Maria-Theresia-Gymnasium München Grundwissen Mathematik 5. Klasse. Wendelstein. Osser. Wank. Nebelhorn

Save this PDF as:
 WORD  PNG  TXT  JPG

Größe: px
Ab Seite anzeigen:

Download "Maria-Theresia-Gymnasium München Grundwissen Mathematik 5. Klasse. Wendelstein. Osser. Wank. Nebelhorn"

Transkript

1 Mri-Teresi-Gymnsium Müncen Grundwissen Mtemtik. Klsse 1. Ntürlice Zlen Dezimlsystem Mn nennt die Zlen, die mn zum Zälen verwendet, ntürlice Zlen. Wir recnen im Dezimlsystem. Dei enutzen wir die zen Ziffern 0, 1,,, 4,, 6, 7, 8, 9 und die Stufenzlen 1, 10, 100, 1000, , , , Große Stufenzlen lssen sic kürzer mit Zenerpotenzen screien. Runden einer ntürlicen Zl uf eine estimmte Stelle: Ist die Ziffer rects von dieser Stelle kleiner ls, so wird erundet, sonst wird uferundet Der Stellenwert der Ziffer 6 ist Million Millirde Billion Runde 1 09 ) uf Hunderter ) uf Zener Lösun: ) ) Dirmme Mn verwendet zur Vernsculicun von Zlenwerten Dirmme. Zlenstrl uf dem Zlenstrl lssen sic die ntürlicen Zlen der Größe nc nordnen. Die weiter rects lieende Zl ist die rößere. Zlenmenen Zlen mit emeinsmen Eienscften knn mn in Zlenmenen zusmmenfssen. Die Zlen, die zu einer Mene eören, eißen Elemente dieser Mene. M: ist ein Element der Mene M M: ist kein Element der Mene M Eine rimzl ist eine Zl mit enu zwei Teilern. Jede rimzl ist lso nur durc sic selst und durc Eins teilr. Beispiel für ein Blkendirmm Wendelstein Osser Wnk Neelorn Höe in m N { 1; ; ; 4; ; 118; } Mene der ntürlicen Zlen N 0 { 0; 1; ; ; 4; } Mene der ntürlicen Z len mit 0 V 1 { 1; 4; 6; 48;..144; } Mene der Vielfcen von 1 T 1 { 1; ; ; 4; 6; 1 } Mene der Teiler von 1,,, 7, 11, 1,, 19,, 9, 1 sind rimzlen.. ddition und Sutrktion ntürlicer Zlen ddieren und Sutrieren m Zlenstrl ddieren edeutet m Zlenstrl nc rects een. Sutrieren edeutet m Zlenstrl nc links een. Summe + c 1.Summnd.Summnd Wert der Summe Differenz ddieren Eränzen Boren c Minuend Sutrend Wert der Differenz Seite 1 von

2 Mri-Teresi-Gymnsium Müncen Grundwissen Mtemtik. Klsse. ddition und Sutrktion nzer Zlen Gnze Zlen: Vorzeicen, Geenzl, Betr Jede nze Zl (ußer 0) t ein Vorzeicen. Eine positive Zl t ds Vorzeicen +, eine netive Zl t ds Vorzeicen -. Felt ds Vorzeicen, t mn sic + zu denken. Die kleinere Zl liet weiter links uf der Zlenerden. Die Geenzl zu einer Zl ist die uf der Zlenerden ezülic Null symmetrisc lieende Zl. Der stnd der Zl von der Zl 0 eißt Betr von. Screiweise: ddition zweier nzer Zlen: Gleice Vorzeicen: ddiere die Beträe und i der Summe ds emeinsme Vorzeicen! Versciedene Vorzeicen: Sutriere den kleineren Betr vom rößeren Betr und i der Differenz ds Vorzeicen des Summnden mit dem rößeren Betr! Terme mit lus- und Minuszeicen können stets ls Summen mit den entsprecenden Vorzeicen ufefsst werden. Beim Vertuscen von Gliedern in einer Summe muss mn die Vorzeicen mitnemen. Sutrktion einer nzen Zl Sutrieren einer nzen Zl edeutet dssele wie ddieren irer Geenzl. Z { ; ; ; 1; 0; 1; ; ; } eißt die Mene der nzen Zlen ist die Geenzl zu 708 ist die Geenzl zu 708 ( + 4) + ( + ) + ( 4 + ) ( 4) + ( ) ( 4 + ) ( 4) + ( + ) ( 4 ) ( + 4) + ( ) + ( 4 ) netive Zlen positive Zlen + ( ) ( 6) ( 77 ) + ( 16 6) ( + ) ( 7) ( + ) + ( + 7) 1 ( + ) ( + 7) ( + ) + ( 7) ( 7 ) 4. Multipliktion und Division ntürlicer Zlen Sttt screit mn uc. Die zueörie Recenrt eißt Multipliktion. rodukt 1.Fktor.Fktor Wert des rodukts Die Umkerun der Multipliktion ist die Division. Quotient : Dividend Divisor Wert des Quotienten Jede Zl lässt sic in rimfktoren zerleen : Sonderfälle: 1 1 : : 0 für lle ntürlicen Zlen. rimfktorzerleun der Zl 60: 60 7 Durc 0 knn mn nict dividieren.. otenzieren n... (lies: oc n ) n Fktoren n eißt otenz, eißt Bsis, n eißt Eponent. n Qudrtzlen, z.b., Zenerpotenzen, z.b Seite von

3 Mri-Teresi-Gymnsium Müncen Grundwissen Mtemtik. Klsse 6. Multipliktion und Division nzer Zlen Vorzeicenreeln : + + : + + : : + ( ( + ) ( ) ( ) ( ) + ( ) : ( ) + ) : ( ) 7. Recenesetze und Recenvorteile Für lle nzen Zlen,, c elten: ddition Kommuttivesetze der + + ddition Multipliktion ssozitivesetze der Multipliktion +(+c) (+)+c ( ) ( ) c Distriutivesetz ( + c) + c c 8. Verindun der vier Grundrecenrten Terme esteen us Zlen, Vrilen, Recenzeicen und Klmmern. Innere Klmmern recnet mn zuerst us. Die letzte durczufürende Recenrt let die rt des Terms fest. Vereinrunen für die Reienfole: 1. Mn recnet von links nc rects.. Ws in Klmmern stet, wird zuerst erecnet.. otenz vor unkt vor Stric 9. Geometrisce Grunderiffe 7 Recenvorteile: Gescicktes Zusmmenfssen: ( + ) + ( + ) ( ) ( ) Gescicktes usklmmern: ( ) Gescicktes usmultiplizieren: ( ) und [ ( 7) + 0] : 19 Termliederun: sind Beispiele für Terme ( 76 19) : Differenz rodukt Quotient Summe ( Termnme) Berecnun: : ( ) 708 unkte, Gerden, Strecken Gerde B B Hlerde [B B Strecke [ ] B B Besondere eenseitie Le von Gerden ist prllel zu :? ist senkrect zu l:? l l ist emeinsme Loterde zu und l Läne der Strecke: B,cm stnd eines unktes von einer Gerden : Läne der Lotstrecke von is d (;). stnd zweier prlleler Gerden und : Läne der Lotstrecke zwiscen und d (;) d(;) d(;) Seite von

4 Mri-Teresi-Gymnsium Müncen Grundwissen Mtemtik. Klsse Kreise lle unkte eines Kreises en von seinem Mittelpunkt M den leicen stnd r. M eißt Mittelpunkt des Kreises, r eißt Rdius des Kreises, d M r d eißt Durcmesser des Kreises: d r. Vierecke Ds rllelormm ist ein Viereck, ei dem die eenüerlieenden Seiten jeweils prllel sind. Umfn eines rllelormms mit den Seitenlänen und : u + Spezielle rllelormme: Recteck Rute Qudrt Winkel Dret mn eine Hlerde um iren nfnspunkt S, so entstet ein Winkel. S eißt Sceitel des Winkels, und eißen Scenkel des Winkels. S α csensymmetrie und lieen symmetrisc ezülice der cse, wenn [ ] von der cse rectwinkli liert wird. Fiuren eißen csensymmetrisc, wenn sie eine Symmetriecse esitzen. csenspieelun ' Fiur mit Symmetriecsen Koordintensystem Jeder unkt in einem Koordintensystem lässt sic durc ein Zlenpr escreien. Die Zlen eißen Koordinten des unktes: -Koordinte ( ) y-koordinte (-/ ) C (-4/ -) y B (/ 0) 1 4 D(0 /-1,) Seite 4 von

5 Mri-Teresi-Gymnsium Müncen Grundwissen Mtemtik. Klsse Geometrisce Körper Um räumlice Körper zeicnen zu können, verwendet mn Scräilder. Wird die Oerfläce eines eometriscen Körpers ufescnitten und in der Eene usereitet, so erält mn ds Netz eines Körpers. Netz eines Quders Netz eines Zylinders Scräilder der eometriscen Grundkörper Würfel Quder rism yrmide Keel Zylinder Kuel Fläcenmessun Zur Fläcenmessun verwendet mn Eineitsqudrte. Ein Qudrt mit der Seitenläne 1cm t den Fläceninlt Umrecnun von Fläceneineiten: Die Fläcenumwndlunszl ist 100. ufeinnderfolende Fläceneineiten: 1 mm ; 1cm ; 1dm ; 1m ; 1; 1; 1km 1 cm. Fläceninlt eines Rectecks der Läne l und Breite : Recteck l In ds Recteck pssen 4 Eineitsqudrte mit 1 cm² Fläceninlt. Ds Recteck t den Fläceninlt 1 cm². Sonderfälle: Qudrt l4cm Qudrt mit der Seitenläne cm Oerfläceninlt eines Quders der Läne l, Breite und Höe : ( l + l + ) 10. Größen O Quder Jede Größe estet us Mßzl und Mßeineit. O Würfel 6 6 Würfel mit der Kntenläne Versciedene Größen und ire Eineiten Größe Läne Msse Geld Zeit Eineit km m dm cm mm t k m ct d min s Will mn Größen ddieren zw. sutrieren, so muss mn sie vorer in die leice Mßeineit umrecnen. Eine Größe wird mit einer Zl multipliziert (durc eine Zl dividiert), indem mn die Mßzl mit der Zl multipliziert (durc die Zl dividiert) und die Mßeineit eieält. Der Quotient zweier Größen leicer rt ist eine Zl. Sie it n, wie oft die kleinere Größe in der rößeren entlten ist. Mßst Die ne Mßst 1:00 in einem ln edeutet: Die Läne im ln ist der zweiundertste Teil der Läne in der Wirklickeit. 1 km 1000 m; 1 m 10 dm; 1dm 10 cm; 1cm 10 mm 1t 1000 k; 1 k 1000 ; m ct 1 6 d; 1d 4 ; 1 60 min; 1 min 60 s cm + 1,0 m cm + 10 cm cm 4,0 k k 4 k 1 : 4 10 : 4 uf einer Krte mit Mßst 1: 000 ist eine Strecke cm ln. In Wirklickeit ist sie 000 cm 00 m ln. Seite von

Lösung: a) 1093 1100 b) 1093 1090

Lösung: a) 1093 1100 b) 1093 1090 OvTG Guting, Grundwissen Mthemtik 5. Klsse 1. Ntürliche Zhlen Dezimlsystem Mn nennt die Zhlen, die mn zum Zählen verwendet, 10963 = 1 10000+ 0 1000+ 9 100+ 6 10 + 3 1 ntürliche Zhlen. Der Stellenwert der

Mehr

Grundwissen Mathematik 5/1

Grundwissen Mathematik 5/1 1. Wihtie Symole Grundwissen Mthemtik 5/1 Wihtie Symole Rehenrten Qudrtzhlen IN Mene der ntürlihen Zhlen { 1; 2; 3; 4;... } IN 0 Mene der ntürlihen Zhlen einshließlih der Null {0; 1; 2; 3; 4;... } GI Grundmene

Mehr

MATHEMATIK GRUNDWISSEN KLASSE 5

MATHEMATIK GRUNDWISSEN KLASSE 5 MATHEMATIK GRUNDWISSEN KLASSE 5 Them NATÜRLICHE ZAHLEN Zählen und Ordnen Ntürliche Zhlen werden zum Zählen und Ordnen verwendet Stefn ist beim 100m-Luf ls 2. ins Ziel gekommen. Große Zhlen und Zehnerpotenzen

Mehr

{ } Menge der natürlichen Zahlen { } Menge der natürlichen Zahlen mit Null { } Menge der ganzen Zahlen

{ } Menge der natürlichen Zahlen { } Menge der natürlichen Zahlen mit Null { } Menge der ganzen Zahlen Themen Ntürliche und gnze gerde Eigenschften Besonderheiten - Beispiele { } Menge der ntürlichen { } Menge der ntürlichen mit Null { } Menge der gnzen IN = 1;2;3;4;... IN 0 = 0;1;2;3;4;... Z =...; 3; 2;

Mehr

Grundwissen l Klasse 5

Grundwissen l Klasse 5 Grundwissen l Klsse 5 1 Zhlenmengen und Punktmengen {1; 2; 3; 4; 5; 6;... } Die Menge der ntürlichen Zhlen. 0 {0; 1; 2; 3; 4; 5;... } Die Menge der ntürlichen Zhlen mit Null. M {; ; C;... } Die Menge der

Mehr

Luisenburg-Gymnasium Wunsiedel

Luisenburg-Gymnasium Wunsiedel Luisenbur-Gymnasium Wunsiedel Grundwissen für das Fac Matematik Jaransstufe 5 Natürlice und anze Zalen 1;2;3;4;5;6; ist die Mene der natürlicen Zalen. ; 4; 3; 2; 1;0;1;2;3;4; ist die Mene der anzen Zalen.

Mehr

Regiomontanus - Gymnasium Haßfurt - Grundwissen Mathematik Jahrgangsstufe 5

Regiomontanus - Gymnasium Haßfurt - Grundwissen Mathematik Jahrgangsstufe 5 RMG Hßfurt Grundwissen Mthemtik Jhrnsstufe 5 Reiomontnus - Gymnsium Hßfurt - Grundwissen Mthemtik Jhrnsstufe 5 Wissen und Können. Ntürliche und nze Zhlen Sicherer Umn mit den 4 Grundrechenrten, Ausnutzen

Mehr

Strahl Eine gerade Linie, die auf einer Seite von einem Punkt begrenzt wird, (Anfangspunkt) heißt Strahl.

Strahl Eine gerade Linie, die auf einer Seite von einem Punkt begrenzt wird, (Anfangspunkt) heißt Strahl. 1. 1. 2. Strecke B B Gerde Eine gerde, von zwei Punkten begrenzte Linie heißt Strecke. Eine gerde Linie, die nicht begrenzt ist, heißt Gerde. D.h. eine Gerde ht keine Endpunkte! 2. 3. 3. g Strhl Eine gerde

Mehr

2008-06-11 Klassenarbeit 5 Klasse 10c Mathematik

2008-06-11 Klassenarbeit 5 Klasse 10c Mathematik 2008-06- Klssenrbeit 5 Klsse 0c Mtemtik Lösung Version 2008-06-4 Cindy t 3000 geerbt. ) Den Betrg will sie so nlegen, dss sie in 20 Jren doppelt so viel Geld t. Berecne, zu welcem Zinsstz sie ds Geld nlegen

Mehr

ÜBUNGSAUFGABEN SERIE 04

ÜBUNGSAUFGABEN SERIE 04 Elementreometrie ÜBUNGSAUFGABEN SERIE 04 AUFGABE 1: Beweisen Sie den folenden Stz: Stz 2.10: Die Nceinnderusfürun mit ist eine Verscieun. Zum Beweis verwenden wir Stz 2.9: Eine Beweun verscieden von der

Mehr

RESULTATE UND LÖSUNGEN

RESULTATE UND LÖSUNGEN TG TECHNOLOGISCHE GRUNDLAGEN Kpitel 3 Mthemtik Kpitel 3.2 Alger Grundrechenrten RESULTATE UND LÖSUNGEN Verfsser: Hns-Rudolf Niedererger Elektroingenieur FH/HTL Vordergut 1, 8772 Nidfurn 055-654 12 87 Ausge:

Mehr

2.7. Aufgaben zu Ähnlichkeitsabbildungen

2.7. Aufgaben zu Ähnlichkeitsabbildungen .7. Aufaben zu Änlickeitsabbildunen Aufabe 1 Strecke das Dreieck AB mit A(3 1), B( 3) und ( ) an Z(1 1) um die Streckfaktoren k 1 =, k = 1, k 3 = 1, k 4 = und k =. Aufabe Strecke das Dreieck AB mit A(

Mehr

Mathe lernen mit Paul

Mathe lernen mit Paul Mte lernen mit Pul Die kleine Formelsmmlung Mit Gutscein für 2 kostenlose Unterrictsstunden 2 Mte lernen mit Pul Inlt Algebr Mße und Gewicte 4 Grundrecenrten 5 Brucrecnung 6 Potenzen und Wurzeln 7 Prozentrecnung

Mehr

GRUNDWISSEN MATHEMATIK. Gymnasium Ernestinum Coburg Fachschaft Mathematik

GRUNDWISSEN MATHEMATIK. Gymnasium Ernestinum Coburg Fachschaft Mathematik GRUNDWISSEN MTHEMTIK Gymnsium Ernestinum Coburg Fchschft Mthemtik GM 5.1 Zhlen und Mengen Grundwissen Jhrgngsstufe 5 Mengen werden in der Mthemtik mit geschweiften Klmmern geschrieben: Menge der ntürlichen

Mehr

Teilbarkeitsregeln. 6.1 Grundwissen Mathematik Algebra Klasse 6. Teilbarkeit durch 2: Eine Zahl ist durch 2 teilbar, wenn die Endziffer gerade ist.

Teilbarkeitsregeln. 6.1 Grundwissen Mathematik Algebra Klasse 6. Teilbarkeit durch 2: Eine Zahl ist durch 2 teilbar, wenn die Endziffer gerade ist. 6.1 Grundwissen Mthemtik Algebr Klsse 6 Teilbrkeitsregeln Definition und Regeln Teilbrkeit durch 2: Eine Zhl ist durch 2 teilbr, wenn die Endziffer gerde ist. Teilbrkeit durch 3: Eine Zhl ist durch 3 teilbr,

Mehr

2. Das Rechnen mit ganzen Zahlen (Rechnen in )

2. Das Rechnen mit ganzen Zahlen (Rechnen in ) . Ds Rechnen mit gnzen Zhlen (Rechnen in ).1 Addition und Subtrktion 5 + = 7 Summnd Summnd Summe 5 - = 3 Minuend Subtrhend Differenz In Aussgen mit Vriblen lssen sich nur gleiche Vriblen ddieren bzw. subtrhieren.

Mehr

Grundwissen Mathematik 5/1

Grundwissen Mathematik 5/1 1 Wichtige Symole Grundwissen Mthemtik 5/1 Wichtige Symole Rechenrten Qudrtzhlen IN Menge der ntürlichen Zhlen { 1; ; 3; 4;... } IN 0 Menge der ntürlichen Zhlen einschließlich der Null {0; 1; ; 3; 4;...

Mehr

Mathematik - Arbeitsblätter

Mathematik - Arbeitsblätter Ic knn... Ic knn Mte... Ic knn Mte lernen Mtemtik - reitslätter M Wiederolung 6 7 8 8 Reelle Zlen 6 Stzgruppe des Ptgors 6 7 8 9 Terme 6 6 leicungen und Ungleicungen 6 7 8 9 7 Körpererecnungen 6 7 8 9

Mehr

Grundwissen. 5. Jahrgangsstufe. Mathematik

Grundwissen. 5. Jahrgangsstufe. Mathematik Grundwissen 5. Jahrgangsstufe Mathematik Grundwissen Mathematik 5. Jahrgangsstufe Seite 1 1 Natürliche Zahlen 1.1 Große Zahlen und Zehnerpotenzen eine Million = 1 000 000 = 10 6 eine Milliarde = 1 000

Mehr

Mathematik - Arbeitsblätter

Mathematik - Arbeitsblätter Ic knn... Ic knn Mte... Ic knn Mte lernen Mtemtik - Areitslätter 3 M Wiederolung 3 6 7 8 38 Reelle Zlen 3 6 Stzgruppe des Ptgors 3 6 7 8 9 Terme 3 6 6 Gleicungen und Ungleicungen 3 6 7 8 9 7 Körpererecnungen

Mehr

Grundwissen Mathematik am bayerischen Gymnasium (G8)

Grundwissen Mathematik am bayerischen Gymnasium (G8) Grundwissen Mtemtik m eriscen Gmnsium (G8) Ricrd Reindl 00 00 Ds Grundwissen ist zweispltig drgestellt, links die Definitionen, Sätze und eweise, rects ildungen und. Es ndelt sic nict nur um einen Grundwissensktlog,

Mehr

Grundwissen Mathematik am bayerischen Gymnasium (G8)

Grundwissen Mathematik am bayerischen Gymnasium (G8) Grundwissen Mtemtik m eriscen Gmnsium (G8) Ricrd Reindl 00 009 Ds Grundwissen ist zweispltig drgestellt, links die Definitionen, Sätze und eweise, rects ildungen und. Es ndelt sic nict nur um einen Grundwissensktlog,

Mehr

Mathematik in eigenen Worten

Mathematik in eigenen Worten Sieglinde Wsmier Mtemtik in eigenen Worten Lernumgeungen für die Sekundrstufe I Klett und Blmer Verlg Mtemtik in eigenen Worten Scülerinnen und Scüler screien ire Lern- und Denkwege uf : Sieglinde Wsmier

Mehr

Grundwissen. Die Menge der reellen Zahlen 0 =0. Beispiele

Grundwissen. Die Menge der reellen Zahlen 0 =0. Beispiele Grundwissen Klsse 9 Die Menge der reellen Zhlen Die Umkehrung des Qudrierens wird für nicht negtive Zhlen ls Ziehen der Wurzel oder Rdizieren ezeichnet. Die Qudrtwurzel us (kurz: Wurzel us ) ist dei die

Mehr

Einfache Formeln als Gleichungen sehen und entsprechend umformen.

Einfache Formeln als Gleichungen sehen und entsprechend umformen. orereitung uf die (6.Juni 01) NME: 6. Sculreit: MTHEMTIK KL.: M/I. - S.1 leicungen umformen: Wgemodell und Umkeropertion. Wgemodell: Umformungregeln Durc jede ktion mu d leicgewict erlten leien! - = 8

Mehr

Grundwissen 5. Klasse

Grundwissen 5. Klasse Grundwissen 5. Klasse 1/5 1. Zahlenmengen Grundwissen 5. Klasse Natürliche Zahlen ohne Null: N 1;2;3;4;5;... mit der Null: N 0 0;1;2;3;4;... Ganze Zahlen: Z... 3; 2; 1;0;1;2;3;.... 2. Die Rechenarten a)

Mehr

Grundwissen 7. Jahrgangsstufe 1. Symmetrie Wissen Können Beispiele a) Achsenspiegelung : Symmetrieachse Mittelsenkrechte Winkelhalbierende

Grundwissen 7. Jahrgangsstufe 1. Symmetrie Wissen Können Beispiele a) Achsenspiegelung : Symmetrieachse Mittelsenkrechte Winkelhalbierende Grundwissen 7. Jhrgngsstufe 1. Symmetrie ) chsenspiegelung : Symmetriechse Mittelsenkrechte Winkelhlbierende Konstruktion Spiegelpunkt, Spiegelchse Mittelsenkrechte: Winkelhlbierende: Lot: Eigenschften

Mehr

Erkundungen. Terme vergleichen. Rechteck Fläche als Produkt der Seitenlängen Fläche als Summe der Teilflächen A B

Erkundungen. Terme vergleichen. Rechteck Fläche als Produkt der Seitenlängen Fläche als Summe der Teilflächen A B Erkundungen Terme vergleihen Forshungsuftrg : Fläheninhlte von Rehteken uf vershiedene Arten erehnen Die Terme () is (6) eshreien jeweils den Fläheninhlt von einem der drei Rehteke. Ordnet die Terme den

Mehr

1.Weiterentwicklung der Zahlvorstellung 1.1Die natürlichen Zahlen Mengenschreibweise: N = {1,2,3,...} N 0 = {0,1,2,3,...}

1.Weiterentwicklung der Zahlvorstellung 1.1Die natürlichen Zahlen Mengenschreibweise: N = {1,2,3,...} N 0 = {0,1,2,3,...} 1 Grundwissen Mathematik 5.Klasse Gymnasium SOB 1.Weiterentwicklung der Zahlvorstellung 1.1Die natürlichen Zahlen Mengenschreibweise: N = {1,2,3,...} N 0 = {0,1,2,3,...} Darstellung am Zahlenstrahl: Darstellung

Mehr

Grundwissen Mathematik 7I

Grundwissen Mathematik 7I Winkel m Kreis Grundwissen themtik 7I Rndwinkelstz Der Winkel heißt ittelpunktswinkel über der Sehne []. Die Winkel n sind die Rndwinkel über der Sehne []. lle Rndwinkel über einer Sehne eines Kreises

Mehr

R. Brinkmann http://brinkmann-du.de Seite 1 17.11.2010

R. Brinkmann http://brinkmann-du.de Seite 1 17.11.2010 R. rinkmnn http://rinkmnn-du.de Seite 7..2 Grundegriffe der Vektorrehnung Vektor und Sklr Ein Teil der in Nturwissenshft und Tehnik uftretenden Größen ist ei festgelegter Mßeinheit durh die nge einer Mßzhl

Mehr

I = 1; V = 5; X =10; L = 50; C = 100; D = 500; M = 1000; Bsp.: MCLVIII = 1158

I = 1; V = 5; X =10; L = 50; C = 100; D = 500; M = 1000; Bsp.: MCLVIII = 1158 Grundwissen Mathematik G8 5. Klasse 1 Zahlen 1.1 Zahlenmengen IN = {1; 2; 3; } Menge der natürlichen Zahlen IN o = {0; 1; 2; 3; } Menge der natürlichen Zahlen mit Null Z = { ; -3; -2; -1; 0; 1; 2; 3; }

Mehr

Prisma und Pyramide 10

Prisma und Pyramide 10 Prism und Pyrmide 10 C10-01 1 5 1 Körper 1 Scnittbogen 1 Körper Scnittbogen Körper Scnittbogen Körper Scnittbogen 6 Scnittbogen Scnittbogen 5 M c = + ( ) = 10 + 5 = 15 11, c c c c Individuelle Individuelle

Mehr

Übungen zu Wurzeln III

Übungen zu Wurzeln III A.Nenner rtionl mchen: Nenner ist Qudrtwurzel: 5 bc 1.).).).) 5.) 1 15 9 bc.).) 8.) 9.) 10.) 5 5 B.Nenner rtionl mchen: Nenner ist höhere Wurzel: 1 1 9 5 1 1.).).).) 5.).) 5 C.Nenner rtionl mchen: Nenner

Mehr

Wurzeln. bestimmen. Dann braucht man Wurzeln. Treffender müsste man von Quadratwurzeln sprechen. 1. Bei Quadraten, deren Fläche eine Quadratzahl ist,

Wurzeln. bestimmen. Dann braucht man Wurzeln. Treffender müsste man von Quadratwurzeln sprechen. 1. Bei Quadraten, deren Fläche eine Quadratzahl ist, Seitenlängen von Qudrten lssen sich mnchml sehr leicht und mnchml etws schwerer Wurzeln bestimmen. Dnn brucht mn Wurzeln. Treffender müsste mn von Qudrtwurzeln sprechen. Sie stehen in enger Beziehung zu

Mehr

Ausbildungsberuf KonstruktionsmechanikerIn

Ausbildungsberuf KonstruktionsmechanikerIn KM 07U Projekt Einfce Pyrmide mit qudrtiscer Grundfläce Ausbildungsberuf KonstruktionsmecnikerIn Einstzgebiet/e: Metllbu Sciffbu Scweißen Projekt Gerde Pyrmide mit qudrtiscer Grundfläce Anm.: Blecstärke

Mehr

Wiederholung Prisma, Zylinder, Kegel

Wiederholung Prisma, Zylinder, Kegel Wiederolung Prism, Zylinder, Kegel 1.) Prism: Bei einem Prism liegen Grundfläce und Deckfläce prllel gegenüer und sind gleic groß. Die Mntelfläce estet usscließlic us Rectecken. Mntelfläcenformel: M =

Mehr

Formeln zu Mathematik für die Fachhochschulreife

Formeln zu Mathematik für die Fachhochschulreife Fomeln zu Mtemtik fü die Fcocsculeife Beeitet von B. Gimm und B. Sciemnn 3. Auflge VERLAG EUROPA-LEHRMITTEL Nouney, Vollme GmH & Co. KG Düsselege Stße 3 4781 Hn-Guiten Euop-N.: 8519 Autoen: Bend Gimm Bend

Mehr

Download. Klassenarbeiten Mathematik 5. Geometrische Figuren und Körper. Marco Bettner, Erik Dinges. Downloadauszug aus dem Originaltitel:

Download. Klassenarbeiten Mathematik 5. Geometrische Figuren und Körper. Marco Bettner, Erik Dinges. Downloadauszug aus dem Originaltitel: Downlod Mrco Bettner, Erik Dinges Klssenrbeiten Mthemtik 5 Geometrische Figuren und Körper Downloduszug us dem Originltitel: Klssenrbeiten Mthemtik 5 Geometrische Figuren und Körper Dieser Downlod ist

Mehr

Zahlenmengen Menge der natürlichen Zahlen mit Null

Zahlenmengen Menge der natürlichen Zahlen mit Null Zahlenmenen N = {1,2,3,...} Mene der natürlichen Zahlen N o = {0,1,2,3,...} Mene der natürlichen Zahlen mit Null Z = {..., -3, -2, -1, 0, 1, 2, 3,...} Mene der anzen Zahlen Vielfachmenen eispiel: V(3)

Mehr

In Fachwerken gibt es demnach nur konstante Normalkräfte. Die Fachwerksknoten sind zentrale Kraftsysteme.

In Fachwerken gibt es demnach nur konstante Normalkräfte. Die Fachwerksknoten sind zentrale Kraftsysteme. Großüung cwerke cwerke d Ssteme von gerden Stäen, die geenkig (und reiungsfrei) in sog. Knoten(punkten) miteinnder verunden d und nur durc Einzekräfte in den Knotenpunkten estet werden. In cwerken git

Mehr

Exponentialgleichungen 70 Exponentialgleichungen mit Ergebnissen und ausführlichen Lösungsweg

Exponentialgleichungen 70 Exponentialgleichungen mit Ergebnissen und ausführlichen Lösungsweg Übungen zum Kurs Eponentilgleichungen Eponentilgleichungen 70 Eponentilgleichungen mit Ergebnissen und usführlichen Lösungsweg 7.technisch verbesserte Auflge vom.09.007 (Sonderzeichen wurden teilweise

Mehr

Rechnen mit Termen. 1. Berechne das Volumen und die Oberfläche. 4. Löse die Klammern auf und fasse zusammen: a) 2x(3x 1) x(2 5x) b) 7a(1 b)+5b(2 a)

Rechnen mit Termen. 1. Berechne das Volumen und die Oberfläche. 4. Löse die Klammern auf und fasse zusammen: a) 2x(3x 1) x(2 5x) b) 7a(1 b)+5b(2 a) Rechnen mit Termen 1. Berechne ds Volumen und die Oberfläche. 2. 3 3 7 2 4b 3. 5 4 8 b 4. Löse die Klmmern uf und fsse zusmmen: ) 2x(3x 1) x(2 5x) b) 7(1 b)+5b(2 ) c) 4b( 3b) 4b( 2 3) 5. Löse die Gleichungen:

Mehr

Solche Abbildungen nennt man ZENTRISCHE STRECKUNGEN. DEFINITION:

Solche Abbildungen nennt man ZENTRISCHE STRECKUNGEN. DEFINITION: ZENTRICHE TRECKUNG DER TORCHENCHNABEL ol Farstift Zeicenstift ol, Farstift und Zeicenstift lieen immer auf einer Geraden! Früer at man den torcenscnabel (antorap) benutzt um Bilder maßstäblic zu verrößern,

Mehr

Umstellen von Formeln und Gleichungen

Umstellen von Formeln und Gleichungen Umstellen von Formeln und Gleihungen. Ds Zusmmenfssen von Termen edeutet grundsätzlih ein Ausklmmern, uh wenn mn den Zwishenshritt niht immer ufshreit. 4 6 = (4 6) =. Steht eine Vrile, nh der ufgelöst

Mehr

Quadratische Gleichungen und Funktionen

Quadratische Gleichungen und Funktionen Qudrtische Gleichungen und Funktionen Bei einer udrtischen Gleichung kommt die Unbeknnte Vrible mindestens einml in der.potenz vor, ber in keiner höheren Potenz. b c udrtischer Anteil linerer Anteil konstnter

Mehr

sfg Natürliche Zahlen und Zahlenstrahl Die Zahlen 1, 2, 3, 4, nennt man natürliche Zahlen: N = {1; 2; 3; 4; }

sfg Natürliche Zahlen und Zahlenstrahl Die Zahlen 1, 2, 3, 4, nennt man natürliche Zahlen: N = {1; 2; 3; 4; } M 5.1 Natürliche Zahlen und Zahlenstrahl Die Zahlen 1, 2, 3, 4, nennt man natürliche Zahlen: N = {1; 2; 3; 4; } Nimmt man auch die 0 hinzu, schreibt man: N 0 = {0; 1; 2; 3; 4; } Zahlenstrahl 0 1 2 3 4

Mehr

Grundwissen Jahrgangsstufe 7

Grundwissen Jahrgangsstufe 7 GM 7.1 chsensymmetrie Grundwissen Jhrgngsstufe 7 Definition Zwei unkte liegen symmetrisch bezüglich einer chse, wenn ihre Verbindungsstrecke von der chse senkrecht hlbiert wird. M und liegen symmetrisch

Mehr

2.6. Anwendungs- und Beweisaufgaben zu Kongruenzsätzen

2.6. Anwendungs- und Beweisaufgaben zu Kongruenzsätzen 2.6. Anwendung- und eweiufgben zu Kongruenzätzen Aufgbe ) Ermittle zeicneric die Längen der drei Fläcendigonlen d b, d c und d bc und der Rumdigonlen d de bgebildeten Quder mit den Abmeungen = 4 cm, b

Mehr

Für den Mathe GK, Henß. - Lineare Algebra und analytische Geometrie -

Für den Mathe GK, Henß. - Lineare Algebra und analytische Geometrie - Für den Mthe GK, Henß - Linere Alger und nlytische Geometrie - Bis uf die Astände ist jetzt lles drin.. Ich h noch ne tolle Seite entdeckt mit vielen Beispielen und vor llem Aufgen zum Üen mit Lösungen..

Mehr

Mathematik - Arbeitsblätter

Mathematik - Arbeitsblätter Ic knn... Ic knn Mte... Ic knn Mte lernen Mtemtik - reitslätter M Wieerolung 6 7 8 8 Reelle Zlen 6 Stzgruppe es Ptgors 6 7 8 Terme 6 6 leicungen un Ungleicungen 6 7 8 7 Körpererecnungen 6 7 8 ructerme

Mehr

Grundwissen Mathematik 8.Klasse Gymnasium SOB. Darstellung im Koordinatensystem: Der Kreisumfang ist direkt proportional zu seinem Radius.

Grundwissen Mathematik 8.Klasse Gymnasium SOB. Darstellung im Koordinatensystem: Der Kreisumfang ist direkt proportional zu seinem Radius. Gymso 1 Grundwissen Mthemtik 8.Klsse Gymnsium SOB 1.Funktionle Zusmmenhänge 1.1.Proportionlität Ändern sih ei einer Zuordnung die eiden Größen im gleihen Verhältnis, so spriht mn von einer direkten Proportionlität.

Mehr

Mathematik PM Rationale Zahlen. Ist a kein Vielfaches von b, so entsteht eine neue Zahl, Bruch oder rationale Zahl genannt. Sie bilden die Menge Q.

Mathematik PM Rationale Zahlen. Ist a kein Vielfaches von b, so entsteht eine neue Zahl, Bruch oder rationale Zahl genannt. Sie bilden die Menge Q. Mthetik PM Rtionle Zhlen Rtionle Zhlen. Einführung Die Gleihung = 9 ht ie Lösung. Z 9 9 Die Gleihung = ht ie Lösung. Z Definition Die Gleihung =, it, Z un 0, ht ie Ist kein Vielfhes von, so entsteht eine

Mehr

Grundwissen Ebene Geometrie

Grundwissen Ebene Geometrie Micael Körner Grundwissen bene Geometrie 5.0. Klasse eredorfer Kopiervorlaen Zu diesem Material: Was ist ein Stufenwinkel? Wie findet man die Höen von reiecken eraus? Wie werden Fläceninalt und Umfan bei

Mehr

Ungleichungen. Jan Pöschko. 28. Mai Einführung

Ungleichungen. Jan Pöschko. 28. Mai Einführung Ungleichungen Jn Pöschko 8. Mi 009 Inhltsverzeichnis Einführung. Ws sind Ungleichungen?................................. Äquivlenzumformungen..................................3 Rechnen mit Ungleichungen...............................

Mehr

2.2. Aufgaben zu Figuren

2.2. Aufgaben zu Figuren 2.2. Aufgen zu Figuren Aufge 1 Zeichne ds Dreieck ABC in ein Koordintensystem. Bestimme die Innenwinkel, und und erechne ihre Summe. Ws stellst Du fest? ) A(1 2), B(8 3) und C(3 7) ) A(0 3), B(10 1) und

Mehr

Berechnungen am Prisma. Das Netz (Abwicklung) eines Prismas

Berechnungen am Prisma. Das Netz (Abwicklung) eines Prismas Berechnungen m Prism Einführung des Prisms: Schüler ringen verschiedene Verpckungen mit in den Unterricht Klssifizierung der Verpckungen in Prismen und ndere Körper Erreitung der Eigenschften eines Prisms:

Mehr

GW Mathematik 5. Klasse

GW Mathematik 5. Klasse Begriffe zur Gliederung von Termen Term Rechenart a heißt b heißt a + b (Summe) Addition 1. Summand 2. Summand a b (Differenz) Subtraktion Minuend Subtrahend a b ( Produkt) Multiplikation 1. Faktor 2.

Mehr

Arbeit - Energie - Reibung

Arbeit - Energie - Reibung Arbeit - nergie - eibung Die ncfolgenden Aufgben und Definitionen sind ein erster instieg in dieses Tem. Hier wird unterscieden zwiscen den Begriffen Arbeit und nergie. Verwendete ormelzeicen sind in der

Mehr

1 Das dreidimensionale Koordinatensystem

1 Das dreidimensionale Koordinatensystem Schüleruchseite 90 9 Lösungen vorläufig Ds dreidimensionle Koordintensystem S. 90. Möglichkeit: : Linke vordere oere Ecke des gnz linken Würfels : rechte hintere oere Ecke des gnz rechten Würfels : rechte

Mehr

Kleine Algebra-Formelsammlung

Kleine Algebra-Formelsammlung Immnuel-Knt-Gymnsium Heiligenhus Gierhrt Kleine Alger-Formelsmmlung Mittelstufe (is Klsse 0) Drgestellt sin ie wichtigsten Fkten un Gesetze, woei iverse Ausnhmeregeln wie z.b. s Verot er Division urch

Mehr

Teil 1. 2 Gleichungen mit 2 Unbekannten mit Textaufgaben. und 3 Gleichungen mit 2 Unbekannten. Datei Nr. 12180. Friedrich Buckel. Stand 11.

Teil 1. 2 Gleichungen mit 2 Unbekannten mit Textaufgaben. und 3 Gleichungen mit 2 Unbekannten. Datei Nr. 12180. Friedrich Buckel. Stand 11. Teil Gleicungen mit Unbekannten mit Textaufgaben und 3 Gleicungen mit Unbekannten Datei Nr. 80 Stand. April 0 Lineare Gleicungssysteme INTERNETBIBLIOTHEK FÜR SCHULMATHEMATIK 80 Gleicungssysteme Vorwort

Mehr

Mathematik - Arbeitsblätter

Mathematik - Arbeitsblätter I knn I knn Mte I knn Mte lernen Mtemtik - Areitslätter M Wiederolung 1 4 5 8 Gnze und rtionle Zlen 1 4 5 6 7 8 9 47 Ds retwinklige Koordintensystem 1 49 Potenzen 1 4 5 Anwendung der Prozentrenung 1 4

Mehr

Linear. Halbkreis. Parabel

Linear. Halbkreis. Parabel Vom Parabolspiegel zur Ableitungsfunktion Im Folgenden get es darum erauszufinden, was ein Parabolspiegel ist und wie er funktioniert. Das fürt uns auf wictige Fragen eines Teilgebietes der Matematik,

Mehr

Demo-Text für Geometrie Winkel und Dreiecke. Teil 1 INTERNETBIBLIOTHEK FÜR SCHULMATHEMATIK. Mit Index am Ende des Textes

Demo-Text für  Geometrie Winkel und Dreiecke. Teil 1 INTERNETBIBLIOTHEK FÜR SCHULMATHEMATIK. Mit Index am Ende des Textes Teil 1 it Index am Ende des Textes Stand: 22. Februar 212 Datei Nr. 1111 Friedric Buckel Geometrie Winkel und Dreiecke INTERNETBIBLITHEK FÜR SCHULTHETIK www.mate-cd.de Inalt 1. Dreunen durc Winkel messen

Mehr

7.4. Teilverhältnisse

7.4. Teilverhältnisse 7... erehnung von Teilverhältnissen ufgen zu Teilverhältnissen Nr. 7.. Teilverhältnisse Die Shwerpunkte von Figuren und Körpern lssen sih mit Hilfe von Teilverhältnissen usdrüken und erehnen. Definition

Mehr

Mathematik - Arbeitsblätter

Mathematik - Arbeitsblätter I knn I knn Mte I knn Mte lernen Mtemtik - Areitslätter M Wiederolung 1 2 4 5 8 Gnze und rtionle Zlen 1 2 4 5 6 7 8 9 47 Ds retwinklige Koordintensystem 1 2 49 Potenzen 1 2 4 5 Anwendung der Prozentrenung

Mehr

Nullstellen quadratischer Gleichungen

Nullstellen quadratischer Gleichungen Nullstellen qudrtischer Gleichungen Rolnd Heynkes 5.11.005, Achen Nch y ufgelöst hen qudrtische Gleichungen die Form y = x +x+c. Zeichnet mn für jedes x uf der rechten Seite und ds drus resultierende y

Mehr

Mathematik: Mag. Schmid Wolfgang Arbeitsblatt 3 5. Semester ARBEITSBLATT 3 PARAMETERDARSTELLUNG EINER GERADEN

Mathematik: Mag. Schmid Wolfgang Arbeitsblatt 3 5. Semester ARBEITSBLATT 3 PARAMETERDARSTELLUNG EINER GERADEN Mthemtik: Mg. Schmid Wolfgng Areitsltt 3 5. Semester ARBEITSBLATT 3 PARAMETERDARSTELLUNG EINER GERADEN Wir wollen eine Gerde drstellen, welche durch die Punkte A(/) und B(5/) verläuft. Die Idee ist folgende:

Mehr

5 Gleichungen (1. Grades)

5 Gleichungen (1. Grades) Mthemtik PM Gleichungen (. Grdes) Gleichungen (. Grdes). Einführung Betrchtet mn und (, Q) und vergleicht sie miteinnder, so git es Möglichkeiten:. > ist grösser ls. = ist gleich gross wie. < ist kleiner

Mehr

2.10. Prüfungsaufgaben zu Pyramiden

2.10. Prüfungsaufgaben zu Pyramiden .0. Prüfungufgben zu Pyrmiden Aufgbe : Pyrmiden Berecne die Fläceninlte und Volumin der unten bgebildeten Däcer, wobei ll Mße in m ngegeben ind: Zeltdc Wlmdc Krüppelwlmdc Gekreuzte Giebeldc en Zeltdc:

Mehr

Mathematik PM Rechenarten

Mathematik PM Rechenarten Rechenrten.1 Addition Ds Pluszeichen besgt, dss mn zur Zhl die Zhl b hinzuzählt oder ddiert. Aus diesem Grunde heisst diese Rechenrt uch Addition. + b = c Summnd plus Summnd gleich Summe Kommuttivgesetz

Mehr

Grundwissen JS 5 Algebra

Grundwissen JS 5 Algebra GYMNASIUM MIT SCHÜLERHEIM PEGNITZ math.-technolog. u. sprachl. Gymnasium Grundwissen JS 5 Algebra WILHELM-VON-HUMBOLDT-STRASSE 7 91257 PEGNITZ FERNRUF 09241/48333 FAX 09241/2564 Rechnen in N 29. Juli 2009

Mehr

Themenbereich: Kongruenzsätze Seite 1 von 6

Themenbereich: Kongruenzsätze Seite 1 von 6 Themenereich: Kongruenzsätze Seite 1 von 6 Lernziele: - Kenntnis der genuen Formulierung der Kongruenzsätze - Kenntnis der edeutung der Kongruenzsätze - Fähigkeit, die Kongruenzssätze gezielt zur egründung

Mehr

Fragen und Aufgaben zum Grundwissen Mathematik

Fragen und Aufgaben zum Grundwissen Mathematik Natürliche Zahlen Kapitel I ZÄHLEN UND ORDNEN GROßE ZAHLEN UND ZEHNERPOTENZEN Acht Schwimmer bestreiten einen Wettkampf. Miriam gewinnt die Bronzemedaille. Franz wird Vorletzter. Welche Platzierung haben

Mehr

2 Rechnen mit Termen. 2.1 Grundrechenarten mit Termen

2 Rechnen mit Termen. 2.1 Grundrechenarten mit Termen 9 Rechnen mit Termen Rechnen mit Termen Die Einführung von Buchsten ls Vrile und deren Verknüpfung durch Rechenzeichen führt zu dem Begriff des Terms (von lt. terminre estimmen).. Grundrechenrten mit Termen.

Mehr

Vorkurs Mathematik Fachhochschule Frankfurt, Fachbereich 2. Fachhochschule Frankfurt am Main Fachbereich Informatik und Ingenieurwissenschaften

Vorkurs Mathematik Fachhochschule Frankfurt, Fachbereich 2. Fachhochschule Frankfurt am Main Fachbereich Informatik und Ingenieurwissenschaften Vorkurs Mthemtik Fchhochschule Frnkfurt, Fchereich Fchhochschule Frnkfurt m Min Fchereich Informtik und Ingenieurwissenschften Vorkurs Mthemtik Sie finden lle Mterilien sowie ergänzende Informtionen unter

Mehr

Mathematik Bruchrechnung Grundwissen und Übungen

Mathematik Bruchrechnung Grundwissen und Übungen Mthemtik Bruchrechnung Grundwissen und Übungen von Stefn Gärtner (Gr) Stefn Gärtner -00 Gr Mthemtik Bruchrechnung Seite Inhlt Inhltsverzeichnis Seite Grundwissen Ws ist ein Bruch? Rtionle Zhlen Q Erweitern

Mehr

MATHEMATIK GRUNDWISSEN 5. KLASSE LESSING GYMNASIUM

MATHEMATIK GRUNDWISSEN 5. KLASSE LESSING GYMNASIUM MATHEMATIK GRUNDWISSEN 5. KLASSE LESSING GYMNASIUM NEU-ULM Lessing-Gymnasium Neu-Ulm 2/17 I. ZAHLEN 1. Natürliche und ganze Zahlen 1.1 Zahlenmengen Natürliche Zahlen N = { 1, 2, 3, 4,...} Natürliche Zahlen

Mehr

Information zur Anwendung der DIN 32984 Bodenindikatoren im öffentlichen Verkehrsraum (5-2000)

Information zur Anwendung der DIN 32984 Bodenindikatoren im öffentlichen Verkehrsraum (5-2000) DBSV. Rungestrße 19. 10179 Berlin Berlin 27.10.2008 Informtion zur Anwendung der DIN 32984 Bodenindiktoren im öffentlicen Verkersrum (5-2000) Ser geerte Dmen und Herren, die DIN 32984 (Fssung Mi 2000)

Mehr

Kaiser Prüfungsordner Analysis Theoriefragen

Kaiser Prüfungsordner Analysis Theoriefragen Mtemti ür Iormtier Kiser Prüugsorder Alysis Teorierge tulisierte Ausreitug vo Micel Jros mici24, Std 6..24 23:37 revisio # 89 Alle Atworte wurde vo mir muell eu eigetippt. Sie stmme teilweise us dem Kiser-Sriptum,

Mehr

CJT-Gymnasium Lauf Grundwissen (& Aufgaben) Jahrgangsstufe 9 (7/2008)

CJT-Gymnasium Lauf Grundwissen (& Aufgaben) Jahrgangsstufe 9 (7/2008) CJT-Gymnium Lu Gundwien (& Auen) Jntue 9 (/00) Wien / Können Reelle Zlen Fü 0 it diejenie nict netive Zl, deen Qudt eit elt eißt Qudtwuzel, it i Rdiknd All diejenien Zlen, die ic nict duc Büce dtellen

Mehr

2.8. Aufgaben zum Satz des Pythagoras

2.8. Aufgaben zum Satz des Pythagoras Aufgbe 1 Vervollständige die folgende Tbelle:.8. Aufgben zum Stz des Pythgors Kthete 6 1 4 1 13 17 15 Kthete b 8 1 7 8 11 Hypotenuse c 13 9 19 17 Aufgbe Berechne jeweils die Länge der dritten Seite: Aufgbe

Mehr

Der Kreissektor (Kreisausschnitt) Kreissektors mit dem Mittelpunktswinkel ϕ : Bogenlänge: b Sektor. Flächeinhalt:: ASektor

Der Kreissektor (Kreisausschnitt) Kreissektors mit dem Mittelpunktswinkel ϕ : Bogenlänge: b Sektor. Flächeinhalt:: ASektor Grundwissen Mthemtik 0.Klsse 0 / Die Kugel Volumen der Kugel: Oberfläche der Kugel: V O Kugel Kugel 4 πr 4πr Der Kreissektor (Kreisusschnitt) Kreissektors mit dem Mittelpunktswinkel ϕ : ϕ Bogenlänge: b

Mehr

Uponor ISI Box. schnell und sicher installieren! NEU

Uponor ISI Box. schnell und sicher installieren! NEU Uponor ISI Box scnell und sicer instllieren! NEU Die Uponor ISI Box die einfce und scnelle Instlltionslösung im Trockenu. Vorkonfektioniert und nsclussfertig efinden sic lle Komponenten sicer und geprüft

Mehr

= 4. = 2 π. s t. Lösung: Aufgabe 1.a) Der Erdradius beträgt 6.371km. Aufgabe 1.b) Das Meer nimmt 71% der Erdoberfläche ein.

= 4. = 2 π. s t. Lösung: Aufgabe 1.a) Der Erdradius beträgt 6.371km. Aufgabe 1.b) Das Meer nimmt 71% der Erdoberfläche ein. Aufgabe : Die Die ist der fünftgrößte der neun Planeten unseres Sonnensystems und wiegt 5,98* 0 4 kg. Sie ist zwiscen 4 und 4,5 Millionen Jaren alt und bewegt sic auf einer elliptiscen Ban in einem durcscnittlicen

Mehr

Grundwissen Mathematik 8. Klasse. Eigenschaften Besonderheiten - Beispiele

Grundwissen Mathematik 8. Klasse. Eigenschaften Besonderheiten - Beispiele Themen Direkte Proportionlität Eigenschften Besonderheiten - Beispiele Zwei Größen und y heißen direkt proportionl, wenn gilt: Zum k-fchen Wert von gehört der k-fche Wert von y; Der Quotient q = y ht für

Mehr

Grundwissen 6. Klasse

Grundwissen 6. Klasse Grundwissen Mthemtik Klsse / Grundwissen Klsse Positive Brühe ) Grundegriffe z Brühe hen die Form n mit z I N0, n I N z heißt der Zähler, n der Nenner des Bruhes Bezeihnung Bedingung Beispiele Ehter Bruh

Mehr

v P Vektorrechnung k 1

v P Vektorrechnung k 1 Vektorrechnung () Vektorielle Größen in der hysik: Sklren Größen wie Zeit, Msse, Energie oder Tempertur werden in der hysik mit einer Mßzhl und einer Mßeinheit ngegeen: 7 sec, 4.5 kg. Wichtige physiklische

Mehr

Aufgaben zur Vertiefung der Geometrie. WS 2005/06 5./6. Dezember 2005 Blatt 3

Aufgaben zur Vertiefung der Geometrie. WS 2005/06 5./6. Dezember 2005 Blatt 3 ufgben zur Vertiefung der Geometrie WS 2005/06 5./6. ezember 2005 ltt 3 1. Umkugel und Innenkugel eines Tetreders Leiten Sie die Formel für ds Volumen, die Oberfläche, den Rdius der umbeschriebenen und

Mehr

Tag der Mathematik 2011

Tag der Mathematik 2011 Zentrum für Mthemtik Tg der Mthemtik 0 Gruppenwettbewerb Einzelwettbewerb Mthemtische Hürden Lösungen Allgemeine Hinweise: Als Hilfsmittel dürfen nur Schreibzeug, Geodreieck und Zirkel benutzt werden.

Mehr

GRUNDWISSEN MATHEMATIK

GRUNDWISSEN MATHEMATIK GRUNDWISSEN MATHEMATIK 5 Grundwissenskatalog G8-Lehrplanstandard Basierend auf den Grundwissenskatalogen des Rhöngymnasiums Bad Neustadt und des Kurt-Huber-Gymnasiums Gräfelfing J O H A N N E S - N E P

Mehr

1.7 Inneres Produkt (Skalarprodukt)

1.7 Inneres Produkt (Skalarprodukt) Inneres Produkt (Sklrprodukt) 17 1.7 Inneres Produkt (Sklrprodukt) Montg, 27. Okt. 2003 7.1 Wir erinnern zunächst n die Winkelfunktionen sin und cos, deren Wirkung wir m Einheitskreis vernschulichen: ϕ

Mehr

fwg Natürliche Zahlen und Zahlenstrahl nennt man natürliche Zahlen: Zahlenstrahl

fwg Natürliche Zahlen und Zahlenstrahl nennt man natürliche Zahlen: Zahlenstrahl M 5.1 Die Zahlen Nimmt man auch die Natürliche Zahlen und Zahlenstrahl nennt man natürliche Zahlen: hinzu, schreibt man: Zahlenstrahl 0 1 2 3 4 5 6 7 8 Je weiter rechts eine Zahl auf dem Zahlenstrahl liegt,

Mehr

Größere Zahl minus kleinerer Zahl anschreiben. Komma unter Komma schreiben. 33,8 : 1,3 = 33,8 : 13 = 26

Größere Zahl minus kleinerer Zahl anschreiben. Komma unter Komma schreiben. 33,8 : 1,3 = 33,8 : 13 = 26 E1 E E3 E4 E5 E6 E7 Lösungen 1 Mein Wissen aus der 1. Klasse z. B., 1 F angemalt im Plan Da sie in unterschiedlichen Abteilungen des Flugzeugs saßen (Business-Class + Economy-Class), konnten sie einander

Mehr

Natürliche Zahlen und. Zahlenstrahl

Natürliche Zahlen und. Zahlenstrahl M 5.1 Die Zahlen Nimmt man auch die Natürliche Zahlen und Zahlenstrahl nennt man natürliche Zahlen: hinzu, schreibt man: Zahlenstrahl Je weiter rechts eine Zahl auf dem Zahlenstrahl liegt, desto größer

Mehr

Kapitel IV Euklidische Vektorräume. γ b

Kapitel IV Euklidische Vektorräume. γ b Kpitel IV Euklidische Vektorräume 1 Elementrgeometrie in der Eene Sei E die Zeicheneene In der Schule lernt mn: (11) Stz des Pythgors: Sei E ein Dreieck mit den Seiten, und c, und sei γ der c gegenüerliegende

Mehr

Natürliche Zahlen und. Zahlenstrahl

Natürliche Zahlen und. Zahlenstrahl M 5.1 Natürliche Zahlen und Zahlenstrahl Die Zahlen 1, 2, 3, 4, nennt man natürliche Zahlen: 1; 2; 3; 4; Nimmt man auch die 0 hinzu, schreibt man: 0; 1; 2; 3; 4; Zahlenstrahl Je weiter rechts eine Zahl

Mehr

1.2 Der goldene Schnitt

1.2 Der goldene Schnitt Goldener Schnitt Psclsches Dreieck 8. Der goldene Schnitt Beim Begriff Goldener Schnitt denken viele Menschen n Kunst oder künstlerische Gestltung. Ds künstlerische Problem ist, wie ein Bild wohlproportioniert

Mehr

Orientierungstest Mathematische Grundlagen

Orientierungstest Mathematische Grundlagen Orientierungstest Mthemtische Grundlgen Lösungen:. Welche Zhlenmengen git es? Beispiele? Menge der ntürlichen Zhlen N {,,, } Menge der gnzen Zhlen Z {,, 0,,, } Menge der rtionlen Zhlen Q Menge ller ls

Mehr