Antwort Potenzieren von Produkten (a b) n = a n b n SBP Mathe Grundkurs 1 # 43 by Clifford Wolf # 43 Antwort Multiplikation von Potenzen gleicher Basis a k a n = a k+n

12 SBP Mathe Grundkurs 1 # 44 by Clifford Wolf # 44 Antwort Brüche von Potenzen gleicher Basis a k a k n k > n a n = 1 k < n a n k 1 k = n SBP Mathe Grundkurs 1 # 45 by Clifford Wolf # 45 Antwort Beispiel mit 5,5% Verzinsung im Jahr: k 0 = ursprünglich eingezahler Betrag k 1, k 2, k 3,... = Betrag nach 1, 2, 3,... Jahren Verzinsung k 1 = k 0 + 0,055 k 0 = 1,055 k 0 k 2 = k 1 + 0,055 k 1 = 1,055 2 k 0 k n = 1,055 n k 0 SBP Mathe Grundkurs 1 # 46 by Clifford Wolf # 46 Antwort n a b = n a n b Wurzeln von Produkten und Brüchen n a b = n a n b SBP Mathe Grundkurs 1 # 47 by Clifford Wolf # 47 Antwort Wurzeln von Wurzeln n m a = m n a = n m a

13 SBP Mathe Grundkurs 1 # 48 by Clifford Wolf # 48 Antwort Definition der Exponentialfunktion f(x) = c a x (c, x R, a R + ) SBP Mathe Grundkurs 1 # 49 by Clifford Wolf # 49 Antwort Definition der Logarithmusfunktion a x = y x = log a (y) log a = Logarithmus zur Basis a SBP Mathe Grundkurs 1 # 50 by Clifford Wolf # 50 Antwort Definition des natürlichen Logarithmus und der natürlichen Exponentialfunktion natürliche Exponentialfunktion: exp(x) = e x natürlicher Logarithmus: ln(x) = log e (x) e = die Eulersche Zahl SBP Mathe Grundkurs 1 # 51 by Clifford Wolf # 51 Antwort Logarithmen beliebiger Basis mit dem natürlichen Logarithmus log a = ln(x) ln(a)

14 SBP Mathe Grundkurs 1 # 52 by Clifford Wolf # 52 Antwort Potenzen belibiger Basis mit der natürlichen Exponentialfunktion a x = e λ x λ = ln(a) SBP Mathe Grundkurs 1 # 53 by Clifford Wolf # 53 Antwort Monotonie von Exponentialfunktionen a x ist { streng monoton steigend a > 1 streng monoton fallend a < 1 SBP Mathe Grundkurs 1 # 54 by Clifford Wolf # 54 Antwort Logarithmen von Potenzen log a (b x ) = x log a (b) SBP Mathe Grundkurs 1 # 55 by Clifford Wolf # 55 Antwort Logarithmen von Produkten log a (x y) = log a x + log a y (Prinzip des Rechenschiebers)

15 SBP Mathe Grundkurs 1 # 56 by Clifford Wolf # 56 Antwort Unbeschränktes exponentielles Wachstum N(t) = N 0 a t = N 0 e λt mit λ = ln a λ > 0, a > 1 = exponentielles Wachstum λ < 0, a < 1 = exponentielle Abnahme SBP Mathe Grundkurs 1 # 57 by Clifford Wolf # 57 Antwort Beweis von 2 Q durch Widerspruch: 2 Q = a, b N : 2 = a b a, b teilerfremd ( ) a 2 = 2 a2 = 2 a 2 = 2b 2 b b 2 Warum kann 2 keine rationale Zahl sein? a 2 ist gerade a ist gerade (denn 2 ist eine Primzahl und muss daher bereits in a als Primfaktor enthalten sein) p N : a = 2p a 2 = (2p = 4p 2 = 2b 2 2p 2 = b 2 b 2 ist gerade b ist gerade = Widerspruch zu a, b teilerfremd = 2 Q SBP Mathe Grundkurs 1 # 58 by Clifford Wolf # 58 Antwort f(x) f(x) = k x + d Graph einer lineraen Funktion f(a + 1) f(a) 1 k d d k a a + 1 x SBP Mathe Grundkurs 1 # 59 by Clifford Wolf # 59 Antwort f(x) 1/3; 3 Symmetrisch an beiden Medianen 1/2; 2 Graph von 1/x 1; 1 f(x) = 1 x 2; 1 /2 3; 1 /3 Bei x = 0 nicht definiert! x -1; - 1 /2-1; -1

16 SBP Mathe Grundkurs 1 # 60 by Clifford Wolf # 60 Antwort f(x) f(x) = 2 x Graph der Exponentialfunktion (Am Beispiel von 2 x ) / x SBP Mathe Grundkurs 1 # 61 by Clifford Wolf # 61 Antwort f(x) f(x) = exp x Graph der Exponential- und Logarithmusfunktion Gespiegelt an der 1. Mediane 1 1 f(x) = ln x x

SBP Mathe Grundkurs 1 # 0 by Clifford Wolf. SBP Mathe Grundkurs 1

SBP Mathe Grundkurs 1 # 0 by Clifford Wolf. SBP Mathe Grundkurs 1 SBP Mathe Grundkurs 1 # 0 by Clifford Wolf SBP Mathe Grundkurs 1 # 0 Antwort Diese Lernkarten sind sorgfältig erstellt worden, erheben aber weder Anspruch auf Richtigkeit noch auf Vollständigkeit. Das

Mehr

Wiwi-Vorkurs Mathematik (Uni Leipzig, Fabricius)

Wiwi-Vorkurs Mathematik (Uni Leipzig, Fabricius) Wiwi-Vorkurs Mathematik (Uni Leipzig, Fabricius) 1 Grundregeln des Rechnens 1.1 Zahlbereiche......... Zahlen N {1, 2, 3,...}......... Zahlen Z {..., 2, 1, 0, 1, 2,...}......... Zahlen Q { a b a Z, b N}.........

Mehr

Inhaltsverzeichnis Mathematik

Inhaltsverzeichnis Mathematik 1. Mengenlehre 1.1 Begriff der Menge 1.2 Beziehungen zwischen Mengen 1.3 Verknüpfungen von Mengen (Mengenoperationen) 1.4 Übungen 1.5 Übungen (alte BM-Prüfungen) 1.6 Zahlenmengen 1.7 Grundmenge (Bezugsmenge)

Mehr

13. Funktionen in einer Variablen

13. Funktionen in einer Variablen 13. Funktionen in einer Variablen Definition. Seien X, Y Mengen. Eine Funktion f : X Y ist eine Vorschrift, wo jedem Element der Menge X eindeutig ein Element von Y zugeordnet wird. Wir betrachten hier

Mehr

Gleichungen und Ungleichungen

Gleichungen und Ungleichungen Gleichung Eine Gleichung erhalten wir durch Gleichsetzen zweier Terme. Kapitel 3 Gleichungen und Ungleichungen linke Seite = rechte Seite Grundmenge: Menge aller Zahlen, die wir als Lösung der Gleichung

Mehr

lim Der Zwischenwertsatz besagt folgendes:

lim Der Zwischenwertsatz besagt folgendes: 2.3. Grenzwerte von Funktionen und Stetigkeit 35 Wir stellen nun die wichtigsten Sätze über stetige Funktionen auf abgeschlossenen Intervallen zusammen. Wenn man sagt, eine Funktion f:[a,b] R, definiert

Mehr

4.1. Grundlegende Definitionen. Elemente der Analysis I Kapitel 4: Funktionen einer Variablen. 4.2 Graphen von Funktionen

4.1. Grundlegende Definitionen. Elemente der Analysis I Kapitel 4: Funktionen einer Variablen. 4.2 Graphen von Funktionen 4.1. Grundlegende Definitionen Elemente der Analysis I Kapitel 4: Funktionen einer Variablen Prof. Dr. Volker Schulz Universität Trier / FB IV / Abt. Mathematik 22./29. November 2010 http://www.mathematik.uni-trier.de/

Mehr

Weitere einfache Eigenschaften elementarer Funktionen

Weitere einfache Eigenschaften elementarer Funktionen Kapitel 6 Weitere einfache Eigenschaften elementarer Funktionen 6.1 Polynome Geg.: Polynom vom Grad n p(x) = a 0 + a 1 x +... + a n 1 x n 1 + a n x n, also mit a n 0. p(x) = x n ( a 0 x + a 1 n x +...

Mehr

Zahlen und elementares Rechnen

Zahlen und elementares Rechnen und elementares Rechnen Christian Serpé Universität Münster 7. September 2011 Christian Serpé (Universität Münster) und elementares Rechnen 7. September 2011 1 / 51 Gliederung 1 2 Elementares Rechnen 3

Mehr

Brückenkurs Mathematik, THM Friedberg, 15 19.9.2014

Brückenkurs Mathematik, THM Friedberg, 15 19.9.2014 egelsammlung mb2014 THM Friedberg von 6 16.08.2014 15:04 Brückenkurs Mathematik, THM Friedberg, 15 19.9.2014 Sammlung von Rechenregeln, extrahiert aus dem Lehrbuch: Erhard Cramer, Johanna Neslehová: Vorkurs

Mehr

Einiges zu den Potenzfunktionen. Exponentialfunktionen

Einiges zu den Potenzfunktionen. Exponentialfunktionen Einiges zu den Potenzfunktionen Es sind zunächst zwei Arten der Potenzfunktionen zu unterscheiden. Erstens die eigentlichen Potenzfunktionen, bei denen die Variable x als Basis von Potenzen vorkommt. Diese

Mehr

Mathematikaufgaben zur Vorbereitung auf das Studium

Mathematikaufgaben zur Vorbereitung auf das Studium Hochschule für Technik und Wirtschaft Dresden (FH) Fachbereich Informatik/Mathematik Mathematikaufgaben zur Vorbereitung auf das Studium Studiengänge Informatik Medieninformatik Wirtschaftsinformatik Wirtschaftsingenieurwesen

Mehr

Zahlen und Gleichungen

Zahlen und Gleichungen Kapitel 2 Zahlen und Gleichungen 21 Reelle Zahlen Die Menge R der reellen Zahlen setzt sich zusammen aus den rationalen und den irrationalen Zahlen Die Mengen der natürlichen Zahlen N, der ganzen Zahlen

Mehr

Exponentialfunktion, Logarithmus

Exponentialfunktion, Logarithmus Exponentialfunktion, Logarithmus. Die Exponentialfunktion zu einer Basis > 0 Bei Exponentialfunktionen ist die Basis konstant und der Exponent variabel... Die Exponentialfunktion zu einer Basis > 0. Sei

Mehr

Zuammenfassung: Reelle Funktionen

Zuammenfassung: Reelle Funktionen Zuammenfassung: Reelle Funktionen 1 Grundlegendes a) Zahlenmengen IN = {1; 2; 3; 4;...} Natürliche Zahlen IN 0 = IN {0} Natürliche Zahlen mit 0 ZZ = {... ; 2; 1; 0; 1; 2;...} Ganze Zahlen Q = { z z ZZ,

Mehr

Der natürliche Logarithmus. logarithmus naturalis

Der natürliche Logarithmus. logarithmus naturalis Der natürliche Logarithmus ln logarithmus naturalis Zur Erinnerung: Die Exponentialfunktion y = exp(x) ist festgelegt durch 2 y = exp(x) y (x) = y(x) 0 x y(0) = 2 Zur Erinnerung: e := y() 2.78 exp(x) =

Mehr

Einleitung 1. 3 Beweistechniken und einige Beweise Teil I 19

Einleitung 1. 3 Beweistechniken und einige Beweise Teil I 19 Inhaltsverzeichnis Inhaltsverzeichnis iv Einleitung 1 1 Aussagen, Mengen und Quantoren 3 1.1 Aussagen und logische Verknüpfungen........................ 3 1.2 Mengen.........................................

Mehr

2. Mathematische Grundlagen

2. Mathematische Grundlagen 2. Mathematische Grundlagen Erforderliche mathematische Hilfsmittel: Summen und Produkte Exponential- und Logarithmusfunktionen 21 2.1 Endliche Summen und Produkte Betrachte n reelle Zahlen a 1, a 2,...,

Mehr

f : x 2 x f : x 1 Exponentialfunktion zur Basis a. Für alle Exponentialfunktionen gelten die Gleichungen (1) a x a y = a x+y (2) ax a y = ax y

f : x 2 x f : x 1 Exponentialfunktion zur Basis a. Für alle Exponentialfunktionen gelten die Gleichungen (1) a x a y = a x+y (2) ax a y = ax y 5. Die natürliche Exponentialfunktion und natürliche Logarithmusfunktion ================================================================== 5.1 Die natürliche Exponentialfunktion f : x 2 x f : x 1 2 x

Mehr

Funktionen. Mathematik-Repetitorium

Funktionen. Mathematik-Repetitorium Funktionen 4.1 Funktionen einer reellen Veränderlichen 4.2 Eigenschaften von Funktionen 4.3 Die elementaren Funktionen 4.4 Grenzwerte von Funktionen, Stetigkeit Funktionen 1 4. Funktionen Funktionen 2

Mehr

Vorkurs: Mathematik für Informatiker

Vorkurs: Mathematik für Informatiker Vorkurs: Mathematik für Informatiker Teil 3 Wintersemester 2016/17 Steven Köhler mathe@stevenkoehler.de mathe.stevenkoehler.de 2 c 2016 Steven Köhler Wintersemester 2016/17 Inhaltsverzeichnis Teil 1 Teil

Mehr

Mathematik II für Studierende der Informatik. Wirtschaftsinformatik (Analysis und lineare Algebra) im Sommersemester 2016

Mathematik II für Studierende der Informatik. Wirtschaftsinformatik (Analysis und lineare Algebra) im Sommersemester 2016 und Wirtschaftsinformatik (Analysis und lineare Algebra) im Sommersemester 2016 5. Juni 2016 Definition 5.21 Ist a R, a > 0 und a 1, so bezeichnet man die Umkehrfunktion der Exponentialfunktion x a x als

Mehr

Mathematische Zeichen und Abkürzungen 11. Grundlagen der Aussagenlogik und der Mengenlehre 13

Mathematische Zeichen und Abkürzungen 11. Grundlagen der Aussagenlogik und der Mengenlehre 13 Inhaltsverzeichnis Mathematische Zeichen und Abkürzungen 11 Grundlagen der Aussagenlogik und der Mengenlehre 13 1 Grundbegriffe der Aussagenlogik und ihre Verwendung in der Datenverarbeitung 13 1.1 Aussagen

Mehr

Potenzen - Wurzeln - Logarithmen

Potenzen - Wurzeln - Logarithmen Potenzen - Wurzeln - Logarithmen Anna Geyer 4. Oktober 2006 1 Potenzrechnung Potenz Produkt mehrerer gleicher Faktoren 1.1 Definition (Potenz): (i) a n : a... a, n N, a R a... Basis n... Exponent od. Hochzahl

Mehr

STOFFPLAN MATHEMATIK

STOFFPLAN MATHEMATIK STOFFPLAN MATHEMATIK 1. Semester (2 Wochenstunden) Mengenlehre Reelle Zahlen Lineare Gleichungen und Ungleichungen mit einer Unbekannten Funktionen und ihre Graphen Lineare Funktionen Aufgaben aus der

Mehr

Reelle Zahlen, Gleichungen und Ungleichungen

Reelle Zahlen, Gleichungen und Ungleichungen 9 2. Vorlesung Reelle Zahlen, Gleichungen und Ungleichungen 4 Zahlenmengen und der Körper der reellen Zahlen 4.1 Zahlenmengen * Die Menge der natürlichen Zahlen N = {0,1,2,3,...}. * Die Menge der ganzen

Mehr

1 Potenzen und Polynome

1 Potenzen und Polynome 1 Potenzen und Polynome Für eine reelle Zahl x R und eine natürliche Zahl n N definieren wir x n := x x x... x }{{} n-mal Einschub über die bisher aufgetretenen mathematischen Symbole: Definition mittels

Mehr

Exponential- u. Logarithmusfunktionen. Funktionen. Exponentialfunktion u. Logarithmusfunktionen. Los geht s Klick auf mich!

Exponential- u. Logarithmusfunktionen. Funktionen. Exponentialfunktion u. Logarithmusfunktionen. Los geht s Klick auf mich! Exponential- u. Logarithmusfunktionen Los geht s Klick auf mich! Melanie Gräbner Inhalt Exponentialfunktion Euler sche Zahl Formel für Wachstum/Zerfallsfunktionen Logarithmen Logarithmusfunktionen Exponentialgleichung

Mehr

Mathematik für Wirtschaftswissenschaftler. Universität Trier Wintersemester 2013 / 2014

Mathematik für Wirtschaftswissenschaftler. Universität Trier Wintersemester 2013 / 2014 Mathematik für Universität Trier Wintersemester 2013 / 2014 Inhalt der Vorlesung 1. Gleichungen und Summen 2. Grundlagen der Funktionslehre 3. Rechnen mit Funktionen 4. Optimierung von Funktionen 5. Funktionen

Mehr

Brückenkurs Mathematik. Dienstag Freitag

Brückenkurs Mathematik. Dienstag Freitag Brückenkurs Mathematik Dienstag 29.09. - Freitag 9.10.2015 Vorlesung 2 Mengen, Zahlen, Logik Kai Rothe Technische Universität Hamburg-Harburg Mittwoch 30.09.2015 Mengen.................................

Mehr

Kapitel 2 Algebra und Arithmetik. Inhalt

Kapitel 2 Algebra und Arithmetik. Inhalt Kapitel 2 Algebra und Arithmetik Seite 1 Inhalt 2.1 Zahlbereiche N, Z, Q, R 2.2 Terme und (Un-) Gleichungen Lineare und quadratische Gleichungen, Nullstellen von Polynomen und gebrochenrationalen Funktionen,

Mehr

Grundwissen 10. Überblick: Gradmaß rπ Länge eines Bogens zum Mittelpunktswinkels α: b = α

Grundwissen 10. Überblick: Gradmaß rπ Länge eines Bogens zum Mittelpunktswinkels α: b = α Grundwissen 0. Berechnungen an Kreis und Kugel a) Bogenmaß Beispiel: Gegeben ist ein Winkel α=50 ; dann gilt: b = b = π 50 0,8766 r r 360 Die (reelle) Zahl ist geeignet, die Größe eines Winkels anzugeben.

Mehr

gebrochene Zahl gekürzt mit 9 sind erweitert mit 8 sind

gebrochene Zahl gekürzt mit 9 sind erweitert mit 8 sind Vorbereitungsaufgaben Mathematik. Bruchrechnung.. Grundlagen: gebrochene Zahl gemeiner Bruch Zähler Nenner Dezimalbruch Ganze, Zehntel Hundertstel Tausendstel Kürzen: Zähler und Nenner durch dieselbe Zahl

Mehr

Propädeutikum Mathematik

Propädeutikum Mathematik Propädeutikum Mathematik Wintersemester 2016/2017 Prof. Dr. Dieter Leitmann Abteilung WI WiSe 2016/17 Seite 1 Literaturhinweise Cramer, E., Neslehova, J.: Vorkurs Mathematik, Springer, 2004 Piehler, Sippel,

Mehr

Propädeutikum Mathematik

Propädeutikum Mathematik Propädeutikum Mathematik Sommersemester 2016 Carsten Krupp BBA Seite 1 Literaturhinweise Cramer, E., Neslehova, J.: Vorkurs Mathematik, Springer, 2004 Piehler, Sippel, Pfeiffer: Mathematik zum Studieneinstieg,

Mehr

Inhaltsverzeichnis 1 Rechnen 1.1 Die Zahlen 1.2 Zahlen darstellen 1.3 Addieren 1.4 Subtrahieren 1.5 Vereinfachen algebraischer Summen

Inhaltsverzeichnis 1 Rechnen 1.1 Die Zahlen 1.2 Zahlen darstellen 1.3 Addieren 1.4 Subtrahieren 1.5 Vereinfachen algebraischer Summen 6 Inhaltsverzeichnis 1 Rechnen... 11 1.1 Die Zahlen... 11 1.1.1 Zahlenmengen und ihre Darstellung... 11 1.1.2 Übersicht über weitere Zahlenmengen... 17 1.1.3 Zahlen vergleichen... 18 1.1.4 Größen, Variablen

Mehr

Mathematik für Naturwissenschaftler I WS 2009/2010

Mathematik für Naturwissenschaftler I WS 2009/2010 Mathematik für Naturwissenschaftler I WS 2009/2010 Lektion 4 23. Oktober 2009 Kapitel 1. Mengen, Abbildungen und Funktionen (Fortsetzung) Berechnung der Umkehrfunktion 1. Man löst die vorgegebene Funktionsgleichung

Mehr

Fit für die MSS? Wiederholungsaufgaben aus Klasse 8-10

Fit für die MSS? Wiederholungsaufgaben aus Klasse 8-10 Fit für die MSS? Wiederholungsaufgaben aus Klasse 8-0 Aufgaben Richtig Themengebiet : Terme /. Vereinfache: (9x ) + 3x xy + x ( 3xy) (x + 3) (x ) + (x + 3)² abc 5x 0 3yx x +. Kürze: a) b) c) d) 5a² b 5

Mehr

Inhalt. Vorkurs Mathematik für Studierende der Wirtschaftswissenschaften, Gesundheitsökonomie und Drucktechnik. Visitenkarte.

Inhalt. Vorkurs Mathematik für Studierende der Wirtschaftswissenschaften, Gesundheitsökonomie und Drucktechnik. Visitenkarte. für Studierende der Wirtschaftswissenschaften, Gesundheitsökonomie und Drucktechnik Dr. Michael Stiglmayr Bergische Universität Wuppertal Fachbereich C - und Informatik Wintersemester 01/016 Inhalt Grundlagen

Mehr

Vertiefungskurs Mathematik

Vertiefungskurs Mathematik Vertiefungskurs Mathematik Anforderungen für das Universitäts-Zertifikat im Schuljahr 01/13 Grundvoraussetzung: Teilnahme am Vertiefungskurs Mathematik in Klasse 11. Inhaltliche Voraussetzungen: Aussagenlogik

Mehr

2.3 Logarithmus. b). a n = b n = log a. b für a,b 0 ( : gesprochen genau dann bedeutet, dass beide Definitionen gleichwertig sind) Oder log a

2.3 Logarithmus. b). a n = b n = log a. b für a,b 0 ( : gesprochen genau dann bedeutet, dass beide Definitionen gleichwertig sind) Oder log a 2.3 Logarithmus Bsp. Seite 84 mitte: Wie lange muss man Fr. 10 000.- zu 5,1% anlegen, um Fr. 16 000.- zu erhalten? Lösen Sie die Zinseszinsformel nach q n auf Aus q n erfolgt die Berechnung von n mittels

Mehr

Gleichungen und Ungleichungen

Gleichungen und Ungleichungen Gleichungen Ungleichungen. Lineare Gleichungen Sei die Gleichung ax = b gegeben, wobei x die Unbekannte ist a, b reelle Zahlen sind. Diese Gleichung hat als Lösung die einzige reelle Zahl x = b, falls

Mehr

Brückenkurs Mathematik

Brückenkurs Mathematik Brückenkurs Mathematik 6.10. - 17.10. Vorlesung 1 Logik,, Doris Bohnet Universität Hamburg - Department Mathematik Mo 6.10.2008 Zeitplan Tagesablauf: 9:15-11:45 Vorlesung Audimax I 13:00-14:30 Übung Übungsräume

Mehr

17 Logarithmus und allgemeine Potenz

17 Logarithmus und allgemeine Potenz 7 Logarithmus und allgemeine Potenz 7. Der natürliche Logarithmus 7.3 Die allgemeine Potenz 7.4 Die Exponentialfunktion zur Basis a 7.5 Die Potenzfunktion zum Exponenten b 7.6 Die Logarithmusfunktion zur

Mehr

Brückenkurs Mathematik

Brückenkurs Mathematik Brückenkurs Mathematik Von Dr. Karl Bosch Professor für angewandte Mathematik und Statistik an der Universität Stuttgart-Hohenheim 10., verbesserte Auflage R. Oldenbourg Verlag München Wien Inhaltsverzeichnis

Mehr

Komplexe Zahlen. Rainer Hauser. Januar 2015

Komplexe Zahlen. Rainer Hauser. Januar 2015 Komplexe Zahlen Rainer Hauser Januar 015 1 Einleitung 1.1 Zahlen und Operationen auf Zahlen Addiert man mit Eins als erster gegebener Zahl beginnend sukzessive Eins zu einer bereits gefundenen Zahl, so

Mehr

Vorkurs Mathematik 2016

Vorkurs Mathematik 2016 Vorkurs Mathematik 2016 Natürliche Zahlen Der grundlegende Zahlenbereich ist die Menge der natürlichen Zahlen N = {1, 2, 3,...}. In vielen Fällen ist es sinnvoll die Zahl 0 mit einzubeziehen: N 0 = N [

Mehr

Inhaltsverzeichnis. Grundlagen. 1. Grundlagen 13. Algebra I. 2. Das Rechnen mit ganzen Zahlen (Rechnen in ) 25

Inhaltsverzeichnis. Grundlagen. 1. Grundlagen 13. Algebra I. 2. Das Rechnen mit ganzen Zahlen (Rechnen in ) 25 Inhaltsverzeichnis I Grundlagen 1. Grundlagen 13 1.1 Von Mengen... 13 1.2 Mengenschreibweise... 13 1.3 Zahlenmengen... 14 1.4 Die Grundoperationen... 16 1.5 Rechenhierarchie (1. Teil)... 16 1.6 Reihenfolge

Mehr

Schulstoff. Übungen zur Einführung in die Analysis. (Einführung in das mathematische Arbeiten) Sommersemester 2010

Schulstoff. Übungen zur Einführung in die Analysis. (Einführung in das mathematische Arbeiten) Sommersemester 2010 Übungen zur Einführung in die Analysis (Einführung in das mathematische Arbeiten) Sommersemester 010 Schulstoff 1. Rechnen mit Potenzen und Logarithmen 1. Wiederholen Sie die Definiton des Logarithmus

Mehr

Thema 4 Limiten und Stetigkeit von Funktionen

Thema 4 Limiten und Stetigkeit von Funktionen Thema 4 Limiten und Stetigkeit von Funktionen Wir betrachten jetzt Funktionen zwischen geeigneten Punktmengen. Dazu wiederholen wir einige grundlegende Begriffe und Schreibweisen aus der Mengentheorie.

Mehr

Biostatistik, Winter 2011/12

Biostatistik, Winter 2011/12 Biostatistik, Winter 2011/12 Summen, Exponentialfunktion, Ableitung Prof. Dr. Achim Klenke http://www.aklenke.de 2. Vorlesung: 04.11.2011 1/46 Inhalt 1 Summen und Produkte Summenzeichen Produktzeichen

Mehr

$Id: stetig.tex,v /06/26 15:40:18 hk Exp $

$Id: stetig.tex,v /06/26 15:40:18 hk Exp $ $Id: stetig.tex,v 1.11 2012/06/26 15:40:18 hk Exp $ 9 Stetigkeit 9.1 Eigenschaften stetiger Funktionen Am Ende der letzten Sitzung hatten wir eine der Grundeigenschaften stetiger Funktionen nachgewiesen,

Mehr

Vorkurs Mathematik. Vorbereitung auf das Bachelorstudium im Fachbereich II IPO und Marketing. Anni Schmalz HWS 2015/

Vorkurs Mathematik. Vorbereitung auf das Bachelorstudium im Fachbereich II IPO und Marketing. Anni Schmalz HWS 2015/ Vorkurs Mathematik Anni Schmalz Vorbereitung auf das Bachelorstudium im Fachbereich II IPO und Marketing HWS 2015/2015 14. 18.09.2015 2 Mathe Online Kurs Hier mit seinem Namen und seiner Normalen email

Mehr

Hans Marthaler, Benno Jakob, Reto Reuter ALGEBRA. Operationen, Gleichungen, Funktionen + DATENANALYSE

Hans Marthaler, Benno Jakob, Reto Reuter ALGEBRA. Operationen, Gleichungen, Funktionen + DATENANALYSE Hans Marthaler, Benno Jakob, Reto Reuter ALGEBRA + DATENANALYSE Operationen, Gleichungen, Funktionen y x VORWORT Mathematik ist ein wichtiges Hilfsmittel und Werkzeug, um naturwissenschaftliche und technische

Mehr

Grundlagen (überwiegend Schulstoff)

Grundlagen (überwiegend Schulstoff) WS 6/7 Grundlagen (überwiegend Schulstoff) teilweise kompakte Wiederholung in Vorlesung/Übung semesterbegleitende Aufarbeitung in den Tutorien Viele der unten genannten Begriffe sind in folgendem Sinne

Mehr

Diplom Mathematiker Wolfgang Kinzner. 17. Oktober Technische Universität München. Die abc-formel. W. Kinzner. Problemstellung.

Diplom Mathematiker Wolfgang Kinzner. 17. Oktober Technische Universität München. Die abc-formel. W. Kinzner. Problemstellung. Diplom Mathematiker Wolfgang Kinzner Technische Universität München 17. Oktober 2013 1 / 9 Inhaltsverzeichnis 1 2 / 9 Inhaltsverzeichnis 1 2 2 / 9 Inhaltsverzeichnis 1 2 3 2 / 9 Inhaltsverzeichnis 1 2

Mehr

Vorbereitungskurse Mathematik für zukünftige Bachelor-Studierende an der Hochschule Luzern Wirtschaft

Vorbereitungskurse Mathematik für zukünftige Bachelor-Studierende an der Hochschule Luzern Wirtschaft Vorbereitungskurse Mathematik für zukünftige Bachelor-Studierende an der Bei Studienbeginn am 19. September 2016 wird im Fach Mathematik die Beherrschung des Stoffes der kaufmännischen Berufsmatura vorausgesetzt.

Mehr

Vorkurs Mathematik. Vorbereitung auf das Studium der Mathematik. Skript

Vorkurs Mathematik. Vorbereitung auf das Studium der Mathematik. Skript Vorkurs Mathematik Vorbereitung auf das Studium der Mathematik Skript Dr. Johanna Dettweiler Institut für Analysis 20. Oktober 2009 Inhaltsverzeichnis Einleitung 7 1 Aussagen und Mengen 9 1.1 Aussagen:

Mehr

Kapitel 6. Exponentialfunktion

Kapitel 6. Exponentialfunktion Kapitel 6. Exponentialfunktion 6.1. Potenzreihen In Kap. 4 haben wir Reihen ν=0 a ν studiert, wo die Glieder feste Zahlen sind. Die Summe solcher Reihen ist wieder eine Zahl, z.b. die Eulersche Zahl e.

Mehr

Mathematik II für Studierende der Informatik. Wirtschaftsinformatik (Analysis und lineare Algebra) im Sommersemester 2016

Mathematik II für Studierende der Informatik. Wirtschaftsinformatik (Analysis und lineare Algebra) im Sommersemester 2016 und Wirtschaftsinformatik (Analysis und lineare Algebra) im Sommersemester 2016 25. April 2016 Die Dimensionsformel Definition 3.9 Sei f : V W eine lineare Abbildung zwischen zwei K-Vektorräumen. Der Kern

Mehr

Einführung in das mathematische Arbeiten im SS Funktionen. Evelina Erlacher 1 7. März 2007

Einführung in das mathematische Arbeiten im SS Funktionen. Evelina Erlacher 1 7. März 2007 Workshops zur VO Einführung in das mathematische Arbeiten im SS 007 Inhaltsverzeichnis Funktionen Evelina Erlacher 7. März 007 Der Funktionsbegriff Darstellungsmöglichkeiten von Funktionen 3 Einige Typen

Mehr

2. Spezielle anwendungsrelevante Funktionen

2. Spezielle anwendungsrelevante Funktionen 2. Spezielle anwendungsrelevante Funktionen (1) Affin-lineare Funktionen Eine Funktion f : R R heißt konstant, wenn ein c R mit f (x) = c für alle x R existiert linear, wenn es ein a R mit f (x) = ax für

Mehr

4 FUNKTIONEN 71. Sind a < b und c < d zwei reelle Zahlen, so nennt man [a, b] [c, d] ein abgeschlossenes Rechteck.

4 FUNKTIONEN 71. Sind a < b und c < d zwei reelle Zahlen, so nennt man [a, b] [c, d] ein abgeschlossenes Rechteck. 4 FUNKTIONEN 7 4 Funktionen Die Paarmengen {x, y} und {y, x} sind gleich, weil sie die gleichen Elemente enthalten. Manchmal legt man aber zusätzlich Wert auf die Reihenfolge der Elemente. Die Objekte

Mehr

Rationale, irrationale und reelle Zahlen. 4-E Vorkurs, Mathematik

Rationale, irrationale und reelle Zahlen. 4-E Vorkurs, Mathematik Rationale, irrationale und reelle Zahlen 4-E Vorkurs, Mathematik Rationale Zahlen Der Grund für die Einführung der rationalen Zahlen ist der, dass wir mit ihnen auch Gleichungen der Form q x = p lösen

Mehr

Passerelle. Beschrieb der Fach-Module. von der Berufsmaturität. zu den universitären Hochschulen

Passerelle. Beschrieb der Fach-Module. von der Berufsmaturität. zu den universitären Hochschulen Passerelle von der Berufsmaturität zu den universitären Hochschulen Beschrieb der Fach-Module Fachbereich Mathematik Teilmodule Teilmodul 1: Analysis (Differential- und Integralrechnung) Teilmodul 2: Vektorgeometrie

Mehr

Übungsbuch Algebra für Dummies

Übungsbuch Algebra für Dummies ...für Dummies Übungsbuch Algebra für Dummies von Mary Jane Sterling, Alfons Winkelmann 1. Auflage Wiley-VCH Weinheim 2012 Verlag C.H. Beck im Internet: www.beck.de ISBN 978 3 527 70800 0 Zu Leseprobe

Mehr

Grundlagen der höheren Mathematik Einige Hinweise zum Lösen von Gleichungen

Grundlagen der höheren Mathematik Einige Hinweise zum Lösen von Gleichungen Grundlagen der höheren Mathematik Einige Hinweise zum Lösen von Gleichungen 1. Quadratische Gleichungen Quadratische Gleichungen lassen sich immer auf die sog. normierte Form x 2 + px + = 0 bringen, in

Mehr

1 Beschreibung der Grundlagen

1 Beschreibung der Grundlagen Westsächsische Hochschule Zwickau Fachgruppe Mathematik Grundlagen Inhaltsverzeichnis Aufgaben zu den Grundlagen findet man über den folgenden Link: Aufgaben zu den Grundlagen 01 1 Beschreibung der Grundlagen

Mehr

Gleichungen Aufgaben und Lösungen

Gleichungen Aufgaben und Lösungen Gleichungen Aufgaben und Lösungen http://www.fersch.de Klemens Fersch 6. Januar 3 Inhaltsverzeichnis Lineare Gleichung. a x + b = c....................................................... Aufgaben....................................................

Mehr

Wirtschaftsmathematik für International Management (BA) und Betriebswirtschaft (BA)

Wirtschaftsmathematik für International Management (BA) und Betriebswirtschaft (BA) Wirtschaftsmathematik für International Management (BA) und Betriebswirtschaft (BA) Wintersemester 2013/14 Hochschule Augsburg : Gliederung 1 Aussagenlogik 2 Lineare Algebra 3 Lineare Programme 4 Folgen

Mehr

In diesem ersten Abschnitt werden die gebräuchlichsten Bezeichnungen und Symbole definiert. N = {1,2,3,...}, p in Z,q in N}.

In diesem ersten Abschnitt werden die gebräuchlichsten Bezeichnungen und Symbole definiert. N = {1,2,3,...}, p in Z,q in N}. 1 1 Grundlagen 1.1 Zahlen, Mengen und Symbole In diesem ersten Abschnitt werden die gebräuchlichsten Bezeichnungen und Symbole definiert. Zahlenmengen Die Menge N der natürlichen Zahlen ist gegeben durch

Mehr

GRUNDKURS MATHEMATIK. Zahlenmengen. Natürliche Zahlen. Ganze Zahlen. Gebrochene Zahlen { } Rationale Zahlen { } Irrationale Zahlen { } Reelle Zahlen

GRUNDKURS MATHEMATIK. Zahlenmengen. Natürliche Zahlen. Ganze Zahlen. Gebrochene Zahlen { } Rationale Zahlen { } Irrationale Zahlen { } Reelle Zahlen GRUNDKURS MATHEMATIK Zahlenmengen Natürliche Zahlen Ganze Zahlen : 0, 1, 2, 3, Gebrochene Zahlen { } : 0, -1, 1, - Rationale Zahlen { } : 0,,, - Irrationale Zahlen { } : 0, -, Reelle Zahlen Addition und

Mehr

ASK INFORMATIONEN ZUM AUFNAHMETEST MATHEMATIK. Inhalt. 1 Anforderungen... 2. 2 Aufgaben... 9. 3 Lösungen... 11. 4 Ausführliche Lösungen...

ASK INFORMATIONEN ZUM AUFNAHMETEST MATHEMATIK. Inhalt. 1 Anforderungen... 2. 2 Aufgaben... 9. 3 Lösungen... 11. 4 Ausführliche Lösungen... ASK Hochschule Konstanz HTWG www.ask.htwg-konstanz.de INFORMATIONEN ZUM AUFNAHMETEST MATHEMATIK Inhalt 1 Anforderungen... 2 2 Aufgaben... 9 3 Lösungen... 11 4 Ausführliche Lösungen... 15 5 Musterprüfungen...

Mehr

Der Logarithmus als Umkehrung der Exponentiation

Der Logarithmus als Umkehrung der Exponentiation Der Logarithmus als Umkehrung der Exponentiation -E -E2 Voraussetzungen Umkehrfunktion: Welche Funktionen haben eine Umkehrfunktion? Warum sind Umkehrfunktionen so wichtig? Exponentialfunktion: Definition

Mehr

Technische Mathematik

Technische Mathematik Lehrplan Technische Mathematik Fachschule für Technik Fachrichtungsbezogener Lernbereich Ministerium für Bildung, Kultur und Wissenschaft Hohenzollernstraße 60, 66117 Saarbrücken Postfach 10 24 52, 66024

Mehr

Elemente der Analysis I Kapitel 2: Einführung II, Gleichungen

Elemente der Analysis I Kapitel 2: Einführung II, Gleichungen Elemente der Analysis I Kapitel 2: Einführung II, Gleichungen Prof. Dr. Volker Schulz Universität Trier / FB IV / Abt. Mathematik 8. November 2010 http://www.mathematik.uni-trier.de/ schulz/elan-ws1011.html

Mehr

Technische Universität München Zentrum Mathematik. Übungsblatt 7

Technische Universität München Zentrum Mathematik. Übungsblatt 7 Technische Universität München Zentrum Mathematik Mathematik (Elektrotechnik) Prof. Dr. Anusch Taraz Dr. Michael Ritter Übungsblatt 7 Hausaufgaben Aufgabe 7. Für n N ist die Matrix-Exponentialfunktion

Mehr

Mathematischer Vorbereitungskurs für Ökonomen

Mathematischer Vorbereitungskurs für Ökonomen Mathematischer Vorbereitungskurs für Ökonomen Dr. Thomas Zehrt Wirtschaftswissenschaftliches Zentrum Universität Basel Gleichungen Inhalt: 1. Grundlegendes 2. Lineare Gleichungen 3. Gleichungen mit Brüchen

Mehr

3. DER NATÜRLICHE LOGARITHMUS

3. DER NATÜRLICHE LOGARITHMUS 3. DER NATÜRLICHE LOGARITHMUS ln Der natürliche Logarithmus ln(x) betrachtet als Funktion in x, ist die Umkehrfunktion der Exponentialfunktion exp(x). Das bedeutet, für reelle Zahlen a und b gilt b = ln(a)

Mehr

MATHEMATIK. Einleitung

MATHEMATIK. Einleitung MATHEMATIK Einleitung Der Anforderungskatalog geht von Schultypen mit drei Wochenstunden in jeder Schulstufe aus. Die kursiv gesetzten Inhalte sind für alle Schulstufen mit mehr als drei Wochenstunden

Mehr

Q11-Mathematik-Wissen kompakt (mit CAS-Befehlen)

Q11-Mathematik-Wissen kompakt (mit CAS-Befehlen) Q11-Mathematik-Wissen kompakt Jahrgang 2014/16 S. 1 Q11-Mathematik-Wissen kompakt (mit CAS-Befehlen) Gebrochen rationale Funktionen Funktionen der Form f(x) = p(x), p(x) und q(x) ganzrationale Funktionen

Mehr

Übungen zur Vorlesung Differential und Integralrechnung I Lösungsvorschlag

Übungen zur Vorlesung Differential und Integralrechnung I Lösungsvorschlag MATHEMATISCHES INSTITUT DER UNIVERSITÄT MÜNCHEN Dr. E. Schörner WS 203/4 Blatt 20.0.204 Übungen zur Vorlesung Differential und Integralrechnung I Lösungsvorschlag 4. a) Für a R betrachten wir die Funktion

Mehr

Partialbruchzerlegung für Biologen

Partialbruchzerlegung für Biologen Partialbruchzerlegung für Biologen Rationale Funktionen sind Quotienten zweier Polynome, und sie tauchen auch in der Biologie auf. Die Partialbruchzerlegung bedeutet, einen einfacheren Ausdruck für eine

Mehr

Vorkurs Mathematik für Wirtschaftswissenschaftler

Vorkurs Mathematik für Wirtschaftswissenschaftler Vorkurs Mathematik für Wirtschaftswissenschaftler Prof. Dr. M. Heilmann Fakultät für Mathematik und Naturwissenschaften Bergische Universität Wuppertal September 06 c 06 Heilmann, Bergische Universität

Mehr

1 Mengen und Mengenoperationen

1 Mengen und Mengenoperationen 1 Mengen und Mengenoperationen Man kann verschiedene Objekte mit gemeinsamen Eigenschaften zu Mengen zusammenfassen. In der Mathematik kann man z.b. Zahlen zu Mengen zusammenfassen. Die Zahlen 0; 1; 2;

Mehr

Mathematik leicht gemacht

Mathematik leicht gemacht Mathematik leicht gemacht von Prof. Dr.-Ing. H. Kreul, K. Kulke H. Pester, R. Schroedter mit 457 Abbildungen und 781 Aufgaben mit Lösungen 4. Auflage Verlag Harri Deutsch Thun und Frankfurt am Main Inhaltsverzeichnis

Mehr

Zahlen und metrische Räume

Zahlen und metrische Räume Zahlen und metrische Räume Natürliche Zahlen : Die natürlichen Zahlen sind die grundlegendste Zahlenmenge, da man diese Menge für das einfache Zählen verwendet. N = {1, 2, 3, 4,...} bzw. N 0 = {0, 1, 2,

Mehr

Mathematik anschaulich dargestellt

Mathematik anschaulich dargestellt Peter Dörsam Mathematik anschaulich dargestellt für Studierende der Wirtschaftswissenschaften 15. überarbeitete Auflage mit zahlreichen Abbildungen PD-Verlag Heidenau Inhaltsverzeichnis 1 Lineare Algebra

Mehr

Vorkurs Mathematik 1

Vorkurs Mathematik 1 Vorkurs Mathematik 1 Einführung in die mathematische Notation Konstanten i komplexe Einheit i 2 + 1 = 0 e Eulersche Zahl Kreiszahl 2 Einführung in die mathematische Notation Bezeichner Primzahlen, Zähler

Mehr

7 Rechnen mit Polynomen

7 Rechnen mit Polynomen 7 Rechnen mit Polynomen Zu Polynomfunktionen Satz. Zwei Polynomfunktionen und f : R R, x a n x n + a n 1 x n 1 + a 1 x + a 0 g : R R, x b n x n + b n 1 x n 1 + b 1 x + b 0 sind genau dann gleich, wenn

Mehr

Wirtschaftsmathematik Plus für International Management (BA) und Betriebswirtschaft (BA)

Wirtschaftsmathematik Plus für International Management (BA) und Betriebswirtschaft (BA) Wirtschaftsmathematik Plus für International Management (BA) und Betriebswirtschaft (BA) Wintersemester 2012/13 Hochschule Augsburg Aufgabe 98 12.12.2012 Untersuchen Sie die Funktion f W R! R mit f.x/

Mehr

Inhaltsverzeichnis. Vorwort Kapitel 1 Einführung, I: Algebra Kapitel 2 Einführung, II: Gleichungen... 57

Inhaltsverzeichnis. Vorwort Kapitel 1 Einführung, I: Algebra Kapitel 2 Einführung, II: Gleichungen... 57 Vorwort... 13 Vorwort zur 3. deutschen Auflage... 17 Kapitel 1 Einführung, I: Algebra... 19 1.1 Die reellen Zahlen... 20 1.2 Ganzzahlige Potenzen... 23 1.3 Regeln der Algebra... 29 1.4 Brüche... 34 1.5

Mehr

Mathematik 1 für Naturwissenschaften

Mathematik 1 für Naturwissenschaften Hans Walser Mathematik für Naturwissenschaften Modul 0 Einführung Hans Walser: Modul 0, Einführung ii Inhalt Zahlen.... Natürliche Zahlen.... Ganze Zahlen.... Rationale Zahlen.... Reelle Zahlen... Smbole....

Mehr

Polynome. David Willimzig. Wir beschäftigen uns zunächst mit Polynomen in einer Variablen x. Diese haben die Gestalt

Polynome. David Willimzig. Wir beschäftigen uns zunächst mit Polynomen in einer Variablen x. Diese haben die Gestalt Polynome David Willimzig 1 Grundlagen Wir beschäftigen uns zunächst mit Polynomen in einer Variablen x. Diese haben die Gestalt p(x) = a n x n +... + a 1 x + a 0 = Die Zahlen a 0, a 1,..., a n werden Koezienten

Mehr

MatheBasics Teil 3 Grundlagen der Mathematik

MatheBasics Teil 3 Grundlagen der Mathematik Fernstudium Guide Online Vorlesung Wirtschaftswissenschaft MatheBasics Teil 3 Grundlagen der Mathematik Version vom 05.02.2015 Dieses Werk ist urheberrechtlich geschützt. Jegliche unzulässige Form der

Mehr

1. Sem. 2. Sem. 3. Sem. 4. Sem. 5. Sem. 6. Sem. Total

1. Sem. 2. Sem. 3. Sem. 4. Sem. 5. Sem. 6. Sem. Total Fachspezifischer Schullehrplan WSKV Chur Fach Mathematik BM 1 BM 1 1. Sem. 2. Sem. 3. Sem. 4. Sem. 5. Sem. 6. Sem. Total 40 40 40 40 40 40 240 Lehrmittel: Mathematik für die kaufmännische Berufsmaturität;

Mehr

Das Mathematikabitur. Abiturvorbereitung Infini. Autor: Claus Deser Abiturvorbereitung Mathematik 1

Das Mathematikabitur. Abiturvorbereitung Infini. Autor: Claus Deser Abiturvorbereitung Mathematik 1 Das Mathematikabitur Abiturvorbereitung Infini Autor: Claus Deser Abiturvorbereitung Mathematik 1 Gliederung Was ist eine Funktion? Welche Funktionen kennen wir? Welche Eigenschaften von Funktionen sind

Mehr

Stunden/Seiten Inhaltsbereiche gemäß Lehrplan Eigene Bemerkungen. Inhalte von Maßstab Band 10 ISBN: Stunden

Stunden/Seiten Inhaltsbereiche gemäß Lehrplan Eigene Bemerkungen. Inhalte von Maßstab Band 10 ISBN: Stunden Von den Rahmenvorgaben des Lehrplans zum Schulcurriculum Anregungen für Mathematik in Hauptschule und Regionaler Schule in Rheinland-Pfalz auf der Grundlage von Maßstab 10 Der Stoffverteilungsplan geht

Mehr

WURZEL Werkstatt Mathematik Polynome Grundlagen

WURZEL Werkstatt Mathematik Polynome Grundlagen Die WURZEL Werkstatt Mathematik Polynome Grundlagen Wer lange genug über hunderten von Problemen gebrütet hat, kann bei vielen bereits erraten, aus welchem Land sie kommen. So lieben die Briten etwa die

Mehr

α π r² Achtung: Das Grundwissen steht im Lehrplan! 1. Kreis und Kugel

α π r² Achtung: Das Grundwissen steht im Lehrplan! 1. Kreis und Kugel Achtung: Das Grundwissen steht im Lehrplan! Tipps zum Grundwissen Mathematik Jahrgangsstufe 10 Folgende Begriffe und Aufgaben solltest Du nach der 10. Klasse kennen und können: (Falls Du Lücken entdeckst,

Mehr