1 Thermodynamik allgemein

Größe: px
Ab Seite anzeigen:

Download "1 Thermodynamik allgemein"

Transkript

1 Einführung in die Energietechnik Tutorium II: Thermodynamik Thermodynamik allgemein. offenes System: kann Materie und Energie mit der Umgebung austauschen. geschlossenes System: kann nur Energie mit der Umgebung austauschen. abgeschlossenes System: kann weder Materie noch Energie austauschen.. intensive Zustandsgrößen: sind unabhängig von der betrachteten Stoffmenge, z.b. Druck p, Temperatur T. extensive Zustandsgrößen: sind abhängig von der Stoffmenge, z.b. Volumen V, innere Energie U.. Das ideale Gasgesetz ist Ausgangspunkt für die Betrachtung aller Zustandsänderungen. p V } n {{ R} T m M R T const. p V R T }{{} m }{{} M V R S R S heißt spezifische Gaskonstante. Im folgenden wird der Variablenname V für das massebezogene Volumen verwendet. p V R S T Isotherme Zustandsänderung: T const. p V const. S c p c V ) ln V V

2 .4 Einführung in die Energietechnik Tutorium II: Thermodynamik wobei für die Differenz der Wärmekapazitäten gilt: c p c V R S Bleibt die Temperatur konstant, so gilt dies auch für die innere Energie U du 0). Q W t W V Isobare Zustandsänderung: p const. V T const. Isochore Zustandsänderung: S c p ln T T Q c p T T ) V const. p T const. Adiabate Zustandsänderung: S c V ln T T Q c V T T ) p V κ const. wobei für den Adiabatenexponent gilt: κ c p c V Sie wird auch isentrope Zustandsänderung genannt, d.h. S 0. Mit der Umgebung wird keine Wärmeenergie ausgetauscht Q 0). Diagramme: siehe Abbildung.4 Bei der adiabaten Ausdehnung findet kein Temperaturausgleich mit der Umgebung statt, das Gas kühlt sich ab. Daher sinkt der Druck stärker als bei der isothermen Expansion.

3 .5 Einführung in die Energietechnik Tutorium II: Thermodynamik Abb. : p-v- und T-S-Diagramme.5 Die Enthalpie ist folgendermaßen definiert: H Somit gilt für infinitesimale Änderungen: }{{} U + p V }{{} innere Energie Arbeitsfähigkeit dh du + p dv + V dp Weiterhin gilt: dh T ds + V dp }{{} Term für technische Arbeit T ds du + p dv Definition der Entropie) du dq + dw. Hauptsatz Thermodynamik).6 Die technische Arbeit W t wird manchmal auch als technisch nutzbare Arbeit bezeichnet. W t V dp

4 .7 Einführung in die Energietechnik Tutorium II: Thermodynamik Abb. : Kolbenmodell für die Volumenänderungsarbeit Betrachtet man einen Kolben, der mit Gas des Druckes p gefüllt ist, so ergibt sich die Volumenänderungsarbeit aus der Newton schen Definition. W F ds p A }{{ ds} dv Durch das Minuszeichen wird nur noch definiert, dass vom System abgegebene Energie negativ angegeben wird. Die Formel für die Volumenänderungsarbeit W V lautet also: W V p dv Berechnet man technische oder Volumenänderungsarbeit für einen ganzen Kreisprozeß, so erhält man dasselbe Ergebnis für die verrichtete Arbeit man berechnet dieselbe Fläche im p-v-diagramm). Für einzelne Zustandsübergänge ergeben sich jedoch unterschiedliche Werte!.7 p V const. p V W V p dv p V V dv p V ln V ln V ) p V ln V V 4

5 .8 Einführung in die Energietechnik Tutorium II: Thermodynamik.8 Polytrope Zustandsänderung ist die allgemeine Bezeichnung für jede Zustandsänderung, für die gilt: p V n const. Je nach Wert des Polytropenexponentes n können auch die unter.. betrachteten Zustandsübergänge Sonderfälle) dargestellt werden: n 0 isobar n isotherm n κ adiabat n isochor.9 pv n p V n W V p V n p dv n p V n n [ n V n p V n V n dv ] V n V n ) p V n V n V }{{} p V n V n }{{} p n p V p V ) V W t V dp p n V p n dp ] [ p n V p n n n p n n n n p V p V ) V p n p n V p n ) 5

6 Einführung in die Energietechnik Tutorium II: Thermodynamik Carnot-Prozeß Ein Carnot-Prozeß besteht aus folgenden Zustandsänderungen: - isotherme Expansion bei T H 40K) - e Expansion unter Abkühlung) - isotherme Kompression bei T K 00K) - e Kompression unter Erwärmung). p T isotherm isotherm 4 isotherm 4 isotherm V S Abb. : Carnot-Prozeß im p-v- und T-S-Diagramm. Ansatz: Polytrope Zustandsänderung idealer Gase aus Formelsammlung) T T p p ) n n Mit n κ, 4 für die e Zustandsänderung folgt: p p p p T T T T ) κ κ ) κ κ, 08bar 6

7 . Einführung in die Energietechnik Tutorium II: Thermodynamik p 4 p T4 T ) κ κ, 85bar Für die nachfolgende Teilaufgabe werden gleich noch die Volumina berechnet. V R S T p 4 p 6bar,5bar,08bar,85bar T 40K 40K 00K 00K V 0, 0 m 0, 44 m 0, 799 m 0, 467 m. isotherme Expansion W t e Expansion pdv p V ln V V ) R S T ln p p ) ) 65 kj Q W t 65 kj da isotherm) W t V dp n p V p V ) n R S T R S T ) ) 9 kj Q 0 da ) 7

8 .4 Einführung in die Energietechnik Tutorium II: Thermodynamik isotherme Kompression 4 W t4 4 pdv p V ln V 4 V ) R S T ln p 4 p ) ) 46, 4 kj e Kompression 4 Q 4 W t4 46, 4 kj da isotherm) W t4 V dp 4 n p V p 4 V 4 ) n R S T R S T 4 ) ) n R S T R S T ) ) W t ) 9 kj Q 0 da ) Verwendet man die in Klammern angegebenen Umformungen, so kann auf die Berechnung der Volumina unter Teilaufgabe verzichtet werden. Wt 65, 0 kj 9kJ kj Q 65, 0 + 0kJ + 46, 4kJ + 9kJ 46, 6kJ + 0kJ 8, 6kJ 8, 6kJ.4 Der thermische Wirkungsgrad ergibt sich aus dem Verhältnis von verrichteter Arbeit zu aufgenommener Wärmeenergie. η therm W t 8, 6 Q zu 65 8, 6% 8

9 Einführung in die Energietechnik Tutorium II: Thermodynamik Der nur theoretisch funktionierende) Carnotprozess hat den maximal möglichen Wirkungsgrad, der bei gegebenen Temperaturen von kaltem und heißem Wärmereservoir denkbar ist. η Carnot T h T k T h hier 8, 6%) Joule-Prozeß Der Joule-Prozeß wird aus folgenden Teilen gebildet: - e Kompression unter Erwärmung) - isobare Expansion unter Erwärmung) - e Expansion unter Abkühlung) - isobare Kompression unter Abkühlung). p T isobar isobar 4 isobar isobar 4 V S Abb. 4: Joule-Prozeß im p-v- und T-S-Diagramm. Zur Berechnung der fehlenden Temperaturen verwenden wir wieder die Gleichung für den adiatischen Übergang T T p p ) κ κ 9

10 . Einführung in die Energietechnik Tutorium II: Thermodynamik T T T 4 T p p p4 p ) κ κ ) κ κ 506K 55K Damit ergibt sich die vollständige Wertetabelle zu: 4 p bar 6bar 6bar bar T 0K 506K 9K 55K V 0, 870 m 0, 4 m 0, 44 m, 59 m. e Kompression isobare Expansion κ W t κ p V p V ) 0, 7 kj Q 0 da ) W t e Expansion 4 isobare Kompression 4 V dp 0 da pconst.) Q c p T T ) 49 kj κ W t4 κ p 4 V 4 p V ) 7, 7 kj Q 4 0 da ) W t4 V dp 0 da pconst.) Q 4 c p T T 4 ) 5 kj 0

11 . Einführung in die Energietechnik Tutorium II: Thermodynamik Wt 0, 7 kj + 0kJ 7, 7kJ + 0kJ 68kJ kj Q kJ + 0kJ 5kJ 68kJ η therm W t Q z u % Zum Vergleich: Der Carnot-Prozeß hätte bei diesen Temperaturgrenzen einen Wirkungsgrad von 67%. η Carnot 0K 9K 67%

ST Der Stirling-Motor als Wärmekraftmaschine

ST Der Stirling-Motor als Wärmekraftmaschine ST Der Stirling-Motor als Wärmekraftmaschine Blockpraktikum Herbst 2007 Gruppe 2b 24. Oktober 2007 Inhaltsverzeichnis 1 Grundlagen 2 1.1 Stirling-Kreisprozess............................. 2 1.2 Technische

Mehr

Physikalische Chemie: Kreisprozesse

Physikalische Chemie: Kreisprozesse Physikalische Chemie: Kreisprozesse Version vom 29. Mai 2006 Inhaltsverzeichnis 1 Diesel Kreisprozess 2 1.1 Wärmemenge Q.................................. 2 1.2 Arbeit W.....................................

Mehr

Allgemeine Gasgleichung und technische Anwendungen

Allgemeine Gasgleichung und technische Anwendungen Allgemeine Gasgleichung und technische Anwendungen Ziele i.allgemeine Gasgleichung: Darstellung in Diagrammen: Begriffsdefinitionen : Iso bar chor them Adiabatische Zustandsänderung Kreisprozess prinzipiell:

Mehr

Thermodynamik des Kraftfahrzeugs

Thermodynamik des Kraftfahrzeugs Cornel Stan Thermodynamik des Kraftfahrzeugs Mit 200 Abbildungen und 7 Tabellen Springer Inhaltsverzeichnis Liste der Formelzeichen XV 1 Grundlagen der Technischen Thermodynamik 1 1.1 Gegenstand und Untersuchungsmethodik

Mehr

Stickstoff kann als ideales Gas betrachtet werden mit einer spezifischen Gaskonstante von R N2 = 0,297 kj

Stickstoff kann als ideales Gas betrachtet werden mit einer spezifischen Gaskonstante von R N2 = 0,297 kj Aufgabe 4 Zylinder nach oben offen Der dargestellte Zylinder A und der zugehörige bis zum Ventil reichende Leitungsabschnitt enthalten Stickstoff. Dieser nimmt im Ausgangszustand ein Volumen V 5,0 dm 3

Mehr

Die innere Energie eines geschlossenen Systems ist konstant

Die innere Energie eines geschlossenen Systems ist konstant Rückblick auf vorherige Vorlesung Grundsätzlich sind alle möglichen Formen von Arbeit denkbar hier diskutiert: Mechanische Arbeit: Arbeit, die nötig ist um einen Massepunkt von A nach B zu bewegen Konservative

Mehr

Institut für Thermodynamik Prof. Dr. rer. nat. M. Pfitzner Thermodynamik I - Lösung 8. Aufgabe kg Luft (perfektes Gas: κ = 1,4 ; R L = 287 J

Institut für Thermodynamik Prof. Dr. rer. nat. M. Pfitzner Thermodynamik I - Lösung 8. Aufgabe kg Luft (perfektes Gas: κ = 1,4 ; R L = 287 J Aufgabe 3 0 kg Luft perfektes Gas: κ,4 ; R L 287 J von T 293 K und p 0,96 bar werden auf 0 bar verdichtet. Dies soll. isochor 2. isotherm 3. reversibel adiabat und 4. polytrop mit n,3 geschehen. a Skizzieren

Mehr

6. Energieumwandlungen als reversible und nichtreversible Prozesse 6. 1 Reversibel-isotherme Arbeitsprozesse 1. Hauptsatz für geschlossene Systeme

6. Energieumwandlungen als reversible und nichtreversible Prozesse 6. 1 Reversibel-isotherme Arbeitsprozesse 1. Hauptsatz für geschlossene Systeme 6. Energieumwandlungen als reversible und nichtreversible Prozesse 6. 1 Reversibel-isotherme Arbeitsprozesse 1. Hauptsatz für geschlossene Systeme Für isotherme reversible Prozesse gilt und daher mit der

Mehr

Thermodynamik. Interpretation gegenseitiger Abhängigkeit von stofflichen und energetischen Phänomenen in der Natur

Thermodynamik. Interpretation gegenseitiger Abhängigkeit von stofflichen und energetischen Phänomenen in der Natur Thermodynamik Interpretation gegenseitiger Abhängigkeit von stofflichen und energetischen Phänomenen in der Natur kann voraussagen, ob eine chemische Reaktion abläuft oder nicht kann nichts über den zeitlichen

Mehr

Thermodynamik I. Sommersemester 2012 Kapitel 3, Teil 3. Prof. Dr.-Ing. Heinz Pitsch

Thermodynamik I. Sommersemester 2012 Kapitel 3, Teil 3. Prof. Dr.-Ing. Heinz Pitsch Thermodynamik I Sommersemester 2012 Kapitel 3, Teil 3 Prof. Dr.-Ing. Heinz Pitsch Kapitel 3, Teil 2: Übersicht 3 Energiebilanz 3.3 Bilanzgleichungen 3.3.1 Massebilanz 3.3.2 Energiebilanz und 1. Hauptsatz

Mehr

Verbundstudium TBW Teil 1 Wärmelehre 1 3. Semester

Verbundstudium TBW Teil 1 Wärmelehre 1 3. Semester Verbundstudium TBW Teil 1 Wärmelehre 1 3. Semester 1. Temperaturmessung Definition der Temperaturskala durch ein reproduzierbares thermodynam. Phänomen, dem Thermometer Tripelpunkt: Eis Wasser - Dampf

Mehr

(ohne Übergang der Wärme)

(ohne Übergang der Wärme) Adiabatische Zustandsänderungen Adiabatische Zustandsänderungen δq= 0 (ohne Übergang der Wärme) Adiabatischer Prozess (Q = const) Adiabatisch = ohne Wärmeaustausch, Temperatur ändert sich bei Expansion/Kompression

Mehr

Thermodynamik. oder Website der Fachhochschule Osnabrück

Thermodynamik.  oder Website der Fachhochschule Osnabrück Thermodynamik Prof. Dr.-Ing. Matthias Reckzügel Vorlesung, Übung und Praktikum im 3. Semester für die Studiengänge: Maschinenbau Fahrzeugtechnik Maschinenbauinformatik Integrierte Produktentwicklung EMS

Mehr

Praktikum II ST: Stirling-Motor

Praktikum II ST: Stirling-Motor Praktikum II ST: Stirling-Motor Betreuer: Norbert Lages Hanno Rein praktikum2@hanno-rein.de Florian Jessen florian.jessen@student.uni-tuebingen.de 14. April 2004 Made with L A TEX and Gnuplot Praktikum

Mehr

5. Energieumwandlungen als reversible und nichtreversible Prozesse 5.1 Reversibel-isotherme Arbeitsprozesse Energiebilanz für geschlossene Systeme

5. Energieumwandlungen als reversible und nichtreversible Prozesse 5.1 Reversibel-isotherme Arbeitsprozesse Energiebilanz für geschlossene Systeme 5. Energieumwandlungen als reversible und nichtreversible Prozesse 5.1 Reversibel-isotherme Arbeitsprozesse Energiebilanz für geschlossene Systeme Für isotherme reversible Prozesse gilt und daher Dies

Mehr

Musterlösung zu Übung 7

Musterlösung zu Übung 7 PCI hermodynamik G. Jeschke FS 05 Musterlösung zu Übung 7 08.04.05 a Der Goldbarren wird beim Einbringen in das Reservoir sprunghaft erwärmt. Der Wärmeaustausch erfolgt daher auf irreversiblem Weg. Um

Mehr

Teilprozesse idealer 4-Takt DIESEL-Prozess (theoretischer Vergleichsprozess)

Teilprozesse idealer 4-Takt DIESEL-Prozess (theoretischer Vergleichsprozess) Maschine: 4-Takt Dieselmotor Teilprozesse idealer 4-Takt DIESEL-Prozess (theoretischer Vergleichsprozess) (1)-(2) adiabatische Kompression (4)-(1) isochore Abkühlung (Ausgangszustand) Hubraum V 1 = 500

Mehr

Thermodynamik des Kraftfahrzeugs

Thermodynamik des Kraftfahrzeugs Thermodynamik des Kraftfahrzeugs Bearbeitet von Cornel Stan 1. Auflage 2012. Buch. xxiv, 598 S. Hardcover ISBN 978 3 642 27629 3 Format (B x L): 15,5 x 23,5 cm Gewicht: 1087 g Weitere Fachgebiete > Technik

Mehr

Fundamentalgleichung für die Entropie. spezifische Entropie: s = S/m molare Entropie: s m = S/n. Entropie S [S] = J/K

Fundamentalgleichung für die Entropie. spezifische Entropie: s = S/m molare Entropie: s m = S/n. Entropie S [S] = J/K Fundamentalgleichung für die Entropie Entropie S [S] = J/K spezifische Entropie: s = S/m molare Entropie: s m = S/n Mit dem 1. Hauptsatz für einen reversiblen Prozess und der Definition für die Entropie

Mehr

Übungsaufgaben zur Thermodynamik

Übungsaufgaben zur Thermodynamik Übungsaufgaben zur Thermodynamik Übungsbeispiel 1 Ein ideales Gas hat bei einem Druck von 2,5 bar und ϑl = 27 C eine Dichte von ρ1 = 2,7 kg/m 3. Durch isobare Wärmezufuhr soll sich das Gasvolumen Vl verdoppeln

Mehr

Thermodynamik I. Sommersemester 2012 Kapitel 4, Teil 2. Prof. Dr.-Ing. Heinz Pitsch

Thermodynamik I. Sommersemester 2012 Kapitel 4, Teil 2. Prof. Dr.-Ing. Heinz Pitsch Thermodynamik I Sommersemester 2012 Kapitel 4, Teil 2 Prof. Dr.-Ing. Heinz Pitsch Kapitel 4, Teil 2: Übersicht 4 Zweiter Hauptsatz der Thermodynamik 4.5 Entropiebilanz 4.5.1 Allgemeine Entropiebilanz 4.5.2

Mehr

U. Nickel Irreversible Volumenarbeit 91

U. Nickel Irreversible Volumenarbeit 91 U. Nickel Irreversible Volumenarbeit 91 geben, wird die bei unterschiedlichem Innen- und Außendruck auftretende Arbeit als irreversible Volumenarbeit irr bezeichnet. Die nachfolgend angegebene Festlegung

Mehr

Inhaltsverzeichnis. Gernot Wilhelms. Übungsaufgaben Technische Thermodynamik ISBN: 978-3-446-41512-6. Weitere Informationen oder Bestellungen unter

Inhaltsverzeichnis. Gernot Wilhelms. Übungsaufgaben Technische Thermodynamik ISBN: 978-3-446-41512-6. Weitere Informationen oder Bestellungen unter Inhaltsverzeichnis Gernot Wilhelms Übungsaufgaben Technische Thermodynamik ISBN: 978-3-446-41512-6 Weitere Informationen oder Bestellungen unter http://www.hanser.de/978-3-446-41512-6 sowie im Buchhandel.

Mehr

Gegenstand der letzten Vorlesung

Gegenstand der letzten Vorlesung Thermodynamik - Wiederholung Gegenstand der letzten Vorlesung Reaktionsenthalpien Satz von Hess adiabatische Zustandsänderungen: ΔQ = 0 Entropie S: Δ S= Δ Q rev (thermodynamische Definition) T 2. Hauptsatz

Mehr

9.10.2 Der Carnotsche Kreisprozess

9.10.2 Der Carnotsche Kreisprozess 9. Thermodynamik 99 9.9 Der erste Hauptsatz 9.10 Der zweite Hauptsatz 9101 9.10.1 Thermodynamischer Wirkungsgrad 9.10.2 Der Carnotsche Kreisprozess 9.9 Der erste Hauptsatz Für kinetische Energie der ungeordneten

Mehr

Klausur zur Vorlesung Thermodynamik

Klausur zur Vorlesung Thermodynamik Institut für Thermodynamik 23. August 2013 Technische Universität Braunschweig Prof. Dr. Jürgen Köhler Klausur zur Vorlesung Thermodynamik Für alle Aufgaben gilt: Der Rechen- bzw. Gedankengang muss stets

Mehr

a) Wie nennt man den oben beschriebenen Vergleichsprozess in Bezug auf die Klassifizierung der Idealprozesse?

a) Wie nennt man den oben beschriebenen Vergleichsprozess in Bezug auf die Klassifizierung der Idealprozesse? Aufgabe 11: Das Betriebsverhalten eines Viertakt- Dieselmotors kann durch folgenden reversiblen Kreisprozess näherungsweise beschrieben werden, wobei kinetische und potenzielle Energien zu vernachlässigen

Mehr

Aufgaben zum Stirlingschen Kreisprozess Ein Stirling-Motor arbeite mit 50 g Luft ( M= 30g mol 1 )zwischen den Temperaturen = 350 C und T3

Aufgaben zum Stirlingschen Kreisprozess Ein Stirling-Motor arbeite mit 50 g Luft ( M= 30g mol 1 )zwischen den Temperaturen = 350 C und T3 Aufgaben zum Stirlingschen Kreisrozess. Ein Stirling-Motor arbeite mit 50 g Luft ( M 0g mol )zwischen den emeraturen 50 C und 50 C sowie den olumina 000cm und 5000 cm. a) Skizzieren Sie das --Diagramm

Mehr

kg K dp p = R LuftT 1 ln p 2a =T 2a Q 12a = ṁq 12a = 45, 68 kw = 288, 15 K 12 0,4 Q 12b =0. Technische Arbeit nach dem Ersten Hauptsatz:

kg K dp p = R LuftT 1 ln p 2a =T 2a Q 12a = ṁq 12a = 45, 68 kw = 288, 15 K 12 0,4 Q 12b =0. Technische Arbeit nach dem Ersten Hauptsatz: Übung 9 Aufgabe 5.12: Kompression von Luft Durch einen Kolbenkompressor sollen ṁ = 800 kg Druckluft von p h 2 =12bar zur Verfügung gestellt werden. Der Zustand der angesaugten Außenluft beträgt p 1 =1,

Mehr

Physikalisches Praktikum

Physikalisches Praktikum Physikalisches Praktikum Versuch 26: Stirling-Motor UNIVERSITÄT DER BUNDESWEHR MÜNCHEN Fakultät für Elektrotechnik und Informationstechnik Institut für Physik Oktober 2015 2 Versuch 26 Stirling-Motor Der

Mehr

FAQ Entropie. S = k B ln W. 1.) Ist die Entropie für einen Zustand eindeutig definiert?

FAQ Entropie. S = k B ln W. 1.) Ist die Entropie für einen Zustand eindeutig definiert? FAQ Entroie S = k B ln W 1.) Ist die Entroie für einen Zustand eindeutig definiert? Antwort: Nein, zumindest nicht in der klassischen Physik. Es sei an die Betrachtung der Ortsraum-Entroie des idealen

Mehr

a) Welche der folgenden Aussagen treffen nicht zu? (Dies bezieht sind nur auf Aufgabenteil a)

a) Welche der folgenden Aussagen treffen nicht zu? (Dies bezieht sind nur auf Aufgabenteil a) Aufgabe 1: Multiple Choice (10P) Geben Sie an, welche der Aussagen richtig sind. Unabhängig von der Form der Fragestellung (Singular oder Plural) können eine oder mehrere Antworten richtig sein. a) Welche

Mehr

1. EIN MOTOR LÄUFT MIT HEIßER LUFT

1. EIN MOTOR LÄUFT MIT HEIßER LUFT Stirling-Motor 1. EIN MOTOR LÄUFT MIT HEIßER LUFT Stellt man den Kolben in Abb. 1 von dem kalten in das heiße Wasserbad, so dehnt sich die Luft im Kolben aus. Der Stempel kann eine Last hochheben Physiker

Mehr

2.6 Zweiter Hauptsatz der Thermodynamik

2.6 Zweiter Hauptsatz der Thermodynamik 2.6 Zweiter Hauptsatz der Thermodynamik Der zweite Hauptsatz der Thermodynamik ist ein Satz über die Eigenschaften von Maschinen die Wärmeenergie Q in mechanische Energie E verwandeln. Diese Maschinen

Mehr

Thermodynamik. Eine Einführung in die Grundlagen. Von. Dr.-Ing. Hans Dieter Baehr. o. Professor an der Technischen Hochschule Braunschweig

Thermodynamik. Eine Einführung in die Grundlagen. Von. Dr.-Ing. Hans Dieter Baehr. o. Professor an der Technischen Hochschule Braunschweig Thermodynamik Eine Einführung in die Grundlagen und ihre technischen Anwendungen Von Dr.-Ing. Hans Dieter Baehr o. Professor an der Technischen Hochschule Braunschweig Mit 325 Abbildungen und zahlreichen

Mehr

Aufgaben Kreisprozesse. 1. Ein ideales Gas durchläuft den im V(T)- Diagramm dargestellten Kreisprozess. Es ist bekannt:

Aufgaben Kreisprozesse. 1. Ein ideales Gas durchläuft den im V(T)- Diagramm dargestellten Kreisprozess. Es ist bekannt: Aufgaben Kreisrozesse. Ein ideales Gas durchläuft den im ()- Diagramm dargestellten Kreisrozess. Es ist bekannt: 8 cm 6 cm 00 K 8MPa MPa a) Geben Sie die fehlenden Zustandsgrößen, und für die Zustände

Mehr

Zur Erinnerung. Wärmetransport durch: -Wärmekonvektion -Wärmestrahlung -Wärmeleitung. Planck sches Strahlungsgesetz. Stefan-Boltzman-Gesetz

Zur Erinnerung. Wärmetransport durch: -Wärmekonvektion -Wärmestrahlung -Wärmeleitung. Planck sches Strahlungsgesetz. Stefan-Boltzman-Gesetz Zur Erinnerung Stichworte aus der 9. orlesung: Wärmetransort durch: -Wärmekonvektion -Wärmestrahlung -Wärmeleitung Planck sches Strahlungsgesetz Stefan-Boltzman-Gesetz Wiensches erschiebungsgesetz Hautsätze

Mehr

Thermodynamik. Springer. Peter Stephan Karlheinz Schaber Karl Stephan Franz Mayinger. Grundlagen und technische Anwendungen Band 1: Einstoffsysteme

Thermodynamik. Springer. Peter Stephan Karlheinz Schaber Karl Stephan Franz Mayinger. Grundlagen und technische Anwendungen Band 1: Einstoffsysteme Peter Stephan Karlheinz Schaber Karl Stephan Franz Mayinger Thermodynamik Grundlagen und technische Anwendungen Band 1: Einstoffsysteme 16., vollständig neu bearbeitete Auflage Mit 195 Abbildungen und

Mehr

b ) den mittleren isobaren thermischen Volumenausdehnungskoeffizienten von Ethanol. Hinweis: Zustand 2 t 2 = 80 C = 23, kg m 3

b ) den mittleren isobaren thermischen Volumenausdehnungskoeffizienten von Ethanol. Hinweis: Zustand 2 t 2 = 80 C = 23, kg m 3 Aufgabe 26 Ein Pyknometer ist ein Behälter aus Glas mit eingeschliffenem Stopfen, durch den eine kapillarförmige Öffnung führt. Es hat ein sehr genau bestimmtes Volumen und wird zur Dichtebestimmung von

Mehr

wegen Massenerhaltung

wegen Massenerhaltung 3.3 Bilanzgleichungen Allgemein: Änderung der Bilanzgröße im System = Eingang Ausgang + Bildung - Verbrauch. 3.3.1 Massenbilanz Integration für konstante Massenströme: 0 wegen Massenerhaltung 3.3-1 3.3.2

Mehr

Thermodynamik Prof. Dr.-Ing. Peter Hakenesch

Thermodynamik Prof. Dr.-Ing. Peter Hakenesch Thermodynamik Thermodynamik Prof. Dr.-Ing. Peter Hakenesch peter.hakenesch@hm.edu www.lrz-muenchen.de/~hakenesch Thermodynamik Einleitung Grundbegriffe 3 Systembeschreibung 4 Zustandsgleichungen 5 Kinetische

Mehr

Klausur zur Vorlesung Thermodynamik

Klausur zur Vorlesung Thermodynamik Institut für Thermodynamik 19. Februar 2013 Technische Universität Braunschweig Prof. Dr. Jürgen Köhler Klausur zur Vorlesung Thermodynamik Für alle Aufgaben gilt: Der Rechen- bzw. Gedankengang muss stets

Mehr

1. EIN MOTOR LÄUFT MIT HEIßER LUFT

1. EIN MOTOR LÄUFT MIT HEIßER LUFT Stirling-Motor 1. EIN MOTOR LÄUFT MIT HEIßER LUFT Stellt man den Kolben in Abb. 1 von dem kalten in das heiße Wasserbad, so dehnt sich die Luft im Kolben aus. Der Stempel kann eine Last hochheben, das

Mehr

Thermodynamik des Kraftfahrzeugs

Thermodynamik des Kraftfahrzeugs Cornel Stan Thermodynamik des Kraftfahrzeugs Mit 199 Abbildungen Inhaltsverzeichnis Liste der Formelzeichen... XV 1 Grundlagen der Technischen Thermodynamik...1 1.1 Gegenstand und Untersuchungsmethodik...1

Mehr

Thermodynamik Formelsammlung

Thermodynamik Formelsammlung Thermodynamik Formelsammlung Helmut Hartmann 9. Januar 2014 Hochschule Amberg Weiden Fakultät Maschinenbau / Umwelttechnik Studiengang Umwelttechnik aus der Vorlesung Thermodynamik von Prof. Dr.-Ing. Univ.

Mehr

Physikalische Chemie 0 Klausur, 22. Oktober 2011

Physikalische Chemie 0 Klausur, 22. Oktober 2011 Physikalische Chemie 0 Klausur, 22. Oktober 2011 Bitte beantworten Sie die Fragen direkt auf dem Blatt. Auf jedem Blatt bitte Name, Matrikelnummer und Platznummer angeben. Zu jeder der 25 Fragen werden

Mehr

13.Wärmekapazität. EP Vorlesung 14. II) Wärmelehre

13.Wärmekapazität. EP Vorlesung 14. II) Wärmelehre 13.Wärmekapazität EP Vorlesung 14 II) Wärmelehre 10. Temperatur und Stoffmenge 11. Ideale Gasgleichung 12. Gaskinetik 13. Wärmekapazität 14. Hauptsätze der Wärmelehre Versuche: Mechanisches Wärmeäquivalent

Mehr

Beispiel für ein thermodynamisches System: ideales Gas (Edelgas)

Beispiel für ein thermodynamisches System: ideales Gas (Edelgas) 10. Hauptsätze tze der Wärmelehre Thermodynamik: zunächst: Klassische Mechanik punktförmiger Teilchen, starrer und deformierbarer Körper aber: Bewegungsgleichungen für N=10 23 Teilchen mit 6N ariablen

Mehr

Physik für Bauingenieure

Physik für Bauingenieure Fachbereich Physik Prof. Dr. Rudolf Feile Dipl. Phys. Markus Domschke Sommersemster 2010 17. 21. Mai 2010 Physik für Bauingenieure Übungsblatt 5 Gruppenübungen 1. Wärmepumpe Eine Wärmepumpe hat eine Leistungszahl

Mehr

Grundpraktikum T7 spezifische Wärmekapazität idealer Gase

Grundpraktikum T7 spezifische Wärmekapazität idealer Gase Grundpraktikum T7 spezifische Wärmekapazität idealer Gase Julien Kluge 11. Mai 2015 Student: Julien Kluge (564513) Partner: Emily Albert (564536) Betreuer: Maximilian Kockert Raum: 215 Messplatz: 2 (Clément-Desormes

Mehr

Allgemeine Vorgehensweise

Allgemeine Vorgehensweise Allgemeine Vorgehensweise 1. Skizze zeichnen und Systemgrenze ziehen 2. Art des Systems festlegen (offen, geschlossen, abgeschlossen) und Eigenschaften charakterisieren (z.b. adiabat, stationär, ruhend...)

Mehr

Physik 2 ET, SoSe 2013 Aufgaben mit Lösung 2. Übung (KW 17/18)

Physik 2 ET, SoSe 2013 Aufgaben mit Lösung 2. Übung (KW 17/18) 2. Übung (KW 17/18) Aufgabe 1 (T 3.1 Sauerstoffflasche ) Eine Sauerstoffflasche, die das Volumen hat, enthält ab Werk eine Füllung O 2, die bei Atmosphärendruck p 1 das Volumen V 1 einnähme. Die bis auf

Mehr

Isotherme 3. 4 Adiabate 2 T 1. Adiabate Isotherme T 2. Arbeit nach außen = eingeschlossene Kurve

Isotherme 3. 4 Adiabate 2 T 1. Adiabate Isotherme T 2. Arbeit nach außen = eingeschlossene Kurve Carnotscher Kreisprozess Carnot Maschine = idealisierte Maschine, experimentell nicht gut zu realisieren. Einfacher Kreisprozess aus zwei isothermen und zwei adiabatischen Zustandsänderungen. Arbeit nach

Mehr

Klausur Wärmelehre E2/E2p, SoSe 2012 Braun. Formelsammlung Thermodynamik

Klausur Wärmelehre E2/E2p, SoSe 2012 Braun. Formelsammlung Thermodynamik Name: Klausur Wärmelehre E2/E2p, SoSe 2012 Braun Matrikelnummer: Benotung für: O E2 O E2p (bitte ankreuzen, Mehrfachnennungen möglich) Mit Stern (*) gekennzeichnete Aufgaben sind für E2-Kandidaten [E2p-Kandidaten

Mehr

Klausur im Fach Thermodynamik I, SS 2012 am 06.08.2012

Klausur im Fach Thermodynamik I, SS 2012 am 06.08.2012 e r e n e g y e n g i n e e r i n g..t c o n o m i c s. e n v i e n r o n m Technische Universität Berlin INSTITUT FÜR ENERGIETECHNIK Prof. Dr.-Ing. G. Tsatsaronis. Klausur im Fach Thermodynamik I, SS

Mehr

STIRLING -Prozess W 24

STIRLING -Prozess W 24 STIRLING -Prozess W 24 Aufgabenstellung. Der STIRLINGmotor ist als Kältemaschine zu betreiben; die umgesetzten Energien und die Leistungszahl sind zu ermitteln..2 Der STIRLINGmotor ist als Heißluftmotor

Mehr

Innere Energie eines Gases

Innere Energie eines Gases Innere Energie eines Gases Die innere Energie U eines Gases im Volumen V setzt sich zusammen aus der gesamten Energie (Translationsenergie, Rotationsenergie und Schwingungsenergie) seiner N Moleküle. Der

Mehr

(1) du = dq + dw. ln( Ω)

(1) du = dq + dw. ln( Ω) Theorie Wärmehauptsätze Erster Hauptsatz der Thermodynamik Dieser Satz sagt aus, dass sich die innere Energie eines thermodynamischen Systems sich durch Zufuhr bzw. Entnahme von Wärme und Arbeit ändern

Mehr

Gegenstand der letzten Vorlesung

Gegenstand der letzten Vorlesung Thermodynamik - Wiederholung Gegenstand der letzten Vorlesung Grundbegriffe: System und Umgebung Zustands- und Prozessgrößen Reversibilität und Irreversibilität erster Hauptsatz der Thermodynamik Arbeit

Mehr

Temperatur. Temperaturmessung. Grundgleichung der Kalorik. 2 ² 3 2 T - absolute Temperatur / ºC T / K

Temperatur. Temperaturmessung. Grundgleichung der Kalorik. 2 ² 3 2 T - absolute Temperatur / ºC T / K Temperatur Temperatur ist ein Maß für die mittlere kinetische Energie der Teilchen 2 ² 3 2 T - absolute Temperatur [ T ] = 1 K = 1 Kelvin k- Boltzmann-Konst. k = 1,38 10-23 J/K Kelvin- und Celsiusskala

Mehr

Klausur zur Vorlesung Thermodynamik

Klausur zur Vorlesung Thermodynamik Institut für Thermodynamik 25. Februar 2016 Technische Universität Braunschweig Prof. Dr. Jürgen Köhler Klausur zur Vorlesung Thermodynamik Für alle Aufgaben gilt: Der Rechen- bzw. Gedankengang muss stets

Mehr

Thermodynamik I. Sommersemester 2012 Kapitel 5, Teil 1. Prof. Dr. Ing. Heinz Pitsch

Thermodynamik I. Sommersemester 2012 Kapitel 5, Teil 1. Prof. Dr. Ing. Heinz Pitsch Thermodynamik I Sommersemester 2012 Kapitel 5, Teil 1 Prof. Dr. Ing. Heinz Pitsch Kapitel 5, Teil 1: Übersicht 5. Energieumwandlungen als reversible und nichtreversible Prozesse 5.1 Reversibel isotherme

Mehr

Statistische Zustandsgröße Entropie Energieentwertung bei Wärmeübertragungen II. Hauptsatz der Thermodynamik

Statistische Zustandsgröße Entropie Energieentwertung bei Wärmeübertragungen II. Hauptsatz der Thermodynamik Statistische Zustandsgröße Entropie Energieentwertung bei Wärmeübertragungen II. Hauptsatz der hermodynamik Die nachfolgenden Ausführungen stellen den Versuch dar, die zugegeben etwas schwierige Problematik

Mehr

3.6 Kreisprozesse. System durchläuft eine Folge von Zustandsänderungen im pv-diagramm, so dass Anfangszustand = Endzustand. Bsp: 4-Takt Ottomotor

3.6 Kreisprozesse. System durchläuft eine Folge von Zustandsänderungen im pv-diagramm, so dass Anfangszustand = Endzustand. Bsp: 4-Takt Ottomotor System durchläuft eine Folge von Zustandsänderungen im p-diagramm, so dass Anfangszustand Endzustand. Bsp: 4-at Ottomotor Die eingesetzten nutzbaren Energien/Arbeiten ergeben sich ieder aus den jeeiligen

Mehr

Repetition Carnot-Prozess

Repetition Carnot-Prozess Wärmelehre II Die Wärmelehre (bzw. die Thermodynamik) leidet etwas unter den verschiedensten Begriffen, die in ihr auftauchen. Diese sind soweit noch nicht alle aufgetreten - Vorhang auf! Die neu auftretenden

Mehr

Institut für Abfallwirtschaft und Altlasten, TU-Dresden Seminar Thermische Abfallbehandlung - Veranstaltung 4 - Dampfkraftprozesse

Institut für Abfallwirtschaft und Altlasten, TU-Dresden Seminar Thermische Abfallbehandlung - Veranstaltung 4 - Dampfkraftprozesse Institut für Abfallwirtschaft und Altlasten, TU-Dresden Seinar Therische Abfallbehandlung - Veranstaltung 4 - Dapfkraftprozesse Dresden, 09. Juni 2008 Dipl.- Ing. Christoph Wünsch, Prof. Dr.- Ing. habil.

Mehr

Mathematisch-Naturwissenschaftliche Grundlegung WS 2014/15 Chemie I Dr. Helge Klemmer

Mathematisch-Naturwissenschaftliche Grundlegung WS 2014/15 Chemie I Dr. Helge Klemmer Mathematisch-Naturwissenschaftliche Grundlegung WS 2014/15 Chemie I 12.12.2014 Gase Flüssigkeiten Feststoffe Wiederholung Teil 2 (05.12.2014) Ideales Gasgesetz: pv Reale Gase: Zwischenmolekularen Wechselwirkungen

Mehr

HYDROSPEICHER. Grundlagen SPEICHERBERECHNUNGEN OSP 050. Das ideale und das reale Gas. Gesetz nach Boyle-Mariotte. Zustandsgleichung reales Gas

HYDROSPEICHER. Grundlagen SPEICHERBERECHNUNGEN OSP 050. Das ideale und das reale Gas. Gesetz nach Boyle-Mariotte. Zustandsgleichung reales Gas HYDROSPEICHER SPEICHERBERECHNUNGEN OSP 050 Grundlagen Die Berechnung eines Hydrospeichers bezieht sich auf die Zustandsänderung des Gases im Hydrospeicher. Die gleiche Veränderung erfolgt auf der Oelseite.

Mehr

Formel X Leistungskurs Physik 2005/2006

Formel X Leistungskurs Physik 2005/2006 System: Wir betrachten ein Fluid (Bild, Gas oder Flüssigkeit), das sich in einem Zylinder befindet, der durch einen Kolben verschlossen ist. In der Thermodynamik bezeichnet man den Gegenstand der Betrachtung

Mehr

Versuch W6: Thermische Zustandsgleichung des idealen Gases

Versuch W6: Thermische Zustandsgleichung des idealen Gases Versuch W6: Thermische Zustandsgleichung des idealen Gases Aufgaben: 1. Führen Sie isotherme Zustandsänderungen durch! Zeigen Sie die Gültigkeit des Gesetzes von BOYLE MARIOTTE für Luft bei Zimmertemperatur!

Mehr

Klausur zur Vorlesung. Thermodynamik

Klausur zur Vorlesung. Thermodynamik Institut für Thermodynamik 25. August 2010 Technische Universität Braunschweig Prof. Dr. Jürgen Köhler Klausur zur Vorlesung Thermodynamik Für alle Aufgaben gilt: Der Rechen- bzw. Gedankengang muss stets

Mehr

II. Thermodynamische Energiebilanzen

II. Thermodynamische Energiebilanzen II. Thermodynamische Energiebilanzen 1. Allgemeine Energiebilanz Beispiel: gekühlter Verdichter stationärer Betrieb über Systemgrenzen Alle Energieströme werden bezogen auf Massenstrom 1 Energieformen:

Mehr

8. Mehrkomponentensysteme. 8.1 Partielle molare Größen. Experiment 1 unter Umgebungsdruck p:

8. Mehrkomponentensysteme. 8.1 Partielle molare Größen. Experiment 1 unter Umgebungsdruck p: 8. Mehrkomponentensysteme 8.1 Partielle molare Größen Experiment 1 unter Umgebungsdruck p: Fügen wir einer Menge Wasser n mit Volumen V (molares Volumen v m =V/n) bei einer bestimmten Temperatur T eine

Mehr

Technische Thermodynamik. FB Maschinenwesen. Übungsfragen Technische Thermodynamik II. University of Applied Sciences

Technische Thermodynamik. FB Maschinenwesen. Übungsfragen Technische Thermodynamik II. University of Applied Sciences University of Applied Sciences Übungsfragen Technische Thermodynamik II Prof. Dr.-Ing. habil. H.-J. Kretzschmar FB Maschinenwesen Technische Thermodynamik HOCHSCHULE ZITTAU/GÖRLITZ (FH) - University of

Mehr

Inhaltsverzeichnis. Hans-Joachim Kretzschmar, Ingo Kraft. Kleine Formelsammlung Technische Thermodynamik ISBN: 978-3-446-41781-6

Inhaltsverzeichnis. Hans-Joachim Kretzschmar, Ingo Kraft. Kleine Formelsammlung Technische Thermodynamik ISBN: 978-3-446-41781-6 Inhaltsverzeichnis Hans-Joachim Kretzschmar, Ingo Kraft Kleine Formelsammlung Technische Thermodynamik ISBN: 978-3-446-41781-6 Weitere Informationen oder Bestellungen unter http://www.hanser.de/978-3-446-41781-6

Mehr

Manuel Kühner und Veit Hammerstingl. SS 2008 Stand: 24.05.2009

Manuel Kühner und Veit Hammerstingl. SS 2008 Stand: 24.05.2009 Private Formelsammlung für Thermodynamik 1 TU München und Veit Hammerstingl SS 2008 Stand: 24.05.2009 Internetseite: www.bipede.de 1 cm3 10 6 m3 1 Hektoliter 1 hl 100 l 100 dm3 0, 1 m3 Druck in Pascal

Mehr

C Metallkristalle. Allgemeine Chemie 60. Fluorit CaF 2 KZ(Ca) = 8, KZ(F) = 4. Tabelle 7: weiter Strukturtypen. kubisch innenzentriert KZ = 8

C Metallkristalle. Allgemeine Chemie 60. Fluorit CaF 2 KZ(Ca) = 8, KZ(F) = 4. Tabelle 7: weiter Strukturtypen. kubisch innenzentriert KZ = 8 Allgemeine Chemie 60 Fluorit CaF 2 KZ(Ca) = 8, KZ(F) = 4 Tabelle 7: weiter Strukturtypen C Metallkristalle kubisch primitiv KZ = 6 kubisch innenzentriert KZ = 8 kubisch flächenzentriert, kubisch dichteste

Mehr

Gegenstand der letzten Vorlesung

Gegenstand der letzten Vorlesung Thermodynamik - Wiederholung Gegenstand der letzten Vorlesung reales Gas, Lennard-Jones-Potenzial Zustandsgleichung des realen Gases (van der Waals-Gleichung) Kondensation kritischer Punkt Freiheitsgrade

Mehr

Physik II Übung 7, Teil I - Lösungshinweise

Physik II Übung 7, Teil I - Lösungshinweise Physik II Übung 7, Teil I - Lösungshinweise Stefan Reutter SoSe 2012 Moritz Kütt Stand: 15.06.2012 Franz Fujara Aufgabe 1 Das Kühlen eines Klotzes Klaus spielt gern mit Bauklötzen, doch irgendwann fängt

Mehr

Perpetuum Mobile I. Ein Perpetuum mobile erster Art wird durch den ersten Hauptsatz der Thermodynamik ausgeschlossen.

Perpetuum Mobile I. Ein Perpetuum mobile erster Art wird durch den ersten Hauptsatz der Thermodynamik ausgeschlossen. Perpetuum Mobile I Perpetuum mobile erster Art: Unter einem perpetuum mobile erster Art versteht man eine Vorrichtung, deren Teile, einmal angeregt, nicht nur dauernd in Bewegung bleiben, sondern dabei

Mehr

Festkörper - System steht unter Atmosphärendruck gemessenen Wärmen erhalten Index p : - isoliert

Festkörper - System steht unter Atmosphärendruck gemessenen Wärmen erhalten Index p : - isoliert Kalorimetrie Mit Hilfe der Kalorimetrie können die spezifischen Wärmekapazitäten für Festkörper, Flüssigkeiten und Gase bestimmt werden. Kalorische Grundgleichung: ΔQ = c m ΔT Festkörper - System steht

Mehr

Formelsammlung: Thermo- und Fluiddynamik 1

Formelsammlung: Thermo- und Fluiddynamik 1 Modul: TFDMI Semester: HS 202 / 3 Formelsammlung: Thermo- und Fluiddynamik Physikalische Konstanten & wichtige Tabellenwerte Universelle Gaskonstante. Stoffdaten Ammoniak Argon Helium Kohlenmonoxid Kohlendioxid

Mehr

8.2 Thermodynamische Gleichgewichte, insbesondere Gleichgewichte in Mehrkomponentensystemen Mechanisches und thermisches Gleichgewicht

8.2 Thermodynamische Gleichgewichte, insbesondere Gleichgewichte in Mehrkomponentensystemen Mechanisches und thermisches Gleichgewicht 8.2 Thermodynamische Gleichgewichte, insbesondere Gleichgewichte in Mehrkomponentensystemen Mechanisches und thermisches Gleichgewicht 8.2-1 Stoffliches Gleichgewicht Beispiel Stickstoff Sauerstoff: Desweiteren

Mehr

8.2 Thermodynamische Gleichgewichte, insbesondere Gleichgewichte in Mehrkomponentensystemen Mechanisches und thermisches Gleichgewicht

8.2 Thermodynamische Gleichgewichte, insbesondere Gleichgewichte in Mehrkomponentensystemen Mechanisches und thermisches Gleichgewicht 8.2 Thermodynamische Gleichgewichte, insbesondere Gleichgewichte in Mehrkomponentensystemen Mechanisches und thermisches Gleichgewicht 8.2-1 Stoffliches Gleichgewicht Beispiel Stickstoff Sauerstoff: Desweiteren

Mehr

5. Zweiter Hauptsatz der Thermodynamik 5.1 Reversible und irreversible Prozesse 5.2 Formulierung des zweiten Hauptsatzes

5. Zweiter Hauptsatz der Thermodynamik 5.1 Reversible und irreversible Prozesse 5.2 Formulierung des zweiten Hauptsatzes 5.1 5. Zweiter Hauptsatz der hermodynamik 5.1 Reversible und irreversible Prozesse Stoss zweier Billardkugeln: vorwärts und rückwärts laufender Film ist physikalisch sinnvoll, vom Betrachter nicht zu unterscheiden

Mehr

(Sie ist temperaturabhängig.) Ihre Einheit ist kj kg -1 K -1

(Sie ist temperaturabhängig.) Ihre Einheit ist kj kg -1 K -1 Werte Name: Technik 13: Thermodynamik/Strömungsmechanik Datum: Seite 16 2.4.1 Der erste Hauptsatz der Wärmelehre In einem abgeschlossenen System, in dem beliebige Vorgänge ablaufen, bleibt die vorhandene

Mehr

Physik III im Studiengang Elektrotechnik

Physik III im Studiengang Elektrotechnik Physik III im Studiengang Elektrotechnik - Einführung in die Wärmelehre - Prof. Dr. Ulrich Hahn WS 2008/09 Entwicklung der Wärmelehre Sinnesempfindung: Objekte warm kalt Beschreibung der thermische Eigenschaften

Mehr

Grundlagen der Technischen Thermodynamik

Grundlagen der Technischen Thermodynamik Grundlagen der Technischen Thermodynamik Lehrbuch für Studierende der Ingenieurwissenschaften Bearbeitet von Ernst Doering, Herbert Schedwill, Martin Dehli 1. Auflage 2012. Taschenbuch. xii, 494 S. Paperback

Mehr

Hans Dieter Baehr. Thermodynamik. Eine Einführung in die Grundlagen und ihre technischen Anwendungen. Neunte Auflage

Hans Dieter Baehr. Thermodynamik. Eine Einführung in die Grundlagen und ihre technischen Anwendungen. Neunte Auflage Hans Dieter Baehr Thermodynamik Eine Einführung in die Grundlagen und ihre technischen Anwendungen Neunte Auflage Mit 262 Abbildungen und zahlreichen Tabellen sowie 57 Beispielen JjjJ Springer Inhaltsverzeichnis

Mehr

Versuch 7. Stirlingmotor. 7.1 Einleitung. Abbildung 7.1: Patentzeichnung des ersten Stirlingmotors

Versuch 7. Stirlingmotor. 7.1 Einleitung. Abbildung 7.1: Patentzeichnung des ersten Stirlingmotors Versuch 7 Stirlingmotor 7.1 Einleitung Abbildung 7.1: Patentzeichnung des ersten Stirlingmotors Der Heißluft-Motor wurde bereits 1816 vom Schotten Robert Stirling (1790-1878), erfunden und erreichte bereits

Mehr

Aggregatzustände. Festkörper. Flüssigkeit. Gas

Aggregatzustände. Festkörper. Flüssigkeit. Gas Festkörper Festkörper: - weitreichend geordnetes Kristallgitter - feste Positionen, geringe Abstände - starke Wechselwirkung zwischen Atomen - Schwingungen um Positionen Flüssigkeit: - keine weitreichende

Mehr

Thermodynamik 2. Peter Junglas 27. 6. 2013

Thermodynamik 2. Peter Junglas 27. 6. 2013 Thermodynamik 2 Irreversible Prozesse Kreisprozesse des idealen Gases in der Anwendung Thermodynamisches Verhalten realer Stoffe Dampfkraftanlagen Aufgaben Anhang Peter Junglas 27. 6. 2013 1 Inhaltsverzeichnis

Mehr

Thermodynamik Formelsammlung

Thermodynamik Formelsammlung RH-öln Thermoynamik ormelsammlung 2006 Thermoynamik ormelsammlung - I 1 Grunlagen Boltzmannkonstante: 1.3 Größen un Einheitensysteme Umrechnung ahrenheit nach Celsius: Umrechnung Celsius nach elvin: abgeschlossenes

Mehr

Physik 4 Praktikum Auswertung Wä rmepumpe

Physik 4 Praktikum Auswertung Wä rmepumpe Physik 4 Praktikum Auswertung Wä rmepumpe Von J.W., I.G. 2014 Seite 1. Kurzfassung........ 2 2. Theorie......... 2 3. Durchführung........ 3 3.1. Geräteliste & Versuchsaufbau.... 3 3.2. Versuchsablauf.......

Mehr

Einführung in die Physikalische Chemie: Inhalt. Einführung in die Physikalische Chemie:

Einführung in die Physikalische Chemie: Inhalt. Einführung in die Physikalische Chemie: Einführung in die Physikalische Chemie: Inhalt Einführung in die Physikalische Chemie: Inhalt Kapitel 9: Prinzipien der Thermodynamik Inhalt: 9.1 Einführung und Definitionen 9.2 Der 0. Hauptsatz und seine

Mehr

6.4.2 VerdampfenundEindampfen... 427 6.4.3 Destillieren und Rektifizieren... 430 6.4.4 Absorbieren... 436

6.4.2 VerdampfenundEindampfen... 427 6.4.3 Destillieren und Rektifizieren... 430 6.4.4 Absorbieren... 436 Inhaltsverzeichnis 1 Allgemeine Grundlagen... 1 1.1 Thermodynamik... 1 1.1.1 Von der historischen Entwicklung der Thermodynamik 1 1.1.2 WasistThermodynamik?... 9 1.2 SystemundZustand... 11 1.2.1 SystemundSystemgrenzen...

Mehr

Inhalt 1 Grundlagen der Thermodynamik

Inhalt 1 Grundlagen der Thermodynamik Inhalt 1 Grundlagen der Thermodynamik..................... 1 1.1 Grundbegriffe.............................. 2 1.1.1 Das System........................... 2 1.1.2 Zustandsgrößen........................

Mehr

Thermodynamik I. Sommersemester 2012 Kapitel 2, Teil 2. Prof. Dr. Ing. Heinz Pitsch

Thermodynamik I. Sommersemester 2012 Kapitel 2, Teil 2. Prof. Dr. Ing. Heinz Pitsch Thermodynamik I Sommersemester 2012 Kapitel 2, Teil 2 Prof. Dr. Ing. Heinz Pitsch Kapitel 2, Teil 2: Übersicht 2 Zustandsgrößen 2.3 Bestimmung von Zustandsgrößen 2.3.1 Bestimmung der Phase 2.3.2 Der Sättigungszustand

Mehr

Adiabatische Expansion. p. 30

Adiabatische Expansion. p. 30 Adiabatische Expansion p. 30 Isotherme Kompression p. 31 Adiabatische Kompression p. 32 PV Diagramm und Arbeit im Carnotzyklus 1. Isotherme Expansion 2. Adiabatisch Expansion 3. Isotherme Kompression 4.

Mehr

Dampfkraftprozess Dampfturbine

Dampfkraftprozess Dampfturbine Fachgebiet für Energiesysteme und Energietechnik Prof. Dr.-Ing. B. Epple Musterlösung Übung Energie und Klimaschutz Sommersemester 0 Dampfkraftprozess Dampfturbine Aufgabe : Stellen Sie den Dampfkraftprozess

Mehr