CUDA. Axel Jena, Jürgen Pröll. Multi-Core Architectures and Programming. Friedrich-Alexander-Universität Erlangen-Nürnberg Axel Jena, Jürgen Pröll 1

Save this PDF as:
 WORD  PNG  TXT  JPG

Größe: px
Ab Seite anzeigen:

Download "CUDA. Axel Jena, Jürgen Pröll. Multi-Core Architectures and Programming. Friedrich-Alexander-Universität Erlangen-Nürnberg Axel Jena, Jürgen Pröll 1"

Transkript

1 CUDA Axel Jena, Jürgen Pröll Multi-Core Architectures and Programming Axel Jena, Jürgen Pröll 1

2 Warum Tesla? Traditionelle Graphikkarten Getrennte Prozessoren für Vertex- / Pixelberechnungen - Nachteil: es werden mehr Pixel- als Vertexberechnungen benötigt Keine gute Lastbalance Unterstützen Pipelining Tesla-Architektur Graphikkarten Allgemeine Prozessoren (frei programmierbar mit CUDA) SIMT (Single Instruction Multiple Thread)-Architektur Hohe Skalierbarkeit Axel Jena, Jürgen Pröll 2

3 Geschichte und Leistungsdaten Erste Tesla-Graphikkarte im November 2006 (GeForce 8800) mit 128 Streaming-Prozessoren Nächste Generation der Tesla-Architektur: Fermi Leistungsdatenvergleich: Intel Core i7 980 Nvidia Tesla C2050 Flops 107,55 G 515 G Taktrate 3,3 GHz 600 MHz Leistung 130 W 238 W Kerne Axel Jena, Jürgen Pröll 3

4 Befehlsabarbeitung Skalierbar -128 Streaming Prozessoren - Organisiert in 16 Streaming Multiprozessoren - Aufgeteilt in 8 unabhängige Textur/Prozessor Clusters Axel Jena, Jürgen Pröll 4

5 Texture/Processor Cluster Die TPC rechnen unabhängig voneinander. Der Geometry Controller bildet die Berechnungen auf die SMs (Streaming Multiprocessors) ab. SMC Verbindung der SMs mit der Textur-Unit zur Textur Erzeugung und Filterung (z.b. Anisotropie Filterung) Steuert Lastbalance Axel Jena, Jürgen Pröll 5

6 Streaming Multiprocessor Besteht aus: 8 Streaming Prozessoren (SP) 2 Special Function Units (SFU) Multithreaded Instruction Fetch and Issue Unit (MT issue) Instruction Cache (I cache) Read only Cache 16KB read/write Shared Memory (evtl. DP-Prozessoren (Double Precision) ) Die SMs unterstützen massives Multithreading (bis zu 768 Threads pro SM, ohne scheduling Overhead, SIMT- Architektur) Das Shared Memory hält die Daten für die parallelen Berechnungen. Die SFUs werden für komplexe Berechnungen verwendet Die SPs werden für die fundamentalen Berechnungen verwendet (Add, Mult ) Axel Jena, Jürgen Pröll 6

7 Streaming Multiprocessor: SIMT Die Streaming Multiprozessoren bilden Thread-Gruppen von 32 Threads pro Gruppe (= 1 Warp) Jeder SM kann 24 Warps behandeln. Die SM arbeiten mit der SIMT-Architektur (Single Instruktion Multiple Thread) ähnlich SIMD. Jeder Befehl wird mit Hilfe von Pipelining berarbeitet. Jede konditionelle Abzweigung (Pfade) im Code (IF s) werden getrennt parallel ausgewertet. Sobald klar ist, welcher Pfad die Richtige ist werden die anderen verworfen. Die SMs arbeiten ansonsten mit einem Register basierendem Befehlssatz. (floating-point, integer, bit, flow control, memory load/store, texture operations) Axel Jena, Jürgen Pröll 7

8 Raster Operations Processor Können direkt auf dem Speicher arbeiten. Zu jedem Speicherbaustein gehört ein eigenes ROP. Können Daten von den TPCs erhalten. Kümmern sich u. A. um: Farbüberblendungen. Antialiasing. Interpolation. Können nicht mit CUDA verwendet werden. Axel Jena, Jürgen Pröll 8

9 Speicher und Kommunikation Der Datenbus für die Kommunikation ( Interconenction Network ) ist 384 Pins breit und in 6 Partitionen a 64 Pins gegliedert. Jede Partition verwaltet 1/6 des gesamten physikalischen Adressraums. Das Interconenction Network basiert auf einer Hub-Unit die die die Anfragen zwischen den verschiedenen Komponenten (PCIe-Bus, TPCs, DRAM) routet. Die ROPs sind direkt an den Speicher angebunden und belasten damit nicht das Interconnection Network. Eine Memory Management Unit setzt virtuelle zu physikalischen Adressen um und kümmert sich um Paging. Als Speicher fungieren GDDR3 Module die mit ca. 1GHz getaktet sind. Axel Jena, Jürgen Pröll 9

10 CUDA Programming Model Serieller Code in einem Thread des Hosts (CPU) Paralleler Code verteilt auf viele Threads im Device (GPU) Kernel: vom Host aufgerufene Funktion, die auf dem Device von vielen Threads ausgeführt wird Axel Jena, Jürgen Pröll 10

11 Thread Hierarchy Ein Kernel wird von einem Grid ausgeführt Ein Grid besteht aus in Blöcken gruppierten Threads Alle Threads des Grids: Führen den selben Code aus Sind durch Thread ID und Block ID unterscheidbar Jeder Block wird, in SIMT Warps geteilt, von einem Streaming Multiprozessor (SM) ausgeführt Axel Jena, Jürgen Pröll 11

12 Memory Hierarchy Local Memory: jeder Thread hat Register, um temporäre Variablen zu speichern sind diese nicht ausreichend, hat er zusätzlich noch einen Local Memory für größere Dateien Shared Memory: gemeinsamer Speicher für Threads desselben Blockes Global Memory: zur Kommunikation unter sequentiell ablaufenden Grids Axel Jena, Jürgen Pröll 12

13 Transparente Skalierbarkeit Thread Blöcke sind voneinander unabhängig, weshalb sie auch in beliebiger Reihenfolge ausgeführt werden können Programmierer müssen nicht auf Hardware achten, da sich ein Grid beliebig auf vorhandene Ressourcen verteilt Axel Jena, Jürgen Pröll 13

14 Kompilierung NVCC teilt Code in seriellen und parallelen Teil PTX Code (Parallel Thread Execution): Pseudoassembler für Grafikkarten Host und Device Code werden anschließend zu einer ausführbaren Datei zusammen gelinkt Axel Jena, Jürgen Pröll 14

15 CUDA API: Extended C Minimale Erweiterungen zu C/C++ Durch Wrapper auch andere Programmiersprachen nutzbar Language Extensions Function Type Qualifiers Variable Type Qualifiers Built-in Variablen Runtime Library Common Component Device Component Host Component Axel Jena, Jürgen Pröll 15

16 Function Type Qualifiers global void KernelFunc(): wird vom Host aufgerufen und auf dem Device ausgeführt muss void sein device float DeviceFunc(): wird vom Device aufgerufen und ausgeführt host float HostFunc(): wird auf dem Host aufgerufen und ausgeführt (optional) Funktionen auf dem Device: keine Rekursion keine statischen Variablen keine variable Argumentenliste KernelFunc<<<grid,block>>>(args); grid: Dimension des Grids (1D oder 2D) block: Dimension eines Blocks (1D, 2D oder 3D) Axel Jena, Jürgen Pröll 16

17 Variable Type Qualifiers device int GlobalVar; im Global Memory bleibt über die gesamte Programmausführung bestehen sichtbar für alle Threads und für den Host über die Runtime Library constant int ConstantVar; im Constant Memory Lebensdauer und Verfügbarkeit wie bei device shared int SharedVar; im Shared Memory eines Thread Blocks an Lebensdauer des Thread Blocks gebunden ist nur für Threads innerhalb des Blocks sichtbar int LocalVar; (innerhalb einer Device-Funktion) in einem Register oder bei großen Daten im Local Memory Axel Jena, Jürgen Pröll 17

18 Built-in Variablen Verfügbar in Device-Funktionen dim3 threadidx; Thread-ID innerhalb des Blocks threadidx.x, threadidx.y, threadidx.z dim3 blockidx; Block-ID innerhalb des Grids dim3 blockdim; Größe des Blocks in Threads dim3 griddim; Größe des Grids in Blöcken int warpsize; Größe eines Warps in Threads Axel Jena, Jürgen Pröll 18

19 Runtime Library Common Runtime Component Vektor Typen (dim3), Texture Typen Teile der C Runtime Library Host Runtime Component Device Management Memory Management cudamalloc(), cudafree(), cudamemcpy() Texture Management Kompatibilität mit OpenGL und Direct3D Event Management Error Handling Device Runtime Component Mathematische Funktionen Atomic Funktionen Funktionen zur Synchronisation - syncthreads() wartet, bis alle Threads eines Blocks die Barriere erreichen Axel Jena, Jürgen Pröll 19

20 Libraries & Development Tools CUDA Libraries: Thrust: Standard Template Library (STL) für CUDA CUBLAS: CUDA Basic Linear Algebra Subprograms CUFFT: CUDA Fast Fourier Transformation Development Tools: CUDA-gdb (Debugger) CUDA Visual Profiler (Performance Profiling Tool) CUDA-MemCheck Axel Jena, Jürgen Pröll 20

21 Beispiel - CPU Axel Jena, Jürgen Pröll 21

22 Beispiel GPU Axel Jena, Jürgen Pröll 22

23 Noch Fragen? Axel Jena, Jürgen Pröll 23

Grafikkarten-Architektur

Grafikkarten-Architektur > Grafikkarten-Architektur Parallele Strukturen in der GPU Name: Sebastian Albers E-Mail: s.albers@wwu.de 2 > Inhalt > CPU und GPU im Vergleich > Rendering-Pipeline > Shader > GPGPU > Nvidia Tesla-Architektur

Mehr

Programmierung von Graphikkarten

Programmierung von Graphikkarten Programmierung von Graphikkarten Stefan Lang Interdisziplinäres Zentrum für Wissenschaftliches Rechnen Universität Heidelberg INF 368, Raum 532 D-69120 Heidelberg phone: 06221/54-8264 email: Stefan.Lang@iwr.uni-heidelberg.de

Mehr

GPGPU-Architekturen CUDA Programmiermodell Beispielprogramm Organiosatorisches. Tutorial CUDA. Ralf Seidler

GPGPU-Architekturen CUDA Programmiermodell Beispielprogramm Organiosatorisches. Tutorial CUDA. Ralf Seidler Friedrich-Alexander-Universität Erlangen-Nürnberg 05.10.2010 Outline 1 GPGPU-Architekturen 2 CUDA Programmiermodell 3 Beispielprogramm 4 Organiosatorisches Outlook 1 GPGPU-Architekturen 2 CUDA Programmiermodell

Mehr

Parallele Programmierung mit GPUs

Parallele Programmierung mit GPUs Parallele Programmierung mit GPUs Jutta Fitzek Vortrag im Rahmen des Moduls Parallele Programmierung, WS12/13, h_da Agenda GPUs: Historie GPU Programmierung Konzepte Codebeispiel Generelle Tipps & Tricks

Mehr

Multicore-Architekturen

Multicore-Architekturen Universität Erlangen- Nürnberg Technische Universität München Universität Stuttgart Multicore-Architekturen Vortrag im Rahmen der Ferienakademie 2009 Kurs 1: Programmierkonzepte für Multi-Core Rechner

Mehr

CUDA. Jürgen Pröll. Multi-Core Architectures and Programming. Friedrich-Alexander-Universität Erlangen-Nürnberg Jürgen Pröll 1

CUDA. Jürgen Pröll. Multi-Core Architectures and Programming. Friedrich-Alexander-Universität Erlangen-Nürnberg Jürgen Pröll 1 CUDA Jürgen Pröll Multi-Core Architectures and Programming Jürgen Pröll 1 Image-Resize: sequentiell resize() mit bilinearer Interpolation leicht zu parallelisieren, da einzelne Punkte voneinander unabhängig

Mehr

Programmierbeispiele und Implementierung. Name: Michel Steuwer E-Mail: michel.steuwer@wwu.de

Programmierbeispiele und Implementierung. Name: Michel Steuwer E-Mail: michel.steuwer@wwu.de > Programmierbeispiele und Implementierung Name: Michel Steuwer E-Mail: michel.steuwer@wwu.de 2 > Übersicht > Matrix Vektor Multiplikation > Mandelbrotmenge / Apfelmännchen berechnen > Kantendetektion

Mehr

GPGPU mit NVIDIA CUDA

GPGPU mit NVIDIA CUDA 01.07.12 GPGPU mit NVIDIA CUDA General-Purpose on Formatvorlagecomputing des Graphics Processing durch Units Untertitelmasters mit KlickenCompute bearbeiten NVIDIA Unified Device Architecture Gliederung

Mehr

Compute Unified Device Architecture (CUDA)

Compute Unified Device Architecture (CUDA) Compute Unified Device Architecture (CUDA) Thomas Koller 12. Februar 2012 Zusammenfassung Diese Ausarbeitung beschäftigt sich mit der Programmierung von Grafikkarten mittels CUDA. Bei bestimmten Berechnungen

Mehr

GPGPU-Programming. Constantin Timm Informatik 12 TU Dortmund 2012/04/09. technische universität dortmund. fakultät für informatik informatik 12

GPGPU-Programming. Constantin Timm Informatik 12 TU Dortmund 2012/04/09. technische universität dortmund. fakultät für informatik informatik 12 12 GPGPU-Programming Constantin Timm Informatik 12 TU Dortmund 2012/04/09 Diese Folien enthalten Graphiken mit Nutzungseinschränkungen. Das Kopieren der Graphiken ist im Allgemeinen nicht erlaubt. Motivation

Mehr

Fakultät für Informatik und Mathematik

Fakultät für Informatik und Mathematik Fakultät für Informatik und Mathematik Universität Passau Effiziente Berechnung der FWT auf Grafikkarten Bachelorarbeit Richard Maltan Matrikel-Nummer 58941 Betreuer Prof. Dr. Tomas Sauer Inhaltsverzeichnis

Mehr

Untersuchung und Vorstellung moderner Grafikchiparchitekturen

Untersuchung und Vorstellung moderner Grafikchiparchitekturen Fakultät Informatik, Institut für Technische Informatik, Professur für VLSI-Entwurfssysteme, Diagnostik und Architektur Untersuchung und Vorstellung moderner Grafikchiparchitekturen Hauptseminar Technische

Mehr

Software Engineering für moderne, parallele Plattformen. 9. GPGPUs: Grafikkarten als Parallelrechner. Dr. Victor Pankratius

Software Engineering für moderne, parallele Plattformen. 9. GPGPUs: Grafikkarten als Parallelrechner. Dr. Victor Pankratius Software Engineering für moderne, parallele Plattformen 9. GPGPUs: Grafikkarten als Parallelrechner Dr. Victor Pankratius Dr. Victor Pankratius, Dipl.Inform. Frank Otto IPD Tichy Lehrstuhl für Programmiersysteme

Mehr

OpenCL. OpenCL. Boris Totev, Cornelius Knap

OpenCL. OpenCL. Boris Totev, Cornelius Knap OpenCL OpenCL 1 OpenCL Gliederung Entstehungsgeschichte von OpenCL Was, warum und überhaupt wieso OpenCL CUDA, OpenGL und OpenCL GPUs OpenCL Objekte Work-Units OpenCL Adressbereiche OpenCL API Codebeispiel

Mehr

GPGPU Programming nvidia CUDA vs. AMD/ATI Stream Computing. Seminar HWS 08/09 by Erich Marth

GPGPU Programming nvidia CUDA vs. AMD/ATI Stream Computing. Seminar HWS 08/09 by Erich Marth Computing 1 Inhalt Einführung nvidia CUDA AMD Stream Computing CUDA vs. Stream Computing - Warum, Vorteile, Motivation - Überblick, API - Details, Beispiele - Überblick, API - Details, Beispiele - wesentliche

Mehr

CUDA. (Compute Unified Device Architecture) Thomas Trost. May 31 th 2016

CUDA. (Compute Unified Device Architecture) Thomas Trost. May 31 th 2016 CUDA (Compute Unified Device Architecture) Thomas Trost May 31 th 2016 Introduction and Overview platform and API for parallel computing on GPUs by NVIDIA relatively straightforward general purpose use

Mehr

CUDA. 7. Vorlesung GPU Programmierung. Danke an Hendrik Lensch

CUDA. 7. Vorlesung GPU Programmierung. Danke an Hendrik Lensch CUDA 7. Vorlesung Thorsten Grosch Danke an Hendrik Lensch Parallele l Programmierung mit der GPU Bisher: GPU = OpenGL Pipeline mit Shadern Alles orientiert sich am Rendering Programme für Eckpunkte und

Mehr

OpenCL Implementierung von OpenCV Funktionen

OpenCL Implementierung von OpenCV Funktionen Multi-Core Architectures and Programming OpenCL Implementierung von OpenCV Funktionen julian.mueller@e-technik.stud.uni-erlangen.de Hardware/Software Co-Design August 18, 2011 1 Table of content 1 OpenCL

Mehr

Multicore Herausforderungen an das Software-Engineering. Prof. Dr.-Ing. Michael Uelschen Hochschule Osnabrück 15.09.2010

Multicore Herausforderungen an das Software-Engineering. Prof. Dr.-Ing. Michael Uelschen Hochschule Osnabrück 15.09.2010 Multicore Herausforderungen an das Software-Engineering Prof. Dr.-Ing. Michael Uelschen Hochschule Osnabrück 15.09.2010 Inhalt _ Motivation _ Herausforderung 1: Hardware _ Herausforderung 2: Software-Partitionierung

Mehr

GPU-Computing im Rahmen der Vorlesung Hochleistungsrechnen

GPU-Computing im Rahmen der Vorlesung Hochleistungsrechnen GPU-Computing im Rahmen der Vorlesung Hochleistungsrechnen Universität Hamburg Scientific Visualization and Parallel Processing Übersicht Hintergrund und Entwicklung von GPGPU Programmierumgebungen & Werkzeuge

Mehr

Übersicht 1. Anzeigegeräte 2. Framebuffer 3. Grundlagen 3D Computergrafik 4. Polygongrafik, Z-Buffer 5. Texture-Mapping/Shading 6. GPU 7. Programmierbare Shader 1 LCD/TFT Technik Rotation der Licht-Polarisationsebene

Mehr

Johann Wolfgang Goethe-Universität

Johann Wolfgang Goethe-Universität Flynn sche Klassifikation SISD (single instruction, single data stream): IS IS CU PU DS MM Mono (Mikro-)prozessoren CU: Control Unit SM: Shared Memory PU: Processor Unit IS: Instruction Stream MM: Memory

Mehr

Cuda Speicherhierarchie

Cuda Speicherhierarchie Cuda Speicherhierarchie Threads eines Blocks können über Shared Memory kommunizieren Der Shared Memory ist klein aber sehr schnell Alle Threads können nur über Global Memory kommunizieren Der Global Memory

Mehr

OpenCL. Seminar Programmiersprachen im Multicore-Zeitalter Universität Siegen Tim Wiersdörfer tim.wiersdoerfer@student.uni-siegen.

OpenCL. Seminar Programmiersprachen im Multicore-Zeitalter Universität Siegen Tim Wiersdörfer tim.wiersdoerfer@student.uni-siegen. OpenCL Seminar Programmiersprachen im Multicore-Zeitalter Universität Siegen Tim Wiersdörfer tim.wiersdoerfer@student.uni-siegen.de Abstract: In diesem Dokument wird ein grundlegender Einblick in das relativ

Mehr

Architektur paralleler Plattformen

Architektur paralleler Plattformen Architektur paralleler Plattformen Freie Universität Berlin Fachbereich Informatik Wintersemester 2012/2013 Proseminar Parallele Programmierung Mirco Semper, Marco Gester Datum: 31.10.12 Inhalt I. Überblick

Mehr

Eine Einführung in die Architektur moderner Graphikprozessoren

Eine Einführung in die Architektur moderner Graphikprozessoren Eine Einführung in die Architektur moderner Graphikprozessoren Seminarvortrag von Sven Schenk WS 2005/2006 Universität Mannheim, Lehrstuhl für Rechnerarchitektur Inhalt Historische Eckpunkte Einführung

Mehr

Optimierung eines neuen Logarithmic-Search-Verfahrens zum Image Mosaicing unter Einsatz des CUDA-Frameworks

Optimierung eines neuen Logarithmic-Search-Verfahrens zum Image Mosaicing unter Einsatz des CUDA-Frameworks Fachhochschule Köln, Campus Gummersbach Optimierung eines neuen Logarithmic-Search-Verfahrens zum Image Mosaicing unter Einsatz des CUDA-Frameworks 03.06.2009 Eugen Sewergin, B. Sc. Erstprüfer: Prof. Dr.

Mehr

Bibliotheks-basierte Virtualisierung

Bibliotheks-basierte Virtualisierung Dr.-Ing. Volkmar Sieh Department Informatik 4 Verteilte Systeme und Betriebssysteme Friedrich-Alexander-Universität Erlangen-Nürnberg WS 2015/2016 V. Sieh Bibliotheks-basierte Virtualisierung (WS15/16)

Mehr

GPU-Computing. Michael Vetter

GPU-Computing. Michael Vetter GPU-Computing Universität Hamburg Scientific Visualization and Parallel Processing @ Informatik Climate Visualization Laboratory @ Clisap/CEN Übersicht Hintergrund und Entwicklung von GPGPU Programmierumgebungen

Mehr

Staff. Tim Conrad. Zeitplan. Blockseminar: Verteiltes Rechnen und Parallelprogrammierung. Sommer Semester 2013. Tim Conrad

Staff. Tim Conrad. Zeitplan. Blockseminar: Verteiltes Rechnen und Parallelprogrammierung. Sommer Semester 2013. Tim Conrad Blockseminar: Verteiltes Rechnen und Parallelprogrammierung Sommer Semester 2013 Tim Conrad Staff Tim Conrad AG Computational Proteomics email: conrad@math.fu-berlin.de Telefon: 838-51445 Büro: Raum 138,

Mehr

HW/SW Codesign 5 - Performance

HW/SW Codesign 5 - Performance HW/SW Codesign 5 - Performance Martin Lechner e1026059 Computer Technology /29 Inhalt Was bedeutet Performance? Methoden zur Steigerung der Performance Einfluss der Kommunikation Hardware vs. Software

Mehr

Convey, Hybrid-Core Computing

Convey, Hybrid-Core Computing Convey, Hybrid-Core Computing Vortrag im Rahmen des Seminars Ausgewählte Themen in Hardwareentwurf und Optik HWS 09 Universität Mannheim Markus Müller 1 Inhalt Hybrid-Core Computing? Convey HC-1 Überblick

Mehr

Sequentielle Programm- / Funktionsausführung innerhalb eines Prozesses ( thread = Ausführungsfaden )

Sequentielle Programm- / Funktionsausführung innerhalb eines Prozesses ( thread = Ausführungsfaden ) Threads Sequentielle Programm- / Funktionsausführung innerhalb eines Prozesses ( thread = Ausführungsfaden ) Ein thread bearbeitet eine sequentielle Teilaufgabe innerhalb eines Prozesses Mehrere nebenläufige

Mehr

Teil VIII Von Neumann Rechner 1

Teil VIII Von Neumann Rechner 1 Teil VIII Von Neumann Rechner 1 Grundlegende Architektur Zentraleinheit: Central Processing Unit (CPU) Ausführen von Befehlen und Ablaufsteuerung Speicher: Memory Ablage von Daten und Programmen Read Only

Mehr

FPGA Beschleuniger. Your Name. Armin Jeyrani Mamegani Your Organization (Line #2)

FPGA Beschleuniger. Your Name. Armin Jeyrani Mamegani Your Organization (Line #2) FPGA Beschleuniger 15.12.2008 Armin Jeyrani Mamegani Your Name HAW Hamburg Your Title Department Your Organization Informatik (Line #1) Your Organization (Line #2) Einleitung Wiederholung aus AW1: Handy

Mehr

Parallelrechner (1) Anwendungen: Simulation von komplexen physikalischen oder biochemischen Vorgängen Entwurfsunterstützung virtuelle Realität

Parallelrechner (1) Anwendungen: Simulation von komplexen physikalischen oder biochemischen Vorgängen Entwurfsunterstützung virtuelle Realität Parallelrechner (1) Motivation: Bedarf für immer leistungsfähigere Rechner Leistungssteigerung eines einzelnen Rechners hat physikalische Grenzen: Geschwindigkeit von Materie Wärmeableitung Transistorgröße

Mehr

Rechner Architektur. Martin Gülck

Rechner Architektur. Martin Gülck Rechner Architektur Martin Gülck Grundlage Jeder Rechner wird aus einzelnen Komponenten zusammengesetzt Sie werden auf dem Mainboard zusammengefügt (dt.: Hauptplatine) Mainboard wird auch als Motherboard

Mehr

Cell Broadband Engine

Cell Broadband Engine Cell Broadband Engine 21.March 2006 Benjamin Keck Outline Why Cell?!? Application Areas Architectural Overview SPU Programming Model Programming on the PPE C/C++ Intrinsics The Cell Supercomputer on a

Mehr

Einführung in die Programmierung mit C++

Einführung in die Programmierung mit C++ Seite 1 Einführung in die Programmierung mit C Teil IV - Weiterführende Themen 16. SIMD Programmierung Was bedeutet SIMD Seite SIMD Single-Instruction, Multiple-Data, also eine Instruktion, mehrere Daten

Mehr

Aktuelle Trends und Herausforderungen in der Finite-Elemente-Simulation

Aktuelle Trends und Herausforderungen in der Finite-Elemente-Simulation Aktuelle Trends und Herausforderungen in der Finite-Elemente-Simulation Kai Diethelm GNS Gesellschaft für numerische Simulation mbh Braunschweig engineering software development Folie 1 Überblick Vorstellung

Mehr

Ein kleiner Einblick in die Welt der Supercomputer. Christian Krohn 07.12.2010 1

Ein kleiner Einblick in die Welt der Supercomputer. Christian Krohn 07.12.2010 1 Ein kleiner Einblick in die Welt der Supercomputer Christian Krohn 07.12.2010 1 Vorschub: FLOPS Entwicklung der Supercomputer Funktionsweisen von Supercomputern Zukunftsvisionen 2 Ein Top10 Supercomputer

Mehr

GPGPU-Architekturen CUDA CUDA Beispiel OpenCL OpenCL Beispiel. CUDA & OpenCL. Ralf Seidler. Friedrich-Alexander-Universität Erlangen-Nürnberg

GPGPU-Architekturen CUDA CUDA Beispiel OpenCL OpenCL Beispiel. CUDA & OpenCL. Ralf Seidler. Friedrich-Alexander-Universität Erlangen-Nürnberg CUDA und OpenCL Friedrich-Alexander-Universität Erlangen-Nürnberg 24. April 2012 Outline 1 GPGPU-Architekturen 2 CUDA 3 CUDA Beispiel 4 OpenCL 5 OpenCL Beispiel Outlook 1 GPGPU-Architekturen 2 CUDA 3 CUDA

Mehr

http://www.uniregensburg.de/edv/kurs_info/brf09510/hpc/cuda/cuda.pdf 27. Januar 2016

http://www.uniregensburg.de/edv/kurs_info/brf09510/hpc/cuda/cuda.pdf 27. Januar 2016 Cuda - Compute Unied Device Architecture Dipl. Math. F. Braun Universität Regensburg Rechenzentrum http://www.uniregensburg.de/edv/kurs_info/brf09510/hpc/cuda/cuda.html http://www.uniregensburg.de/edv/kurs_info/brf09510/hpc/cuda/cuda.pdf

Mehr

Outline. Cell Broadband Engine. Application Areas. The Cell

Outline. Cell Broadband Engine. Application Areas. The Cell Outline 21.March 2006 Benjamin Keck Why Cell?!? Application Areas Architectural Overview Programming Model Programming on the PPE C/C++ Intrinsics 1 2 The Cell Supercomputer on a chip Multi-Core Microprocessor

Mehr

Spezialprozessoren zur Übernahme Grafik-spezifischer Aufgaben, vorrangig der Bildschirmausgabe

Spezialprozessoren zur Übernahme Grafik-spezifischer Aufgaben, vorrangig der Bildschirmausgabe Grafikprozessoren Spezialprozessoren zur Übernahme Grafik-spezifischer Aufgaben, vorrangig der Bildschirmausgabe 2D: Berechnung der Bildes aus einfachen Grafikprimitiven 3D: Bildaufbau aus räumlicher Beschreibung

Mehr

Algorithmen für moderne Rechnerarchitekturen

Algorithmen für moderne Rechnerarchitekturen Jörn Fischer j.fischer@hs-mannheim.de Willkommen zur Vorlesung Algorithmen für moderne Rechnerarchitekturen Vorstellung Zu meiner Person... 2 ALR - Jörn Fischer - j.fischer@hs-mannheim.de Büro: A113a Überblick

Mehr

Grundlagen der Parallelisierung

Grundlagen der Parallelisierung Grundlagen der Parallelisierung Philipp Kegel, Sergei Gorlatch AG Parallele und Verteilte Systeme Institut für Informatik Westfälische Wilhelms-Universität Münster 3. Juli 2009 Inhaltsverzeichnis 1 Einführung

Mehr

Systeme I: Betriebssysteme Kapitel 4 Prozesse. Maren Bennewitz

Systeme I: Betriebssysteme Kapitel 4 Prozesse. Maren Bennewitz Systeme I: Betriebssysteme Kapitel 4 Prozesse Maren Bennewitz Version 20.11.2013 1 Begrüßung Heute ist Tag der offenen Tür Willkommen allen Schülerinnen und Schülern! 2 Wdhlg.: Attributinformationen in

Mehr

MULTICORE- UND GPGPU- ARCHITEKTUREN

MULTICORE- UND GPGPU- ARCHITEKTUREN MULTICORE- UND GPGPU- ARCHITEKTUREN Korbinian Pauli - 17. November 2011 Seminar Multicore Programmierung, WS11, Universität Passau 2 Einleitung Klassisches Problem der Informatik: riesige Datenmenge! Volkszählung

Mehr

Proseminar Rechnerarchitekturen. Parallelcomputer: Multiprozessorsysteme

Proseminar Rechnerarchitekturen. Parallelcomputer: Multiprozessorsysteme wwwnet-texde Proseminar Rechnerarchitekturen Parallelcomputer: Multiprozessorsysteme Stefan Schumacher, , PGP Key http://wwwnet-texde/uni Id: mps-folientex,v

Mehr

Vorlesung Rechnerarchitektur. Einführung

Vorlesung Rechnerarchitektur. Einführung Vorlesung Rechnerarchitektur Einführung Themen der Vorlesung Die Vorlesung entwickelt an Hand von zwei Beispielen wichtige Prinzipien der Prozessorarchitektur und der Speicherarchitektur: MU0 Arm Speicher

Mehr

Technische Informatik 1

Technische Informatik 1 Technische Informatik 1 7 Prozesse und Threads Lothar Thiele Computer Engineering and Networks Laboratory Betriebssystem 7 2 7 3 Betriebssystem Anwendung Anwendung Anwendung Systemaufruf (syscall) Betriebssystem

Mehr

Aufbau und Funktionsweise eines Computers

Aufbau und Funktionsweise eines Computers Aufbau und Funktionsweise eines Computers Thomas Röfer Hardware und Software von Neumann Architektur Schichtenmodell der Software Zahlsysteme Repräsentation von Daten im Computer Hardware Prozessor (CPU)

Mehr

Projektseminar Parallele Programmierung

Projektseminar Parallele Programmierung HTW Dresden WS 2014/2015 Organisatorisches Praktikum, 4 SWS Do. 15:00-18:20 Uhr, Z136c, 2 Doppelstunden o.g. Termin ist als Treffpunkt zu verstehen Labore Z 136c / Z 355 sind Montag und Donnerstag 15:00-18:20

Mehr

Parallelisierung auf MPSoC-Plattformen

Parallelisierung auf MPSoC-Plattformen Anwendungen 1 Parallelisierung auf MPSoC-Plattformen MINF 1, WiSe2011 Anwendungen 1 17.11.2011 Betreuer: Prof. Dr. Schwarz Übersicht 1. 2. 3. 4. 5. Einleitung Multiprozessor- Architekturen SMP im Linux

Mehr

Programming Models for Cell BE

Programming Models for Cell BE Hauptseminar MAP08 Programming Models for Cell BE Hannes Stadler, Sebastian Graf HannesStadler@gmx.de, sebgr@gmx.net Betreuung: Matthias Hartl, Hritam Dutta, Frank Hannig Hardware-Software-Co-Design Universität

Mehr

Current and Emerging Architectures Multi-core Architectures and Programming

Current and Emerging Architectures Multi-core Architectures and Programming Current and Emerging Architectures Multi-core Architectures and Programming Adel El-Rayyes Hardware-Software-Co-Design, Friedrich-Alexander-Universität Erlangen-Nürnberg 9. Mai 2012 Inhalt Überblick über

Mehr

Inhalt. Prozessoren. Curriculum Manfred Wilfling. 28. November HTBLA Kaindorf. M. Wilfling (HTBLA Kaindorf) CPUs 28. November / 9

Inhalt. Prozessoren. Curriculum Manfred Wilfling. 28. November HTBLA Kaindorf. M. Wilfling (HTBLA Kaindorf) CPUs 28. November / 9 Inhalt Curriculum 1.4.2 Manfred Wilfling HTBLA Kaindorf 28. November 2011 M. Wilfling (HTBLA Kaindorf) CPUs 28. November 2011 1 / 9 Begriffe CPU Zentraleinheit (Central Processing Unit) bestehend aus Rechenwerk,

Mehr

Benchmarking Intel Pentium III-S vs. Intel Pentium 4

Benchmarking Intel Pentium III-S vs. Intel Pentium 4 Benchmarking Intel Pentium III-S vs. Intel Pentium 4 André Ceselski Raphael Rosendahl 30.01.2007 Gliederung Motivation Vorstellung der Architekturen Intel P6 Architektur Intel NetBurst TM Architektur Architektur-Unterschiede

Mehr

Betriebssysteme Vorstellung

Betriebssysteme Vorstellung Am Anfang war die Betriebssysteme Vorstellung CPU Ringvorlesung SE/W WS 08/09 1 2 Monitor CPU Komponenten eines einfachen PCs Bus Holt Instruktion aus Speicher und führt ihn aus Befehlssatz Einfache Operationen

Mehr

Game Engine Architecture and Development. Platform Unabhängiger Code Multi Threading in Game Engines Profiling

Game Engine Architecture and Development. Platform Unabhängiger Code Multi Threading in Game Engines Profiling Game Engine Architecture and Development Platform Unabhängiger Code Multi Threading in Game Engines Profiling Folien Die Folien werden auf acagamics.de hochgeladen Das Passwort ist 60fps (ohne ) Rückblick:

Mehr

Hochleistungsrechnen Hybride Parallele Programmierung. Prof. Dr. Thomas Ludwig Universität Hamburg Informatik Wissenschaftliches Rechnen

Hochleistungsrechnen Hybride Parallele Programmierung. Prof. Dr. Thomas Ludwig Universität Hamburg Informatik Wissenschaftliches Rechnen Hochleistungsrechnen Hybride Parallele Programmierung Prof. Dr. Thomas Ludwig Universität Hamburg Informatik Wissenschaftliches Rechnen Inhaltsübersicht Einleitung und Motivation Programmiermodelle für

Mehr

Blockseminar: Verteiltes Rechnen und Parallelprogrammierung. Sommer Semester 2015. Tim Conrad

Blockseminar: Verteiltes Rechnen und Parallelprogrammierung. Sommer Semester 2015. Tim Conrad Blockseminar: Verteiltes Rechnen und Parallelprogrammierung Sommer Semester 2015 Tim Conrad Staff Tim Conrad AG Medical Bioinformatics email: conrad@math.fu-berlin.de Telefon: 838-51445 Büro: Raum 138,

Mehr

Hardware Virtualisierungs Support für PikeOS

Hardware Virtualisierungs Support für PikeOS Virtualisierungs Support für PikeOS Design eines Virtual Machine Monitors auf Basis eines Mikrokernels Tobias Stumpf SYSGO AG, Am Pfaenstein 14, 55270 Klein-Winternheim HS Furtwangen, Fakultät Computer

Mehr

Datenpfad einer einfachen MIPS CPU

Datenpfad einer einfachen MIPS CPU Datenpfad einer einfachen MIPS CPU Zugriff auf den Datenspeicher Grundlagen der Rechnerarchitektur Prozessor 19 Betrachten nun Load und Store Word Erinnerung, Instruktionen lw und sw sind vom I Typ Format:

Mehr

Instruktionen pro Takt

Instruktionen pro Takt (c) Peter Sturm, Universität Trier (u.a.) 1 Instruktionen pro Takt 500 MIPS (Dhrystone) Taktfrequenz 450 400 350 300 250 200 150 100 50 0 8086 80286 80386 80486 Pentium Pentium Pro Die-Größen: Intel Vorlesung

Mehr

Was ist die Performance Ratio?

Was ist die Performance Ratio? Was ist die Performance Ratio? Wie eben gezeigt wäre für k Pipeline Stufen und eine große Zahl an ausgeführten Instruktionen die Performance Ratio gleich k, wenn jede Pipeline Stufe dieselbe Zeit beanspruchen

Mehr

Computer-Architektur Ein Überblick

Computer-Architektur Ein Überblick Computer-Architektur Ein Überblick Johann Blieberger Institut für Rechnergestützte Automation Computer-Architektur Ein Überblick p.1/27 Computer-Aufbau: Motherboard Computer-Architektur Ein Überblick p.2/27

Mehr

Untersuchungen zur Abstraktion der GPU-Programmierung in Java am Beispiel Fluid-Simulation

Untersuchungen zur Abstraktion der GPU-Programmierung in Java am Beispiel Fluid-Simulation Masterarbeit Fakultät Informatik Untersuchungen zur Abstraktion der GPU-Programmierung in Java am Beispiel Fluid-Simulation Matthias Klaÿ Kleiberweg 4 86199 Augsburg Tel: 0821 431552 E-Mail: matthias.klass

Mehr

Übersicht. Nebenläufige Programmierung. Praxis und Semantik. Einleitung. Sequentielle und nebenläufige Programmierung. Warum ist. interessant?

Übersicht. Nebenläufige Programmierung. Praxis und Semantik. Einleitung. Sequentielle und nebenläufige Programmierung. Warum ist. interessant? Übersicht Aktuelle Themen zu Informatik der Systeme: Nebenläufige Programmierung: Praxis und Semantik Einleitung 1 2 der nebenläufigen Programmierung WS 2011/12 Stand der Folien: 18. Oktober 2011 1 TIDS

Mehr

Raytracing auf Desktop PCs Optimizing Cache Usage (Intel Corp.)

Raytracing auf Desktop PCs Optimizing Cache Usage (Intel Corp.) Raytracing auf Desktop PCs Optimizing Cache Usage (Intel Corp.) von Martin Stöcker Motivation Geschwindigkeit der Prozessoren verdoppelt sich alle 18 Monate (Moore s Law) Geschwindigkeit des Speichers

Mehr

IT für Führungskräfte. Zentraleinheiten. 11.04.2002 Gruppe 2 - CPU 1

IT für Führungskräfte. Zentraleinheiten. 11.04.2002 Gruppe 2 - CPU 1 IT für Führungskräfte Zentraleinheiten 11.04.2002 Gruppe 2 - CPU 1 CPU DAS TEAM CPU heißt Central Processing Unit! Björn Heppner (Folien 1-4, 15-20, Rollenspielpräsentation 1-4) Harald Grabner (Folien

Mehr

Smartphone Entwicklung mit Android und Java

Smartphone Entwicklung mit Android und Java Smartphone Entwicklung mit Android und Java predic8 GmbH Moltkestr. 40 53173 Bonn Tel: (0228)5552576-0 www.predic8.de info@predic8.de Was ist Android Offene Plattform für mobile Geräte Software Kompletter

Mehr

Thema: Hardware-Shader

Thema: Hardware-Shader Seminar Grafikprogrammierung Thema: Hardware-Shader Christian Bauer 03.07.08 Überblick Entwicklung Die Shader im Detail Programmierung GPGPU Zusammenfassung & Ausblick 1/19 Entwicklung (1) Früher: Berechnung

Mehr

Grundlagen Rechnerarchitektur und Betriebssysteme

Grundlagen Rechnerarchitektur und Betriebssysteme Grundlagen Rechnerarchitektur und Betriebssysteme Johannes Formann Definition Computer: Eine Funktionseinheit zur Verarbeitung von Daten, wobei als Verarbeitung die Durchführung mathematischer, umformender,

Mehr

OpenMP. Viktor Styrbul

OpenMP. Viktor Styrbul OpenMP Viktor Styrbul Inhaltsverzeichnis Was ist OpenMP Warum Parallelisierung Geschichte Merkmale von OpenMP OpenMP-fähige Compiler OpenMP Ausführungsmodell Kernelemente von OpenMP Zusammenfassung Was

Mehr

Intel 80x86 symmetrische Multiprozessorsysteme. Eine Präsentation im Rahmen des Seminars Parallele Rechnerarchitekturen von Bernhard Witte

Intel 80x86 symmetrische Multiprozessorsysteme. Eine Präsentation im Rahmen des Seminars Parallele Rechnerarchitekturen von Bernhard Witte Intel 80x86 symmetrische Multiprozessorsysteme Eine Präsentation im Rahmen des Seminars Parallele Rechnerarchitekturen von Bernhard Witte Gliederung I. Parallel Computing Einführung II.SMP Grundlagen III.Speicherzugriff

Mehr

Visualisierung paralleler bzw. verteilter Programme

Visualisierung paralleler bzw. verteilter Programme Seminar Visualisierung in Informatik und Naturwissenschaften im SS 1999 Visualisierung paralleler bzw. verteilter Programme Holger Dewes Gliederung Zum Begriff Motivation PARADE Beispiel 1: Thread basierte

Mehr

Echtzeit-Multitasking

Echtzeit-Multitasking Technische Informatik Klaus-Dieter Thies Echtzeit-Multitasking Memory Management und System Design im Protected Mode der x86/pentium-architektur. Shaker Verlag Aachen 2002 Die Deutsche Bibliothek - CIP-Einheitsaufnahme

Mehr

High-Performance Bildverarbeitung (nicht nur) mit JAVA. Prof. Dr.Thomas Netzsch - Hochschule Darmstadt - University of Applied Sciences

High-Performance Bildverarbeitung (nicht nur) mit JAVA. Prof. Dr.Thomas Netzsch - Hochschule Darmstadt - University of Applied Sciences High-Performance Bildverarbeitung (nicht nur) mit JAVA 1 High-Performance Bildverarbeitung (nicht nur) mit JAVA Fragen: wie kann ein typisches BV-Unternehmen wirtschaftlich an der aktuellen Hardwareentwicklung

Mehr

Mikrocontroller Grundlagen. Markus Koch April 2011

Mikrocontroller Grundlagen. Markus Koch April 2011 Mikrocontroller Grundlagen Markus Koch April 2011 Übersicht Was ist ein Mikrocontroller Aufbau (CPU/RAM/ROM/Takt/Peripherie) Unterschied zum Mikroprozessor Unterschiede der Controllerarten Unterschiede

Mehr

Institut für Technische Informatik, Professur für VLSI-Entwurfssysteme, Diagnostik und Architektur. PCI Express. Dirk Wischeropp. Dresden, 07.06.

Institut für Technische Informatik, Professur für VLSI-Entwurfssysteme, Diagnostik und Architektur. PCI Express. Dirk Wischeropp. Dresden, 07.06. Institut für Technische Informatik, Professur für VLSI-Entwurfssysteme, Diagnostik und Architektur PCI Express Dirk Wischeropp Dresden, 07.06.2011 Gliederung 1 Einleitung 2 Architektur 3 Layering 4 Zusammenfassung

Mehr

Seminar GPU-Programmierung/Parallelverarbeitung

Seminar GPU-Programmierung/Parallelverarbeitung Seite iv Literaturverzeichnis 1) Bengel, G.; et al.: Masterkurs Parallele und Verteilte Systeme. Vieweg + Teubner, Wiesbaden, 2008. 2) Breshears, C.: The Art of Concurrency - A Thread Monkey's Guide to

Mehr

Instruktionssatz-Architektur

Instruktionssatz-Architektur Institut für Informatik 3: Rechnerarchitektur Friedrich-Alexander-Universität Erlangen-Nürnberg WS 2005/2006 Übersicht 1 Einleitung 2 Bestandteile der ISA 3 CISC / RISC Übersicht 1 Einleitung 2 Bestandteile

Mehr

Masterarbeit. Implementation eines CUDA basierten Kalman-Filters zur Spurrekonstruktion des ATLAS-Detektors am LHC

Masterarbeit. Implementation eines CUDA basierten Kalman-Filters zur Spurrekonstruktion des ATLAS-Detektors am LHC Fachhochschule Münster Masterarbeit Implementation eines CUDA basierten Kalman-Filters zur Spurrekonstruktion des ATLAS-Detektors am LHC Rene Böing, B.Sc. rene.boeing@fh-muenster.de Matrikelnummer: 618384

Mehr

z/architektur von IBM

z/architektur von IBM von IBM Grundzüge einer modernen Architektur Von Matthias Fäth Gliederung Geschichtlicher Überblick Neuestes Flaggschiff Namensgebung Überblick Warum 64-Bit große Register Kompatibilität zu älteren Systemen

Mehr

Effizientes Lösen linearer Gleichungssysteme über GF(2) mit GPUs

Effizientes Lösen linearer Gleichungssysteme über GF(2) mit GPUs Diplomarbeit Effizientes Lösen linearer Gleichungssysteme über GF(2) mit GPUs von Denise Demirel 27. September 2010 Technische Universität Darmstadt Fachbereich Informatik Fachgebiet Theoretische Informatik

Mehr

SUPERCOM 7 32-BIT UND 64-BIT WINDOWS UND LINUX FÜR. ADONTEC, All Rechte vorbehalten. Rel D 7020

SUPERCOM 7 32-BIT UND 64-BIT WINDOWS UND LINUX FÜR. ADONTEC, All Rechte vorbehalten.  Rel D 7020 SUPERCOM 7 FÜR 32-BIT UND 64-BIT WINDOWS UND LINUX ADONTEC, 2012. All Rechte vorbehalten. www.adontec.com Rel D 7020 SuperCom Kommunikation Software Anwendung.NET Class Library ActiveX API Ein gemeinsames

Mehr

Auch hier wieder. Control. RegDst Branch MemRead MemtoReg ALUOp MemWrite ALUSrc RegWrite. Instruction[31 26] (also: das Opcode Field der Instruktion)

Auch hier wieder. Control. RegDst Branch MemRead MemtoReg ALUOp MemWrite ALUSrc RegWrite. Instruction[31 26] (also: das Opcode Field der Instruktion) Auch hier wieder Aus voriger Wahrheitstabelle lässt sich mechanisch eine kombinatorische Schaltung generieren, die wir im Folgenden mit dem Control Symbol abstrakt darstellen. Instruction[31 26] (also:

Mehr

Assembler - Einleitung

Assembler - Einleitung Assembler - Einleitung Dr.-Ing. Volkmar Sieh Department Informatik 3: Rechnerarchitektur Friedrich-Alexander-Universität Erlangen-Nürnberg SS 2008 Assembler - Einleitung 1/19 2008-04-01 Teil 1: Hochsprache

Mehr

Kapitel 4 Grundlagen zur Parallelverarbeitung

Kapitel 4 Grundlagen zur Parallelverarbeitung Universität Karlsruhe (TH) Forschungsuniversität gegründet 1825 Kapitel 4 Grundlagen zur Parallelverarbeitung SWT I Sommersemester 2009 Prof. Dr. Walter F. Tichy Dipl.-Inform. David J. Meder Warum Parallelverarbeitung?

Mehr

EXPLICIT MULTI-THREADING

EXPLICIT MULTI-THREADING Fakultät Informatik Institut für Technische Informatik EXPLICIT MULTI-THREADING Mattis Hasler Dresden, 17.5.2011 Inhalt ˆ PRAM ˆ XMT Idee ˆ Architektur ˆ Speichertechniken ˆ Implementierungen ˆ Leistungsevaluation

Mehr

GPGPUs am Jülich Supercomputing Centre

GPGPUs am Jülich Supercomputing Centre GPGPUs am Jülich Supercomputing Centre 20. April 2012 Jochen Kreutz Jülich Supercomputing Centre (JSC) Teil des Forschungszentrums Jülich und des Institute for Advanced Simulation (IAS) betreibt Supercomputer

Mehr

Impulse C. Seminar Ausgewählte Themen in Hardwareentwurf und Optik. Steffen Liebscher, HWS 2009/2010. Steffen Liebscher

Impulse C. Seminar Ausgewählte Themen in Hardwareentwurf und Optik. Steffen Liebscher, HWS 2009/2010. Steffen Liebscher Impulse C Seminar Ausgewählte Themen in Hardwareentwurf und Optik, HWS 2009/2010 Inhalt Was ist Impulse C? Anwendungsgebiete Impulse C in der Praxis Beispiel und Benchmark Ausblick Zusammenfassung 2 Was

Mehr

Die L4-Mikrokern. Mikrokern-Familie. Hauptseminar Ansätze für Betriebssysteme der Zukunft. Michael Steil. Michael Steil 18.04.2002

Die L4-Mikrokern. Mikrokern-Familie. Hauptseminar Ansätze für Betriebssysteme der Zukunft. Michael Steil. Michael Steil 18.04.2002 Die L4-Mikrokern Mikrokern-Familie Hauptseminar Ansätze für Betriebssysteme der Zukunft 18.04.2002 Folie 1 Aufbau des Vortrags 1. Mikrokerne: Idee und Geschichte 2. L4: ein schneller Mikrokern 3. L4Linux:

Mehr

Games with Cellular Automata auf Parallelen Rechnerarchitekturen

Games with Cellular Automata auf Parallelen Rechnerarchitekturen Bachelor Games with Cellular Automata auf Parallelen en ( ) Dipl.-Inf. Marc Reichenbach Prof. Dietmar Fey Ziel des s Paralleles Rechnen Keine akademische Nische mehr Vielmehr Allgemeingut für den Beruf

Mehr

COMPUTERKLASSEN MULTICOMPUTER und SPEZIALANWENDUNGSSYSTEME

COMPUTERKLASSEN MULTICOMPUTER und SPEZIALANWENDUNGSSYSTEME D - CA - XIX - CC,M&SPC - 1 HUMBOLDT-UNIVERSITÄT ZU BERLIN INSTITUT FÜR INFORMATIK Vorlesung 19 COMPUTERKLASSEN MULTICOMPUTER und SPEZIALANWENDUNGSSYSTEME Sommersemester 2003 Leitung: Prof. Dr. Miroslaw

Mehr

Prüfung VO Betriebssysteme SS2008 / 7. Juli 2008

Prüfung VO Betriebssysteme SS2008 / 7. Juli 2008 Name: Matrikel-Nr: Prüfung VO Betriebssysteme SS2008 / 7. Juli 2008 Bitte schreiben Sie leserlich und antworten Sie kurz und präzise. 1. Zeichnen Sie das Schichten-Modell eines Computersystems und markieren

Mehr

Neue Prozessor-Architekturen für Desktop-PC

Neue Prozessor-Architekturen für Desktop-PC Neue Prozessor-Architekturen für Desktop-PC Bernd Däne Technische Universität Ilmenau Fakultät I/A - Institut TTI Postfach 100565, D-98684 Ilmenau Tel. 0-3677-69-1433 bdaene@theoinf.tu-ilmenau.de http://www.theoinf.tu-ilmenau.de/ra1/

Mehr