= (Kürzen mit 4) Gleichnamige Brüche werden addiert (subtrahiert), indem man die Zähler addiert (subtrahiert) und den Nenner beibehält.

Save this PDF as:
 WORD  PNG  TXT  JPG

Größe: px
Ab Seite anzeigen:

Download "= (Kürzen mit 4) Gleichnamige Brüche werden addiert (subtrahiert), indem man die Zähler addiert (subtrahiert) und den Nenner beibehält."

Transkript

1 GRUNDWISSEN MATHEMATIK. JAHRGANGSSTUFE a b. Bruchzahlen: mit a, b N. a heißt Zähler, b heißt Nenner. a) Ein Bruch wird mit einer natürlichen Zahl erweitert (gekürzt), indem man Zähler und Nenner mit dieser Zahl multipliziert (durch diese Zahl dividiert). b) Die Gleichung x b a mit a, b N hat die Lösung a x. b c) Merke folgende Sonderfälle besonders gut! Der Wert eines Bruches mit dem Nenner ist gleich dem Zähler. Brüche mit dem Nenner 0 gibt es nicht. Ist der Zähler 0, so hat der Bruch den Wert Null. Beispiele: a) 0 : 0 0: (Erweitern mit ) (Kürzen mit ) b) x* 7 ; x :7; x 7 c) ; ist sinnlos (Division durch Null ist nicht definiert!). Das Rechnen mit Brüchen a) Addition und Subtraktion: Gleichnamige Brüche werden addiert (subtrahiert), indem man die Zähler addiert (subtrahiert) und den Nenner beibehält. Ungleichnamige Brüche werden zunächst gleichnamig gemacht; der Hauptnenner ist das kgv aller auftretenden Nenner. Beispiele:

2 b) Ein Bruch wird mit einer Zahl aus N multipliziert (durch eine Zahl aus N dividiert), indem man den Zähler (Nenner) mit der Zahl multipliziert und den Nenner (Zähler) beibehält. Beispiele: 9 * : 7 Prüfe, ob man vor dem Multiplizieren kürzen kann! c ) Man multipliziert Brüche miteinander, indem man Zähler mit Zähler und Nenner mit Nenner multipliziert. Vor dem Ausmultiplizieren ist gegebenenfalls zu kürzen! Beispiele: 9 * * * 0 d) Durch einen Bruch wird dividiert, indem man mit seinem Kehrbruch multipliziert. Beispiele: : * (Kürze!) : : * 7 7. Dezimalbrüche a) Merke dir folgende Umwandlungen: 0,; 0,; 0,7 0,; 7 0,7; 0,; 0,7 0,; 0,; 0,; 0, 0,...; 0,...; 9 0,...

3 Am Ende eines Dezimalbruches dürfen beliebig viele Nullen angehängt oder gestrichen werden, ohne dass sich der Wert des Bruches ändert. 0, 0,000;,70000,70. Das Rechnen mit Dezimalbrüchen a) Ein Dezimalbruch wird mit einer Stufenzahl multipliziert (durch eine Stufenzahl dividiert), indem man das Komma um so viele Stellen nach rechts (links) rückt, wie die Stufenzahl Nullen hat. 0,00 * 00,0,; 7, : 000 0,07 b) Dezimalbrüche werden miteinander multipliziert, indem man zunächst ohne Komma multipliziert. Dann wird das Komma so gesetzt, dass das Ergebnis gleich viele Dezimalen hat wie alle Faktoren zusammen., *,? *, also, *,, c) Um eine Zahl durch einen Dezimalbruch zu dividieren, rückt man das Komma bei beiden Zahlen um so viele Stellen nach rechts, dass man durch eine natürliche Zahl dividieren kann. 0,0 : 0,0, :,. Prozentrechnung Abkürzungen: Grundwert G; Prozentwert P; Prozentsatz p; P p * 00 a) Prozent (%) ist nur ein anderer Ausdruck für 00. G Beispiel: % von 00 DM 00 * 00 DM DM

4 b) Wichtige Prozentsätze: % ; 0 0% 0 ; 0% ; % ; % ; 0% ; 00%. c) Berechnung des Prozentsatzes: P p * 00% G Beispiel: Wieviel Prozent sind DM von 7 DM? Lösung: p DM 7DM * 00% * 00% 0% d) Promille ist nur ein anderer Ausdruck für 000 Beispiel: Eine Blutprobe ergab einen Alkoholgehalt von 0, Promille heißt : Jeweils 000 mg Blut enthalten 0, mg Alkohol... Zinsrechnung Abkürzungen: k Kapital; z Zins; p Zinssatz; t Zinstage k p t Zinsformel: z 00 0 Beispiel: Wie viele Zinsen ergibt ein Guthaben von 00 DM in Tagen bei einem Zinssatz von %? 00 Lösung: z 00 0 DM DM DM,0 DM Merke: Beim Zinsrechnen hat jeder Monat 0 Tage!

5 7. Proportionalität a) Wenn bei einer Zuordnung von Größen dem,,..., m-fachen der einen Größe das,,..., m-fache der anderen Größe entspricht, so heißt diese Zuordnung Proportionalität. Beispiel: Lohn und Arbeitszeit (bei gleichem Stundenlohn) Die graphische Darstellung ist eine Halbgerade durch 0. b) Wenn bei einer Zuordnung von Größen dem,,... k-fachen der einen Größe der.,.,..., k-te Teil der anderen Größe entspricht, so heißt diese Zuordnung umgekehrte Proportionalität. Beispiel: Länge und Breite eines Rechtecks (bei festem Flächeninhalt) Die graphische Darstellung ist eine Hyperbel. c) Schlussrechnen: Beispiele: a) 0,7 l einer Flüssigkeit wiegen 0 g. Wieviel wiegen 0,7 l? Lösung: 0,7 Liter wiegen 0 g 0, Liter wiegen 0 g : 7 0 g 0,7 Liter wiegen 0 g * 7, 00 g b) Bei Stunden Brenndauer je Tag reicht der Ölvorrat für einen Ölofen 0 Tage. Wie lange reicht das Öl, wenn der Ofen durchschnittlich Stunden am Tag geheizt wird? Lösung: Bei Stunden Brenndauer je Tag reicht das Öl 0 Tage Bei Stunde Brenndauer je Tag reicht das Öl 0 Tage * 0 Tage Bei Stunden Brenndauer je Tag reicht das Öl 0 Tage : Tage. Rauminhalte von Quadern und Würfeln a) Maßeinheiten: mm ; cm ; dm ; m b) dm l (Liter); 00 l hl (Hektoliter) cm ml (Milliliter)

6 c) Merke: Die Umrechnungszahl bei Raumeinheiten ist 000! m 000 dm cm mm mm 0,00 cm 0,00000 dm 0, m d) Die Formel für das Volumen V eines Quaders : V l * b * h (Länge mal Breite mal Höhe) Beispiel: l dm; b cm; h cm V 0 cm * cm * cm 00 cm dm 00 cm e) Die Formel für das Volumen V eines Würfels: V s * s * s (s Kantenlänge) 9. Der Winkel Beispiel: s dm V dm * dm * dm ( dm) dm l a) Ein Winkel entsteht durch die Drehung einer Halbgeraden um den Anfangspunkt. Die Drehung erfolgt gegen den Uhrzeigersinn. b) Winkel werden z.b. durch kleine griechische Buchstaben bezeichnet. c) Winkelarten: α heißt spitzer Winkel, wenn 0 < α < 90 β heißt rechter Winkel, wenn β 90 χ heißt stumpfer Winkel, wenn 90 < χ < 0 δ heißt gestreckter Winkel, wenn δ 0 ε heißt überstumpfer Winkel, wenn 0 < ε < 0 ϕ heißt Vollwinkel, wenn ϕ 0 d) Merke: 0 (Winkelminute); 0 (Winkelsekunde) 00

1. Rationale Zahlen. Brüche Brüche haben die Form nz. Beispiele: 3. mit z I

1. Rationale Zahlen. Brüche Brüche haben die Form nz. Beispiele: 3. mit z I . Rationale Zahlen Brüche Brüche haben die Form nz mit z I N 0, n I N. z heißt der Zähler, n der Nenner des Bruches. Unechte Brüche kann man in gemischte Zahlen umwandeln. Bruchzahlen: Zu jeder Bruchzahl

Mehr

Gemischte Zahlen Unechte Brüche können als gemischte Zahlen geschrieben werden und umgekehrt: Bruchzahlen A 6_02

Gemischte Zahlen Unechte Brüche können als gemischte Zahlen geschrieben werden und umgekehrt: Bruchzahlen A 6_02 Brüche A6_01 Brüche haben die Form z n mit z I, n IN. z N 0 heißt der Zähler, n der Nenner des Bruches. Zerlegt man ein Ganzes z. B. in vier gleich große Teile und fasst dann drei dieser Teile zusammen,

Mehr

Ein Bruchteil vom Ganzen lässt sich mit Hilfe von Bruchzahlen darstellen. Bsp.: Ganzes: 20 Kästchen

Ein Bruchteil vom Ganzen lässt sich mit Hilfe von Bruchzahlen darstellen. Bsp.: Ganzes: 20 Kästchen Grundwissen Mathematik G8 6. Klasse Zahlen. Brüche.. Bruchteile und Bruchzahlen Ein Bruchteil vom Ganzen lässt sich mit Hilfe von Bruchzahlen darstellen. Ganzes: 0 Kästchen 6 6 graue Kästchen, also: 0

Mehr

1.Weiterentwicklung der Zahlvorstellung 1.1.Bruchteile und Bruchzahlen

1.Weiterentwicklung der Zahlvorstellung 1.1.Bruchteile und Bruchzahlen Grundwissen Mathematik 6.Klasse Gymnasium SOB.Weiterentwicklung der Zahlvorstellung..Bruchteile und Bruchzahlen 3 des Kreises ist rot, des Kreises ist blau gefärbt. Über dem Bruchstrich steht der Zähler,

Mehr

Grundwissen. 6. Jahrgangsstufe. Mathematik

Grundwissen. 6. Jahrgangsstufe. Mathematik Grundwissen 6. Jahrgangsstufe Mathematik 1 Brüche Grundwissen Mathematik 6. Jahrgangsstufe Seite 1 1.1 Bruchteil 1.2 Erweitern und Kürzen Erweitern: Zähler und Nenner mit der selben Zahl multiplizieren

Mehr

Rechnen mit Brüchen (1) 6

Rechnen mit Brüchen (1) 6 Rechnen mit Brüchen (). Erweitern und Kürzen Der Wert eines Bruches ändert sich nicht, wenn entweder Zähler und Nenner mit derselben natürlichen Zahl multipliziert werden: a a m ( a, b, m ) ERWEITERN,

Mehr

M 6.1. Brüche. Brüche beschreiben Bruchteile. Stückchen, d.h. ein Stückchen entspricht dem Anteil. Carina Mittermayer (2010)

M 6.1. Brüche. Brüche beschreiben Bruchteile. Stückchen, d.h. ein Stückchen entspricht dem Anteil. Carina Mittermayer (2010) M 6.1 Brüche Brüche beschreiben Bruchteile. Die Schokoladentafel hat Stückchen, d.h. ein Stückchen entspricht dem Anteil M 6.2 Erweitern und Kürzen Durch Erweitern und Kürzen ändert sich der Wert des Bruches

Mehr

Grundwissen Mathematik 6. Klasse

Grundwissen Mathematik 6. Klasse Themen Brüche Eigenschaften Besonderheiten - Beispiele Ein Bruchteil ist stets ein Teil eines Ganzen, zum Beispiel eine Hälfte, ein Drittel oder drei Viertel. Bruchteile stellt man mithilfe von Brüchen

Mehr

sfg Brüche Brüche beschreiben Bruchteile bzw. Anteile M 6.1 Die Schokoladentafel hat 14 Stückchen, d.h. ein Stückchen entspricht dem Anteil

sfg Brüche Brüche beschreiben Bruchteile bzw. Anteile M 6.1 Die Schokoladentafel hat 14 Stückchen, d.h. ein Stückchen entspricht dem Anteil M 6. Brüche Brüche beschreiben Bruchteile bzw. Anteile 3 4 von 00kg = 4 von 00kg 3 = (00kg 4) 3 = kg 3 = 7kg (s. auch 6.0) Die Schokoladentafel hat 4 Stückchen, d.h. ein Stückchen entspricht dem Anteil

Mehr

M 6. Inhaltsverzeichnis Grundwissen M Brüche. z eines Ganzen bedeutet: Teile das Ganze in n gleiche Teile. Der Bruchteil n

M 6. Inhaltsverzeichnis Grundwissen M Brüche. z eines Ganzen bedeutet: Teile das Ganze in n gleiche Teile. Der Bruchteil n M M. M. M. M. M. M. M. M.8 M.9 M.0 M. M. M. M. M. M. M. M.8 M.9 M.0 M. M. Inhaltsverzeichnis Grundwissen Brüche Erweitern und Kürzen von Brüchen Prozentschreibweise Rationale Zahlen Dezimalschreibweise

Mehr

Brüche. Prozentschreibweise

Brüche. Prozentschreibweise M 6. Brüche Brüche beschreiben Bruchteile. 4 00 = 00 = (00 4) = = 7 4 Die Schokoladentafel hat 4 Stückchen, d.h. ein Stückchen entspricht dem Anteil 4 M 6. Prozentschreibweise Anteile werden häufig in

Mehr

MATHEMATIK GRUNDWISSEN 6. KLASSE LESSING GYMNASIUM NEU-ULM

MATHEMATIK GRUNDWISSEN 6. KLASSE LESSING GYMNASIUM NEU-ULM MATHEMATIK GRUNDWISSEN 6. KLASSE LESSING GYMNASIUM NEU-ULM Dieses Heft gehört: I. RATIONALE ZAHLEN 1. Brüche, Bruchteile 1.1. Bruchteile von Größen Der Bruchteil z n eines Ganzen bedeutet: Teile das Ganze

Mehr

Brüche. Brüche beschreiben Bruchteile. M = = =25 3=75

Brüche. Brüche beschreiben Bruchteile. M = = =25 3=75 M 6.1 Brüche Brüche beschreiben Bruchteile. 3 4 100=1 100 3=100 4 3=5 3=75 4 Die Schokoladentafel hat 14 Stückchen, d.h. ein Stückchen entspricht dem Anteil 1 14 M 6. Prozentschreibweise Anteile werden

Mehr

fwg Brüche Brüche beschreiben Bruchteile bzw. Anteile M 6.1 (s. auch 6.10) Stückchen, d.h. ein Stückchen entspricht dem Anteil

fwg Brüche Brüche beschreiben Bruchteile bzw. Anteile M 6.1 (s. auch 6.10) Stückchen, d.h. ein Stückchen entspricht dem Anteil M 6.1 Brüche Brüche beschreiben Bruchteile bzw. Anteile (s. auch 6.10) Die Schokoladentafel hat Stückchen, d.h. ein Stückchen entspricht dem Anteil M 6.2 Prozentschreibweise Anteile werden häufig in Prozent

Mehr

Bruchrechnung. Erweitern heißt Zähler und Nenner eines Bruches mit der selben Zahl multiplizieren. a

Bruchrechnung. Erweitern heißt Zähler und Nenner eines Bruches mit der selben Zahl multiplizieren. a Bruchrechnung 1. Formveränderung von Brüchen Erweitern heißt Zähler und Nenner eines Bruches mit der selben Zahl multiplizieren. a b Kürzen heißt Zähler und Nenner eines Bruches durch dieselbe Zahl dividieren.

Mehr

Grundwissen Klasse 6

Grundwissen Klasse 6 Zahlenmengen = {; 2; ; 4; ; 6;... } Die Menge der natürlichen Zahlen. = {... ; 2; ; 0; ; 2; ;...} Die Menge der ganzen Zahlen. 0 Die Menge der positiven rationalen Zahlen mit Null. ddition und Subtraktion

Mehr

M 6.1. Brüche. Benenne die Teile eines Bruches. Veranschauliche den Bruch in einem Kreisdiagramm.

M 6.1. Brüche. Benenne die Teile eines Bruches. Veranschauliche den Bruch in einem Kreisdiagramm. M 6.1 Brüche Benenne die Teile eines Bruches. Veranschauliche den Bruch in einem Kreisdiagramm. Welchem Anteil entspricht ein Stück der Schokoladentafel? M 6.2 Erweitern und Kürzen Wie erweitert man einen

Mehr

M 6.1 M 6.2. Brüche. Prozentschreibweise. Benenne die Teile eines Bruches. Veranschauliche den Bruch in einem Kreisdiagramm.

M 6.1 M 6.2. Brüche. Prozentschreibweise. Benenne die Teile eines Bruches. Veranschauliche den Bruch in einem Kreisdiagramm. M 6.1 Brüche Benenne die Teile eines Bruches. Veranschauliche den Bruch in einem Kreisdiagramm. = Welchem Anteil entspricht ein Stück der Schokoladentafel? M 6.2 Prozentschreibweise Was bedeutet Prozent?

Mehr

Grundwissen. Flächen- und Rauminhalt

Grundwissen. Flächen- und Rauminhalt Grundwissen Kopiere die folgenden Seiten auf dünnen Karton und zerschneide diesen in,,lernkarten. Baue damit eine Lernkartei auf: Wenn im Unterricht ein neuer Lehrstoff behandelt wurde, nimmst du die zugehörigen

Mehr

6.1 Bruchzahlen Drei Standardaufgaben mit Bruchteilen Brüche und die Menge der rationalen Zahlen Erweitern und Kürzen

6.1 Bruchzahlen Drei Standardaufgaben mit Bruchteilen Brüche und die Menge der rationalen Zahlen Erweitern und Kürzen Gymnasium bei St. Anna, Augsburg Seite Grundwissen 6. Klasse 6. Bruchzahlen 6.. Brüche und die Menge der rationalen Zahlen Def.:. Zeichen der Art,,, 6,..., n z nennt man Brüche. Teilt man eine Größe in

Mehr

Rechnen mit Brüchen (1) 6

Rechnen mit Brüchen (1) 6 Rechnen mit Brüchen () 6. Erweitern und Kürzen Der Wert eines Bruches ändert sich nicht, wenn entweder Zähler und Nenner mit derselben natürlichen Zahl multipliziert werden: a a m ( a, b, m ) ERWEITERN,

Mehr

1) Zerlegt man ein Ganzes in mehrere, gleich große Teile, erhält man die Bruchteile. Man verwendet dafür die Bruchschreibweise, z.b.

1) Zerlegt man ein Ganzes in mehrere, gleich große Teile, erhält man die Bruchteile. Man verwendet dafür die Bruchschreibweise, z.b. 1 Zerlegt man ein Ganzes in mehrere, gleich große Teile, erhält man die Bruchteile. Man verwendet dafür die Bruchschreibweise, z.b. 1, 1, 1 usw. Diese Brüche bezeichnet man als Stammbrüche. 2 2 Der Stammbruch

Mehr

Grundwissen Mathematik 6. Dieser Grundwissenskatalog gehört: Name: Klasse:

Grundwissen Mathematik 6. Dieser Grundwissenskatalog gehört: Name: Klasse: Grundwissen Mathematik 6 Dieser Grundwissenskatalog gehört: Name: Klasse: Inhaltsverzeichnis Zahlen 1. Brüche 1.1 Bruchteile 1.2 Brüche als Werte von Quotienten 1.3 Bruchzahlen 1.4 Anordnung der Bruchzahlen

Mehr

Die folgenden Aufgaben stellen als Überblick die Grundlagen für einen erfolgreichen Start im EA-Kurs dar.

Die folgenden Aufgaben stellen als Überblick die Grundlagen für einen erfolgreichen Start im EA-Kurs dar. Die folgenden Aufgaben stellen als Überblick die Grundlagen für einen erfolgreichen Start im EA-Kurs dar. Es gelten der Stoff aus www.mathbu.ch 8+ resp. 9+. A00 Arithmetisches Rechnen / allgemeines Rechnen

Mehr

Grundwissen Mathematik 6/1 1

Grundwissen Mathematik 6/1 1 Grundwissen Mathematik 6/ Formveränderung von Brüchen Erweitern heißt Zähler und Nenner eines Bruches mit der selben Zahl multiplizieren. a ac = b bc Kürzen heißt Zähler und Nenner eines Bruches durch

Mehr

kurs Crash Rechnen und Mathematik Ein Übungsbuch für Ausbildung und Beruf

kurs Crash Rechnen und Mathematik Ein Übungsbuch für Ausbildung und Beruf * Rechnen und Mathematik Crash kurs Ein Übungsbuch für Ausbildung und Beruf Duden Crashkurs Rechnen und Mathematik Ein Übungsbuch für Ausbildung und Beruf Dudenverlag Mannheim Leipzig Wien Zürich Bibliografische

Mehr

Grundwissen. 5. Jahrgangsstufe. Mathematik

Grundwissen. 5. Jahrgangsstufe. Mathematik Grundwissen 5. Jahrgangsstufe Mathematik Grundwissen Mathematik 5. Jahrgangsstufe Seite 1 1 Natürliche Zahlen 1.1 Große Zahlen und Zehnerpotenzen eine Million = 1 000 000 = 10 6 eine Milliarde = 1 000

Mehr

6. KLASSE MATHEMATIK GRUNDWISSEN

6. KLASSE MATHEMATIK GRUNDWISSEN 6. KLASSE MATHEMATIK GRUNDWISSEN Thema BRÜCHE Bruchteil - Man teilt das Ganze durch den Nenner und multipliziert das Ergebnis mit dem Zähler von 24 kg = (24 kg : 4) 2 = 6 kg 2 = 12 kg h = von 1 h = (1

Mehr

2. Gleichwertige Darstellung von Zahlen als Bruchzahlen, Dezimalbrüche oder Prozentzahlen

2. Gleichwertige Darstellung von Zahlen als Bruchzahlen, Dezimalbrüche oder Prozentzahlen Grundwissen Klasse 6 I. Bruchzahlen 1. Sicheres Umgehen mit Bruchzahlen - Brüche als Anteil verstehen - Brüche am Zahlenstrahl darstellen - Brüche erweitern / kürzen können (Mathehelfer1: S.16/17) Aufgabe

Mehr

Oberschule Schwaförden OBS Themenplan Mathematik Klasse 5 Schulform: OBS Stand: Lehrbuch: Sekundo 5, Schroedel

Oberschule Schwaförden OBS Themenplan Mathematik Klasse 5 Schulform: OBS Stand: Lehrbuch: Sekundo 5, Schroedel Oberschule Schwaförden OBS Themenplan Mathematik Klasse 5 Schulform: OBS Stand: 30.12.2014 Lehrbuch: Sekundo 5, Schroedel Inhalt / inhaltsbezogene Kompetenzen UE: Zahlen und Daten Strichlisten und Diagramme

Mehr

1.Weiterentwicklung der Zahlvorstellung 1.1Die natürlichen Zahlen Mengenschreibweise: N = {1,2,3,...} N 0 = {0,1,2,3,...}

1.Weiterentwicklung der Zahlvorstellung 1.1Die natürlichen Zahlen Mengenschreibweise: N = {1,2,3,...} N 0 = {0,1,2,3,...} 1 Grundwissen Mathematik 5.Klasse Gymnasium SOB 1.Weiterentwicklung der Zahlvorstellung 1.1Die natürlichen Zahlen Mengenschreibweise: N = {1,2,3,...} N 0 = {0,1,2,3,...} Darstellung am Zahlenstrahl: Darstellung

Mehr

Grundwissenskatalog der 6. Jahrgangsstufe G8 - Mathematik Friedrich-Koenig-Gymnasium Würzburg

Grundwissenskatalog der 6. Jahrgangsstufe G8 - Mathematik Friedrich-Koenig-Gymnasium Würzburg Grundwissenskatalog der. Jahrgangsstufe G8 - Mathematik Friedrich-Koenig-Gymnasium Würzburg. Brüche und Dezimalzahlen Bruchteile Berechnung von Bruchteilen Bruchzahlen als Quotient Gemischte Zahlen Erweitern

Mehr

Grundwissen 5. Klasse

Grundwissen 5. Klasse Grundwissen 5. Klasse 1/5 1. Zahlenmengen Grundwissen 5. Klasse Natürliche Zahlen ohne Null: N 1;2;3;4;5;... mit der Null: N 0 0;1;2;3;4;... Ganze Zahlen: Z... 3; 2; 1;0;1;2;3;.... 2. Die Rechenarten a)

Mehr

Rationale Zahlen. Umwandlung der verschiedenen Schreibweisen Erweitern auf eine Stufenzahl im Nenner: Relative Häufigkeit

Rationale Zahlen. Umwandlung der verschiedenen Schreibweisen Erweitern auf eine Stufenzahl im Nenner: Relative Häufigkeit Es gibt drei verschiedene Darstellungen: Zähler Nenner Brüche kann man kürzen und erweitern, hne dass sich der Wert ändert. Kürzen: Zähler und Nenner werden durch die selbe Zahl geteilt. Erweitern: Zähler

Mehr

JAHRGANGSSTUFE 5 Prozessbezogene Kompetenzen Inhaltsbezogene Kompetenzen

JAHRGANGSSTUFE 5 Prozessbezogene Kompetenzen Inhaltsbezogene Kompetenzen JAHRGANGSSTUFE 5 Prozessbezogene Kompetenzen Inhaltsbezogene Kompetenzen ELEMENTE DER MATHEMATIK 5 Schroedel Verlag Argumentieren Problemlösen Modellieren Werkzeuge Arithmetik/ Algebra Funktionen Geometrie

Mehr

GRUNDWISSEN MATHEMATIK

GRUNDWISSEN MATHEMATIK GRUNDWISSEN MATHEMATIK 5 Grundwissenskatalog G8-Lehrplanstandard Basierend auf den Grundwissenskatalogen des Rhöngymnasiums Bad Neustadt und des Kurt-Huber-Gymnasiums Gräfelfing J O H A N N E S - N E P

Mehr

1 Grundwissen 6 2 Dezimalbrüche (Dezimalzahlen) 9 3 Brüche 11 4 Rationale Zahlen 16 5 Potenzen und Wurzeln 20 6 Größen und Schätzen 24

1 Grundwissen 6 2 Dezimalbrüche (Dezimalzahlen) 9 3 Brüche 11 4 Rationale Zahlen 16 5 Potenzen und Wurzeln 20 6 Größen und Schätzen 24 Inhalt A Grundrechenarten Grundwissen 6 Dezimalbrüche (Dezimalzahlen) 9 Brüche Rationale Zahlen 6 5 Potenzen und Wurzeln 0 6 Größen und Schätzen B Zuordnungen Proportionale Zuordnungen 8 Umgekehrt proportionale

Mehr

Aufgabe 2: Welche Brüche sind auf dem Zahlenstrahl durch die Pfeile gekennzeichnet? Schreibe die Brüche in die Kästen.

Aufgabe 2: Welche Brüche sind auf dem Zahlenstrahl durch die Pfeile gekennzeichnet? Schreibe die Brüche in die Kästen. Grundwissen Klasse 6 - Lösungen I. Bruchzahlen. Sicheres Umgehen mit Bruchzahlen Brüche als Anteil verstehen Brüche am Zahlenstrahl darstellen Brüche erweitern / kürzen können (Mathehelfer: S.6/7) Aufgabe

Mehr

Grundwissen Seite 1 von 17 Klasse6

Grundwissen Seite 1 von 17 Klasse6 Grundwissen Seite 1 von 17 Klasse6 IN = {1; 2; 3; 4; 5; 6; } Menge der natürlichen Zahlen 5 ist eine natürliche Zahl kurz: 5 IN 5 ist ein Element von IN Natürliche Zahlen -2 ist keine natürliche Zahl kurz:

Mehr

Bruchteile. Anteile gibt man in Bruchschreibweise an. Anteil : 1 8. Bruchteil : 1 cm 2. Bruchteil : 0,5 cm 2. Anteil : 3 8. Bruchteil : 3 cm 2

Bruchteile. Anteile gibt man in Bruchschreibweise an. Anteil : 1 8. Bruchteil : 1 cm 2. Bruchteil : 0,5 cm 2. Anteil : 3 8. Bruchteil : 3 cm 2 Bruchteile Anteile gibt man in Bruchschreibweise an. Anteil : 8 Bruchteil : cm Anteil : 8 Bruchteil : 0, cm Anteil : 8 Bruchteil : cm Anteil : 8 Bruchteil :, cm 8 nennt man einen Bruch. 8 heißt Nenner

Mehr

Grundwissen JS 6: Allgemeine Bruchrechnung

Grundwissen JS 6: Allgemeine Bruchrechnung GYMNASIUM MIT SCHÜLERHEIM PEGNITZ math-technolog u sprachl Gymnasium WILHELM-VON-HUMBOLDT-STRASSE 7 9257 PEGNITZ FERNRUF 0924/48 FAX 0924/2564 Grundwissen JS 6: Allgemeine Bruchrechnung Was verstehst du

Mehr

Einführung in die Bruchrechnung

Einführung in die Bruchrechnung - Seite 1 Einführung in die Bruchrechnung 1. Der Bruchbegriff Die Tafel unter drei Kindern aufteilen! Die Schokoladentafel wird zer"brochen" Jedes Kind erhält einen "Bruchteil". Wenn die Tafel aus 15 Stücken

Mehr

I = 1; V = 5; X =10; L = 50; C = 100; D = 500; M = 1000; Bsp.: MCLVIII = 1158

I = 1; V = 5; X =10; L = 50; C = 100; D = 500; M = 1000; Bsp.: MCLVIII = 1158 Grundwissen Mathematik G8 5. Klasse 1 Zahlen 1.1 Zahlenmengen IN = {1; 2; 3; } Menge der natürlichen Zahlen IN o = {0; 1; 2; 3; } Menge der natürlichen Zahlen mit Null Z = { ; -3; -2; -1; 0; 1; 2; 3; }

Mehr

Gib die richtigen Fachbegriffe an. Welche Information gibt der Nenner eines Bruches an?

Gib die richtigen Fachbegriffe an. Welche Information gibt der Nenner eines Bruches an? 1 6/1 Gib die richtigen Fachbegriffe an. 2 6/1 Welche Information gibt der Nenner eines Bruches an? 3 6/1 Welcher Bruchteil ist markiert? 4 6/1 Welcher Bruchteil ist markiert? 5 6/1 Welcher Bruchteil ist

Mehr

0. Wiederholung 0.1 Rechnen in der Menge der positiven rationalen Zahlen lq + 0

0. Wiederholung 0.1 Rechnen in der Menge der positiven rationalen Zahlen lq + 0 0. Wiederholung 0.1 Rechnen in der Menge der positiven rationalen Zahlen lq + 0 0.1.1 Formveränderungen von Brüchen Erweitern heißt Zähler und Nenner eines Bruches mit derselben Zahl multiplizieren. a

Mehr

Natürliche Zahlen. Natürliche Zahlen addieren und subtrahieren. Addiere die Ziffern stellengerecht untereinander.

Natürliche Zahlen. Natürliche Zahlen addieren und subtrahieren. Addiere die Ziffern stellengerecht untereinander. Grundwissen Natürliche Zahlen 1 Zeichne eine Zahlenhalbgerade und markiere. 8; 4; ; 11; 2; 6; 9 ; 1; 0; 4; 10; 60 2 Welches ist die größte (kleinste) natürliche Zahl, die man aus den Ziffern 8, 1,, und

Mehr

Berechne schriftlich: a) b) Bilde selbst ähnliche Beispiele.

Berechne schriftlich: a) b) Bilde selbst ähnliche Beispiele. Basiswissen Mathematik Klasse 5 / 6 Seite 1 von 12 1 Berechne schriftlich: a) 538 + 28 b) 23 439 Bilde selbst ähnliche Beispiele. 2 Berechne schriftlich: a) 36 23 b) 989: 43 Bilde selbst ähnliche Beispiele.

Mehr

R. Brinkmann Seite

R. Brinkmann  Seite R. Brinkmann http//brinkmann-du.de Seite 1 09.02.2013 SEK I Lösungen zu rechnen mit Brüchen I Ergebnisse und ausführliche Lösungen zum nblatt SEK I Bruchrechnung I Einfache Bruchaufgaben zur Vorbereitung

Mehr

Grundwissen Jahrgangsstufe 6

Grundwissen Jahrgangsstufe 6 GM. Brüche Grundwissen Jahrgangsstufe Brüche: Zerlegt man ein Ganzes z.b. in gleich große Teile und fasst dann dieser Teile zusammen, so erhält man des Ganzen. Im Bruch ist der Nenner und der Zähler. Stammbrüche

Mehr

Trainingseinheiten. zum Üben und Vertiefen. Teil 1 Grundlagen Teil 2 Anwendungen. Datei Nr. 10551. Friedrich Buckel. Stand 28.

Trainingseinheiten. zum Üben und Vertiefen. Teil 1 Grundlagen Teil 2 Anwendungen. Datei Nr. 10551. Friedrich Buckel. Stand 28. Demoseiten für Mathematik für Klasse 6/7 Prozentrechnen Trainingseinheiten zum Üben und Vertiefen Teil Grundlagen Teil 2 Anwendungen Datei Nr. 055 Stand 28. März 2008 INTERNETBIBLIOTHEK FÜR SCHULMATHEMATIK

Mehr

Grundwissen. Mathematik 6. Klasse 3,78 4,1. Autor: Franz Schlagbauer

Grundwissen. Mathematik 6. Klasse 3,78 4,1. Autor: Franz Schlagbauer Grundwissen Mathematik 6. Klasse,78, 7 Autor: Franz Schlagbauer Grundwissen Mathematik 6. Klasse Bruchteile und Bruchzahlen. Bruchteile und ihre Veranschaulichung. Kürzen und Erweitern von Brüchen. Prozentschreibweise

Mehr

Stoffverteilungsplan Mathematik 5 und 6 auf Grundlage der Rahmenpläne Klettbücher und

Stoffverteilungsplan Mathematik 5 und 6 auf Grundlage der Rahmenpläne Klettbücher und Zeitraum Rahmenplan Klasse 5 und 6 Schnittpunkt 5 Klassenarbeit Darstellen und Ordnen natürlicher Zahlen, große Zahlen Runden, Schätzen und Überschlagen Kapitel 1 Natürliche Zahlen Unsere neue Klasse 1

Mehr

Größere Zahl minus kleinerer Zahl anschreiben. Komma unter Komma schreiben. 33,8 : 1,3 = 33,8 : 13 = 26

Größere Zahl minus kleinerer Zahl anschreiben. Komma unter Komma schreiben. 33,8 : 1,3 = 33,8 : 13 = 26 E1 E E3 E4 E5 E6 E7 Lösungen 1 Mein Wissen aus der 1. Klasse z. B., 1 F angemalt im Plan Da sie in unterschiedlichen Abteilungen des Flugzeugs saßen (Business-Class + Economy-Class), konnten sie einander

Mehr

Rechnen mit Bruchzahlen

Rechnen mit Bruchzahlen Addition und Subtraktion von Brüchen Aufgabe: Rechnen mit Bruchzahlen In einem Gefäß befinden sich Liter Orangensaft. a.) Jemand trinkt b.) Jemand gießt c.) Jemand gießt Liter davon. Wie viel Saft befindet

Mehr

GRUNDWISSEN MATHEMATIK KLASSENSTUFEN 5 UND 6 1. ZAHLEN. 1.1 Zahlenmengen. 1.2 Teiler und Vielfache. 1.3 Teilbarkeitsregeln

GRUNDWISSEN MATHEMATIK KLASSENSTUFEN 5 UND 6 1. ZAHLEN. 1.1 Zahlenmengen. 1.2 Teiler und Vielfache. 1.3 Teilbarkeitsregeln 1.1 Zahlenmengen 1. ZAHLEN { } Menge der natürlichen Zahlen { } Menge der natürlichen Zahlen mit Null { } Menge der ganzen Zahlen 1.2 Teiler und Vielfache Teiler: 4 32, also 4 ist Teiler von 32, d. h.

Mehr

Basiswissen 5. Klasse

Basiswissen 5. Klasse Basiswissen 5. Klasse 1. Daten Zur Darstellung von Daten werden oft Strichlisten, Figurendiagramme oder Säulen- und Strichdiagramme verwendet. Strichliste: Alter Strichliste Anzahl 5-10 Jahre 3 10-15 Jahre

Mehr

Inhaltsbereich. Größen und Messen benachbarte Einheiten umrechnen

Inhaltsbereich. Größen und Messen benachbarte Einheiten umrechnen Schulcurriculum Mathematik Hauptschule Klassse 8 Hauptschule Lehrwerk: Maßstab Band 8 Verlag: Schrödel ISBN: 3-507-84304-8 Inhalte Medien e gemäß Kerncurriculum Thema 1 LB S. 8-21 Zahlen und Größen Addition

Mehr

GW Mathematik 5. Klasse

GW Mathematik 5. Klasse Begriffe zur Gliederung von Termen Term Rechenart a heißt b heißt a + b (Summe) Addition 1. Summand 2. Summand a b (Differenz) Subtraktion Minuend Subtrahend a b ( Produkt) Multiplikation 1. Faktor 2.

Mehr

Inhaltsverzeichnis / Modul 1

Inhaltsverzeichnis / Modul 1 Inhaltsverzeichnis / Modul 1 i Der Taschenrechner - Einführung 1 Der Taschenrechner - 2 Besonderheiten 2 Der Taschenrechner - 3 Übungen 3 Stellenwerte- 1 Addition 4 Stellenwerte - 2 Subtraktion 5 10, 100,

Mehr

Anhang 6. Eingangstest II. 1. Berechnen Sie den Durchschnitt von 6 + 3,9 + 12, 0 = 2. Berechnen Sie: : = 3. Berechnen Sie: = 3 und 6

Anhang 6. Eingangstest II. 1. Berechnen Sie den Durchschnitt von 6 + 3,9 + 12, 0 = 2. Berechnen Sie: : = 3. Berechnen Sie: = 3 und 6 Anhang 6 Eingangstest II 1. Berechnen Sie den Durchschnitt von 6 + 3,9 + 12, 0 = 8 4 2. Berechnen Sie: : = 3 1 2x x 3. Berechnen Sie: = 9 9 4. Wie groß ist die Summe von 4 3 und 6?. Berechnen Sie: 3 (

Mehr

Grundwissen Mathematik

Grundwissen Mathematik Grundwissen Mathematik Algebra Terme und Gleichungen Jeder Abschnitt weist einen und einen teil auf. Der teil sollte gleichzeitig mit dem bearbeitet werden. Während die bearbeitet werden, sollte man den

Mehr

ownload Mit Brüchen rechnen 9 Stationen mit Lösungen für die Klasse 6 Marco Bettner, Erik Dinges Downloadauszug aus dem Originaltitel:

ownload Mit Brüchen rechnen 9 Stationen mit Lösungen für die Klasse 6 Marco Bettner, Erik Dinges Downloadauszug aus dem Originaltitel: ownload Marco Bettner, Erik Dinges Mit Brüchen rechnen 9 Stationen mit Lösungen für die Klasse 6 Downloadauszug aus dem Originaltitel: 9 Stationen mit Lösungen für die Klasse 6 Dieser Download ist ein

Mehr

Repetition Mathematik 7. Klasse

Repetition Mathematik 7. Klasse Repetition Mathematik 7. Klasse 1. Ein neugeborenes Kätzchen wiegt bei der Geburt durchschnittlich 100g. Es nimmt in den ersten 8 Wochen pro Woche 60g zu. Wie viel beträgt nachher die Gewichtszunahme pro

Mehr

r)- +"1. ([+ ax1 8t1 1. Klammere alle gemeinsamen Faktoren aus. 1Bx2y3-2axtf 2. Multipliziere aus:

r)- +1. ([+ ax1 8t1 1. Klammere alle gemeinsamen Faktoren aus. 1Bx2y3-2axtf 2. Multipliziere aus: Seite 1 von 22 8t1 1. Klammere alle gemeinsamen Faktoren aus. 1Bx2y3-2axtf Multipliziere aus: r)- +"1. ([+ ax1 Venvandle mit Hilfe einer binomischen Formel in ein Produkt. 9a2-30ab'+ ba In einem Dreieck

Mehr

Inhaltsbezogene Kompetenzbereiche: Kernkompetenzen / Erwartungen (Schwerpunkte) Längen, Flächeninhalt und Volumina unterscheiden

Inhaltsbezogene Kompetenzbereiche: Kernkompetenzen / Erwartungen (Schwerpunkte) Längen, Flächeninhalt und Volumina unterscheiden 1 (ca. 4 n, 16 h) Stellen zu Sachsituationen Fragen, suchen nach nutzen Lösungsstrategien (Schätzen, Probieren) und hinterfragen diese Größen und Messen: Längen, Flächeninhalt und Volumina unterscheiden

Mehr

Teste dein Grundwissen

Teste dein Grundwissen Teste dein Grundwissen Was bedeutet addieren Plusrechnen Minusrechnen Malnehmen Teilen Was bedeutet Plusrechnen Minusrechnen Malnehmen Teilen subtrahieren Was bedeutet Plusrechnen Minusrechnen Malnehmen

Mehr

Bruchrechnung. Erweitern heißt Zähler und Nenner eines Bruches mit der selben Zahl multiplizieren. a

Bruchrechnung. Erweitern heißt Zähler und Nenner eines Bruches mit der selben Zahl multiplizieren. a Grundwissen 6 / Formveränderung von Brüchen Bruchrechnung Erweitern heißt Zähler und Nenner eines Bruches mit der selben Zahl multiplizieren. a b Kürzen heißt Zähler und Nenner eines Bruches durch dieselbe

Mehr

Langenscheidt Training plus, Mathe 6. Klasse

Langenscheidt Training plus, Mathe 6. Klasse Langenscheidt Training plus - Mathe Langenscheidt Training plus, Mathe 6. Klasse Bearbeitet von Uwe Fricke 1. Auflage 13. Taschenbuch. ca. 128 S. Paperback ISBN 978 3 68 60073 9 Format (B x L): 17,1 x

Mehr

Grundwissen JS 5 Algebra

Grundwissen JS 5 Algebra GYMNASIUM MIT SCHÜLERHEIM PEGNITZ math.-technolog. u. sprachl. Gymnasium Grundwissen JS 5 Algebra WILHELM-VON-HUMBOLDT-STRASSE 7 91257 PEGNITZ FERNRUF 09241/48333 FAX 09241/2564 Rechnen in N 29. Juli 2009

Mehr

BLICKPUNKT MATHEMATIK 2

BLICKPUNKT MATHEMATIK 2 BLICKPUNKT MATHEMATIK 2 (Ausgabe Rovina / Schmid) Stand: Jänner 2011 BLICKPUNKT Mathematik 2 Seite 1 von 24 Z Zurück aus den Ferien Blatt Buch Addieren und Subtrahieren natürlicher Zahlen 1 A 8 Addieren

Mehr

Test 4 zu Kapitel 21 bis 26 (Winkel und Abbildungen) 74 Test 5 zu Kapitel 27 bis 31 (Ganze Zahlen) 76. (Anwendungen von Brüchen und Dezimalbrüchen)

Test 4 zu Kapitel 21 bis 26 (Winkel und Abbildungen) 74 Test 5 zu Kapitel 27 bis 31 (Ganze Zahlen) 76. (Anwendungen von Brüchen und Dezimalbrüchen) 4 Inhalt 1 Teiler und Teilbarkeitsregeln 6 2 Primzahlen und Primfaktorzerlegung 8 3 ggt und kgv 10 4 Bruchzahlen und gemischte Zahlen 12 5 Erweitern und Kürzen 14 6 Addition und Subtraktion von Bruchzahlen

Mehr

Mathematik Bäckerei/Konditorei

Mathematik Bäckerei/Konditorei Bildungsverlag EINS, Gehler-Kieser, Mathematik Bäckerei/Konditorei,. AK MS Michael Buchheister Mathematik Bäckerei/Konditorei Fachverkäufer/Fachverkäuferinnen im Nahrungsmittelhandwerk 0. Auflage Bestellnummer

Mehr

Unterrichtsmaterialien in digitaler und in gedruckter Form. Auszug aus: Fit in Test und Klassenarbeit - Mathe 5./6.

Unterrichtsmaterialien in digitaler und in gedruckter Form. Auszug aus: Fit in Test und Klassenarbeit - Mathe 5./6. Unterrichtsmaterialien in digitaler und in gedruckter Form Auszug aus: Fit in Test und Klassenarbeit - Mathe 5./6. Klasse Gymnasium Das komplette Material finden Sie hier: School-Scout.de Christine Kestler

Mehr

Fragen und Aufgaben zum Grundwissen Mathematik JGST. 7

Fragen und Aufgaben zum Grundwissen Mathematik JGST. 7 Fragen und Aufgaben zum Grundwissen Mathematik JGST. 7 LÖSUNGEN. Gib die Primfaktorzerlegung der Zahlen 0 und an. 0 0 7 7 7. Erkläre, wie man zwei ganze Zahlen addiert bzw. multipliziert. Bei gleichem

Mehr

Kompetenztest. Wiederholung aus der 1. Klasse. Kompetenztest. Testen und Fördern. Wiederholung aus der 1. Klasse. Name: Klasse: Datum:

Kompetenztest. Wiederholung aus der 1. Klasse. Kompetenztest. Testen und Fördern. Wiederholung aus der 1. Klasse. Name: Klasse: Datum: Name: Klasse: Datum: 1) Grundrechenoperationen. Berechne und wähle das richtige Ergebnis aus. a) 2,6 + 7,9 = 105 1,05 10,5 b) 20,1 8,7 = 1,14 11,4 11,04 c) 1,38 5 = 6,9 6,09 69 d) 14,8 : 5 = 29,6 0,296

Mehr

Formelsammlung Mathematik 7 I) Zuordnungen... 2 7.1) Proportionale Zuordnungen... 2 7.2) Eigenschaften von proportionalen Zuordnungen... 2 7.

Formelsammlung Mathematik 7 I) Zuordnungen... 2 7.1) Proportionale Zuordnungen... 2 7.2) Eigenschaften von proportionalen Zuordnungen... 2 7. I) Zuordnungen... 2 7.1) Proportionale Zuordnungen... 2 7.2) Eigenschaften von proportionalen Zuordnungen... 2 7.3) Rechnen mit proportionalen Zuordnungen... 2 7.4) Die antiproportionale Zuordnung... 2

Mehr

Basiswissen Klasse 5, Algebra (G8)

Basiswissen Klasse 5, Algebra (G8) Basiswissen Klasse, Algebra (G8) Natürliche Zahlen Sicherer Umgang mit den vier Grundrechenarten MH 1, S. 4- Große Zahlen schreiben und lesen Rechenregeln, wie Punkt vor Strich, Klammern Rechengesetze:

Mehr

Leistungsbeurteilung mit der 4.0 Skala Mathematik 6. Schulstufe

Leistungsbeurteilung mit der 4.0 Skala Mathematik 6. Schulstufe Leistungsbeurteilung mit der 4.0 Skala Mathematik 6. Schulstufe Nach Jahresplanung: 1.) Mein Wissen aus der 1. Klasse (Zahlen und Maße, Variable und funktionale Abhängigkeiten, Geometrische Figuren und

Mehr

Fachcurriculum Mathematik (G8) MPG Klassen 5 und 6. Bildungsplan Bildungsstandards für Mathematik. Kern- und Schulcurriculum Klassen 5 und 6

Fachcurriculum Mathematik (G8) MPG Klassen 5 und 6. Bildungsplan Bildungsstandards für Mathematik. Kern- und Schulcurriculum Klassen 5 und 6 Bildungsplan 2004 Bildungsstandards für Mathematik Kern- und Klassen 5 und 6 Max-Planck-Gymnasium Böblingen 1 UE 1: Rechnen mit großen Zahlen UE 2: Messen und Auswerten natürliche Zahlen einfache Zehnerpotenzen

Mehr

Stoffverteilungsplan Mathematik 6 auf der Grundlage der Kerncurricula 2005 Schnittpunkt 6 Klettbuch KGS Schneverdingen

Stoffverteilungsplan Mathematik 6 auf der Grundlage der Kerncurricula 2005 Schnittpunkt 6 Klettbuch KGS Schneverdingen Kompetenzen Inhalte Schnittpunkt 6 nehmen Probleme als Herausforderung an nutzen das Buch zur Informationsbeschaffung übertragen Lösungsbeispiele auf neue Aufgaben stellen das Problem anders dar ebener

Mehr

Lehrplan. Wirtschaftsmathematik. Berufsgrundbildungsjahr, Berufsfeld Wirtschaft und Verwaltung. Ministerium für Bildung, Kultur und Wissenschaft

Lehrplan. Wirtschaftsmathematik. Berufsgrundbildungsjahr, Berufsfeld Wirtschaft und Verwaltung. Ministerium für Bildung, Kultur und Wissenschaft Lehrplan Wirtschaftsmathematik Berufsgrundbildungsjahr, Berufsfeld Wirtschaft und Verwaltung Ministerium für Bildung, Kultur und Wissenschaft Hohenzollerstraße 60, 66117 Saarbrücken Postfach 10 24 52,

Mehr

Didaktik der Bruchrechnung

Didaktik der Bruchrechnung Naturwissenschaft Kristin Jankowsky Didaktik der Bruchrechnung Referat (Handout) Mathematisch Naturwissenschaftliche Fakultät II Didaktik der Mathematik Seminar: Prüfungskolloquium Didaktik der Mathematik

Mehr

Treffpunkte für die kantonale Vergleichsarbeit der 6. Klassen. Mathematik

Treffpunkte für die kantonale Vergleichsarbeit der 6. Klassen. Mathematik Treffpunkte für die kantonale Vergleichsarbeit der 6. Klassen Mathematik Solothurn, 21. Mai 2012 1 Arithmetik 1.1 Natürliche Zahlen 1.1.1 Die Sch können natürliche Zahlen lesen und schreiben. S. 6/7 S.

Mehr

Anhang 5. Eingangstest I. 2. Berechnen Sie den Durchschnitt von 6 + 3,9 + 12, 0 = 3 und Wie groß ist die Summe von Berechnen Sie: : =

Anhang 5. Eingangstest I. 2. Berechnen Sie den Durchschnitt von 6 + 3,9 + 12, 0 = 3 und Wie groß ist die Summe von Berechnen Sie: : = Anhang 5 Eingangstest I 1. Berechnen Sie: 63,568 1000 = 2. Berechnen Sie den Durchschnitt von 6 + 3,9 + 12, 0 = 3. Wie groß ist die Summe von 4 3 und 6 5? 8 4 4. Berechnen Sie: : = 35 15 5. Berechnen Sie:

Mehr

b) Notieren Sie hier die Brüche aus der Tabelle, die sich noch kürzen lassen und kürzen Sie diese soweit als möglich: 1 2

b) Notieren Sie hier die Brüche aus der Tabelle, die sich noch kürzen lassen und kürzen Sie diese soweit als möglich: 1 2 Addieren und Subtrahieren gleichnamiger Brüche Addition gleichnamiger Brüche: Nenner übernehmen; Zähler addieren: Subtraktion gleichnamiger Brüche: Nenner übernehmen; Zähler subtrahieren. Füllen Sie die

Mehr

A Bruchzahlen B Rechnen mit Dezimalzahlen C Winkel und Abbildungen D Flächen- und Rauminhalte

A Bruchzahlen B Rechnen mit Dezimalzahlen C Winkel und Abbildungen D Flächen- und Rauminhalte Inhalt A B C D Bruchzahlen Bruchteile 6 Bruchteile von Größen Kürzen und Erweitern von Brüchen 0 Verhältnisse und Maßstäbe Bruchzahlen 6 Brüche und Dezimalbrüche Prozentzahlen Addition und Subtraktion

Mehr

Bruchzahlen Herbert Paukert Die Grundlagen [ 02 ] 2. Kürzen und Erweitern [ 14 ] 3. Addieren und Subtrahieren [ 24 ]

Bruchzahlen Herbert Paukert Die Grundlagen [ 02 ] 2. Kürzen und Erweitern [ 14 ] 3. Addieren und Subtrahieren [ 24 ] Bruchzahlen Herbert Paukert 1 DIE BRUCHZAHLEN Version 2.0 Herbert Paukert 1. Die Grundlagen [ 02 ] 2. Kürzen und Erweitern [ 14 ] 3. Addieren und Subtrahieren [ 24 ] 4. Multiplizieren und Dividieren [

Mehr

Informationsblatt für den Einstieg ins 1. Mathematikjahr AHS

Informationsblatt für den Einstieg ins 1. Mathematikjahr AHS Informationsblatt für den Einstieg ins 1. Mathematikjahr AHS Stoff für den Einstufungstest Mathematik in das 1. Jahr AHS: Mit und ohne Taschenrechner incl. Vorrangregeln ( Punkt vor Strich, Klammern, ):

Mehr

Teilbarkeitsregeln. 6.1 Grundwissen Mathematik Algebra Klasse 6. Teilbarkeit durch 2: Eine Zahl ist durch 2 teilbar, wenn die Endziffer gerade ist.

Teilbarkeitsregeln. 6.1 Grundwissen Mathematik Algebra Klasse 6. Teilbarkeit durch 2: Eine Zahl ist durch 2 teilbar, wenn die Endziffer gerade ist. 6.1 Grundwissen Mthemtik Algebr Klsse 6 Teilbrkeitsregeln Definition und Regeln Teilbrkeit durch 2: Eine Zhl ist durch 2 teilbr, wenn die Endziffer gerde ist. Teilbrkeit durch 3: Eine Zhl ist durch 3 teilbr,

Mehr

Prozente. Prozente. 6 Rabatt und Mehrwertsteuer6. 8 Zinsen für mehr als 1 Jahr z% j Jahre Algebra. 3 Berechnung des Prozentsatzes 4 Berechnung des

Prozente. Prozente. 6 Rabatt und Mehrwertsteuer6. 8 Zinsen für mehr als 1 Jahr z% j Jahre Algebra. 3 Berechnung des Prozentsatzes 4 Berechnung des Anteile als Darstellung von n Berechnung des Prozentsatzes Berechnung des Rabatt und Mehrwertsteuer Prozentwertes Berechnung des Grundwertes 8 Zinsen mehr als Jahr K K (+ Das magisches Dreieck decke die

Mehr

Repetition Mathematik 6. Klasse (Zahlenbuch 6)

Repetition Mathematik 6. Klasse (Zahlenbuch 6) Repetition Mathematik 6. Klasse (Zahlenbuch 6) Grundoperationen / Runden / Primzahlen / ggt / kgv / Klammern 1. Berechne schriftlich: 2'097 + 18 6 16'009 786 481 274 69 d.) 40'092 : 78 2. Die Summe von

Mehr

Bruchrechnen. 2.1 Teilbarkeit von Zahlen. Die Primfaktorzerlegung ist die Zerlegung einer natürlichen Zahl in ein Produkt von Primzahlen.

Bruchrechnen. 2.1 Teilbarkeit von Zahlen. Die Primfaktorzerlegung ist die Zerlegung einer natürlichen Zahl in ein Produkt von Primzahlen. ruchrechnen 2 2.1 Teilbarkeit von Zahlen Die Primfaktorzerlegung ist die Zerlegung einer natürlichen Zahl in ein Produkt von Primzahlen. Das kleinste gemeinsame Vielfache (kgv) mehrerer Zahlen ist die

Mehr

Mathematik üben mit Erfolg

Mathematik üben mit Erfolg Steffen Beuthan /Günter Nordmeier Mathematik üben mit Erfolg 7. Schuljahr Realschule MANZ VERLAG Das Werk und seine Teile sind urheberrechtlich geschützt. Jede Nutzung in anderen als den gesetzlich zugelassenen

Mehr

Mathematik: Mag. Schmid Wolfgang Arbeitsblatt 5 1. Semester ARBEITSBLATT 5 RECHNEN MIT BRÜCHEN. 1. Arten von Brüchen und Definition

Mathematik: Mag. Schmid Wolfgang Arbeitsblatt 5 1. Semester ARBEITSBLATT 5 RECHNEN MIT BRÜCHEN. 1. Arten von Brüchen und Definition ARBEITSBLATT 5 RECHNEN MIT BRÜCHEN 1. Arten von Brüchen und Definition Beispiel: 3 5 Zähler Bruchstrich Nenner Definition: Jeder Bruch hat folgendes Aussehen: Zähler. Der Nenner gibt an, Nenner in wie

Mehr

Fach Mathematik. Themen und Inhalte der Jahrgangsstufe 5 am Gymnasium Laurentianum

Fach Mathematik. Themen und Inhalte der Jahrgangsstufe 5 am Gymnasium Laurentianum Fach Mathematik und der Jahrgangsstufe 5 am Gymnasium Natürliche Zahlen und Größen Rechnen mit natürlichen Zahlen Körper und Figuren Flächen- und Rauminhalte Anteile - Brüche Stellentafel; Zweiersystem;

Mehr

Individuelle Förderung im Fach Mathematik (Kompetenzraster)

Individuelle Förderung im Fach Mathematik (Kompetenzraster) Bruno Grossen Schulabbrüche verhindern Haltekraft von Schulen 6.15 Werkzeug 15 Werkzeug 15 Individuelle Förderung im Fach Mathematik (Kompetenzraster) Beschreibung und Begründung In diesem Werkzeug dokumentiere

Mehr

Lösungen Kapitel 1: Teilbarkeit und Rechnen mit Brüchen

Lösungen Kapitel 1: Teilbarkeit und Rechnen mit Brüchen Lösungen Kapitel 1: Teilbarkeit und Rechnen mit Brüchen Arbeitsblatt 01: Teiler und Teilbarkeitsregeln a) durch 2: 1247, 33654, 149, 512, 6418 b) durch 3: 538, 1236, 8142, 972, 44780 c) durch 4: 4711,

Mehr

Rationale Zahlen Kurzfragen. 26. Juni 2012

Rationale Zahlen Kurzfragen. 26. Juni 2012 Rationale Zahlen Kurzfragen 26. Juni 2012 Rationale Zahlen Kurzfrage 1 Wann ist eine Operation (+,,,... ) in einer Menge M abgeschlossen? Rationale Zahlen Kurzfrage 1 Wann ist eine Operation (+,,,... )

Mehr

sfg Natürliche Zahlen und Zahlenstrahl Die Zahlen 1, 2, 3, 4, nennt man natürliche Zahlen: N = {1; 2; 3; 4; }

sfg Natürliche Zahlen und Zahlenstrahl Die Zahlen 1, 2, 3, 4, nennt man natürliche Zahlen: N = {1; 2; 3; 4; } M 5.1 Natürliche Zahlen und Zahlenstrahl Die Zahlen 1, 2, 3, 4, nennt man natürliche Zahlen: N = {1; 2; 3; 4; } Nimmt man auch die 0 hinzu, schreibt man: N 0 = {0; 1; 2; 3; 4; } Zahlenstrahl 0 1 2 3 4

Mehr

Wenn wir in diesen Term für x = 2 einsetzen, entsteht eine Division durch Null!

Wenn wir in diesen Term für x = 2 einsetzen, entsteht eine Division durch Null! 4.1. Bruchterm (.6.) Seite 9 Bruchterme mit Variablen im Nenner sind nicht immer definiert, da unter Umständen der Nenner 0 sein kann. 4 x Wenn wir in diesen Term für x = einsetzen, entsteht eine Division

Mehr