Einführung in Atmosphäre und Klima

Größe: px
Ab Seite anzeigen:

Download "Einführung in Atmosphäre und Klima"

Transkript

1 Einführung in Atmosphäre und Klima Wintersemester 2014/2015 Termine: Vorlesung: Dienstag in S-3121 Übungsgruppe: Dienstag in S-3121 Beginn: Ende: Dozenten: Übungsgruppenleiter: PD Dr. Annette Ladstätter-Weissenmayer Zimmer: U2085 (NW 1) Telephon: Dr. Max Reuter Zimmer: S4370 (NW 1) Telephon: Michael Hilker Zimmer: S4370 (NW 1) Telephon:

2 Allgemeine Hinweise Übungsgruppe: Insgesamt gibt es 12 Übungszettel Der erste Zettel wird am ausgeteilt, am abgegeben und am besprochen Übungszettel werden in der Vorlesung ausgeteilt Die erste Übungsgruppe findet am statt Übungszettel und Folien zur Vorlesung sind online verfügbar: Laborbesichtigung: Interesse?

3 Vorlesung, Tutorium und Prüfung Vorlesung und Tutorium Regelmäßige Teilnahme an Vorlesung und Tutorium (inkl. Vorrechnen) wird erwartet Mündliche Abschlussprüfung Modulprüfung in Verbindung mit Ozeanographie (außer Lehramt-Studenten) Punkte der Übungsaufgaben fließen in die Gesamtnote ein

4 Literatur Das Buch zur Vorlesung Roedel, W. Physik unserer Umwelt: die Atmosphäre (4. Auflage!) Springer, ISBN: , 498 p., Atmosphärenwissenschaften (Physik/Chemie) allgemein: Finlayson-Pitts, B., J. Chemistry Of The Upper And Lower Atmosphere: Theory, Experiments, and Applications Academic Press, San Diego, London, Wayne, R. P. Chemistry of Atmospheres Oxford University Press, ISBN10: X, 806 p., Strahlungstransport: Liou, K. N. An Introduction to Atmospheric Radiation Academic Press, International Geophysical Series, Vol. 84, ISBN: , 583 p., 2002.

5 Übersicht VL Datum Thema Dozent(in) Einführung & Vert. Struktur der Atmos. Reuter Strahlung I Reuter Strahlung II Reuter Strahlung III Reuter Chemie der Stratosphäre Ladstätter-Weissenmayer Chemie der Troposphäre I Ladstätter-Weissenmayer Chemie der Troposphäre II Ladstätter-Weissenmayer Der H2O Kreislauf Ladstätter-Weissenmayer Dynamik I Reuter Dynamik II Reuter Dynamik III Reuter Klima I Reuter Klima II Reuter Zusammenfassung Ladstätter-Weissenmayer

6 Vertikale Struktur der Atmosphäre Druckprofil Temperaturprofil Trockenadiabatischer Temperaturgradient Potentielle Temperatur Schichtungsstabilität Feuchtadiabatischer Temperaturgradient Föhn

7 Kittingers Sprung aus über 31km Höhe (1960) / ZDF

8 Druckprofil Herleitung der Barometrischen Höhenformel Annahme: Hydrostatisches Gleichgewicht Zusammenhang zwischen dp und dz (ρ(z) unbekannt) Annahme: Luft ist ein ideales Gas Ersetzen von ρ(z) liefert lin. Differentialgl. 1.Ord. Annahme: T(z) =const. Integration liefert Barometrische Höhenformel p z p 0 e Mg z RT M=Molmasse (28.97g/mol), g = Erdbeschleunigung, R = univers. Gaskonstante (8.315 J/(K mol)), p0 = Bodendruck

9 Druckprofil Temperaturabhängigkeit der Barometrischen Höhenformel, Skalenhöhe Berücksichtigung von T(z) bei der Integration p z p 0 e Mg RT harm T harm harmonischesmittel z Definition Skalenhöhe: z 0 RT Mg p z / z0 z p e 0

10 Druckprofil Folgerungen aus der Barometrischen Höhenformel und der Skalenhöhe Aus Hydrostatischer Annahme folgt: Der Bodendruck ist ein Maß für die Gesamtzahl von Teilchen in der Luftsäule bzw.: p ~ m ~ N 1013hPa Bodendruck entsprechen einer Luftsäule mit etwa 10t pro m 2 Je kleiner die Temperatur, desto größer die Druckabnahme pro Meter Alle ~5.5km halbiert sich der Luftdruck Auf Meereshöhe fällt der Druck etwa alle 8m um 1hPa Die Skalenhöhe beträgt für Luft etwa 8km Wäre die gesamte Atmosphäre homogen, hätte sie Skalenhöhe: M 0 0z0 M0 = Masse der Luftsäule, ρ0 = Dichte am Boden

11 Druckprofil Vergleich barometrische Höhenformel und US-Standard Atmosphäre

12 Zusammensetzung der Luftsäule Substanz Chemische Formel Volumenanteil an Luft Hauptquellen Molekularer Stickstoff N % Biogen Molekularer Sauerstoff O % Biogen Argon Ar 0.923% Inert Kohlendioxid CO 2 ca. 380 ppmv Biologisch, anthropogen Neon Ne ppmv Inert Helium He 5.24 ppmv Inert Methan CH 4 ca. 1.9 ppmv Biogen, anthropogen Molekularer Wasserstoff H ppmv Lachgas N 2 O 0.31 ppmv Kohlenmonoxid CO ppbv Photochemisch, anthropogen Ozon (Troposphäre) O ppbv Photochemisch Ozon (Stratosphäre) O ppmv Photochemisch Kohlenwasserstoffe ohne Methan 5 20 ppbv Biogen, anthropogen Halogenverbindungen 3.8 ppbv 85% anthropogen

13 Homosphäre / Heterosphäre Die Skalenhöhe hängt von der Molmasse der Luftmoleküle ab Da die Unterschiedlichen Moleküle verschiedene Molmassen haben, könnte man annehmen, dass die Luft sich entmischen müsste Dies wird jedoch erst oberhalb von etwa 85km beobachtet Molekular-kinetische Prozesse sind in der Homosphäre vernachlässigbar

14 Temperaturprofil Herleitung trockenadiabatischer Temperaturgradient I Herleitung eines theoretischen Temperaturprofils aus thermodynamischen Grundlagen Definition adiabatisch: Eine adiabatische Zustandsänderung ist eine thermodynamische Zustandsänderung, bei der keine thermische Energie mit der Umgebung ausgetauscht wird Definition trockenadiabatisch: Keine Kondensation von Wasser Annahme: Ein Luftpaket wird am Boden erwärmt und steigt auf Annahme: Der Aufstieg geschieht ohne Energieaustausch mit umgebenden Luftmassen durch Strahlung oder Wärmeleitung In höheren Luftschichten ist der Druck geringer Ausdehnung Ausdehnung bedeutet Arbeit gegen den Luftdruck Diese Arbeit wird der Inneren Energie der aufsteigenden Luft entzogen Abkühlung

15 Temperaturprofil Herleitung trockenadiabatischer Temperaturgradient II Energiesatz der Thermodynamik sagt: Innere Energie = zugeführte Wärme + geleistete Arbeit Änderung der innere Energie als Änderung der Temperatur ausdrücken Änderung der geleisteten Arbeit als Änderung des Volumens ausdrücken Annahme: keine Zuführung von Wärmeenergie (adiabatisch) Ideales Gasgesetz verwenden um Volumenabhängigkeiten durch Druck und Temperatur auszudrücken Verwendung der Barometrischen Höhenformel um Druckänderung als Höhenänderung auszudrücken Der umgeformte Energiesatz besagt: Die Summe aus potentieller und thermischer Energie bleibt erhalten Trockenadiabatischer Temperaturgradient Γ: dt dz Mg c p 1K 100m c p = Molwärme bei konstantem Druck (etwa 29J/(K mol))

16 Potentielle Temperatur Γ trocken resultiert aus Umwandlung von thermischer in potentielle Energie Die Summe von E pot und E therm ist konstant Die potentielle Temperatur θ ist ein Maß für die Gesamtenergie Sie ist definiert als die Temperatur, die ein Luftpaket bei trockenadiabatischer Absenkung auf meteorologischen Normaldruck annehmen würde T p0 p 1 potentielle Temperatur c p c V Isentropenexponent 1.4

17 Schichtungsstabilität unteradiabatisch (γ < Γ) Stabil Anhebung Luftpaket adiabatische Abkühlung Das angehobene Luftpaket ist kälter als die Umgebung höhere Dichte Absinken Die potentielle Temperatur des angehobenen Luftpakets ist kleiner als die der Umgebung Roedel, 1994 (Abb. 2.9) überadiabatisch (γ > Γ) Labil Anhebung Luftpaket adiabatische Abkühlung Das angehobene Luftpaket ist wärmer als die Umgebung geringere Dichte Aufstieg Die potentielle Temperatur des angehobenen Luftpakets ist größer als die der Umgebung

18 Temperaturprofil Herleitung feuchtadiabatischer Temperaturgradient Abkühlung unter Sättigungsgrenze von H 2 O Wolken bzw. Regen Verdunstungswärme wird frei ( 2500J/g) Dies wirkt der Abkühlung entgegen Kompensation Entzug von innerer Energie feucht trocken Feuchtadiabatischer Temperaturgradient dt M g p feucht dz d w C p p R T L dt Spezialfall Γ trocken d w 0 feucht trocken dt Je größer T, desto kleiner Γ feucht Für T 0 C und p 500hPa gilt 0.5K m feucht 100 w Roedel, 1994 (Abb. 2.2) Wasserdampfdichte beisättigung Roedel, 1994 (Abb. 2.3)

19 Temperaturprofil Troposphäre

20 Temperaturprofil vollständig

21 Föhn Prinzip

22 Föhn vom Satelliten (MSG SEVIRI)

23 Föhn Profile von Temperatur und relativer Feuchte

Fernerkundung der Erdatmosphäre

Fernerkundung der Erdatmosphäre Fernerkundung der Erdatmosphäre Dr. Dietrich Feist Max-Planck-Institut für Biogeochemie Jena Max Planck Institut für Biogeochemie Foto: Michael Hielscher Max Planck Institut für

Mehr

Umweltphysik / Atmosphäre V2: Struktur der Atmosphäre WS 2011/12

Umweltphysik / Atmosphäre V2: Struktur der Atmosphäre WS 2011/12 Umweltphysik / Atmosphäre V2: Struktur der Atmosphäre WS 2011/12 - Temperaturgradient - Vertikales Temperaturprofil - Trockenadiabatischer T-Gradient, potentielle Temperatur Feuchtadiabatischer T-Gradient

Mehr

Kapitel 2 Die vertikale Struktur der Atmosphäre

Kapitel 2 Die vertikale Struktur der Atmosphäre Kapitel 2 Die vertikale Struktur der Atmosphäre Dieses Kapitel befasst sich unter einer gewissen Einschränkung der sehr allgemeinen Kapitelüberschrift mit den hydrostatischen und thermodynamischen Aspekten

Mehr

Die Atmosphäre der Erde (2)

Die Atmosphäre der Erde (2) Die Atmosphäre der Erde (2) Wiederholung: Vertikaler Aufbau der Erdatmosphäre Für das Wetter- und Klimageschehen auf der Erde ist im Wesentlichen nur die Troposphäre verantwortlich Domäne der Meteorologie

Mehr

Wie lässt sich aus Luftdruck die Höhe berechnen und umgekehrt?

Wie lässt sich aus Luftdruck die Höhe berechnen und umgekehrt? Wie lässt sich aus Luftdruck die Höhe berechnen und umgekehrt? Sandra Sebralla Großes Projekt: Sondierung mit unbemannten Luftfahrtsystemen Leitung: Dr. Andreas Philipp Datum: 14.12.2105 2 Atmosphäre und

Mehr

mit Mg Wiederholung: Barometrische Höhenformel Annahmen: Resultate: Hydrostatische Atmosphäre Temperaturprofil bekannt Ideales Gas

mit Mg Wiederholung: Barometrische Höhenformel Annahmen: Resultate: Hydrostatische Atmosphäre Temperaturprofil bekannt Ideales Gas Übersicht VL Datum Thema Dozent(in) 1 01.11.2011 Einführung & Vert. Struktur der Atmos. Reuter 2 08.11.2011 Strahlung I Reuter 3 15.11.2011 Strahlung II Reuter 4 22.11.2011 Strahlung III Reuter 8 29.11.2011

Mehr

Berechnung von Oberflächendrücken

Berechnung von Oberflächendrücken Berechnung von Oberflächendrücken Methode 1: Faustformel 1 (fixe, konstante Druckänderung) Es wird von einem fixen, konstanten Druckabfall von 0.1bar / 1000m Höhe (ü.m.) ausgegangen. p amb-surf (H) = p

Mehr

Gleichgewichtszustand Beschreibung der Gleichgewichtslage Kugel kehrt in die Ruhelage zurück Kugel entfernt sich beschleunigt aus der Ruhelage

Gleichgewichtszustand Beschreibung der Gleichgewichtslage Kugel kehrt in die Ruhelage zurück Kugel entfernt sich beschleunigt aus der Ruhelage Statische Stabilität oder thermische Schichtung der Troposphäre Die vertikale Temperatur-, Feuchte- und Druckverteilung der Atmosphäre wird im synoptisch-aerologischen-routinedienst täglich um 00 und 12

Mehr

Kapitel 2. Grundlegende Größen. 2.1 Meßgrößen für Ozon

Kapitel 2. Grundlegende Größen. 2.1 Meßgrößen für Ozon Kapitel 2 Grundlegende Größen 2.1 Meßgrößen für Ozon Der Gehalt an Ozon in der Atmosphäre kann in verschiedenen physikalischen Größen gemessen werden. Die Ozonkonzentration ( [O 3 ] ) bezeichnet die Anzahl

Mehr

Dynamische Meteorologie und Synoptik

Dynamische Meteorologie und Synoptik Dynamische Meteorologie und Synoptik Andreas Fink & Michael Kerschgens mit V. Ermert, T. Sperling, F. Steffany Institut für Geophysik und Meteorologie Universität zu Köln Wintersemester 2007/2008 Synoptik

Mehr

Vakuum - Mehr als Nichts? Was ist Vakuum? Luftdruck Vakuumpumpen Druckmessung Anwendungen

Vakuum - Mehr als Nichts? Was ist Vakuum? Luftdruck Vakuumpumpen Druckmessung Anwendungen Zum 400. Geburtstag von Otto von Guericke Vakuum - Mehr als Nichts? Was ist Vakuum? Luftdruck Vakuumpumpen Druckmessung Anwendungen Was ist Vakuum? Vakuum: Luftdruck geringer als Normaldruck Druck p

Mehr

Physikübungsaufgaben Institut für math.-nat. Grundlagen (IfG)

Physikübungsaufgaben Institut für math.-nat. Grundlagen (IfG) Datei Alugefaess.docx Kapitel Thermodynamik ; thermische Ausdehnung Titel Aluminiumgefäß randvoll gefüllt Hinweise: Orear: Kap. 12.4, 12.5, Hering: Kap. 3.3.1 Dobrinski: Kap. 2.3 Alonso Finn: Kap. 13.7-9

Mehr

Version 1.1 Einführung in die Physik der Atmosphäre

Version 1.1 Einführung in die Physik der Atmosphäre Version 1.1 MT Einführung in die Physik der Atmosphäre Inhalt: 1. Die Zusammensetzung der Atmosphäre 2. Unterteilung der Atmosphäre 3. Der vertikale Aufbau der Atmosphäre 1. Die Zusammensetzung der Atmosphäre

Mehr

Kapitel 2 Die vertikale Struktur der Atmosphäre

Kapitel 2 Die vertikale Struktur der Atmosphäre Kapitel 2 Die vertikale Struktur der Atmosphäre Dieses Kapitel befaßt sich unter einer gewissen Einschränkung der sehr allgemeinen Kapitelüberschrift mit den hydrostatischen und thermodynamischen Aspekten

Mehr

Der Zustand eines Systems ist durch Zustandsgrößen charakterisiert.

Der Zustand eines Systems ist durch Zustandsgrößen charakterisiert. Grundbegriffe der Thermodynamik Die Thermodynamik beschäftigt sich mit der Interpretation gegenseitiger Abhängigkeit von stofflichen und energetischen Phänomenen in der Natur. Die Thermodynamik kann voraussagen,

Mehr

8. Vorlesung EP. EPI WS 2007/08 Dünnweber/Faessler

8. Vorlesung EP. EPI WS 2007/08 Dünnweber/Faessler 8. Vorlesung EP I. Mechanik 5. Mechanische Eigenschaften von Stoffen a) Deformation von Festkörpern b) Hydrostatik, Aerostatik (Fortsetzung: Auftrieb) c) Oberflächenspannung und Kapillarität Versuche:

Mehr

Experimentalphysik. Vorlesungsergänzung (VE), Wintersemester 2017 Modulnummer PTI 301

Experimentalphysik. Vorlesungsergänzung (VE), Wintersemester 2017 Modulnummer PTI 301 Experimentalphysik Vorlesungsergänzung (VE), Wintersemester 2017 Modulnummer PTI 301 Experimentalphysik, Inhalt VE 2.1: Temperatur und Wärmeausdehnung VE 2.2: Zustandsgleichung idealer Gase VE 2.3: Erster

Mehr

Grundlagen der statistischen Physik und Thermodynamik

Grundlagen der statistischen Physik und Thermodynamik Grundlagen der statistischen Physik und Thermodynamik "Feuer und Eis" von Guy Respaud 6/14/2013 S.Alexandrova FDIBA 1 Grundlagen der statistischen Physik und Thermodynamik Die statistische Physik und die

Mehr

Vorbemerkung. [disclaimer]

Vorbemerkung. [disclaimer] orbemerkung Dies ist ein abgegebener Übungszettel aus dem Modul physik2. Dieser Übungszettel wurde nicht korrigiert. Es handelt sich lediglich um meine Abgabe und keine Musterlösung. Alle Übungszettel

Mehr

Wolfgang Gebhardt und Andreas Schäfer Ausbildungsseminar Wetter und Klima Vortrag Vertikale Luftbewegungen

Wolfgang Gebhardt und Andreas Schäfer Ausbildungsseminar Wetter und Klima Vortrag Vertikale Luftbewegungen Universität Regensburg Fakultät Physik WS 09/10 Wolfgang Gebhardt und Andreas Schäfer Ausbildungsseminar Wetter und Klima Vortrag Vertikale Luftbewegungen Referentin: Johanna Kirschner 30.10.2009 1 Gliederung

Mehr

ZUSAMMENFASSUNG WETTER & KLIMA. Zusammenfassung für die Geografie-Prüfung über das Wetter & Klima

ZUSAMMENFASSUNG WETTER & KLIMA. Zusammenfassung für die Geografie-Prüfung über das Wetter & Klima ZUSAMMENFASSUNG WETTER & KLIMA Zusammenfassung für die Geografie-Prüfung über das Wetter & Klima Exposee Zusammenfassung für die Geografie-Prüfung über das Wetter & Klima am 27.10.2017 RaviAnand Mohabir

Mehr

4 Thermodynamik mikroskopisch: kinetische Gastheorie makroskopisch: System:

4 Thermodynamik mikroskopisch: kinetische Gastheorie makroskopisch: System: Theorie der Wärme kann auf zwei verschiedene Arten behandelt werden. mikroskopisch: Bewegung von Gasatomen oder -molekülen. Vielzahl von Teilchen ( 10 23 ) im Allgemeinen nicht vollständig beschreibbar

Mehr

Wärmelehre/Thermodynamik. Wintersemester 2007

Wärmelehre/Thermodynamik. Wintersemester 2007 Einführung in die Physik I Wärmelehre/Thermodynamik Wintersemester 007 Vladimir Dyakonov #7 am 18.01.006 Folien im PDF Format unter: http://www.physik.uni-wuerzburg.de/ep6/teaching.html Raum E143, Tel.

Mehr

3 Aerostatik Atmosphäre der Erde Die Erde als Wärmekraftmaschine Aufbau der Erdatmosphäre... 8

3 Aerostatik Atmosphäre der Erde Die Erde als Wärmekraftmaschine Aufbau der Erdatmosphäre... 8 3 erostatik... 2 3.1 tmosphäre der Erde... 2 3.1.1 Die Erde als Wärmekraftmaschine... 2 3.1.2 ufbau der Erdatmosphäre... 8 3.2 bhängigkeit des Luftdrucks von der Höhe... 10 3.2.1 Luftdruck... 10 3.2.2

Mehr

Gewitter. Physik der Atmosphäre. Überblick. Entstehung Aufbau Gefahren. 1. Wolken: Entstehung eines Gewitters in Bildern. 2. Physik der Atmosphäre:

Gewitter. Physik der Atmosphäre. Überblick. Entstehung Aufbau Gefahren. 1. Wolken: Entstehung eines Gewitters in Bildern. 2. Physik der Atmosphäre: Gewitter Entstehung Aufbau Gefahren Landeswetterdienst 2010 Überblick 1. Wolken: Entstehung eines Gewitters in Bildern 2. Physik der Atmosphäre: Wann und warum können sich Gewitter bilden Gewittertypen

Mehr

Die Atmosphäre der Erde

Die Atmosphäre der Erde Helmut Kraus Die Atmosphäre der Erde Eine Einführung in die Meteorologie Mit 196 Abbildungen, 184 Übungsaufgaben und einer farbigen Klimakarte der Erde Springer VII Vorwort I. Einige Grundlagen 1.1 Erster

Mehr

1 Thermodynamik allgemein

1 Thermodynamik allgemein Einführung in die Energietechnik Tutorium II: Thermodynamik Thermodynamik allgemein. offenes System: kann Materie und Energie mit der Umgebung austauschen. geschlossenes System: kann nur Energie mit der

Mehr

Vorlesung 15 II Wärmelehre 15. Wärmetransport und Stoffmischung

Vorlesung 15 II Wärmelehre 15. Wärmetransport und Stoffmischung Vorlesung 15 II Wärmelehre 15. Wärmetransport und Stoffmischung a) Wärmestrahlung b) Wärmeleitung c) Wärmeströmung d) Diffusion 16. Phasenübergänge (Verdampfen, Schmelzen, Sublimieren) Versuche: Wärmeleitung

Mehr

Musterlösung zur Abschlussklausur PC I Übungen (27. Juni 2018)

Musterlösung zur Abschlussklausur PC I Übungen (27. Juni 2018) 1. Abkühlung (100 Punkte) Ein ideales Gas (genau 3 mol) durchläuft hintereinander zwei (reversible) Zustandsänderungen: Zuerst expandiert es isobar, wobei die Temperatur von 50 K auf 500 K steigt und sich

Mehr

Versuch: Sieden durch Abkühlen

Versuch: Sieden durch Abkühlen ersuch: Sieden durch Abkühlen Ein Rundkolben wird zur Hälfte mit Wasser gefüllt und auf ein Dreibein mit Netz gestellt. Mit dem Bunsenbrenner bringt man das Wasser zum Sieden, nimmt dann die Flamme weg

Mehr

GPH2 Thermodynamik. 27. September Dieser Entwurf ist weder vollständig oder fehlerfrei noch ein offizielles Script zur Vorlesung.

GPH2 Thermodynamik. 27. September Dieser Entwurf ist weder vollständig oder fehlerfrei noch ein offizielles Script zur Vorlesung. GPH2 Thermodynamik Dieser Entwurf ist weder ollständig oder fehlerfrei noch ein offizielles Scrit zur Vorlesung. Für Anregungen und Kritik: mail@sibbar.de 27. Setember 2004 GPH2 Thermodynamik Seite 2 on

Mehr

Thermodynamik I. Sommersemester 2012 Kapitel 3, Teil 2. Prof. Dr. Ing. Heinz Pitsch

Thermodynamik I. Sommersemester 2012 Kapitel 3, Teil 2. Prof. Dr. Ing. Heinz Pitsch Thermodynamik I Sommersemester 2012 Kapitel 3, Teil 2 Prof. Dr. Ing. Heinz Pitsch Kapitel 3, Teil 2: Übersicht 3 Energiebilanz 3.3Bilanzgleichungen 3.3.1Massenbilanz 3.3.2 Energiebilanz und 1. Hauptsatz

Mehr

Wettersysteme HS 2012

Wettersysteme HS 2012 Wettersysteme HS 2012 Kapitel 1 Grundlegendes zur Erdatmosphäre 19. September 2012 1. Vertikaler Aufbau - Einteilung nach dem Temperaturverlauf - Einteilung in 4 Schichten: - Troposphäre - Stratosphäre

Mehr

Musterlösung Übung 3

Musterlösung Übung 3 Musterlösung Übung 3 Aufgabe 1: Der 1. Hautsatz der Thermodynamik a) Für ein geschlossenes System folgt aus der Energieerhaltung (Gleichung (94) im Skrit) du = dw + dq, (1.1) da ausser Arbeit und Wärme

Mehr

Grundlagen der Luftreinhaltung

Grundlagen der Luftreinhaltung Grundlagen der Luftreinhaltung Hessisches Landesamt für Naturschutz, Umwelt und Geologie Rheingaustraße 186 65203 Wiesbaden 1 Inhaltsübersicht Atmosphäre Begriffe Stockwerke, Zusammensetzung, Dimensionen

Mehr

PN 1 Einführung in die Experimentalphysik für Chemiker und Biologen

PN 1 Einführung in die Experimentalphysik für Chemiker und Biologen PN 1 Einführung in die Experimentalphysik für Chemiker und Biologen 26.1.2007 Paul Koza, Nadja Regner, Thorben Cordes, Peter Gilch Lehrstuhl für BioMolekulare Optik Department für Physik Ludwig-Maximilians-Universität

Mehr

Geografie, D. Langhamer. Klimarisiken. Beschreibung des Klimas eines bestimmten Ortes. Räumliche Voraussetzungen erklären Klimaverlauf.

Geografie, D. Langhamer. Klimarisiken. Beschreibung des Klimas eines bestimmten Ortes. Räumliche Voraussetzungen erklären Klimaverlauf. Klimarisiken Klimaelemente Klimafaktoren Beschreibung des Klimas eines bestimmten Ortes Räumliche Voraussetzungen erklären Klimaverlauf Definitionen Wetter Witterung Klima 1 Abb. 1 Temperaturprofil der

Mehr

Die Atmosphären der Erde, der Planeten unseres Sonnensystems und der Exoplaneten

Die Atmosphären der Erde, der Planeten unseres Sonnensystems und der Exoplaneten Research Collection Report Die Atmosphären der Erde, der Planeten unseres Sonnensystems und der Exoplaneten Author(s): Brüesch, Peter Publication Date: 2016 Permanent Link: https://doi.org/10.3929/ethz-a-010580523

Mehr

Physik I Mechanik der Kontinua und Wärmelehre Thomas Schörner-Sadenius

Physik I Mechanik der Kontinua und Wärmelehre Thomas Schörner-Sadenius Physik I Mechanik der Kontinua und Wärmelehre Thomas Universität Hamburg Wintersemester 2014/15 ORGANISATORISCHES Thomas : Wissenschaftler (Teilchenphysik) am Deutschen Elektronen-Synchrotron (DESY) Kontakt:

Mehr

Mathematisch-Naturwissenschaftliche Grundlegung WS 2014/15 Chemie I Dr. Helge Klemmer

Mathematisch-Naturwissenschaftliche Grundlegung WS 2014/15 Chemie I Dr. Helge Klemmer Mathematisch-Naturwissenschaftliche Grundlegung WS 2014/15 Chemie I 12.12.2014 Gase Flüssigkeiten Feststoffe Wiederholung Teil 2 (05.12.2014) Ideales Gasgesetz: pv Reale Gase: Zwischenmolekularen Wechselwirkungen

Mehr

Übungen zu Experimentalphysik 1 für MSE

Übungen zu Experimentalphysik 1 für MSE Physik-Department LS für Funktionelle Materialien WS 2017/18 Übungen zu Experimentalphysik 1 für MSE Prof. Dr. Peter Müller-Buschbaum, Dr. Volker Körstgens, Dr. Neelima Paul, Sebastian Grott, Lucas Kreuzer,

Mehr

Hydrostatik Mechanik von Fluiden im statischen Gleichgewicht. Fluide: Stoffe, die sich unter Einwirkung von Schubspannungen fortlaufend deformieren

Hydrostatik Mechanik von Fluiden im statischen Gleichgewicht. Fluide: Stoffe, die sich unter Einwirkung von Schubspannungen fortlaufend deformieren Hydrostatik Mechanik von Fluiden im statischen Gleichgewicht Fluide: Stoffe, die sich unter Einwirkung von Schubspannungen fortlaufend deformieren in ruhendem Fluid können keine tangentialen Spannungen

Mehr

Hauptsätze der Thermodynamik

Hauptsätze der Thermodynamik Platzhalter für Bild, Bild auf Titelfolie hinter das Logo einsetzen Hauptsätze der Thermodynamik Dominik Pfennig, 31.10.2012 Inhalt 0. Hauptsatz Innere Energie 1. Hauptsatz Enthalpie Satz von Hess 2. Hauptsatz

Mehr

T p = T = RT. V b. ( ) 2 V p. V b. 2a(V b)2 V 3 RT. 2a(V b) V 3 (p+ a V 2 )

T p = T = RT. V b. ( ) 2 V p. V b. 2a(V b)2 V 3 RT. 2a(V b) V 3 (p+ a V 2 ) 3 Lösung zu 83. Lösungen ( C C = T ( = T ( ( ( 2 van-der-waals Gas: ( ( b + a 2 = T = T b a 2 Man beachte das dies nur eine andere Formulierung der van-der-waals Gleichung ist als auf dem letzten Aufgabenzettel.

Mehr

Thermodynamik. Kapitel 4. Nicolas Thomas

Thermodynamik. Kapitel 4. Nicolas Thomas Thermodynamik Kapitel 4 Arbeit und Wärme Länge, x F Kolben Länge, x F Der Kolben wird sehr langsam um die Distanz -dx verschoben. dx Kolben Wieviel Arbeit mussten wir leisten, um den Kolben zu bewegen?

Mehr

Umweltsysteme Luft. Eine Einführung in die Physik und die Chemie der Atmosphäre. Prof. Dr. Thomas Foken Universität Bayreuth. Abt.

Umweltsysteme Luft. Eine Einführung in die Physik und die Chemie der Atmosphäre. Prof. Dr. Thomas Foken Universität Bayreuth. Abt. Eine Einführung in die Physik und die Chemie der Atmosphäre Prof. Dr. Thomas Foken Universität Bayreuth Übung/Klausur: Dr. Johannes Lüers Gliederung der Vorlesung 2. Physik Atmosphäre 3. Atmosphärische

Mehr

Mathematisch-Naturwissenschaftliche Grundlegung WS 2014/15 Chemie I Dr. Helge Klemmer

Mathematisch-Naturwissenschaftliche Grundlegung WS 2014/15 Chemie I Dr. Helge Klemmer Mathematisch-Naturwissenschaftliche Grundlegung WS 2014/15 Chemie I 05.12.2014 Wiederholung Teil 1 (28.11.2014) Fragenstellungen: Druckanstieg im Reaktor bei Temeraturerhöhung und Produktbildung? Wie groß

Mehr

Physikalische Aspekte der Respiration

Physikalische Aspekte der Respiration Physikalische Aspekte der Respiration Christoph Hitzenberger Zentrum für Biomedizinische Technik und Physik Themenübersicht Physik der Gase o Ideale Gasgleichung o Atmosphärische Luft o Partialdruck Strömungsmechanik

Mehr

5 Atmosphären. 5.1 Skalenhöhen. definiert als Länge, über die eine Größe x (z. B. Dichte, Druck,... ) auf 1/e abfällt lokale Definition: H x.

5 Atmosphären. 5.1 Skalenhöhen. definiert als Länge, über die eine Größe x (z. B. Dichte, Druck,... ) auf 1/e abfällt lokale Definition: H x. 5 Atmosphären 5.1 Skalenhöhen Definition: definiert als Länge, über die eine Größe x (z. B. Dichte, Druck,... ) auf 1/e abfällt lokale Definition: H x x x = x (z... z. B. Höhe [H dx p ] = Länge) dx x =

Mehr

Erster und Zweiter Hauptsatz

Erster und Zweiter Hauptsatz PN 1 Einführung in die alphysik für Chemiker und Biologen 26.1.2007 Paul Koza, Nadja Regner, Thorben Cordes, Peter Gilch Lehrstuhl für BioMolekulare Optik Department für Physik Ludwig-Maximilians-Universität

Mehr

Statistische Thermodynamik I Lösungen zur Serie 11

Statistische Thermodynamik I Lösungen zur Serie 11 Statistische Thermodynamik I Lösungen zur Serie Verschiedenes 20 Mai 206 Barometrische Höhenformel: Betrachte die rdatmosphäre im homogenen Gravitationspotential M gz der rde Unter der Annahme, dass sich

Mehr

Parameter für die Habitabilität von Planeten - Atmosphäre

Parameter für die Habitabilität von Planeten - Atmosphäre Parameter für die Habitabilität von Planeten - Atmosphäre Gliederung Definition von Habitabilität Erdatmosphäre Zusammensetzung Aufbau Einfluss der Atmosphäre auf die Temperatur Reflexion Absorption Treibhauseffekt

Mehr

Die Reise durch die Atmosphäre

Die Reise durch die Atmosphäre Die Reise durch die Atmosphäre Zuordnung zum Kompetenzmodell (KM) Aufgabe(n) KM Beschreibung C2.2 Eigenschaften wichtiger Substanzen und Stoffklassen W1 Ich kann Vorgänge und Phänomene in Natur, Umwelt

Mehr

Physikalische Chemie 1

Physikalische Chemie 1 Physikalische Chemie 1 Christian Lehmann 31. Januar 2004 Inhaltsverzeichnis 1 Einführung 2 1.1 Teilgebiete der Physikalischen Chemie............... 2 1.1.1 Thermodynamik (Wärmelehre)............... 2 1.1.2

Mehr

Atmosphären von Braunen Zwergen und Gasplaneten

Atmosphären von Braunen Zwergen und Gasplaneten Atmosphären von Braunen Zwergen und Gasplaneten Atmosphären substellarer Objekte Wie bei Sternen bezeichnet man als Atmosphäre die äußere Gashülle, die zumindest teilweise für elektromagnetische Strahlung

Mehr

O. Sternal, V. Hankele. 5. Thermodynamik

O. Sternal, V. Hankele. 5. Thermodynamik 5. Thermodynamik 5. Thermodynamik 5.1 Temperatur und Wärme Systeme aus vielen Teilchen Quelle: Wikimedia Commons Datei: Translational_motion.gif Versuch: Beschreibe 1 m 3 Luft mit Newton-Mechanik Beschreibe

Mehr

Hydrostatik Mechanik von Fluiden im statischen Gleichgewicht. Fluide: Stoffe, die sich unter Einwirkung von Schubspannungen fortlaufend deformieren

Hydrostatik Mechanik von Fluiden im statischen Gleichgewicht. Fluide: Stoffe, die sich unter Einwirkung von Schubspannungen fortlaufend deformieren Hydrostatik Mechanik von Fluiden im statischen Gleichgewicht Fluide: Stoffe, die sich unter Einwirkung von Schubspannungen fortlaufend deformieren in ruhendem Fluid können keine tangentialen Spannungen

Mehr

Grundlagen der Physik 3 Lösung zu Übungsblatt 1

Grundlagen der Physik 3 Lösung zu Übungsblatt 1 Grundlagen der Physik 3 Lösung zu Übungsblatt Daniel Weiss 0. Oktober 200 Inhaltsverzeichnis Aufgabe - Anzahl von Atomen und Molekülen a) ohlensto..................................... 2 b) Helium.......................................

Mehr

Klausur zur Statistischen Physik SS 2013

Klausur zur Statistischen Physik SS 2013 Klausur zur Statistischen Physik SS 2013 Prof. Dr. M. Rohlfing Die folgenden Angaben bitte deutlich in Blockschrift ausfüllen: Name, Vorname: geb. am: in: Matrikel-Nr.: Übungsgruppenleiter: Aufgabe maximale

Mehr

Physikalische Chemie Physikalische Chemie I SoSe 2009 Prof. Dr. Norbert Hampp 1/9 1. Das Ideale Gas. Thermodynamik

Physikalische Chemie Physikalische Chemie I SoSe 2009 Prof. Dr. Norbert Hampp 1/9 1. Das Ideale Gas. Thermodynamik Prof. Dr. Norbert Hampp 1/9 1. Das Ideale Gas Thermodynamik Teilgebiet der klassischen Physik. Wir betrachten statistisch viele Teilchen. Informationen über einzelne Teilchen werden nicht gewonnen bzw.

Mehr

Übung 2. Ziel: Bedeutung/Umgang innere Energie U und Enthalpie H verstehen

Übung 2. Ziel: Bedeutung/Umgang innere Energie U und Enthalpie H verstehen Ziel: Bedeutung/Umgang innere Energie U und Enthalpie H verstehen Wärmekapazitäten isochore/isobare Zustandsänderungen Standardbildungsenthalpien Heizwert/Brennwert adiabatische Flammentemperatur WS 2013/14

Mehr

Aufgaben zur Wärmelehre

Aufgaben zur Wärmelehre Aufgaben zur Wärmelehre 1. Ein falsch kalibriertes Quecksilberthermometer zeigt -5 C eingetaucht im schmelzenden Eis und 103 C im kochenden Wasser. Welche ist die richtige Temperatur, wenn das Thermometer

Mehr

Grundlagen der Allgemeinen und Anorganischen Chemie. Atome

Grundlagen der Allgemeinen und Anorganischen Chemie. Atome Grundlagen der Allgemeinen und Anorganischen Chemie Atome Elemente Chemische Reaktionen Energie Verbindungen 361 4. Chemische Reaktionen 4.1. Allgemeine Grundlagen (Wiederholung) 4.2. Energieumsätze chemischer

Mehr

1. Wärmelehre 1.1. Temperatur Wiederholung

1. Wärmelehre 1.1. Temperatur Wiederholung 1. Wärmelehre 1.1. Temperatur Wiederholung a) Zur Messung der Temperatur verwendet man physikalische Effekte, die von der Temperatur abhängen. Beispiele: Volumen einer Flüssigkeit (Hg-Thermometer), aber

Mehr

Thermodynamik 2. Zweiter Hauptsatz der Thermodynamik. Entropie. Die statistische Definition der Entropie.

Thermodynamik 2. Zweiter Hauptsatz der Thermodynamik. Entropie. Die statistische Definition der Entropie. Thermodynamik 2. Zweiter Hauptsatz der Thermodynamik. Entropie. Die statistische Definition der Entropie. Die Hauptsätze der Thermodynamik Kurze Zusammenfassung der Hauptsätze 0. Hauptsatz: Stehen zwei

Mehr

Grundlagen der Physik 2 Schwingungen und Wärmelehre Othmar Marti.

Grundlagen der Physik 2 Schwingungen und Wärmelehre Othmar Marti. (c) Ulm University p. 1/1 Grundlagen der Physik 2 Schwingungen und Wärmelehre 14. 05. 2007 Othmar Marti othmar.marti@uni-ulm.de Institut für Experimentelle Physik Universität Ulm (c) Ulm University p.

Mehr

3 Der 1. Hauptsatz der Thermodynamik

3 Der 1. Hauptsatz der Thermodynamik 3 Der 1. Hauptsatz der Thermodynamik 3.1 Der Begriff der inneren Energie Wir betrachten zunächst ein isoliertes System, d. h. es können weder Teilchen noch Energie mit der Umgebung ausgetauscht werden.

Mehr

Technische Thermodynamik

Technische Thermodynamik Gernot Wilhelms Übungsaufgaben Technische Thermodynamik 6., überarbeitete und erweiterte Auflage 1.3 Thermische Zustandsgrößen 13 1 1.3.2 Druck Beispiel 1.2 In einer Druckkammer unter Wasser herrscht ein

Mehr

8.4.5 Wasser sieden bei Zimmertemperatur ******

8.4.5 Wasser sieden bei Zimmertemperatur ****** 8.4.5 ****** 1 Motivation Durch Verminderung des Luftdrucks siedet Wasser bei Zimmertemperatur. 2 Experiment Abbildung 1: Ein druckfester Glaskolben ist zur Hälfte mit Wasser gefüllt, so dass die Flüsigkeit

Mehr

4.6.5 Dritter Hauptsatz der Thermodynamik

4.6.5 Dritter Hauptsatz der Thermodynamik 4.6 Hauptsätze der Thermodynamik Entropie S: ds = dq rev T (4.97) Zustandsgröße, die den Grad der Irreversibilität eines Vorgangs angibt. Sie ist ein Maß für die Unordnung eines Systems. Vorgänge finden

Mehr

Die Innere Energie U

Die Innere Energie U Die Innere Energie U U ist die Summe aller einem System innewohnenden Energien. Es ist unmöglich, diese zu berechnen. U kann nicht absolut angegeben werden! Differenzen in U ( U) können gemessen werden.

Mehr

Zur Erinnerung. Stichworte aus der 14. Vorlesung: Grenzflächenphänomene: Oberflächenspannung. Grenzflächenspannung. Kapillarität

Zur Erinnerung. Stichworte aus der 14. Vorlesung: Grenzflächenphänomene: Oberflächenspannung. Grenzflächenspannung. Kapillarität Zur Erinnerung Stichworte aus der 14. Vorlesung: Grenzflächenphänomene: Oberflächenspannung Grenzflächenspannung Kapillarität Makroskopische Gastheorie: Gesetz on Boyle-Mariotte Luftdruck Barometrische

Mehr

Einführung in die Meteorologie Teil II

Einführung in die Meteorologie Teil II Einführung in die Meteorologie Teil II Roger K. Smith Einführung in die Meteorologie I Kinetische Gastheorie Struktur und Zusammensetzung der Atmosphäre Thermodynamik der Atmosphäre Feuchtigkeit die ützung

Mehr

Rainer Müller. Thermodynamik. Vom Tautropfen zum Solarkraftwerk. De Gruyter

Rainer Müller. Thermodynamik. Vom Tautropfen zum Solarkraftwerk. De Gruyter Rainer Müller Thermodynamik Vom Tautropfen zum Solarkraftwerk De Gruyter Inhaltsverzeichnis 1 Biologie und Chemie des Kochens 1 1.1 Was beim Garen geschieht 2 1.2 Gemüse... 2 1.3 Fleisch... 5 1.4 Spaghetti

Mehr

PC-Übung Nr.3 vom

PC-Übung Nr.3 vom PC-Übung Nr.3 vom 31.10.08 Sebastian Meiss 25. November 2008 1. Die Säulen der Thermodynamik Beantworten Sie folgende Fragen a) Welche Größen legen den Zustand eines Gases eindeutig fest? b) Welche physikalischen

Mehr

2 Wärmelehre. Reibungswärme Reaktionswärme Stromwärme

2 Wärmelehre. Reibungswärme Reaktionswärme Stromwärme 2 Wärmelehre Die Thermodynamik ist ein Musterbeispiel an axiomatisch aufgebauten Wissenschaft. Im Gegensatz zur klassischen Mechanik hat sie die Quantenrevolution überstanden, ohne in ihren Grundlagen

Mehr

Physik für Biologen und Zahnmediziner

Physik für Biologen und Zahnmediziner Physik für Biologen und Zahnmediziner Kapitel 7: Hydrostatik Dr. Daniel Bick 29. November 2017 Daniel Bick Physik für Biologen und Zahnmediziner 29. November 2017 1 / 27 Übersicht 1 Mechanik deformierbarer

Mehr

2 Luft. 2.1 Die Lufthülle der Erde. Aufbau

2 Luft. 2.1 Die Lufthülle der Erde. Aufbau 2 Luft 2.1 Die Lufthülle der Erde Aufbau Atmosphäre - Gashülle eines Himmelskörpers (griech. atmos, Dunst, Dampf; lat. sphaira, Kugel, Erdkugel) Sphäre - Schicht der Erdatmosphäre, Untergliederung in verschiedene

Mehr

f u G = g φ y f v G = g φ x

f u G = g φ y f v G = g φ x Aufgabe 1: In der folgenden Abbildung ist die geopotentielle Höhe auf 500 hpa und 400 hpa eingezeichnet. In erster Näherung ist der Wind gegeben durch die geostrophische Näherung, die aus dem Kräftegleichgewicht

Mehr

Grundlagen der Physik II

Grundlagen der Physik II Grundlagen der Physik II Othmar Marti 12. 07. 2007 Institut für Experimentelle Physik Physik, Wirtschaftsphysik und Lehramt Physik Seite 2 Wärmelehre Grundlagen der Physik II 12. 07. 2007 Klausur Die Klausur

Mehr

Physikalisch-chemische Grundlagen der Verfahrenstechnik

Physikalisch-chemische Grundlagen der Verfahrenstechnik Physikalisch-chemische Grundlagen der Verfahrenstechnik Günter Tovar, Thomas Hirth, Institut für Grenzflächenverfahrenstechnik guenter.tovar@igvt.uni-stuttgart.de Physikalisch-chemische Grundlagen der

Mehr

Tutorium Hydromechanik I und II

Tutorium Hydromechanik I und II Tutorium Hydromechanik I und II WS 2016/2017 Vorlesung 10 09.01.2017 Prof. Dr. rer. nat. M. Koch 1 Aufgabe 1 Gegeben ist ein Manometer mit zwei Behältern, die mit Wasser gefüllt sind. Im Rohr befindet

Mehr

PCG Grundpraktikum Versuch 5 Lösungswärme Multiple Choice Test

PCG Grundpraktikum Versuch 5 Lösungswärme Multiple Choice Test PCG Grundpraktikum Versuch 5 Lösungswärme Multiple Choice Test 1. Zu jedem Versuch im PCG wird ein Vorgespräch durchgeführt. Für den Versuch Lösungswärme wird dieses Vorgespräch durch einen Multiple Choice

Mehr

E2: Wärmelehre und Elektromagnetismus 8. Vorlesung

E2: Wärmelehre und Elektromagnetismus 8. Vorlesung E2: Wärmelehre und Elektromagnetismus 8. Vorlesung 3.5.2018 Heute: - Boltzmann-Verteilung - Wärmekraftmaschinen - Carnot-Prozess und Wirkungsgrad - Kraftwärmemaschinen Prof. Dr. Jan Lipfert Jan.Lipfert@lmu.de

Mehr

1. Klausur ist am 5.12.! Jetzt lernen! Klausuranmeldung: Bitte heute in Listen eintragen!

1. Klausur ist am 5.12.! Jetzt lernen! Klausuranmeldung: Bitte heute in Listen eintragen! 1. Klausur ist am 5.12.! Jetzt lernen! Klausuranmeldung: Bitte heute in Listen eintragen! Aggregatzustände Fest, flüssig, gasförmig Schmelz -wärme Kondensations -wärme Die Umwandlung von Aggregatzuständen

Mehr

Übungen zur Vorlesung Physikalische Chemie 1 (B. Sc.) Lösungsvorschlag zu Blatt 14

Übungen zur Vorlesung Physikalische Chemie 1 (B. Sc.) Lösungsvorschlag zu Blatt 14 Übungen zur Vorlesung Physikalische Chemie 1 (B. Sc.) Lösungsvorschlag zu Blatt 14 Prof. Dr. Norbert Hampp Jens Träger Sommersemester 2007 08. 10. 2007 Aufgabe 1 Da es sich um einen flüssig-gasförmig Phasenübergang

Mehr

A 1.1 a Wie groß ist das Molvolumen von Helium, flüssigem Wasser, Kupfer, Stickstoff und Sauerstoff bei 1 bar und 25 C?

A 1.1 a Wie groß ist das Molvolumen von Helium, flüssigem Wasser, Kupfer, Stickstoff und Sauerstoff bei 1 bar und 25 C? A 1.1 a Wie groß ist das Molvolumen von Helium, flüssigem Wasser, Kupfer, Stickstoff und Sauerstoff bei 1 bar und 25 C? (-> Tabelle p) A 1.1 b Wie groß ist der Auftrieb eines Helium (Wasserstoff) gefüllten

Mehr

Klausur Wärmelehre E2/E2p SoSe 2016 Braun. Formelsammlung Thermodynamik

Klausur Wärmelehre E2/E2p SoSe 2016 Braun. Formelsammlung Thermodynamik Klausur Wärmelehre E2/E2p SoSe 2016 Braun Name: Matrikelnummer: O E2 O E2p (bitte ankreuzen) Die mit Stern (*) gekennzeichneten Aufgaben sind für E2-Kandidaten vorgesehen - E2p-Kandidaten dürfen diese

Mehr

WS 17/18 1. Sem. B.Sc. Catering und Hospitality Services

WS 17/18 1. Sem. B.Sc. Catering und Hospitality Services 2 Physik 1. Fluide. WS 17/18 1. Sem. B.Sc. Catering und Hospitality Services Diese Präsentation ist lizenziert unter einer Creative Commons Namensnennung Nicht-kommerziell Weitergabe unter gleichen Bedingungen

Mehr

Ferienkurs Experimentalphysik 2

Ferienkurs Experimentalphysik 2 Ferienkurs Experimentalphysik 2 Vorlesung 1 Thermodynamik Andreas Brenneis, Marcus Jung, Ann-Kathrin Straub 13.09.2010 1 Allgemeines und Grundbegriffe Grundlegend für das nun folgende Kapitel Thermodynamik

Mehr

Berechnung der Life Supporting Zones David Neubauer

Berechnung der Life Supporting Zones David Neubauer Berechnung der Life Supporting Zones 30. 03. 2011 David Neubauer Überblick Habitable Zone vs. Life Supporting Zones Radiative convective model LSZ: Wasser Ausblick Habitable Zone (HZ) Habitable Zone=Bereich

Mehr

11.2 Die absolute Temperatur und die Kelvin-Skala

11.2 Die absolute Temperatur und die Kelvin-Skala 11. Die absolute Temperatur und die Kelvin-Skala p p 0 Druck p = p(t ) bei konstantem olumen 1,0 0,5 100 50 0-50 -100-150 -00-73 T/ C Tripelpunkt des Wassers: T 3 = 73,16 K = 0,01 C T = 73,16 K p 3 p Windchill-Faktor

Mehr

Wärmelehre/Thermodynamik. Wintersemester 2007

Wärmelehre/Thermodynamik. Wintersemester 2007 Einführung in die Physik I Wärmelehre/hermodynamik Wintersemester 7 ladimir Dyakonov #3 am..7 Folien unter: htt://www.hysik.uni-wuerzburg.de/ep6/teaching.html.3 Ideales Gas Exerimentelle Bestimmung der

Mehr

1.2.5 Die atmosphärischen Zustandsgrößen Luftdruck und Temperatur

1.2.5 Die atmosphärischen Zustandsgrößen Luftdruck und Temperatur Kennzeichnung und Gliederung der Atmosphäre 1 gekennzeichnet ist. Jenseits dieser Grenzschicht, der Mesopause, setzt mit dem Übergang zur Thermosphäre (Ionosphäre) ein erneuter starker Temperaturanstieg

Mehr

Grundlagen der Physik II

Grundlagen der Physik II Grundlagen der Physik II Othmar Marti 05. 07. 2007 Institut für Experimentelle Physik Physik, Wirtschaftsphysik und Lehramt Physik Seite 2 Wärmelehre Grundlagen der Physik II 05. 07. 2007 Klausur Die Klausur

Mehr

Aufgaben zur Experimentalphysik II: Thermodynamik

Aufgaben zur Experimentalphysik II: Thermodynamik Aufgaben zur Experimentalphysik II: Thermodynamik Lösungen William Hefter - 5//8 1. 1. Durchmesser der Stahlstange nach T : D s D s (1 + α Stahl T) Durchmesser der Bohrung im Ring nach T : D m D m (1 +

Mehr

Modelle zur Beschreibung von Gasen und deren Eigenschaften

Modelle zur Beschreibung von Gasen und deren Eigenschaften Prof. Dr. Norbert Hampp 1/7 1. Das Ideale Gas Modelle zur Beschreibung von Gasen und deren Eigenschaften Modelle = vereinfachende mathematische Darstellungen der Realität Für Gase wollen wir drei Modelle

Mehr