Vorlesung #2. Elektrische Eigenschaften von Neuronen, Aktionspotentiale und deren Ursprung. Alexander Gottschalk, JuProf. Universität Frankfurt

Save this PDF as:
 WORD  PNG  TXT  JPG

Größe: px
Ab Seite anzeigen:

Download "Vorlesung #2. Elektrische Eigenschaften von Neuronen, Aktionspotentiale und deren Ursprung. Alexander Gottschalk, JuProf. Universität Frankfurt"

Transkript

1 Vorlesung #2 Elektrische Eigenschaften von Neuronen, Aktionspotentiale und deren Ursprung Alexander Gottschalk, JuProf Universität Frankfurt SS 2010

2 Elektrische Eigenschaften von Neuronen Elektrische Eigenschaften der neuronalen Plasmamembran bestimmt durch: 1. Lipidschicht: undurchlässig für Ionen 2. spezifische Ionenkanäle, die Lipidschicht für bestimmte Ionen selektiv durchlässig machen 3. Ionengradienten über der Membran, durch Ionenpumpen aufrecht erhalten

3 Pumpen erzeugen Ionengradienten über der Plasmamembran ATP-getriebene Ionenpumpen erzeugen Ionengradienten über der Membran, verbrauchen fast 70% der Energie, die in Neuron erzeugt wird: Na + /K + -Pumpe: Tetramer aus α- und β-untereinheiten, Konformationsänderungen exponieren 3 Na + und 2K + Bindestellen in Cytoplasma bzw. auf Zellaußenseite, mit wechselnden Bindungsaffinitäten (Na + raus, K + rein) weitere Pumpen nutzen den Na + -Ionengradienten, um als Sym- oder Antiporter Gradienten anderer Ionen zu erzeugen, z.b. Ca 2+ /Na + Austauscher

4 Die Sarco-Endoplasmatische Ca 2+ -ATPase bei der Arbeit

5 Ionengradienten in neuronalen Zellen Ion Innen (mm) Außen (mm) GGW- Potential (mv) Ion Innen (mm) Außen (mm) GGW- Potential (mv) Na Na K K Cl Cl Ca 2+ 0,4 µm Ca nm 1, Riesenaxon des Tintenfisches Säugerneuron Innen- und Aussenraum der Zellen zunächst elektrisch neutral (Gegenionen) ABER: Plasmamembran enthält Kanalproteine, selektiv für K + -Ionen: K + -Ionen fliessen aus Zelle (ohne Gegenion!), resultierendes Ladungsungleichgewicht erzeugt Membranpotential (auch durch elektrogene Na + /K + -Pumpe), Zellinneres negativ geladen

6 0 mv Nernstpotential E K 100 mm K + 10 mm Na + 10 mm Cl mm A mm K + 10 mm Na + 10 mm Cl mm A x mv + 10 mm K mm Na mm Cl - 10 mm K mm Na mm Cl mm K mm Na mm Cl mm A J K = P K ([K + ] i [K + ] 0 ) 10 mm K mm Na mm Cl - Ionenfluß von Kalium (P = Leitfähigkeit der Membran) RT [K+] o E K = V o -V i = ln = - 58 mv zf [K+] i Nernstpotential (elektrochemisches Gleichgewichtspotential) für Kalium

7 Das Ruhepotential resultiert aus einem Fließgleichgewicht verschiedener Ionen Einführung von Na + -Kanal: Na + würde einströmen, bis +58 mv erreicht da aber K + weiter ausströmt: Fließ-GGW Ruhepotential echter Neuronen zwischen 40 und 75 mv, nur ungefähr Umkehrpotential von K + : weitere Ionenkanäle in Membran, Fließgleichgewicht stellt sich ein: RT Σ k=1,n z k P k [X k ] 0 + Σ l=1,m z l P l [Y l ] i V m = x ln F Σ k=1,n z k P k [X k ] i + Σ l=1,m z l P l [Y l ] 0 Goldmann-Hodgkin-Katz Gleichung k Kationen, l Anionen P Membranleitfähigkeit P in Neuronen nur K +, Na +, Cl - K [K + ] 0 + P Na [Na + ] 0 + P Cl [Cl - ] i V m = 58 log von Bedeutung, daher: P K [K + ] i + P Na [Na + ] i + P Cl [Cl - ] 0 je größer P für Ion X, umso stärker wird V m von X bestimmt

8 passive Eigenschaften der Plasmamembran Ruhepotential Depolarisation Hyperpolarisation Plasmamembran wirkt als Widerstand (Lipide), und als Kondensator (Ladungstrennung, durch Veränderung des Membranpotentials umgeladen) Gesamtleitfähigkeit Membran für K + : P K = 1 / R K Kapazität C = Q/V; bei Zellmembran ca. 1µF/cm² Zeitkonstante τ =RC; Zeit, nach der V 63% von Endwert erreicht

9 Ersatzschaltbild für die passiven elektrischen Eigenschaften der Plasmamembran nur ein Ion (K + ) drei relevante Ionen (K +, Na +, Cl - )

10 Ionenfluß in einer echten Zelle Absolutmenge an K + -Ionen, die ausfließen müssen um in Neuron von d=50 µm das Potential von 0 mv auf -58 mv zu bringen ist sehr gering: Kapazität C = Q/V; ca. 1µF/cm² in echten Neuronen um V = -58 mv aufzubauen, sind 5,5 * 10-8 Coulomb / cm² nötig 1 Coulomb = 6.2 * Elementarladungen Q=3,6 * Elementarl. / cm² d Zelle =50 µm, Fläche = 7,85 * 10-5 cm² Ladungstrennung von 28*10 6 nötig In einer Zelle ca. 4 * K + -Ionen, also muß nur ca. 1/ der Gesamtmenge an K + aus der Zelle fließen KEINE nennenswerte Änderung der Ionenkonzentration. Trotzdem, da dauernd Ionen durch Membran fließen, muß Zelle durch Pumpen dagegen anarbeiten diese verbrauchen ca. 70% der Energie des Neurons

11 Elektrotonische Eigenschaften der Plasmamembran (passive Reizleitung) Exzitatorische und inhibitorische post-synaptische Potentiale (EPSPs & IPSPs) werden in Dendriten passiv fortgeleitet Zytoplasma in Dendrit ist 10 7 x schlechterer Leiter als Metalldraht mit gleichem d Beträchtlicher Anteil des Stromes geht durch die Membran verloren passive Signale werden durch Widerstand von Cytosol und Kapazität von Membran 1). abgeschwächt und 2). zeitlich verzögert, je weiter sie wandern

12 Signale schwächen mit Entfernung vom Ursprung ab R M : Ωcm² je nach Art und Zustand des Neurons λ= mm passive Leitung nur über kurze Distanz V x = V 0 e x/λ ; λ = r m /r i ; λ = R m d/4r i r = Widerstand in Segment der Länge l; R=spezifischer Widerstand je mehr Kanäle in Membran, desto kleiner r m und λ, desto weniger weit kommt Signal

13 elektrotonische Leitung im Dendriten Verzweigungen, unterschiedliche Durchmesser müssen beachtet werden, ausserdem Randbedingungen, da Dendriten kurz 1 2 Extrema: 1. Dendrit endet an Punkt a, kein Strom in axialer Richtung möglich, alles durch Membran Spannung fällt langsam ab 2. Dendrit öffnet sich in Raum mit grossem Durchmesser (anderer Dendrit oder Soma), Innenwiderstand nimmt stark ab, Membrankapazität steigt an Spannung fällt schnell ab a b c x

14 Verzögerung und Verkleinerung transienter Signale im Dendriten Messung im Soma, Signalursprung an verschiedenen Punkten: Amplitude wird kleiner, je weiter weg Signalursprung zeitliche Verzögerung wird größer

15 Morpho-elektrotonische Transformation (MET) Elektrotonische Länge L = x / λ Soma Wichtig für backpropagation von Aktionspotentialen in den Dendritenbaum

16 MET II: höherfrequente Signale werden stärker abgeschwächt als niederfrequente low-pass filter durch die Membrankapazität

17 Zeitliche und räumliche Summation dendritischer EPSPs erlaubt Integration von Signalen ABER: räumliche Summation nur linear, wenn Signale räumlich entfernt voneinander eintreffen, sonst "schließen" sich Ströme, die Membrankondensator aufladen "kurz", Signale schwächen sich durch Überlagerung ab, da das erste Signal die Membraneigenschaften verändert

18 MET III: Elektrotonische Eigenschaften können dynamisch sein K + Kanäle werden durch Depolarisierung geschlossen, Membranwiderstand steigt, somit wird λ gross, L klein, Signale kommen leichter bis zum Soma; stärkere Depolarisierung läßt andere K + -Kanäle öffnen L wieder größer

19 Form dendritischer Dornen beeinflußt Stärke von EPSPs

20 elektrotonische Leitung im Axon Signal muß große Entfernung schnell überwinden (τ = RC soll klein sein) und weit kommen (λ muß groß sein) also sollte R m groß sein, R i klein sein (λ = R m d/4r i ) (oder Durchmesser größer: r m ~ 1/d², aber dann Platzproblem...) Problem: wenn R m groß ist τ auch groß (τ = RC) Signal wird stark verzögert Lösung: C muß kleiner werden: "Dicke" der Isolierschicht wird erhöht Kapazität wird erniedrigt, Ladungen spüren sich nicht mehr so stark C m ~ 1/x ; x = Dicke der Isolierschicht (viele R in Serie zur Membran schaltet: R m = R 1 +R 2 + +R x ) Myelinisierung Signalgeschwindigkeit (m/sec) in myelinisierten Axonen ca. 6 x so gross wie Axondurchmesser in µm (empirischer Hursh Faktor) bei gleichem Durchmesser: Signal in myelinisiertem Axon ca. 100 x schneller als ohne Myelin

21 Das Aktionspotential 1 mm aus Hodgkin & Huxley, 1939

22 kleine Ströme Membranpotential folgt mit kleinen Veränderungen (ca. +2 bis +5 mv)

23 Depolarisation um mv Membranspannung folgt mit sehr großem Spannungssprung

24 Das Aktionspotential Schwellenwert mv über Ruhepotential plötzliche Depolarisation bis ca mv, ca. 1 ms Aktionspotential alles-oder-nichts-prinzip Amplitude enthält keine Information über Stärke des ursprünglichen Stimulus

25 Spannungsgesteuerte Na + -Kanäle sind für den Anstieg des Aktionspotentials verantwortlich

26 Spannungsgesteuerte Kaliumkanäle beenden das Aktionspotential?

27

28 Spannungsklemme

29 Hyperpolarisation Depolarisation unter Spannungsklemme

30 ?? Ströme unter Spannungsklemme, bei verschieden stark eingestellten Depolarisationen (Umkehrpotential Na + ca. +50 mv)

31 Strom-Spannungs-Beziehung der frühen und späten Ströme beim Aktionspotential unter Spannungsklemme

32 Wodurch werden die frühen Ströme geleitet?? Ionenaustausch-Experimente (Außenmedium Na + -frei)

33 Pharmakologische Blockierung der Na + - und der K + -Kanäle (Tetrodotoxin; Tetraethylammonium)

34 Refraktorische Periode und Frequenzkodierung Rückkehr von Na + -Kanal aus inaktivem Zustand erst ab bestimmtem Potential möglich (negativer im Vegl. zu Spitze des AP's vorher absolute Refraktärphase Aktionspotentiale können sich nur in eine Richtung ausbreiten! Refraktärphase Frequenzkodierung der Stimulusstärke

35 Fortpflanzung des Aktionspotentials passive Weiterleitung das Aktionspotential springt 1-2 mm Ranvier scher Schnürringe

36 Figure Saltatory action potential conduction along a myelinated axon. (A) Diagram of a myelinated axon. (B) Local current in response to action potential initiation at a particular site flows locally, as described in Figure However, the presence of myelin prevents the local current from leaking across the internodal membrane; it therefore flows farther along the axon than it would in the absence of myelin. Moreover, voltage-gated Na+ channels are present only at the nodes of Ranvier. This arrangement means that the generation of active, voltage-gated currents need only occur at these unmyelinated regions. The result is a greatly enhanced velocity of action potential conduction. Panel to the left of the figure legend shows the changing membrane potential as a function of time at the points indicated.

37 Figure Comparison of speed of action potential conduction in unmyelinated (upper) and myelinated (lower) axons.

38 In Neuronen viele Arten von Ionenkanälen mit charakteristischen Strömen, die neuronale Aktivität bestimmen Na + -Ströme: Inaktivierende und nicht inaktivierende K + -Ströme: auch inaktivierende, andere, die durch Ca 2+ moduliert sind, sehr grosse Genfamilie Cl - -Ströme: hyperpolarisierend, inhibitorisch Ca 2+ -Ströme: cytosolisches Ca 2+ hat viele Funktionen, second messenger, beeinflußt Genexpression, Neurotransmitter Freisetzung, moduliert Ionenkanäle, Kinasen, etc.

39 Unterschiedliche Arten neuronaler Aktivität Berndt et al., Nat. Neurosci. 2008

Einleitung: Der Versuchstag befasst sich mit der Simulation von Aktionspotentialen mittels des Hodgkin-Huxley- Modells.

Einleitung: Der Versuchstag befasst sich mit der Simulation von Aktionspotentialen mittels des Hodgkin-Huxley- Modells. Einleitung: Der Versuchstag befasst sich mit der Simulation von Aktionspotentialen mittels des Hodgkin-Huxley- Modells. Viele Einzelheiten über die elektrische Aktivität von Nerven resultierten aus Experimenten

Mehr

Unterschied zwischen aktiver und passiver Signalleitung:

Unterschied zwischen aktiver und passiver Signalleitung: Unterschied zwischen aktiver und passiver Signalleitung: Passiv: Ein kurzer Stromimpuls wird ohne Zutun der Zellmembran weitergeleitet Nachteil: Signalstärke nimmt schnell ab Aktiv: Die Zellmembran leitet

Mehr

In der Membran sind Ionenkanäle eingebaut leiten Ionen sehr schnell (10 9 Ionen / s)

In der Membran sind Ionenkanäle eingebaut leiten Ionen sehr schnell (10 9 Ionen / s) Mechanismen in der Zellmembran Abb 7.1 Kandel Neurowissenschaften Die Ionenkanäle gestatten den Durchtritt von Ionen in die Zelle. Die Membran (Doppelschicht von Phosholipiden) ist hydrophob und die Ionen

Mehr

Nanostrukturphysik II Michael Penth

Nanostrukturphysik II Michael Penth 16.07.13 Nanostrukturphysik II Michael Penth Ladungstransport essentiell für Funktionalität jeder Zelle [b] [a] [j] de.academic.ru esys.org giantshoulders.wordpress.com [f] 2 Mechanismen des Ionentransports

Mehr

BK07_Vorlesung Physiologie. 05. November 2012

BK07_Vorlesung Physiologie. 05. November 2012 BK07_Vorlesung Physiologie 05. November 2012 Stichpunkte zur Vorlesung 1 Aktionspotenziale = Spikes Im erregbaren Gewebe werden Informationen in Form von Aktions-potenzialen (Spikes) übertragen Aktionspotenziale

Mehr

1. Grundlagen. 2. Signalleitungs-Qualität. 3. Signalleitungs-Geschwindigkeit

1. Grundlagen. 2. Signalleitungs-Qualität. 3. Signalleitungs-Geschwindigkeit 1. Grundlagen 2. Signalleitungs-Qualität 3. Signalleitungs-Geschwindigkeit Beschreibung der Zellmembran mitsamt Kanälen und Na-K- Pumpe durch ein Ersatzschaltbild Dieses wird je nach Anwendung vereinfacht.

Mehr

Aktionspotential Na + -Kanal

Aktionspotential Na + -Kanal Aktionspotential Na + -Kanal VL.2 Prüfungsfragen: Unter welchen Bedingungen entsteht ein Ruhepotential in einer Zelle? Wie ist ein Neuron im Ruhezustand geladen und welchen Wert (mit Benennung) hat das

Mehr

winter-0506/tierphysiologie/

winter-0506/tierphysiologie/ Die Liste der Teilnehmer der beiden Kurse für Studenten der Bioinformatik finden Sie auf unserer web site: http://www.neurobiologie.fu-berlin.de/menu/lectures-courses/ winter-0506/tierphysiologie/ Das

Mehr

Erregungsübertragung an Synapsen. 1. Einleitung. 2. Schnelle synaptische Erregung. Biopsychologie WiSe Erregungsübertragung an Synapsen

Erregungsübertragung an Synapsen. 1. Einleitung. 2. Schnelle synaptische Erregung. Biopsychologie WiSe Erregungsübertragung an Synapsen Erregungsübertragung an Synapsen 1. Einleitung 2. Schnelle synaptische Übertragung 3. Schnelle synaptische Hemmung chemische 4. Desaktivierung der synaptischen Übertragung Synapsen 5. Rezeptoren 6. Langsame

Mehr

(9.00 Uhr, Hörsaal Pflanzenphysiol. Königin-Luise-Str )

(9.00 Uhr, Hörsaal Pflanzenphysiol. Königin-Luise-Str ) Klausurtermine: Für das Modul Verhaltens- und Neurobiologie (Mono- und Kombibachelor) 27.2.2008 (9.00 Uhr, Hörsaal Pflanzenphysiol. Königin-Luise-Str. 12-16) Wiederholungsklausur 26.3.2008 (9.00, Ort wie

Mehr

2.) Material und Methode

2.) Material und Methode 1.) Einleitung: Wenn man unser Nervensystem und moderne Computer vergleicht fällt erstaunlicherweise auf, dass das Nervensystem ungleich komplexer ist. Dazu ein kurzer Überblick: Das menschliche Nervensystem

Mehr

abiweb NEUROBIOLOGIE 17. März 2015 Webinar zur Abiturvorbereitung

abiweb NEUROBIOLOGIE 17. März 2015 Webinar zur Abiturvorbereitung abiweb NEUROBIOLOGIE 17. März 2015 Webinar zur Abiturvorbereitung Bau Nervenzelle Neuron (Nervenzelle) Dentrit Zellkörper Axon Synapse Gliazelle (Isolierung) Bau Nervenzelle Bau Nervenzelle Neurobiologie

Mehr

Membranen und Potentiale

Membranen und Potentiale Membranen und Potentiale 1. Einleitung 2. Zellmembran 3. Ionenkanäle 4. Ruhepotential 5. Aktionspotential 6. Methode: Patch-Clamp-Technik Quelle: Thompson Kap. 3, (Pinel Kap. 3) 2. ZELLMEMBRAN Abbildung

Mehr

BK07_Vorlesung Physiologie 29. Oktober 2012

BK07_Vorlesung Physiologie 29. Oktober 2012 BK07_Vorlesung Physiologie 29. Oktober 2012 1 Schema des Membrantransports Silverthorn: Physiologie 2 Membranproteine Silverthorn: Physiologie Transportproteine Ionenkanäle Ionenpumpen Membranproteine,

Mehr

Tutoriat zur Vorlesung Neuronale Informationsverarbeitung im HS 2010

Tutoriat zur Vorlesung Neuronale Informationsverarbeitung im HS 2010 Tutoriat zur Vorlesung Neuronale Informationsverarbeitung im HS 2010 ----------------------------------------------------------------------------------------------------- Wie definiert man elektrische

Mehr

Reizleitung in Nervenzellen. Nervenzelle unter einem Rasterelektronenmikroskop

Reizleitung in Nervenzellen. Nervenzelle unter einem Rasterelektronenmikroskop Reizleitung in Nervenzellen Nervenzelle unter einem Rasterelektronenmikroskop Gliederung: 1. Aufbau von Nervenzellen 2. Das Ruhepotential 3. Das Aktionspotential 4. Das Membranpotential 5. Reizweiterleitung

Mehr

Zellbiologie! Privatdozent Dr. T. Kähne! Institut für Experimentelle Innere Medizin! Medizinische Fakultät

Zellbiologie! Privatdozent Dr. T. Kähne! Institut für Experimentelle Innere Medizin! Medizinische Fakultät Zellbiologie! Privatdozent Dr. T. Kähne! Institut für Experimentelle Innere Medizin! Medizinische Fakultät Grundlagen Lipid-Doppelschicht als Barriere für polare Moleküle! Abgrenzung für biochemische

Mehr

Membran- und Donnanpotentiale. (Zusammenfassung)

Membran- und Donnanpotentiale. (Zusammenfassung) Membranund Donnanpotentiale (Zusammenfassung) Inhaltsverzeichnis 1. Elektrochemische Membranen...Seite 2 2. Diffusionspotentiale...Seite 2 3. Donnanpotentiale...Seite 3 4. Zusammenhang der dargestellten

Mehr

Funktion der Sinnesrezeptoren, Aktionspotenzial.

Funktion der Sinnesrezeptoren, Aktionspotenzial. Funktion der Sinnesrezeptoren, Aktionspotenzial. den 17 November 2016 Dr. Emőke Bódis Prüfungsfrage Ionenkanäle. Die Funktion und Klassifizierung der Sinnesrezeptoren. Die Phasen des Aktionspotenzials.

Mehr

Physiologische Grundlagen. Inhalt

Physiologische Grundlagen. Inhalt Physiologische Grundlagen Inhalt Das Ruhemembranpotential - RMP Das Aktionspotential - AP Die Alles - oder - Nichts - Regel Die Klassifizierung der Nervenfasern Das Ruhemembranpotential der Zelle RMP Zwischen

Mehr

Heute werden nochmals Skripten für den Kurs verkauft (5,- ). Alle brauchen ein Skript!!

Heute werden nochmals Skripten für den Kurs verkauft (5,- ). Alle brauchen ein Skript!! Abbildungen der Vorlesung finden Sie unter: http://www.neurobiologie.fu-berlin.de/menu/lectures-courses/ winter-0506/23%20113%20tierphysiologie/themenliste23113.html Heute werden nochmals Skripten für

Mehr

Schematische Übersicht über das Nervensystem eines Vertebraten

Schematische Übersicht über das Nervensystem eines Vertebraten Schematische Übersicht über das Nervensystem eines Vertebraten Die Integration des sensorischen Eingangs und motorischen Ausgangs erfolgt weder stereotyp noch linear; sie ist vielmehr durch eine kontinuierliche

Mehr

Ionenkanäle Ionenpumpen Membranruhepotential. username: tierphys Kennwort: tierphys09

Ionenkanäle Ionenpumpen Membranruhepotential. username: tierphys Kennwort: tierphys09 Ionenkanäle Ionenpumpen Membranruhepotential username: tierphys Kennwort: tierphys09 Tutorium: Ragna-Maja v. Berlepsch Dienstag 16:15-18:15 Uhr Raum 2298 Prüfungsfragen VL 1: - Welche generellenfunktionen

Mehr

Messung des Ruhepotentials einer Nervenzelle

Messung des Ruhepotentials einer Nervenzelle Messung des Ruhepotentials einer Nervenzelle 1 Extrazellulär Entstehung des Ruhepotentials K+ 4mM Na+ 120 mm Gegenion: Cl- K + kanal offen Na + -kanal zu Na + -K + Pumpe intrazellulär K+ 120 mm Na+ 5 mm

Mehr

Das Ruhemembranpotential eines Neurons

Das Ruhemembranpotential eines Neurons Das Ruhemembranpotential eines Neurons An diesem Ungleichgewicht sind 4 Arten von Ionen maßgeblich beteiligt: - Natriumionen (Na + ) (außen viel) - Kaliumionen (K + ) (innen viel) - Chloridionen (Cl -

Mehr

Chemisches Potential und Nernstgleichung Carsten Stick

Chemisches Potential und Nernstgleichung Carsten Stick Chemisches Potential und Nernstgleichung Carsten Stick Definition der mechanischen Arbeit: Kraft mal Weg W = F! ds W = Arbeit oder Energie; F = Kraft; s = Weg Diese Definition lässt sich auch auf die Kompression

Mehr

Übung 6 Vorlesung Bio-Engineering Sommersemester Nervenzellen: Kapitel 4. 1

Übung 6 Vorlesung Bio-Engineering Sommersemester Nervenzellen: Kapitel 4. 1 Bitte schreiben Sie Ihre Antworten direkt auf das Übungsblatt. Falls Sie mehr Platz brauchen verweisen Sie auf Zusatzblätter. Vergessen Sie Ihren Namen nicht! Abgabe der Übung bis spätestens 21. 04. 08-16:30

Mehr

ÜBUNGSBEISPIELE Beispiel 1.

ÜBUNGSBEISPIELE Beispiel 1. ÜBUNGSBEISPIELE Beispiel 1. Wieviele Ladungen sind für das Ruhepotentialpotential von -70 mv nötig?? Zusatzinfo: Membrankondensator 0.01F/m 2 a) Wieviele K + Ionen sind dies pro m 2?? Eine typische Zelle

Mehr

Unterrichtsmaterialien in digitaler und in gedruckter Form. Auszug aus: Die Erregungsleitung in Nervenzellen. Das komplette Material finden Sie hier:

Unterrichtsmaterialien in digitaler und in gedruckter Form. Auszug aus: Die Erregungsleitung in Nervenzellen. Das komplette Material finden Sie hier: Unterrichtsmaterialien in digitaler und in gedruckter Form Auszug aus: Die Erregungsleitung in Nervenzellen Das komplette Material finden Sie hier: School-Scout.de Reihe 2 S Verlauf Material LEK Glossar

Mehr

Modul Neurobiologie. Dr. Peter Machnik Prof. Dr. Stefan Schuster. Lehrstuhl für Tierphysiologie

Modul Neurobiologie. Dr. Peter Machnik Prof. Dr. Stefan Schuster. Lehrstuhl für Tierphysiologie Modul Neurobiologie Dr. Peter Machnik Prof. Dr. Stefan Schuster Lehrstuhl für Tierphysiologie 1 Literatur Nicholls, Martin, Wallace, Fuchs: From Neuron to Brain Kandel, Schwartz: Principles of Neural Science

Mehr

Eine typische Zelle hat ein Volumen von m 3 und eine Oberfläche von m 2

Eine typische Zelle hat ein Volumen von m 3 und eine Oberfläche von m 2 ÜBUNGSBEISPIELE Beispiel 1. Wieviele Ladungen sind für das Ruhepotentialpotential von -70 mv nötig?? Zusatzinfo: Membrankondensator 0.01F/m 2 Wieviele K Ionen sind dies pro m 2?? Eine typische Zelle hat

Mehr

Abbildungen Schandry, 2006 Quelle: www.ich-bin-einradfahrer.de Abbildungen Schandry, 2006 Informationsvermittlung im Körper Pioniere der Neurowissenschaften: Santiago Ramón y Cajal (1852-1934) Camillo

Mehr

Bemerkung zu den Texten und Bildern, die in der Vorlesung gezeigt wurden:

Bemerkung zu den Texten und Bildern, die in der Vorlesung gezeigt wurden: Bemerkung zu den Texten und Bildern, die in der Vorlesung gezeigt wurden: Aus urheberrechtlichen Gründen könne die aus Büchern kopierten Abbildungen hier nicht eingeschlossen werden. Sie sind jeweils zitiert

Mehr

Aktionspotential - Variante 1: vom Text zum Fließdiagramm -

Aktionspotential - Variante 1: vom Text zum Fließdiagramm - Aktionspotential - Variante 1: vom Text zum Fließdiagramm - Über das Axon leiten Nervenzellen Informationen verschlüsselt in Form von elektrischen Impulsen weiter, den Aktionspotentialen. Dabei verändern

Mehr

Biomembranen Transportmechanismen

Biomembranen Transportmechanismen Transportmechanismen Barrierewirkung der Membran: freie Diffusion von Stoffen wird unterbunden durch Lipidbilayer selektiver Stofftransport über spezielle Membranproteine = Translokatoren Semipermeabilität

Mehr

Biologische Grundlagen der Elektrogenese

Biologische Grundlagen der Elektrogenese Proseminar: Elektrophysiologie kognitiver Prozesse WS 2008/2009 Dozentin: Dr. Nicola Ferdinand Referent: Michael Weigl Biologische Grundlagen der Elektrogenese Ein Überblick Zum Einstieg Die Gliederung

Mehr

Das Neuron (= Die Nervenzelle)

Das Neuron (= Die Nervenzelle) Das Neuron (= Die Nervenzelle) Die Aufgabe des Neurons besteht in der Aufnahme, Weiterleitung und Übertragung von Signalen. Ein Neuron besitzt immer eine Verbindung zu einer anderen Nervenzelle oder einer

Mehr

Membranphysiologie II

Membranphysiologie II Membranphysiologie II Wiederholung Biophysikalische Grundlagen Adolf Eugen Fick (1829-1901) Transportprozesse über Biomembranen Übersicht In biologischen Membranen lassen sich aktive und passive Transportmechanismen

Mehr

Grundlagen der neuronalen Signal-Fortleitung

Grundlagen der neuronalen Signal-Fortleitung Grundlagen der neuronalen Signal-Fortleitung Voraussetzung zur Informationsverarbeitung/-Weiterleitung: Ruhepotential Grundlagen der neuronalen Signal-Fortleitung Voraussetzung zur Informationsverarbeitung/-Weiterleitung:

Mehr

Ionenkanäle der Zellmembran. Seminar Differenzialgleichungen in der Biomedizin SoSe09 Karoline Jäger

Ionenkanäle der Zellmembran. Seminar Differenzialgleichungen in der Biomedizin SoSe09 Karoline Jäger Ionenkanäle der Zellmembran Seminar Differenzialgleichungen in der Biomedizin SoSe09 Karoline Jäger Inhaltsverzeichnis 1. Strom-Spannung Beziehung 2. Unabhängigkeit, Sättigung, Ussing Fluss Rate 3. Elektrodiffusions

Mehr

Gliederung. Biopsychologie Vertiefung WS 07/08

Gliederung. Biopsychologie Vertiefung WS 07/08 Gliederung Wiederholung: Informationsverarbeitung im Gehirn Wiederholung Vorlesung: das Neuron Aufbau und Funktion der Zellmembran Ionenkanäle Wiederholung Vorlesung: das Ruhepotential Wiederholung Vorlesung:

Mehr

Kapitel 12 Membrantransport

Kapitel 12 Membrantransport Kapitel 12 Membrantransport Jeder Membrantyp hat seine eigene Selektion von Transportproteinen, die nur bestimmte Stoffe reinlassen und so die Zusammensetzung des von der Membran umschlossenen Kompartimentes

Mehr

Übertragung zwischen einzelnen Nervenzellen: Synapsen

Übertragung zwischen einzelnen Nervenzellen: Synapsen Übertragung zwischen einzelnen Nervenzellen: Synapsen Kontaktpunkt zwischen zwei Nervenzellen oder zwischen Nervenzelle und Zielzelle (z.b. Muskelfaser) Synapse besteht aus präsynaptischen Anteil (sendendes

Mehr

Humanbiologie. Nervenphysiologie

Humanbiologie. Nervenphysiologie Humanbiologie Nervenphysiologie Prof. Dr. Karin Busch Institut für Molekulare Zellbiologie - IMZ Gliederung der VL SoSe 2016 20.4. Bestandteile und Funktionen der Zelle 27.4. Atmung 04.5. Herz/Blutkreislauf

Mehr

Generierung eines APs

Generierung eines APs Generierung eines APs Interessante Bemerkungen: Die Zahl der Ionen, die während eines Aps in Bewegung sind, ist verglichen mit der Gesamtzahl der Ionen innerhalb und außerhalb eines Neurons sehr gering!

Mehr

Unterrichtsvorhaben I: Bau, Funktion, Lage und Verlauf von Nervenzellen

Unterrichtsvorhaben I: Bau, Funktion, Lage und Verlauf von Nervenzellen Inhaltsverzeichnis Gk Qualifikationsphase Inhaltsfeld 4: Neurobiologie... 1 Unterrichtsvorhaben I: Bau, Funktion, Lage und Verlauf von Nervenzellen... 1 24 Unterrichtsstunden=8 Wochen Kontext: Vom Reiz

Mehr

Membranen. U. Albrecht

Membranen. U. Albrecht Membranen Struktur einer Plasmamembran Moleküle gegeneinander beweglich -> flüssiger Charakter Fluidität abhängig von 1) Lipidzusammensetzung (gesättigt/ungesättigt) 2) Umgebungstemperatur Biologische

Mehr

3. Neuronenmodelle. 1. Einleitung zur Modellierung. 2. Hodgkin-Huxley-Modell. 3. Grundmodell in kontinuierlicher und diskreter Zeit

3. Neuronenmodelle. 1. Einleitung zur Modellierung. 2. Hodgkin-Huxley-Modell. 3. Grundmodell in kontinuierlicher und diskreter Zeit 3. Neuronenmodelle 1. Einleitung zur Modellierung 2. Hodgkin-Huxley-Modell 3. Grundmodell in kontinuierlicher und diskreter Zeit 4. Transferfunktionen (Kennlinien) für Neuronen 5. Neuronenmodelle in Anwendungen

Mehr

Physikalische Phänomene in der Biologie Elektrizität in Nervenzellen

Physikalische Phänomene in der Biologie Elektrizität in Nervenzellen Delta Phi B 2016 Physikalische Phänomene in der Biologie Elektrizität in Nervenzellen DAGMAR, DAGMAR.@STUD.SBG.AC.AT Zusammenfassung Fächerübergreifender Unterricht in Biologie und Physik bietet die Möglichkeit,

Mehr

Nervensystem. www.tu-ilmenau.de/nano

Nervensystem. www.tu-ilmenau.de/nano Nervensystem ist übergeordnete Steuerungs- und Kontrollinstanz des Körpers besteht aus Nervenzellen und Stützzellen (z. B. Glia) hat drei Hauptfunktionen Reizaufnahme Reizintegration, Interpretation, Handlungsplanung

Mehr

C07 Membranmodell und Signalausbreitung C07

C07 Membranmodell und Signalausbreitung C07 1. ZIELE In diesem Versuch werden Sie den Transport von elektrischen Signalen in Nervenzellen mit einem Modell simulieren. Die Ausbreitung dieser Signale wird allein durch die elektrischen Eigenschaften

Mehr

NaCl. Die Originallinolschnitte, gedruckt von Marc Berger im V.E.B. Schwarzdruck Berlin, liegen als separate Auflage in Form einer Graphikmappe vor.

NaCl. Die Originallinolschnitte, gedruckt von Marc Berger im V.E.B. Schwarzdruck Berlin, liegen als separate Auflage in Form einer Graphikmappe vor. NaCl Künstlerische Konzeption: Xenia Leizinger Repros: Roman Willhelm technische Betreuung und Druck: Frank Robrecht Schrift: Futura condensed, Bernhard Modern Papier: Igepa Design Offset naturweiß 120

Mehr

Gelöste Teilchen diffundieren von Orten höherer Konzentration zu Orten geringerer Konzentration

Gelöste Teilchen diffundieren von Orten höherer Konzentration zu Orten geringerer Konzentration 1 Transportprozesse: Wassertransport: Mit weinigen ausnahmen ist die Zellmembran frei durchlässig für Wasser. Membrantransport erfolgt zum größten Teil über Wasserkanäle (Aquaporine) sowie über Transportproteine

Mehr

Elektrische Erscheinungen in Nervenzellen

Elektrische Erscheinungen in Nervenzellen Elektrische Erscheinungen in Nervenzellen Wolfgang Stein, Institut für Neurobiologie, www.neurobiologie.de Skript unter www.neurobiologie.de, Link zu student courses Spannung, Strom & Widerstand www.zoologie-skript.de

Mehr

Modellierung von Ionenkanälen und das Hodgkin-Huxley Modell. SS 2012 Mathematische Aspekte der Neuronenmodellierung und Simulation

Modellierung von Ionenkanälen und das Hodgkin-Huxley Modell. SS 2012 Mathematische Aspekte der Neuronenmodellierung und Simulation Modellierung von Ionenkanälen und das Hodgkin-Huxley Modell SS 2012 Mathematische Aspekte der Neuronenmodellierung und Simulation Inhaltsverzeichnis Das Neuron und die Zellmembran Die Ionen Kanäle Das

Mehr

Natriumkanäle: Neue Zielscheiben für Schmerzmittel. Förderpreis für Schmerzforschung an Münchner Forscher verliehen

Natriumkanäle: Neue Zielscheiben für Schmerzmittel. Förderpreis für Schmerzforschung an Münchner Forscher verliehen Natriumkanäle: Neue Zielscheiben für Schmerzmittel Förderpreis für Schmerzforschung an Münchner Forscher verliehen Berlin (8. Oktober 2008) - Eine über 40 Jahre alte Theorie zur Funktion von Schmerzrezeptoren

Mehr

Grundlagen neuronaler Aktivität

Grundlagen neuronaler Aktivität Grundlagen neuronaler Aktivität Physikalische Grundlagen der medizinischen Bildgebung Thorsten Rings Universität Bonn 23.6.2014 Thorsten Rings (Universität Bonn) Grundlagen neuronaler Aktivität 23.6.2014

Mehr

Die neuronale Synapse

Die neuronale Synapse Die neuronale Synapse AB 1-1, S. 1 Arbeitsweise der neuronalen Synapse Wenn am synaptischen Endknöpfchen ein Aktionspotenzial ankommt, öffnen sich spannungsgesteuerte Calciumkanäle. Da im Zellaußenmedium

Mehr

www.bernhard.schnepf.de.vu

www.bernhard.schnepf.de.vu In den Tieren gibt es zwei große Informations-Transportsysteme! - Nervensystem (bis ca. 140 m/s) - Hormone (Mensch: Blut mit einer Fließgeschwindigkeit von ca. 40cm/s und mittlerer Umlaufzeit von 20 Sekunden)

Mehr

Fortleitung des Aktionspotentials

Fortleitung des Aktionspotentials Fortleitung des Aktionspotentials außen innen g K Ströme während des Aktionspotentials Ruhestrom: gleich starker Ein- und Ausstrom von K+ g Na Depolarisation: Na+ Ein- Strom g K Repolarisation: verzögerter

Mehr

Physiologie ist die Wissenschaft von der normalen Funktionsweise eines lebenden Organismus und seiner einzelnen Komponenten

Physiologie ist die Wissenschaft von der normalen Funktionsweise eines lebenden Organismus und seiner einzelnen Komponenten Einführung in die Neurophysiologie 2009 Physiologie ist die Wissenschaft von der normalen Funktionsweise eines lebenden Organismus und seiner einzelnen Komponenten Einführung in die Neurophysiologie 2009

Mehr

Grundlagen Funktionelle Neuroanatomie und -physiologie

Grundlagen Funktionelle Neuroanatomie und -physiologie Numerische Simulation in den Neurowissenschaften Grundlagen Funktionelle Neuroanatomie und -physiologie Stefan Lang Interdisziplinäres Zentrum für wissenschaftliches Rechnen Universität Heidelberg SS 2010

Mehr

Membranpotentiale / Aktionspotentiale

Membranpotentiale / Aktionspotentiale aus der Vorlesung Physiologie für Psychologen (3 Stunden im WS 02/03): Membranpotentiale / Aktionspotentiale Grundlagen neuronaler Informationsverarbeitung: Wahrnehmung und Empfindung, Denken und Bewußtsein,

Mehr

Wdh. Aufbau Struktur Gehirn

Wdh. Aufbau Struktur Gehirn KW38 MKPs Orga Wdh. Aufbau Struktur Gehirn ZNS/PNS Videotime HA: Gehirn limbisches System Das limbische System 31.3 (S. 418) Aufgabe: Aufgabe 31.3 mit Verwendung der Fachbegriffe in Form eines Lernscripts.

Mehr

4.12 Signalausbreitung am Membranmodell

4.12 Signalausbreitung am Membranmodell 4.12 Signalausbreitung am Membranmodell 541 4.12 Signalausbreitung am Membranmodell Der Versuch wird seit Mai ¾¼¼ im Konstanzer Praktikum durchgeführt. 1 An der Anleitung wird weiterhin gearbeitet. Ziel

Mehr

Aufbau und Beschreibung Neuronaler Netzwerke

Aufbau und Beschreibung Neuronaler Netzwerke Aufbau und Beschreibung r 1 Inhalt Biologisches Vorbild Mathematisches Modell Grundmodelle 2 Biologisches Vorbild Das Neuron Grundkomponenten: Zellkörper (Soma) Zellkern (Nukleus) Dendriten Nervenfaser

Mehr

Das EEG: Spontan-EEG und EKP

Das EEG: Spontan-EEG und EKP Das EEG: Spontan-EEG und EKP Biopsychologische Vertiefung Katja Bertsch Psychophysiologisches Labor Gliederung 1. EEG-Erhebung Labor Elektroden Artefakte 2. Spontan-EEG Frequenzbänder Fourier Transformation

Mehr

Neuroinformatik I. Günther Palm Friedhelm Schwenker Abteilung Neuroinformatik

Neuroinformatik I. Günther Palm Friedhelm Schwenker Abteilung Neuroinformatik Neuroinformatik I Günther Palm Friedhelm Schwenker Abteilung Neuroinformatik Vorlesung: Do 10-12 Uhr Raum H21 / Übung: Fr 12-14 Raum 121 und 122 Übungsaufgaben sind schriftlich zu bearbeiten (Schein bei

Mehr

Versuch 1: Elektrische Fische

Versuch 1: Elektrische Fische Tierphysiologisches Praktikum (Teil Neurophysiologie) SS 2005 Johannes Gutenberg Universität Mainz Protokoll zum 1.Kurstag am 02.05.2005 Versuch 1: Elektrische Fische Protokollant: Max Mustermann Matrikelnummer:

Mehr

Na + -Konzentrationen und Gleichgewichtspotenzial. K + -Konzentrationen und Gleichgewichtspotenzial. Ca 2+ -Konzentrationen. Cl - -Konzentrationen

Na + -Konzentrationen und Gleichgewichtspotenzial. K + -Konzentrationen und Gleichgewichtspotenzial. Ca 2+ -Konzentrationen. Cl - -Konzentrationen Na + -Konzentrationen und Gleichgewichtspotenzial K + -Konzentrationen und Gleichgewichtspotenzial Ca 2+ -Konzentrationen Cl - -Konzentrationen Ficksches Diffusionsgesetz Na + /K + -ATPase Na + /Ca 2+

Mehr

NERVENZELLEN UND NERVENIMPULSE

NERVENZELLEN UND NERVENIMPULSE 6 NERVENZELLEN UND NERVENIMPULSE Neuronendoktrin: RAMON Y CAJAL (Ende 19.Jhd.): Neuronen liegen zwar beieinander, sind aber physisch voneinander getrennt; Verbindung der Nervenzellen untereinander geschieht

Mehr

Herz und Kreislauf Teil 3

Herz und Kreislauf Teil 3 24. TOGGENBURGER ANÄSTHESIE REPETITORIUM Herz und Kreislauf Teil 3 Zellphysiologie Medikamente Salome Machaidze Miodrag Filipovic miodrag.filipovic@kssg.ch Anästhesiologie & Intensivmedizin Unter Verwendung

Mehr

A. Steinmetz NEURONALE NETZE IN BEZUG AUF MUSTERERKENNUNG. Vom biologischen Vorbild. zum informatischen Modell

A. Steinmetz NEURONALE NETZE IN BEZUG AUF MUSTERERKENNUNG. Vom biologischen Vorbild. zum informatischen Modell A. Steinmetz NEURONALE NETZE IN BEZUG AUF MUSTERERKENNUNG Vom biologischen Vorbild zum informatischen Modell A. Steinmetz NEURONALE NETZE IN BEZUG AUF MUSTERERKENNUNG Vom biologischen Vorbild zum informatischen

Mehr

Elektrotechnik Formelsammlung v1.2

Elektrotechnik Formelsammlung v1.2 Inhaltsverzeichnis 3. Das Coulombsches Gesetz...2 3.. Elementarladung...2 32. Elektrische Arbeit...2 33. Elektrische Feldstärke...2 34. Elektrische Spannung...3 34.. Ladung Q...3 34... Kondensatoren-Gesetz...3

Mehr

Aufgabenblatt Z/ 01 (Physikalische Größen und Einheiten)

Aufgabenblatt Z/ 01 (Physikalische Größen und Einheiten) Aufgabenblatt Z/ 01 (Physikalische Größen und Einheiten) Aufgabe Z-01/ 1 Welche zwei verschiedenen physikalische Bedeutungen kann eine Größe haben, wenn nur bekannt ist, dass sie in der Einheit Nm gemessen

Mehr

V E.1 Simulation der elektrischen Eigenschaften von biologischen Membranen

V E.1 Simulation der elektrischen Eigenschaften von biologischen Membranen V E.1 Simulation der elektrischen Eigenschaften von biologischen Membranen Ziele: In diesem Versuch werden die Grundlagen der Entstehung des Ruhemembranpotenzials und der Übertragung von elektrischen Signalen

Mehr

Synaptische Transmission

Synaptische Transmission Synaptische Transmission Wie lösen APe, die an den Endknöpfchen der Axone ankommen, die Freisetzung von Neurotransmittern in den synaptischen Spalt aus (chemische Signalübertragung)? 5 wichtige Aspekte:

Mehr

Zelluläre Kommunikation

Zelluläre Kommunikation Zelluläre Kommunikation 1. Prinzipien der zellulären Kommunikation?? 2. Kommunikation bei Nervenzellen Die Zellen des Nervensystems Nervenzellen = Neuronen Gliazellen ( Glia ) Astrozyten Oligodendrozyten

Mehr

+ Proteine = Bioelektrische Erscheinungen: Einführung. Bioelektrische Erscheinungen: Membrane. Aufbau der biologischen Membranen

+ Proteine = Bioelektrische Erscheinungen: Einführung. Bioelektrische Erscheinungen: Membrane. Aufbau der biologischen Membranen Bioelektrische Erscheinungen: Einführung Grundlagen der Erregungsprozesse Ruhepotential, Aktionspotential psychophysikalische Gesetze Bioelektrische Erscheinungen: Ruhepotential (Potential des intrazellulären

Mehr

Nervenmodelle, VO. Ao.Univ.Prof. Dipl.-Ing. Dr.techn. Dr.rer.nat. Frank Rattay. erstellt von: Michael Hofbauer

Nervenmodelle, VO. Ao.Univ.Prof. Dipl.-Ing. Dr.techn. Dr.rer.nat. Frank Rattay. erstellt von: Michael Hofbauer Nervenmodelle, VO Ao.Univ.Prof. Dipl.-Ing. Dr.techn. Dr.rer.nat. Frank Rattay erstellt von: Michael Hofbauer Inhaltsverzeichnis 1 Prolog 2 2 Das Nervensystem 3 2.1 Der Aufbau der Nervenzelle...................

Mehr

Aktionspotential - Variante 4: mit Fragenkette -

Aktionspotential - Variante 4: mit Fragenkette - Aktionspotential Variante 4: mit Fragenkette Über das Axon leiten Nervenzellen Informationen verschlüsselt in Form von elektrischen Impulsen weiter, den Aktionspotentialen. Dabei verändern sich die Spannungsverhältnisse

Mehr

Elektrotechnik für MB

Elektrotechnik für MB Elektrotechnik für MB Gleichstrom Elektrische und magnetische Felder Wechsel- und Drehstrom Grundlagen und Bauelemente der Elektronik Studium Plus // IW-MB WS 2015 Prof. Dr. Sergej Kovalev 1 Ziele 1. Gleichstrom:

Mehr

Probeklausur 1 - Einführung in die Physik - WS 2014/ C. Strassert

Probeklausur 1 - Einführung in die Physik - WS 2014/ C. Strassert Probeklausur - Einführung in die Physik - WS 04/05 - C. Strassert Erdbeschleunigung g= 9.8 m/s ; sin0 = cos 60 = 0.5; sin 60 = cos 0 = 0.866;. 4 ) Ein Turmspringer lässt sich von einem 5 m hohen Sprungturm

Mehr

1.) Wie entsteht das Ruhepotential?

1.) Wie entsteht das Ruhepotential? 1.) Wie entsteht das Ruhepotential? Neuronen (Nervenzellen) halten an ihrer Außen- oder Plasmamembran ein elektrisches Ladungsgefälle von rund -65mV/-70 mv aufrecht, kurz Ruhepotential. Es entsteht durch

Mehr

7.1. Die Rückenmarknerven (Die Spinalnerven): Siehe Bild Nervenbahnen

7.1. Die Rückenmarknerven (Die Spinalnerven): Siehe Bild Nervenbahnen 7. Das periphere Nervensystem: 7.1. Die Rückenmarknerven (Die Spinalnerven): Siehe Bild Nervenbahnen 7.2. Die Hirnnerven: Sie stammen aus verschiedenen Zentren im Gehirn. I - XII (Parasympathikus: 3,7,9,10)

Mehr

Ein effizientes Verfahren zur Berechnung der Potentiale in kortikalen neuronalen Kolumnen.

Ein effizientes Verfahren zur Berechnung der Potentiale in kortikalen neuronalen Kolumnen. Ein effizientes Verfahren zur Berechnung der Potentiale in kortikalen neuronalen Kolumnen. Diplomarbeit, Vorgelegt von Alexander Wanner Betreuer: Prof. Dr. Gabriel Wittum Universität Heidelberg Fakultät

Mehr

Informationsübertragung im Nervensystem

Informationsübertragung im Nervensystem Informationsübertragung im Nervensystem Informationsübertragung im Nervensystem 1. Aufbau des Nervensystems 2. Aufbau einer Nervenzelle 3. Ruhemembranpotenzial 4. Aktionspotenzial 5. Erregungsleitung 6.

Mehr

Physik-Department. Ferienkurs zur Experimentalphysik 2 - Musterlösung

Physik-Department. Ferienkurs zur Experimentalphysik 2 - Musterlösung Physik-Department Ferienkurs zur Experimentalphysik 2 - Musterlösung Daniel Jost 27/08/13 Technische Universität München Aufgaben zur Magnetostatik Aufgabe 1 Bestimmen Sie das Magnetfeld eines unendlichen

Mehr

Beide bei Thieme ebook

Beide bei Thieme ebook Beide bei Thieme ebook Neurophysiologie 1) Funktionelle Anatomie 2) Entstehung nervaler Potentiale 3) Erregungsfortleitung 4) Synaptische Übertragung 5) Transmitter und Reflexe 6) Vegetatives Nervensystem

Mehr

Ministerium für Schule und Weiterbildung NRW BI GK HT 1 Seite 1 von 6. Unterlagen für die Lehrkraft. Abiturprüfung Biologie, Grundkurs

Ministerium für Schule und Weiterbildung NRW BI GK HT 1 Seite 1 von 6. Unterlagen für die Lehrkraft. Abiturprüfung Biologie, Grundkurs Seite 1 von 6 Unterlagen für die Lehrkraft Abiturprüfung 2007 Biologie, Grundkurs 1. Aufgabenart I Bearbeitung fachspezifischen Materials mit neuem Informationsgehalt 2. Aufgabenstellung Thema: Pflanzenschutz

Mehr

Basiswissen Skripte Neurobiologie Erregungsleitung am synaptschen Spalt Skript. Erregungsleitung. am synaptschen Spalt.

Basiswissen Skripte Neurobiologie Erregungsleitung am synaptschen Spalt Skript. Erregungsleitung. am synaptschen Spalt. Erregungsleitung am synaptschen Spalt Übersicht 1 Einleitung 1 2 Die Synapse 1 3 Neurotransmitter 4 4 Informationsverarbeitung 5 5 Taurin 9 1 Einleitung Gerade hast du dir einen Energiedrink gekauft. Als

Mehr

Aufbau und Funktionweise der Nervenzelle - Wiederholung Vorlesung -

Aufbau und Funktionweise der Nervenzelle - Wiederholung Vorlesung - Aufbau und Funktionweise der Nervenzelle - Wiederholung Vorlesung - Fragen zur Vorlesung: Welche Zellen können im Nervensystem unterschieden werden? Aus welchen Teilstrukturen bestehen Neuronen? Welche

Mehr

Synapsen und synaptische Integration: Wie rechnet das Gehirn?

Synapsen und synaptische Integration: Wie rechnet das Gehirn? Synapsen und synaptische Integration: Wie rechnet das Gehirn? Kontaktstellen zwischen Neuronen, oder zwischen Neuronen und Muskel (neuromuskuläre Synapse) Entsprechend der Art ihrer Übertragung unterscheidet

Mehr

Physik und Systemwissenschaft Test, November 2009

Physik und Systemwissenschaft Test, November 2009 Physik und Systemwissenschaft Test, November 9 Erstes Semester WI9 Erlaubte Hilfsmittel: Bücher und persönlich verfasste Zusammenfassung. Rechen- und Schreibzeugs. Antworten müssen begründet und nachvollziehbar

Mehr

Mathematische Modellierung der Impulsweiterleitung an markhaltigen und marklosen Neuronen

Mathematische Modellierung der Impulsweiterleitung an markhaltigen und marklosen Neuronen Fakultät für Mathematik und Informatik Proseminar zur Lineare Algebra und Analysis Wintersemester 2009/2010 Mathematische Modellierung der Impulsweiterleitung an markhaltigen und marklosen Neuronen Das

Mehr

Universität Duisburg-Essen WS 2014/15 Fakultät für Mathematik IOS. Wolfgang Hümbs. Einführung in die Neuromathematik

Universität Duisburg-Essen WS 2014/15 Fakultät für Mathematik IOS. Wolfgang Hümbs. Einführung in die Neuromathematik Universität Duisburg-Essen WS 2014/15 Fakultät für Mathematik IOS Wolfgang Hümbs Einführung in die Neuromathematik Aufgabe 1 Zeichnen Sie eine behinderungsfreie und streng konservative Petri-Netz-Lösung

Mehr

Elektrokardiographie

Elektrokardiographie Elektrokardiographie Inhaltsverzeichnis Allgemeines EKG Entstehung Reizweiterleitung Natrium Kalium Pumpe Die EKG Kurve Ableitungen Ruhe EKG bei der Ergometrie Belastung EKG bei der Ergometrie Quellen

Mehr

Zentrales Nervensystem

Zentrales Nervensystem Zentrales Nervensystem Funktionelle Neuroanatomie (Struktur und Aufbau des Nervensystems) Neurophysiologie (Ruhe- und Aktionspotenial, synaptische Übertragung) Fakten und Zahlen (funktionelle Auswirkungen)

Mehr

Zentrales Nervensystem

Zentrales Nervensystem Zentrales Nervensystem Funktionelle Neuroanatomie (Struktur und Aufbau des Nervensystems) Evolution des Menschen Neurophysiologie (Ruhe- und Aktionspotenial, synaptische Übertragung) Fakten und Zahlen

Mehr

Kapitel 05.02: Die Nervenzelle

Kapitel 05.02: Die Nervenzelle Kapitel 05.02: Die Nervenzelle 1 Kapitel 05.02: Die Nervenzelle Kapitel 05.02: Die Nervenzelle 2 Inhalt Kapitel 05.02: Die Nervenzelle...1 Inhalt... 2 Informationsweiterleitung im menschlichen Körper...3

Mehr