Bildgebung mit Röntgenstrahlen. Erzeugung von Röntgenstrahlung

Größe: px
Ab Seite anzeigen:

Download "Bildgebung mit Röntgenstrahlen. Erzeugung von Röntgenstrahlung"

Transkript

1 Erzeugung von Röntgenstrahlung

2 Scanogramm Röntgen- Quelle Detektor Entwicklung Verarbeitung Tomogramm

3 Erzeugung von Röntgenstrahlung: Grundprinzip: Photoelektrischer Effekt - Erzeugung freier Elektronen durch Erhitzen einer Schwermetallwendel (Kathode) - Beschleunigung im elektrischen Feld ( kv) - Abbremsung in Anodenmaterial (Umsetzung 99 % E kin in Wärme, 1 % in Röntgenstrahlung) - Bremsstrahlung, charakteristische Strahlung - Vakuum (< 10-5 mbar); Vermeidung WW mit Luftmolekülen

4 Erzeugung von Röntgenstrahlung: W. Crookes 1904

5 Frequenz der Röntgenstrahlung: Elektronenenergie nach Durchlaufen der Beschleunigungsspannung: E kin mit ν = e U E = Photo A e U h = h ν A Frequenz der Röntgenstrahlung linear abh. von Röhrenspannung U A λ=1/υ Strahlungsart 1 kv nm weich 10 kv nm mittel 100 kv nm hart

6 Bohrsches Atommodell M (18e - ) L (8e - ) K (2e - )

7 Energie der Röntgenstrahlung: 1. Bremsstrahlung: Beschleunigte Elektronen geraten in Nähe eines Atomkerns (zwischen Kern und K-Schale) - Ablenkung durch Coulomb-Potential des Kerns und der Hüllenelektronen - Abbremsung (Umwandlung von E kin in e.m. Energie) - Abstrahlung der Energie als Bremsstrahlung h υ Energie der Bremsstrahlung hängt von Flugbahn ab breites Energiespektrum!

8 Energie der Röntgenstrahlung: 1. Bremsstrahlung: räumliche Intensitätsverteilung der Bremsstrahlung ( Strahlungskeulen )

9 Energie der Röntgenstrahlung: 2. Charakteristische Strahlung: Beschleunigte Elektronen schlagen gebundene Elektronen aus K- (oder L-) Schale Ionisation Auffüllen der freien Stelle durch freies Elektron oder aus äußerer Schale Freisetzen der Energiedifferenz (hυ=e m -E n ) als Quant mit charakteristischer Frequenz υ E(e - ) 70 kev fi K a ~ 59 kev Energie der charakteristischen Strahlung nur materialabhängig!

10 Energie der Röntgenstrahlung: 2. Charakteristische Strahlung: Berechnung der Energie der Kα-Strahlung Mosleysches Gesetz: mit E K α R Z = 3 4 R ( Z 1) = Rydbergkonstante = Ordnungszahl 2 ( s 1 )

11 Energie der Röntgenstrahlung: 3. Gesamtes Energiespektrum: Charakteristische Strahlung Linienspektrum Bremsstrahlung

12 Erzeugung von Röntgenstrahlung: - Frequenz abh. von Röhrenspannung - Energie abh. von Materialeigenschaften Anforderungen an Anodenmaterial: - Hohe Ordnungszahl Z (Ausbeute an Rö.-Strahlen steigt prop. mit Z) - Hoher Schmelzpunkt T max - Hohe Wärmeleitfähigkeit κ - Qualitätsmaß = Z. T max. κ Am meisten verwendet: Wolfram oder Wolfram-Rhenium

13 Erzeugung von Röntgenstrahlung: Qualitätskriterien für Röntgenquellen in der medizinischen Bildgebung - hohe Leistung kurze Belichtungszeit - kleiner Fokus Schärfe - einstellbare Quantenenergie Kontrast - kostengünstige Herstellung - wenig Wartung, lange Lebensdauer

14 Erzeugung von Röntgenstrahlung: Qualitätskriterien für Röntgenquellen in der medizinischen Bildgebung Eine hohe Leistung und ein kleiner Fokus kann durch Verwendung einer schräg gestellten Anode und durch eine rotierende Anode (Drehanode) erreicht werden

15 Generierung von Röntgenstrahlung (Drehanode): Wärmeabführung durch Rotation

16 Aufbau einer Drehanode:

17 Anodenmaterial:

18 Generierung von Röntgenstrahlung (Drehanode):

19 Erzeugung von Röntgenstrahlung: Beispiel: Straton-Röhre (Siemens, 2003) direkte Anodenkühlung Mechanik außerhalb Vakuum Rotationszeit: 0.37 sec Sub-mm Volumen-Scans bei 500 mas für 20 sec (64 mm/sec) Dosisreduktion unabh. von Patientengröße u. Anatomie

20 Wirkungsgrad h und Strahlungsleistung D: η Strahlungsleistung elektrische Leistung = k Z U A [%] wobei k = [V -1 ] Z = Ordnungszahl des Anodenmaterials U A = Röhrenspannung Beispiel: Wolfram-Anode, Z=74, U A =125 kv η = 1.02 % (in der Praxis < 1% wg. Filterung und Ausblendung; Rest: Wärme) D Z. I. U A 2 wobei I = Röhrenstrom (weitestgehend fest vorgeschrieben!)

21 Einfluss von Röhrenspannung und -strom: - Flussdichte der Röntgenstrahlung: ψ ~ Z. I. U n a - Röhrenspannung bestimmt Härte der Strahlung Potentieller Einfluss (ungefiltert: n=2; mit Filter bis n=5) - Röhrenstrom bestimmt Photonenanzahl/sec Linearer Einfluss

22 Röntgenstrahlung: Klassifizierung Strahlungsart λ min - λ max [nm] f min - f max [GHz] E [kev] überweich weich mittelhart hart überhart < > > 248 Typische CT-Röntgenröhre: Beschleunigungsspannung 120 kv Wolfram-Anode: ~ keV Ionisierung von lebendem Gewebe bereits bei 15 ev!!

Physik für Mediziner im 1. Fachsemester

Physik für Mediziner im 1. Fachsemester Physik für Mediziner im 1. Fachsemester #26 04/12/2008 Vladimir Dyakonov dyakonov@physik.uni-wuerzburg.de Spektrum des H-Atoms Energieniveaus der erlaubten Quantenbahnen E n = " m # e4 8 # h 2 # $ 0 2

Mehr

Physik für Mediziner und Zahnmediziner

Physik für Mediziner und Zahnmediziner Physik für Mediziner und Zahnmediziner Vorlesung 19 Prof. F. Wörgötter (nach M. Seibt) -- Physik für Mediziner und Zahnmediziner 1 PET: Positronen-Emissions-Tomographie Kernphysik PET Atomphysik Röntgen

Mehr

Verfahren Grundlagen 1.2 Röntgen. 1.2 Grundlagen. Reichow-Heymann-Menke Handbuch Röntgen mit Strahlenschutz Grundwerk 11/801

Verfahren Grundlagen 1.2 Röntgen. 1.2 Grundlagen. Reichow-Heymann-Menke Handbuch Röntgen mit Strahlenschutz Grundwerk 11/801 Verfahren 1.2 Röntgen 1.2 Reichow-Heymann-Menke Handbuch Röntgen mit Strahlenschutz Grundwerk 11/801 Verfahren 1.2 Röntgen Inhaltsvrzeichnis 1.2 Prof. Dr. Christian Blendl 1.2.1 Erzeugung ionisierender

Mehr

Jetzt noch die Strahlung aus der Elektronenhülle. Hüllenstrahlung. Kein Radioaktiver Zerfall. Kapitel 4 1

Jetzt noch die Strahlung aus der Elektronenhülle. Hüllenstrahlung. Kein Radioaktiver Zerfall. Kapitel 4 1 Hüllenstrahlung Inhalt des 4.Kapitels Charakteristische Photonen- und Röntgenstrahlung - Röntgenfluoreszenz Augerelektronen Fluoreszenz- und Augerelektronenausbeute Bremsstrahlung Erzeugung von Röntgenstrahlung

Mehr

Radiologie Modul I. Teil 1 Grundlagen Röntgen

Radiologie Modul I. Teil 1 Grundlagen Röntgen Radiologie Modul I Teil 1 Grundlagen Röntgen Teil 1 Inhalt Physikalische Grundlagen Röntgen Strahlenbiologie Technische Grundlagen Röntgen ROENTGENTECHNIK STRAHLENPHYSIK GRUNDLAGEN RADIOLOGIE STRAHLENBIOLOGIE

Mehr

Historie. Charakterisierung der Röntgenstrahlung. elektromagnetische Strahlung Photonenergie: Wellenlänge: ~ pm

Historie. Charakterisierung der Röntgenstrahlung. elektromagnetische Strahlung Photonenergie: Wellenlänge: ~ pm Charakterisierung der Medizinische Biophysik II. 1 elektromagnetische Strahlung Photonenergie: Diagnostik: -2 kev Therapie: 5-2 MeV Wellenlänge: ~ pm Photonenenergie: mev ev kev MeV GeV László Smeller

Mehr

27. Vorlesung EP V. STRAHLUNG, ATOME, KERNE

27. Vorlesung EP V. STRAHLUNG, ATOME, KERNE 27. Vorlesung EP V. STRAHLUNG, ATOME, KERNE 28. Atomphysik, Röntgenstrahlung (Fortsetzung: Röntgenröhre, Röntgenabsorption) 29. Atomkerne, Radioaktivität (Nuklidkarte, α-, β-, γ-aktivität, Dosimetrie)

Mehr

31. Lektion. Röntgenstrahlen. 40. Röntgenstrahlen und Laser

31. Lektion. Röntgenstrahlen. 40. Röntgenstrahlen und Laser 31. Lektion Röntgenstrahlen 40. Röntgenstrahlen und Laser Lerhnziel: Röntgenstrahlen entstehen durch Beschleunigung von Elektronen oder durch die Ionisation von inneren Elektronenschalen Begriffe Begriffe:

Mehr

Die Lage der Emissionsbanden der charakteristischen Röntgenstrahlung (anderer Name: Eigenstrahlung) wird bestimmt durch durch das Material der Kathode durch das Material der Anode die Größe der Anodenspannung

Mehr

Bildgebung mit Röntgenstrahlen. Wechselwirkung mit Materie

Bildgebung mit Röntgenstrahlen. Wechselwirkung mit Materie Wechselwirkung mit Materie Scanogramm Röntgen- Quelle Detektor ntwicklung Verarbeitung Tomogramm Bohrsches Atommodell M (18e - ) L (8e - ) K (2e - ) Wechselwirkung mit Materie Kohärente Streuung Röntgenquant

Mehr

Die Arten der ionisierenden Strahlen. Strahlenquellen

Die Arten der ionisierenden Strahlen. Strahlenquellen Die Arten der ionisierenden Strahlen. Strahlenquellen Kernstr. Kernstrahlungen (4-21) Röntgenstrahlung (22-43) Anhang 1. Intensität (44) 2. Spektrum (45-47) 3. Atom (48-56) Repetitio est mater studiorum.

Mehr

10.6. Röntgenstrahlung

10.6. Röntgenstrahlung 10.6. Röntgenstrahlung Am 8. November 1895 entdeckte Wilhelm Conrad Röntgen in Würzburg die Röntgenstrahlung. Seine Entdeckung zählt zu den wohl bedeutendsten Entdeckungen in der Menschheitsgeschichte.

Mehr

VL Physik für Mediziner 2009/10. Röntgenstrahlung

VL Physik für Mediziner 2009/10. Röntgenstrahlung VL Physik für Mediziner 2009/10 Röntgenstrahlung Peter-Alexander Kovermann Institut für Neurophysiologie Medizinische Hochschule Hannover Kovermann.Peter@MH-Hannover.DE Was ist Röntgenstrahlung und. wer

Mehr

43. Strahlenschutz und Dosimetrie. 36. Lektion Wechselwirkung und Reichweite von Strahlung

43. Strahlenschutz und Dosimetrie. 36. Lektion Wechselwirkung und Reichweite von Strahlung 43. Strahlenschutz und Dosimetrie 36. Lektion Wechselwirkung und Reichweite von Strahlung Lernziel: Die Wechselwirkung von radioaktiver Strahlung (α,β,γ( α,β,γ) ) ist unterschiedlich. Nur im Fall von α-

Mehr

Klausur -Informationen

Klausur -Informationen Klausur -Informationen Datum: 4.2.2009 Uhrzeit und Ort : 11 25 im großen Physikhörsaal (Tiermediziner) 12 25 ibidem Empore links (Nachzügler Tiermedizin, bitte bei Aufsichtsperson Ankunft melden) 11 25

Mehr

Die Abbildung zeigt eine handelsübliche Röntgenröhre

Die Abbildung zeigt eine handelsübliche Röntgenröhre Die Röntgenstrahlung Historische Fakten: 1895 entdeckte Röntgen beim Experimentieren mit einer Gasentladungsröhre, dass fluoreszierende Kristalle außerhalb der Röhre zum Leuchten angeregt wurden, obwohl

Mehr

Absorption von Röntgenstrahlung (Wellenlängen-Abhängigkeit)

Absorption von Röntgenstrahlung (Wellenlängen-Abhängigkeit) Elektromagnetische Strahlung Absorption von Röntgenstrahlung (Wellenlängen-Abhängigkeit) Röntgenstrahlung besteht aus elektromagnetischen Wellen. Der Wellenlängenbereich erstreckt sich von etwa 10 nm bis

Mehr

Strahlenphysik Grundlagen

Strahlenphysik Grundlagen Dr. Martin Werner, 17.02.2010 Strahlentherapie und spezielle Onkologie Elektromagnetisches Spektrum aus Strahlentherapie und Radioonkologie aus interdisziplinärer Sicht, 5. Auflage, Lehmanns Media Ionisierende

Mehr

Historie. Charakterisierung der Röntgenstrahlung. elektromagnetische Strahlung Photonenergie: Wellenlänge: ~ pm

Historie. Charakterisierung der Röntgenstrahlung. elektromagnetische Strahlung Photonenergie: Wellenlänge: ~ pm Charakterisierung der Medizinische Biophysik II. 1 elektroagnetische Strahlung Photonenergie: Diagnostik: 0-200 kev Therapie: 5-20 MeV Wellenlänge: ~ p Photonenenergie: ev ev kev MeV GeV László Seller

Mehr

Radiographie Abbildung mit Röntgenstrahlen

Radiographie Abbildung mit Röntgenstrahlen Geschichte Radiographie Abbildung mit Röntgenstrahlen Geschichte Die Röntgenstrahlung wurde am 8.11.1895 von Wilhelm Conrad Röntgen entdeckt. Eine Röntgenröhre besteht in ihrer einfachsten Form aus einer

Mehr

Radioökologie und Strahlenschutz

Radioökologie und Strahlenschutz Radioökologie und Strahlenschutz Vorlesung FHH: SS 2017 Ulrich J. Schrewe Themen: Anwendung kernphysikalischer Messverfahren in der industriellen Messtechnik Eigenschaften ionisierender Strahlung Strahlungswirkung

Mehr

Radioaktivität und Strahlenschutz. FOS: Energie von Strahlungsteilchen und Gammaquanten

Radioaktivität und Strahlenschutz. FOS: Energie von Strahlungsteilchen und Gammaquanten R. Brinkmann http://brinkmann-du.de Seite 1 25.11.2013 Radioaktivität und Strahlenschutz FOS: Energie von Strahlungsteilchen und Gammaquanten Energieeinheit Elektronenvolt (ev) Bekannte Energieeinheiten:

Mehr

Klausurinformation. Sie dürfen nicht verwenden: Handy, Palm, Laptop u.ae. Weisses Papier, Stifte etc. Proviant, aber keine heiße Suppe u.dgl.

Klausurinformation. Sie dürfen nicht verwenden: Handy, Palm, Laptop u.ae. Weisses Papier, Stifte etc. Proviant, aber keine heiße Suppe u.dgl. Klausurinformation Zeit: Mittwoch, 3.Februar, 12:00, Dauer :90 Minuten Ort: Veterinärmediziner: Großer Phys. Hörsaal ( = Hörsaal der Vorlesung) Geowissenschaftler u.a.: Raum A140, Hauptgebäude 1. Stock,

Mehr

Röntgenstrahlung. SE+ MED 4. Semester. Werner Backfrieder. Backfrieder-Hagenberg. Physik der Röntgenstrahlung

Röntgenstrahlung. SE+ MED 4. Semester. Werner Backfrieder. Backfrieder-Hagenberg. Physik der Röntgenstrahlung Röntgenstrahlung SE+ MED 4. Semester Werner Backfrieder Physik der Röntgenstrahlung C.W. Röntgen entdeckt 1895 x-strahlen, Würzburg, Experimente mit Kathodenstrahlröhre Beginn der modernen Physik Elektron

Mehr

Radioökologie und Strahlenschutz

Radioökologie und Strahlenschutz Radioökologie und Strahlenschutz Vorlesung FHH: SS 2017 Ulrich J. Schrewe Themen: Anwendung kernphysikalischer Messverfahren in der industriellen Messtechnik Eigenschaften ionisierender Strahlung Strahlungswirkung

Mehr

Erzeugung ionisierender Strahlung Apparate und Röntgentechnik. Stephan Scheidegger ZHAW School of Engineering

Erzeugung ionisierender Strahlung Apparate und Röntgentechnik. Stephan Scheidegger ZHAW School of Engineering Erzeugung ionisierender Strahlung Apparate und Röntgentechnik Stephan Scheidegger ZHAW School of Engineering Lernziele Funktion & Aufbau von Röntgengenerator & Röntgenröhre in eigenen Worten beschreiben

Mehr

Wechselwirkungen der γ-strahlung

Wechselwirkungen der γ-strahlung Wechselwirkungen der γ-strahlung Die den Strahlungsquanten innewohnende Energie wird bei der Wechselwirkung teilweise oder vollständig an die umgebende Materie abgegeben/übertragen! Erzielbare Wirkungen

Mehr

Versuch A05: Bestimmung des Planck'schen Wirkungsquantums

Versuch A05: Bestimmung des Planck'schen Wirkungsquantums Versuch A05: Bestimmung des Planck'schen Wirkungsquantums 25. April 2016 I Lernziele Entstehung des Röntgen-Bremskontinuums und der charakteristischen Röntgenstrahlung Zusammenhang zwischen Energie, Frequenz

Mehr

Röntgen-Computertomographie

Röntgen-Computertomographie Röntgen-Computertomographie 1. Strahlungserzeugung 2. Röntgenröhre, Röntgenstrahler, R RöntgengeneratorR 3. Strahlungsdetektion 4. Wechselwirkung von Röntgenstrahlung R mit Materie 5. Aufbau medizinischer

Mehr

Lösungen der Abituraufgaben Physik. Harald Hoiß 26. Januar 2019

Lösungen der Abituraufgaben Physik. Harald Hoiß 26. Januar 2019 Lösungen der Abituraufgaben Physik Harald Hoiß 26. Januar 2019 Inhaltsverzeichnis 1. Wasserstoffatom 1 1.1. Spektren.............................................. 1 2. Anwendungen zum quantenmechanischen

Mehr

Entstehung der Röntgenstrahlung. im Unterschied zur. Entstehung der Gammastrahlung

Entstehung der Röntgenstrahlung. im Unterschied zur. Entstehung der Gammastrahlung Entstehung der Röntgenstrahlung im Unterschied zur Entstehung der Gammastrahlung 1. Entdeckungsgeschichte 1.1. Der Entdecker Wilhelm Conrad Röntgen 1.2. Wie entdeckte Röntgen die X-Strahlung 2. Erste Reaktionen

Mehr

Ionisierende Strahlung

Ionisierende Strahlung 1 Vorlesung zu Q11: Bildgebende Verfahren, Strahlenbehandlung, Strahlenschutz Grundlagen & Bildgebung Prof. Dr. Willi Kalender, PhD Institut für Medizinische Physik Universität Erlangen www.imp.uni-erlangen.de

Mehr

Entstehung der Röntgenstrahlung im Unterschied zur Entstehung der Gammastrahlung

Entstehung der Röntgenstrahlung im Unterschied zur Entstehung der Gammastrahlung Entstehung der Röntgenstrahlung im Unterschied zur Entstehung der Gammastrahlung 1. Entdeckungsgeschichte 1.1. Der Entdecker Wilhelm Conrad Röntgen 1.2. Wie entdeckte Röntgen die X-Strahlung 2. Erste Reaktionen

Mehr

Röntgenstrahlen (RÖN)

Röntgenstrahlen (RÖN) TUM Anfängerpraktikum für Physiker II Wintersemester 2006/2007 Röntgenstrahlen (RÖN) Inhaltsverzeichnis 07.11.2006 1.Einleitung...2 2.Photonenemission...2 2.1.Bremsstrahlung...2 2.2.Charakteristische Röntgenstrahlung...2

Mehr

Röntgen Physik und Anwendung

Röntgen Physik und Anwendung Röntgen Physik und Anwendung Entstehung und Beschreibung von Röntgenstrahlung Was ist der wesentliche Unterschied zwischen Röntgen-Photonen und Photonen, die bei Phosphoreszenz/Lumineszenz entstehen? Begründen

Mehr

Einführung in die Physik II für Studierende der Naturwissenschaften und Zahnheilkunde. Sommersemester VL #46 am

Einführung in die Physik II für Studierende der Naturwissenschaften und Zahnheilkunde. Sommersemester VL #46 am Einführung in die Physik II für Studierende der Naturwissenschaften und Zahnheilkunde Sommersemester 2007 VL #46 am 19.07.2007 Vladimir Dyakonov Atome und Strahlung 1 Atomvorstellungen J.J. Thomson 1856-1940

Mehr

Vorlesung 8: Atome, Kerne, Strahlung

Vorlesung 8: Atome, Kerne, Strahlung Vorlesung 8: Atome, Kerne, Strahlung Georg Steinbrück, georg.steinbrueck@desy.de Folien/Material zur Vorlesung auf: www.desy.de/~steinbru/physikzahnmed WS 2016/17 Steinbrück: Physik I/II 1 Größenordnungen

Mehr

Vorlesung 8: Atome, Kerne, Strahlung

Vorlesung 8: Atome, Kerne, Strahlung Vorlesung 8: Atome, Kerne, Strahlung Georg Steinbrück, georg.steinbrueck@desy.de Folien/Material zur Vorlesung auf: www.desy.de/~steinbru/physikzahnmed WS 2017/18 Steinbrück: Physik I/II 1 Größenordnungen

Mehr

Röntgenstrahlung für Nichtmediziner

Röntgenstrahlung für Nichtmediziner 1 Röntgenstrahlung für Nichtmediziner Vorbereitung: Erzeugung von Röntgenstrahlen, Funktionsweise einer Röntgenröhre, spektrale Zusammensetzung von Röntgenstrahlung, Eigenschaften von Röntgenstrahlung,

Mehr

1. Ermitteln Sie die Gitterkonstante eines LiF-Kristalls aus der Messung des -2 -Spektrums unter Verwendung einer Wolframkathode.

1. Ermitteln Sie die Gitterkonstante eines LiF-Kristalls aus der Messung des -2 -Spektrums unter Verwendung einer Wolframkathode. Fakultät für Physik und Geowissenschaften Physikalisches Grundpraktikum O 21 Röntgenstrahlung Aufgaben 1. Ermitteln Sie die Gitterkonstante eines LiF-Kristalls aus der Messung des -2-Spektrums unter Verwendung

Mehr

1. Ermitteln Sie die Gitterkonstante eines LiF-Kristalls aus der Messung des -2 -Spektrums unter Verwendung einer Wolframkathode.

1. Ermitteln Sie die Gitterkonstante eines LiF-Kristalls aus der Messung des -2 -Spektrums unter Verwendung einer Wolframkathode. Fakultät für Physik und Geowissenschaften Physikalisches Grundpraktikum O 21 a Röntgenstrahlung Aufgaben 1. Ermitteln Sie die Gitterkonstante eines LiF-Kristalls aus der Messung des -2-Spektrums unter

Mehr

Übungen zur Physik der Materie 1 Lösungsvorschlag Blatt 11 - Atomphysik. Aufgabe 28: Kurzfragen zur Atomphysik Teil 2

Übungen zur Physik der Materie 1 Lösungsvorschlag Blatt 11 - Atomphysik. Aufgabe 28: Kurzfragen zur Atomphysik Teil 2 Übungen zur Physik der Materie 1 Lösungsvorschlag Blatt 11 - Atomphysik Sommersemester 018 Vorlesung: Boris Bergues ausgegeben am 1.06.018 Übung: Nils Haag (Nils.Haag@lmu.de) besprochen am 6.06.018 Aufgabe

Mehr

Das Linienspektrum oder charakteristische Spektrum

Das Linienspektrum oder charakteristische Spektrum Das Linienspektrum oder charakteristische Spektrum Ein Linienspektrum weist - im Gegensatz zu einem kontinuierlichen Spektrum - nur bei bestimmten (diskreten) Wellenlängen Intensitätswerte auf. In Abb.9.6

Mehr

beschleunigtes e- -, beschleunigtes e-:

beschleunigtes e- -, beschleunigtes e-: Strahlentherapie: Anwendung der schädigende Wirkung der ionisierenden Strahlungen für Zerstörung der (hauptsächtlich Tumor-) Geweben. Strahlentherapie Fragen zu besprechen: 1. Welcher Strahlungstyp soll

Mehr

Aufgabe 1: Kristallstrukturuntersuchungen

Aufgabe 1: Kristallstrukturuntersuchungen Aufgabe 1: Kristallstrukturuntersuchungen Röntgenstrahlung entsteht in unserem Gerät durch das Auftreffen hochenergetischer Elektronen auf eine Molybdän-Anode (Abbildung 1). Im Spektrum der Strahlung (Abbildung

Mehr

Versuch O

Versuch O 1 Grundlagen Plancksches Wirkungsquantum Das Plancksche Wirkungsquantum gibt den Zusammenhang zwischen Energie und Frequenz wieder und verknüpft damit die Welleneigenschaft mit der Teilcheneigenschaft.

Mehr

Röntgenstrahlung ist eine elektromagnetische Strahlung, wie z.b. Licht sie ist für Menschen nicht sichtbar Röntgenstrahlung besitzt

Röntgenstrahlung ist eine elektromagnetische Strahlung, wie z.b. Licht sie ist für Menschen nicht sichtbar Röntgenstrahlung besitzt Röntgenstrahlung ist eine elektromagnetische Strahlung, wie z.b. Licht sie ist für Menschen nicht sichtbar Röntgenstrahlung besitzt Welleneigenschaften, ionisiert Gase, regt manche Stoffe zum Leuchten

Mehr

RADIOLOGIE Einführung, Strahlenschutz

RADIOLOGIE Einführung, Strahlenschutz RADIOLOGIE Einführung, Strahlenschutz Nándor Faluhelyi und prof. Péter Bogner Klinik für Radiologie 2018 Was bedeutet Radiologie? Eine Blutprobe ist eigentlich ein Schlüsselloch in den menschlichen Körper

Mehr

Hallwachs-Experiment. Bestrahlung einer geladenen Zinkplatte mit dem Licht einer Quecksilberdampflampe

Hallwachs-Experiment. Bestrahlung einer geladenen Zinkplatte mit dem Licht einer Quecksilberdampflampe Hallwachs-Experiment Bestrahlung einer geladenen Zinkplatte mit dem Licht einer Quecksilberdampflampe 20.09.2012 Skizziere das Experiment Notiere und Interpretiere die Beobachtungen Photoeffekt Bestrahlt

Mehr

Analyse von Röntgenspektren bei unterschiedlicher Anodenspannung

Analyse von Röntgenspektren bei unterschiedlicher Anodenspannung 1 Abiturprüfung 2003 Vorschlag 2 Analyse von Röntgenspektren bei unterschiedlicher Anodenspannung 1. Skizziere und beschreibe den Aufbau einer Röntgenröhre. Beschreibe kurz, wie Röntgenstrahlung entsteht.

Mehr

Röntgenstrahlen. Röntgenröhre von Wilhelm Konrad Röntgen. Foto: Deutsches Museum München.

Röntgenstrahlen. Röntgenröhre von Wilhelm Konrad Röntgen. Foto: Deutsches Museum München. Röntgenstrahlen 1 Wilhelm Konrad Röntgen Foto: Deutsches Museum München. Röntgenröhre von 1896 2 1 ev = 1 Elektronenvolt = Energie die ein Elektron nach Durchlaufen der Potentialdifferenz 1V hat (1.6 10-19

Mehr

Röntgenröhre, Hochspannungsquelle (mindestens 20 kv), Röntgenkassette mit Verstärkerfolie

Röntgenröhre, Hochspannungsquelle (mindestens 20 kv), Röntgenkassette mit Verstärkerfolie Illumina-Chemie.de - Artikel Physik Im Jahr 1895 entdeckte Wilhelm Conrad Röntgen die nach ihm benannte (X-Strahlen), die seitdem vor allem in der medizinischen Diagnostik und der Materialprüfung Anwendung

Mehr

Mikrowellen (Mikrowelle, Satelliten) Infrarot (Fernsteuerung beim TV)

Mikrowellen (Mikrowelle, Satelliten) Infrarot (Fernsteuerung beim TV) TV 3km 300m 30m 3m 30cm Radiowellen (TV, Radio) 300cm 30cm 300µm 3µm 0.7µm 0.5µm 0.3µm 30nm 3mm 0.4µm Mikrowellen (Mikrowelle, Satelliten) Infrarot (Fernsteuerung beim TV) Sichtbares Licht UV-Strahlung

Mehr

Abbildung 1. Abbildung 2. R.Goldstein 1

Abbildung 1. Abbildung 2. R.Goldstein 1 Wasserstoffatom, Spektrallinien Zusammengestellt von Roman Goldstein A1. Vor 100 Jahren haben Johannes Rydberg und Walter Ritz die Serienformel des Wasserstoffatoms aufgestellt: mit n 2 > n 1 wobei R H

Mehr

Aufbau und Struktur der Materie. Wellen- und Teilchencharakter

Aufbau und Struktur der Materie. Wellen- und Teilchencharakter Aufbau und Struktur der Materie Atommodelle Energie Wellen- und Teilchencharakter Periodensystem der Elemente Radioaktivität Modell des Atomkerns Nukleonen: Teilchen des Atomkerns = Protonen+Neutronen

Mehr

RÖNTGENTECHNIK : RÖHRE RÖNTGENTECHNIK : RÖHRE RÖNTGENTECHNIK : RÖHRE RÖNTGENTECHNIK : RÖHRE DIE DREHANODEN-RÖHRE DIE DREHANODEN-RÖHRE

RÖNTGENTECHNIK : RÖHRE RÖNTGENTECHNIK : RÖHRE RÖNTGENTECHNIK : RÖHRE RÖNTGENTECHNIK : RÖHRE DIE DREHANODEN-RÖHRE DIE DREHANODEN-RÖHRE DIE DREHANODEN-RÖHRE DIE DREHANODEN-RÖHRE Grundsätzlicher Aufbau einer Drehanodenröhre. Der Anodenteller (1) aus Wolfram ist über eine Molybdänwelle (2) mit dem kugelgelagerten Rotor (3) verbunden. Der

Mehr

Atomphysik für Studierende des Lehramtes

Atomphysik für Studierende des Lehramtes Atomphysik für Studierende des Lehramtes Teil 5 Elektronenladung und Elektronenmasse elektrische Ladungen in magnetischen Feldern aus der Lorentz-Kraft (v x B) folgt eine Kreisbewegung der elektrischen

Mehr

0.1.1 Exzerpt und Diskussion von B. S. 378: Erzeugung von Röntgenstrahlung als inverser Prozess des lichtelektrischen

0.1.1 Exzerpt und Diskussion von B. S. 378: Erzeugung von Röntgenstrahlung als inverser Prozess des lichtelektrischen 1 07.10.2006 08.10.2006 0.1 106. Hausaufgabe 0.1.1 Exzerpt und Diskussion von B. S. 378: Erzeugung von Röntgenstrahlung als inverser Prozess des lichtelektrischen Effekts Man kann die Erzeugung von Röntgenstrahlung

Mehr

Elektronenmikrosonde/ Röntgenfluoreszenzspektrometer

Elektronenmikrosonde/ Röntgenfluoreszenzspektrometer Thema 3 Elektronenmikrosonde/ Röntgenfluoreszenzspektrometer Datum: 10.Juni 2008 SS Geowissenschaften Bella Agachanjan, Denise Danek, Nadine Krabbe, Edvard Friedrich Carl Fischer und Niels Weißenberg 1.

Mehr

Aufgaben zu Röntgenstrahlen LK Physik 13/1 Sporenberg Roentgen_September_2011 Datum:

Aufgaben zu Röntgenstrahlen LK Physik 13/1 Sporenberg Roentgen_September_2011 Datum: Aufgaben zu Röntgenstrahlen LK Physik 13/1 Sporenberg Roentgen_September_2011 Datum: 08.09.2011 1.Aufgabe: In einem Röntgengerät fällt monochromatische Strahlung ( λ = 71 pm) auf die Oberfläche eines LiF-Kristalls.

Mehr

Vorlesung 38/39. Physik. 1. Jahr Block 1 Woche 7. Prof. Fortunat Joos FJ 1. Block 1 KV Elektromagnetische Wellen. Elektromagnetische Wellen

Vorlesung 38/39. Physik. 1. Jahr Block 1 Woche 7. Prof. Fortunat Joos FJ 1. Block 1 KV Elektromagnetische Wellen. Elektromagnetische Wellen FJ 1 Vorlesung 38/39 1. Jahr Block 1 Woche 7 Elektromagnetische Wellen Physik Prof. Fortunat Joos FJ 2 Elektromagnetische Wellen Motivation Elektromagnetische Wellen beschreiben die Ausbreitung von Photonen

Mehr

Eindrücke aus der Röntgenprüfung

Eindrücke aus der Röntgenprüfung Ich sehe was, was Du nicht siehst! Eindrücke aus der Röntgenprüfung Dipl.-Ing. Wolfgang Motzek Ratingen 29.04.2015 1 Dipl.-Ing. Wolfgang Motzek - 29.04.2015 Ich sehe was, was Du nicht siehst! Wo ist Waldo?

Mehr

Periodensystem, elektromagnetische Spektren, Atombau, Orbitale

Periodensystem, elektromagnetische Spektren, Atombau, Orbitale Periodensystem, elektromagnetische Spektren, Atombau, Orbitale Als Mendelejew sein Periodensystem aufstellte waren die Edelgase sowie einige andere Elemente noch nicht entdeck (gelb unterlegt). Trotzdem

Mehr

Röntgenstrahlung. Frédéric Stein, Alice Zimmermann 17. Januar Zusammenfassung des Seminar-Vortrages vom Teil

Röntgenstrahlung. Frédéric Stein, Alice Zimmermann 17. Januar Zusammenfassung des Seminar-Vortrages vom Teil Röntgenstrahlung Frédéric Stein, Alice Zimmermann 17. Januar 2007 Zusammenfassung des Seminar-Vortrages vom 16.01.2007 1. Teil 1 1 Allgemeines zur Röntgenstrahlung 1.1 Geschichtliches Beim Experimentieren

Mehr

Bildgebende Systeme in der Medizin

Bildgebende Systeme in der Medizin 10/27/2011 Page 1 Hochschule Mannheim Bildgebende Systeme in der Medizin Bildgebung mit Röntgenstrahlung Faculty of Medicine Mannheim University of Heidelberg Theodor-Kutzer-Ufer 1-3 D-68167 Mannheim,

Mehr

1 Aufgabenstellung 2. 2 Theoretische Grundlagen Das Röntgenspektrum Analyse mit Einkristallen... 4

1 Aufgabenstellung 2. 2 Theoretische Grundlagen Das Röntgenspektrum Analyse mit Einkristallen... 4 Röntgenstrahlung Fachrichtung Physik Physikalisches Grundpraktikum Erstellt: Jakob Krämer Aktualisiert: am 12. 04. 2013 Röntgenstrahlung Inhaltsverzeichnis 1 Aufgabenstellung 2 2 Theoretische Grundlagen

Mehr

Röntgenstrahlung (RÖN)

Röntgenstrahlung (RÖN) Röntgenstrahlung (RÖN) Manuel Staebel 2236632 / Michael Wack 2234088 1 Einleitung In diesem Versuch wird das Röntgenspektrum einer Molybdänanode auf einem x y Schreiber aufgezeichnet. Dies gelingt durch

Mehr

A. PHYSIKALISCHE GRUNDLAGEN DER IONISIERENDEN STRAHLUNG. B. Kopka. Labor für Radioisotope der Georg-August-Universität Göttingen

A. PHYSIKALISCHE GRUNDLAGEN DER IONISIERENDEN STRAHLUNG. B. Kopka. Labor für Radioisotope der Georg-August-Universität Göttingen A. PHYSIKALISCHE GRUNDLAGEN DER IONISIERENDEN STRAHLUNG B. Kopka Labor für Radioisotope der Georg-August-Universität Göttingen 1. Aufbau der Materie 1.1. Die Atomhülle 1.2. Der Atomkern 2. Strahlenarten

Mehr

κ Κα π Κ α α Κ Α

κ Κα π Κ α α Κ Α κ Κα π Κ α α Κ Α Ζ Μ Κ κ Ε Φ π Α Γ Κ Μ Ν Ξ λ Γ Ξ Ν Μ Ν Ξ Ξ Τ κ ζ Ν Ν ψ Υ α α α Κ α π α ψ Κ α α α α α Α Κ Ε α α α α α α α Α α α α α η Ε α α α Ξ α α Γ Α Κ Κ Κ Ε λ Ε Ν Ε θ Ξ κ Ε Ν Κ Μ Ν Τ μ Υ Γ φ Ε Κ Τ θ

Mehr

Bildgebung mit Röntgenstrahlen. Bildqualität

Bildgebung mit Röntgenstrahlen. Bildqualität Bildqualität Scanogramm Röntgen- Quelle Detektor Entwicklung Verarbeitung Tomogramm Einflussfaktoren Rauschen Kontrast Schärfe System- Rauschen (Verstärker) Strahlen- Dosis (Quantenrauschen) Objekt- Dicke

Mehr

Physik für Mediziner im 1. Fachsemester

Physik für Mediziner im 1. Fachsemester Physik für Mediziner im 1. Fachsemester #27 14/12/2010 Vladimir Dyakonov dyakonov@physik.uni-wuerzburg.de Das Bohrsche Atommodell Bahnradius im Wasserstoffatom Der Radius der stabilen Elektronenbahnen

Mehr

Röntgenbeugung. 1. Grundlagen, Messmethode

Röntgenbeugung. 1. Grundlagen, Messmethode Röntgenbeugung 1. Grundlagen, Messmethode Beim Aufprall schneller Elektronen auf ein metallisches Anodenmaterial (hier: Kupfer) entsteht Röntgenstrahlung. Diese wird nach der Drehkristallmethode spektral

Mehr

Bildgebende Systeme für die medizinische Diagnostik

Bildgebende Systeme für die medizinische Diagnostik Bildgebende Systeme für die medizinische Diagnostik Grundlagen, Technik, Bildgüte Herausgeber Erich Krestel SIEMENS AKTIENGESELLSCHAFT Inhalt Teil 1 Grundlagen 1 Physiologie des Sehens 17 1.1 Allgemeine

Mehr

Physik für Mediziner im 1. Fachsemester

Physik für Mediziner im 1. Fachsemester Physik für Mediziner im 1. Fachsemester #25 03/12/2008 Vladimir Dyakonov dyakonov@physik.uni-wuerzburg.de Atomphysik Teil 1 Atommodelle, Atomspektren, Röntgenstrahlung Atomphysik Die Atomphysik ist ein

Mehr

4) Wechselwirkungen zwischen Strahlung und Materie (1) Ionisationswirkung unterschiedlicher Teilchen Energie der Teilchen in MeV

4) Wechselwirkungen zwischen Strahlung und Materie (1) Ionisationswirkung unterschiedlicher Teilchen Energie der Teilchen in MeV 4) Wechselwirkungen zwischen Strahlung und Materie (1) Wechselwirkungen zwischen Strahlung und Materie sind Grundvoraussetzung für jede Anwendung oder schädigende Wirkung radioaktiver Strahlung unerwünschte

Mehr

Das Neutron. Eigenschaften des Neutrons m n = 1.001m p m i = m g ± 10 4 τ n = ± 0.8 s

Das Neutron. Eigenschaften des Neutrons m n = 1.001m p m i = m g ± 10 4 τ n = ± 0.8 s Vorlesung Fundamentale Experimente mit ultrakalten Neutronen (FundExpUCN) Die Entdeckung des Neutrons Fundamentale Eigenschaften des Neutrons Reaktorphysik und Erzeugung von Neutronen Spallationsneutronenquellen

Mehr

Aufbau der Röntgenapperatur

Aufbau der Röntgenapperatur Physikalische Grundlagen der Röntgentechnik und Sonographie Aufbau der Röntgenapperatur PD Dr. Frank Zöllner Computer Assisted Clinical Medicine Faculty of Medicine Mannheim University of Heidelberg Theodor-Kutzer-Ufer

Mehr

Praktikums-Eingangsfragen

Praktikums-Eingangsfragen Praktikums-Eingangsfragen Zu den Antworten: Bei Formelangaben müssen die Größensymbole erläutert werden. Notieren Sie z. B. F = m a, dann müssen die Erklärungen F : Kraft, m : Masse, a : Beschleunigung

Mehr

Physikalisches Praktikum

Physikalisches Praktikum Physikalisches Praktikum UNIVERSITÄT DER BUNDESWEHR MÜNCHEN Fakultät für Elektrotechnik und Informationstechnik Institut für Physik September 2016 2 Versuch 24 Beugung von Röntgenstrahlung Röntgenstrahlen

Mehr

Atombausteine Protonen p (1, g; 938 MeV; e + ) Neutronen n (1, g; 939 MeV; 0) Elektronen e - (9, g; 0,511 MeV; e - )

Atombausteine Protonen p (1, g; 938 MeV; e + ) Neutronen n (1, g; 939 MeV; 0) Elektronen e - (9, g; 0,511 MeV; e - ) Grundlagen der Strahlenmesstechnik Atome (Nuklide) Atombausteine Protonen p (1,672 10-24 g; 938 MeV; e + ) Neutronen n (1,675 10-24 g; 939 MeV; 0) Elektronen e - (9,11 10-28 g; 0,511 MeV; e - ) Nuklide

Mehr

FK Ex 4 - Musterlösung 08/09/2015

FK Ex 4 - Musterlösung 08/09/2015 FK Ex 4 - Musterlösung 08/09/2015 1 Spektrallinien Die Natrium-D-Linien sind emittiertes Licht der Wellenlänge 589.5932 nm (D1) und 588.9965 nm (D2). Diese charakteristischen Spektrallinien entstehen beim

Mehr

Physikalische Grundlagen der Röngtenstrahlen

Physikalische Grundlagen der Röngtenstrahlen Physikalische Grundlagen der Röntgentechnik und Sonographie Physikalische Grundlagen der Röngtenstrahlen PD Dr. Frank Zöllner Computer Assisted Clinical Medicine Faculty of Medicine Mannheim University

Mehr

1 Grundlagen 2. 2 Frosch Niedrige Winkelanzahl Hohe Winkelanzahl... 4

1 Grundlagen 2. 2 Frosch Niedrige Winkelanzahl Hohe Winkelanzahl... 4 Christian Krause 1956616, Robin Wahbeh 1946419 Inhaltsverzeichnis Auswertung zum Versuch: Röntgen Tomographie Inhaltsverzeichnis 1 Grundlagen 2 2 Frosch 4 2.1 Niedrige Winkelanzahl....................................

Mehr

Leistungskurs Physik (Bayern): Abiturprüfung 2004 Aufgabe III Atomphysik

Leistungskurs Physik (Bayern): Abiturprüfung 2004 Aufgabe III Atomphysik Leistungskurs Physik (Bayern): Abiturprüfung 004 Aufgabe III Atomphysik 1. Fotoeffekt 1888 bestrahlte W. HALLWACHS eine geladene, auf einem Elektroskop sitzende Metallplatte mit UV-Licht. a) Aus welchen

Mehr

Physikalische. Grundlagen. L. Kölling, Fw Minden

Physikalische. Grundlagen. L. Kölling, Fw Minden Physikalische Grundlagen L. Kölling, Fw Minden Radioaktivität kann man weder sehen, hören, fühlen, riechen oder schmecken. Daher muss sie der FA (SB) zumindest verstehen, um im Einsatzfall die erforderlichen

Mehr

Folgendes Röntgenspektrum wurde an einer Röntgenröhre aufgenommen, die mit der Beschleunigungsspannung

Folgendes Röntgenspektrum wurde an einer Röntgenröhre aufgenommen, die mit der Beschleunigungsspannung Seite Aufgabe : Röntgenspektrum Folgendes Röntgenspektrum wurde an einer Röntgenröhre aufgenommen, die mit der Beschleunigungsspannung U = 30 kv betrieben wurde.. Berechnen Sie aus dem dargestellten Versuchsergebnis

Mehr

Laborversuche zur Physik 2 II Röntgenemissionsspektrum und Gitterkonstanten

Laborversuche zur Physik 2 II Röntgenemissionsspektrum und Gitterkonstanten FB Physik Laborversuche zur Physik 2 II - 10 Versuche mit Röntgenstrahlen Reyher, 12.06.15 Röntgenemissionsspektrum und Gitterkonstanten Ziele Röntgenemissionsspektrum Bestimmung des Planckschen Wirkungsquantums

Mehr

VI. Quantenphysik. VI.1 Ursprünge der Quantenphysik, Atomphysik. Physik für Mediziner 1

VI. Quantenphysik. VI.1 Ursprünge der Quantenphysik, Atomphysik. Physik für Mediziner 1 VI. Quantenphysik VI.1 Ursprünge der Quantenphysik, Atomphysik Physik für Mediziner 1 Mikroskopische Welt Physik für Mediziner 2 Strahlung des Schwarzen Körpers Schwarzer Körper: eintretendes Licht im

Mehr

v ist die Teilchengeschwindigkeit in grosser Entfernung vom Kern. Die Impulsänderung Δp ist daher

v ist die Teilchengeschwindigkeit in grosser Entfernung vom Kern. Die Impulsänderung Δp ist daher phys4.03 Page 1 Die kinetische Energie E kin des α-teilchens ist vor und nach dem Stoss erhalten, da der Kern in Ruhe bleibt. Daher gilt für den Impuls des α-teilchens p 1 vor dem Stoss und p 2 nach dem

Mehr

Klausur 2 Kurs 13Ph3g Physik

Klausur 2 Kurs 13Ph3g Physik 2010-12-02 Klausur 2 Kurs 13Ph3g Physik Lösung 1 Verbrennt in einer an sich farblosen Gasflamme Salz (NaClNatriumchlorid), so wird die Flamme gelb gefärbt. Lässt man Natriumlicht auf diese Flamme fallen,

Mehr

Jedes Lichtquant hat die Spinquantenzahl s = 1 und somit anschaulich den Drehimpuls h/(2jt) Röntgenstrahlung Röntgenstrahlung 693

Jedes Lichtquant hat die Spinquantenzahl s = 1 und somit anschaulich den Drehimpuls h/(2jt) Röntgenstrahlung Röntgenstrahlung 693 51.5 Röntgenstrahlung 693 Weil beim Übergang von einem höheren in ein niedrigeres Energieniveau ein Lichtquant ausgesendet wird und das Atom ein abgeschlossenes System darstellt, in welchem der Satz von

Mehr

Röntgenstrahlung (RÖN)

Röntgenstrahlung (RÖN) Seite 1 Themengebiet: Atomphysik 1 Literatur 1 H. Krieger: Strahlungsmessung und Dosimetrie. 2. Auflage, Springer 2013 2 Grundlagen Mit dem Begriff Röntgenstrahlen bezeichnet man elektromagnetische Wellen,

Mehr

Physik für Maschinenbau. Prof. Dr. Stefan Schael RWTH Aachen

Physik für Maschinenbau. Prof. Dr. Stefan Schael RWTH Aachen Physik für Maschinenbau Prof. Dr. Stefan Schael RWTH Aachen Vorlesung 11 Brechung b α a 1 d 1 x α b x β d 2 a 2 β Totalreflexion Glasfaserkabel sin 1 n 2 sin 2 n 1 c arcsin n 2 n 1 1.0 arcsin

Mehr

12.8 Eigenschaften von elektronischen Übergängen. Übergangsfrequenz

12.8 Eigenschaften von elektronischen Übergängen. Übergangsfrequenz phys4.024 Page 1 12.8 Eigenschaften von elektronischen Übergängen Übergangsfrequenz betrachte die allgemeine Lösung ψ n der zeitabhängigen Schrödinger-Gleichung zum Energieeigenwert E n Erwartungswert

Mehr

Technologie/Informatik Kernaufbau und Kernzerfälle. Dipl.-Phys. Michael Conzelmann, StR Staatliche FOS und BOS Bad Neustadt a. d.

Technologie/Informatik Kernaufbau und Kernzerfälle. Dipl.-Phys. Michael Conzelmann, StR Staatliche FOS und BOS Bad Neustadt a. d. Technologie/Informatik Kernaufbau und Kernzerfälle Dipl.-Phys. Michael Conzelmann, StR Staatliche FOS und BOS Bad Neustadt a. d. Saale Übersicht Kernaufbau Rutherford-Experiment, Nukleonen Schreibweise,

Mehr

27. Wärmestrahlung, Quantenmechanik (Abschluß: Welle-Teilchen-Dualismus

27. Wärmestrahlung, Quantenmechanik (Abschluß: Welle-Teilchen-Dualismus 26. Vorlesung EP V. STRAHLUNG, ATOME, KERNE 27. Wärmestrahlung, Quantenmechanik (Abschluß: Welle-Teilchen-Dualismus 28. Atomphysik, Röntgenstrahlung, Bohrsches Atommodell Versuche: Elektronenbeugung Linienspektrum

Mehr