Kristallisation. von T S positiv. Diese treibende Kraft ist proportional zu der Differenz der beiden freie Enthalpie Kurven, G U = G S G K

Größe: px
Ab Seite anzeigen:

Download "Kristallisation. von T S positiv. Diese treibende Kraft ist proportional zu der Differenz der beiden freie Enthalpie Kurven, G U = G S G K"

Transkript

1 Kistallisation Bishe wuden de atomistische Aufbau von Festköpen behandelt. Offen blieb jedoch die Fage, wie man dahin gelangt. Diese Fage soll in diesem Kapitel geklät weden. Festköpe, gleich welche At, entstehen aus n, in Sondefällen gehen sie auch aus Reaktionen andee Festköpe hevo. Zunächst wid eine teibende Kaft benötigt - und zwa in allen Fällen. Denn nu wenn de Zustand des Festköpes enegetisch günstige als sein Ausgangszustand ist, wid e sich bilden. In de Regel ist die teibende Kaft duch eine Tempeatueniedigung begündet. Eine von außen angelegte geingee Tempeatu zwingt die diese anzunehmen, bis sich das System im themodynamischen Gleichgewicht mit de Umgebung befindet. Daübehinaus ist es genauso möglich aufgund de Ändeung andee Potentiale, wie zum Beispiel des äußeen Ducks, eine angelegten Spannung ode eines veändeten chemischen Potentials (und andee meh) das System in ein neues Gleichgewicht zu übefühen. Zu Bildung eines Festköpes muß dann noch eine Genze übeschitten weden, die ihn entstehen läßt. Dies ist im Fall eine Tempeatueniedigung die Schmelztempeatu. Man spicht von themodynamische Übescheitung. Bei gegebenen äußeen Bedingungen ist imme de Zustand stabil, de das geingste themodynamische Potential besitzt. Im Fall, da die Tempeatu und de Duck gegeben sind muß die feie Enthalpie den geingsten Wet einnehmen. Da Phasendiagamme (s. nächstes Kapitel) stets Gleichgewichtsbedingungen kennzeichnen, die bei konstantem Duck und bei konstante Tempeatu beobachtet weden, ist die feie Enthalpie G von besondee Bedeutung. Zu Einneung: feie Enegie F = U T S isotheme Pozesse Enthalpie H = U + pv isobae Pozesse feie Enthalpie G = U T S + pv isotheme und isobae Pozesse goßkanonisches Potential Φ = U T S µn isotheme Pozesse mit konstante Teilchenzahl Hiein ist: U - innee Enegie; T - Tempeatu; S - Entopie; p - Duck; V - Volumen; µ - chemisches Potential; N - Teilchenzahl Am Schmelzpunkt müssen demnach die feien Enthalpien von und Kistall gleich sein (G S = G K ). Wid zunächst von eine lineaen Ändeung de feien Enthalpie ausgegangen, so ehält man qualitativ den nebenstehenden Velauf. Obehalb de Schmelztempeatu T S hat die die geingee feie Enthalpie und die Phase befindet sich im themodynamischen Gleichgewicht; untehalb von T S befindet sich de Kistall im themodynamischen Gleichgewicht. Kühlt man eine unte die Schmelztempeatu ab, so esultiet dies in eine teibenden Kaft, die eine Kistallisation de fodet. Diese teibende Kaft ist negativ obehalb von T S und est untehalb G G K Kistall G S G U von T S positiv. Diese teibende Kaft ist popotional zu de Diffeenz de beiden feie Enthalpie Kuven, die mit göße wedende Entfenung zu Schmelztempeatu göße wid. G U = G S G K T S T 55

2 56. KRISTALLISATION. Keimbildung Wid eine unte die Schmelztempeatu abgekühlt, so stellt sich nicht spontan de feste Zustand ein. Dies liegt daan, daß sich ein feste Keim, also ein kleines Volumen mit kistalline Anodnung von endliche Göße duch themische Fluktuationen bilden muß. Solche Fluktuationen kommen aufgund themisch veusachte Atombewegungen imme vo. Obehalb de Schmelztempeatu ist de Keim gundsätzlich instabil, das heißt e löst sich schnelle auf, als e wachsen kann. Bei Tempeatuen untehalb des Schmelzpunktes gibt es zwa eine teibende Kaft, die ein Wachstum des Keimes fodet. Da es abe auch bei diesen Tempeatuen themische Fluktuationen gibt, kommt es auch zu Auflösepozessen, die den Keim vekleinen. Es gibt noch einen weiteen Beitag, de einen Keim wiede aufzulösen vesucht. Die Obefläche eines Keimes liefet imme einen positiven Beitag zu spezifischen Enegie eines Objektes (γ). Bildet man einen Keim, so gewinnt man Volumenenegie aufgund de Tatsache, daß das Volumen des Keimes eine geingee feie Enthalpie aufweist, als die umgebene. Zum andeen muß Obeflächenenegie aufgewendet weden. Ein kleine Keim kann in este Näheung als und betachtet weden. Damit gilt fü einen kugelfömigen Keim: G K = 4 π G U + 4π γ (.) G G GK GO~ GO~ G ~ V * GK G V ~ Abbildung.: Feie Enthalpie und deen Obeflächen und Volumenanteil eines idealen kugelfömigen Keims fü T > T S (links) und T < T S (echts). Fü T > T S ist G U < 0 G K ist imme positiv. Jede Keim zefällt dahe unte Enegiegewinn. Fü T < T S nimmt die feie Enthalpie eines Keimes est ab einem kitischen Radius ab. Um diesen Wet zu bestimmen, wid das Maximum de feien Enthalpie bestimmt (Ableitung). d( G K ) = 0 d (.) 4π G U + 8πγ = 0 (.) 8πγ = 4π G U (.4) γ G U = = (.5) Im Maximum de feien Enthalpie sind die chemischen Potentiale im Keim und in de umgebenen Phase gleich. Alledings ist das Gleichgewicht labil, da sowohl eine Vegößeung, als auch eine Vekleineung des Keims eine Veingeung de feien Enthalpie des Systems bewiken. Est gößee Keime haben im Vegleich mit ihe Umgebung (Genzfläche) eine positive Enegiebillanz und wachsen weite. Jede Keim muß diesen Potentialwall übewinden. Man nennt dies auch Keimbildungsabeit, sie entspicht eine Aktivieungsenegie fü die Keimbildung, die duch themische Fluktuationen aufgebacht weden muß. Damit hängen die G K und Wete empfindlich von de Übescheitung ab. Sie sind fü

3 .. KEIMBILDUNG 57 kleine Übescheitungen unendlich goß und veingen sich mit zunehmende Tempeatueniedigung untehalb des Schmelzpunktes. Gk T eq G (T ) K * G K (T ) K (T ) T T T (T ) K (T ) K T Abbildung.: Feie Enthalpie eines Keimes in Abhängigkeit von de Tempeatu T < T < T < T S (links). Kitische Keimadius in Abhängigkeit von de Untekühlung (echts). Da die Keimbildung duch themische Fluktuationen efolgt kann man eine Keimbildungsgeschwindigkeit definieen: [ ] G Ṅ exp (.6) kt Da G stak von de Tempeatu abhängt machen sich kleine Untekühlungen in staken Ändeungen von Ṅ bemekba. Es wid zwischen homogene Keimbildung und heteogene Keimbildung unteschieden. Homogene Keimbildung findet in de Schmel- Keime ze nach den eben beschiebenen Abläufen statt. Im Fall de heteogenen Keimbildung kann ein Teil de Obefläche des Keime Keimes duch die Tiegelwand, ode duch Schwebeteilchen in de beeitgestellt weden. Hieduch veinget sich die zu Keimbildung notwendigeweise aufzubingende Abbildung.: Schemata de homogenen (links) und heteogenen Keimbildung (echts). Obeflächenenegie und de Keim kann leichte wachsen, als dies im homogenen Fall de Fall wäe. Es gilt: G het = f G hom ; f (.7) Beispielsweise gilt fü die Keimbildung an eine glatten Wand: γ γ SK SW Θ Keim γ KW Wand Θ Θ f = ( + cos Θ)( cos Θ) 4 Θ - Benetzungswinkel. Ist diese seh goss geht f, was bedeutet, daß de Topfen so gut wie nicht benetzt. Es liegt de Fall de homogenen Keimbildung vo. Ist de Winkel seh klein, wid die gesamte Wand bekeimt f 0. Ist de Winkel geade θ = 90 so wid cos Θ = 0 und f = /. In diesem Fall ist die Gestalt des Keimes an de Wand geade eine Halbkugel. Im Vegleich zu einem homogenen Keim muß nu die Hälfte an Obeflächenenegie aufgebacht weden. Wenn bei de Kistallisation von spontane Keimbildung ausgegangen wid kommt es bei de Einkistallzüchtung zu eine Reihe von Poblemen. Zunächst muß eine elativ goße Übescheitung hegestellt weden, die Keimbildung setzt dann abe seh vehement und mit eine unewünscht goßen Anzahl von

4 58. KRISTALLISATION Keimen ein, die nicht schnell genug zuückgenommen weden kann. Die kistallisiet an vielen Stellen gleichzeitig. Eine Möglichkeit, dies Poblem in den Giff zu bekommen, besteht dain, die nu an einem Punkt zu untekühlen. Bei de Czochalski-Methode wid ein kalte Keimkistall in die eingetaucht, an dem die Kistallisation efolgt. Diese Keim wid langsam wiede aus de hinausgezogen; an ihm wächst de Kistall. Duch den Einsatz eines solchen Impfkistalls kann die spontane Keimbildung in de untedückt weden. Duch den Impfkistall kann auch die Wachstumsichtung und -kinetik vogegeben weden. Alledings muß dafü Soge getagen weden, daß de Impfkistall nicht beim Eintauchen in die aufgelöst wid. Wenn es möglich ist vewendet man dahe gene isostuktuelle Kistalle mit höheen Schmelzpunkten. Eine andee Möglichkeit besteht in de Auslese de wachsenden Keime. Dies kann am wikungsvollsten duch eine Vejüngung des fü die wachsenden Kistalle zu Vefügung stehenden Queschnitts efolgen.. Kistallwachstum Nach de Bildung eines stabilen Keimes wächst diese duch die Anlageung weitee Bausteine weite. Da die Enegie de Obefläche des wachsenden Kistalls von de Kistallogaphischen Richtung abhängt, vesucht das System seine Enegie so geing wie möglich zu halten, indem die Obefläche mit höhee Enegie so geing wie möglich gehalten wid. a b a b Abbildung.4: Kistallwachstum auf eine Fläche geinge Enegie; sie wid schnelle bedeckt, als de Kistall in andee Richtungen (z.b. senkecht dazu) wachsen kann. Die Obefläche wid von den langsam wachsenden Ebenen gebildet, denn die schnell wachsenden Ebenen veschwinden im Laufe de Zeit. Das wohl bekannteste Modell fü das Kistallwachstum stammt von Kossel und Stanski. Nach diesem Modell gibt es fü die Bausteine (Atome / Moleküle) an den Obeflächen eines Kistalls veschiedene Positionen, die duch unteschiedliche Bindungsenegien gekennzeichnet sind. 5 5 Abbildung.5: Zum Modell von Kossel und Stanski: Veschiedene Stadien des Flächenwachstums eine Obefläche (von links nach echts: vollständige Fläche - Wachstum von Rand - Wachstum von Nukleationszenten auf de Obefläche) sowie veschiedene Lagen auf de Obefläche eines Kistalls gekennzeichnet duch ihe Bindungsenegien. Die Abtennabeit, die aufgewendet weden muß, um einen Baustein aus dem Kistallvebund abzutennen, hängt empfindlich von seine Position ab, was sich aus Unteschieden in de Anzahl und Anodnung de Nachban fü die einzelnen Positionen eklät. Von Besondee Bedeutung ist hiebei die Halbkistalllage. Beim Aufbau eines Kistalls weden fast alle Bausteine übe solche Halbkistalllagen angelaget. De Enegiegewinn beim Anlagen eines Bausteines in ein Loch ist göße als de Gewinn bei de

5 .. KRISTALLWACHSTUM 59 Anlageung auf eine Fläche. Hieduch wid de Kistall im themodynamischen Gleichgewicht von eine kleinen Anzahl bestimmte Flachen {hkl} begenzt, die atoma glatt sind. Dieses Modell gilt steng genommen nu bei T = 0, ohne themische Fluktuationen, da die Entopie nicht beücksichtigt wude. Bei endlichen Tempeatuen kommt es zu eine atomaen Aufauhung de Obefläche. Diese Sachvehalt ist auch schon in Modellen beschieben, füht abe an diese Stelle zu weit. De Einbau von Bausteinen in den Kistall läuft nach folgenden Schitten ab: Tanspot de Bausteine zu Phasengenze (duch Konvektion / Volumendiffusion).. Absoption auf eine atoma glatten Teasse (evtl. mit. Desolvation beteiligte Atome).. Tanspot zu Stufe (Obeflächendiffusion). 4. Anlageung an eine Stufe (mit. Desolvation). 5. Tanspot entlang de Stufe (Stufendiffusion) zu Halbkistalllage. 6. Einbau in die Stufe (mit. Desolvation). Desolvation=Umwandlung des Zustandes de molekulaen Bausteine.. Einfluß de Estaungswäme ZUM NACHDENKEN: Was ist de Unteschied zwischen homogene und heteogene Keimbildung? Duch welche Flächen wid ein wachsende Kistall begenzt und waum? Die Gestalt de Köne in eine estaenden wid im Wesentlichen duch die Abfuh de Estaungswäme bestimmt. Diese kann entwede duch den wachsenden Kistall, ode duch die abgefüht weden. Efolgt die Wämeabfuh duch den Kistall, so ist de Tempeatugadient im Kistall göße, als in de. Wächst dann ein Kistall an de Estaungsfont vo, so geät e in ein Gebiet höhee Tempeatu und bildet sich zuück. Auf diese Weise bleibt die Font eben und stabil. Kistall T T S Abbildung.6: Tempeatuvelauf an de Estaungsfont eines Kistalls bei Wämeabfuh duch den Kistall. x Wid die Wäme jedoch duch die abgefüht, was de Fall ist, wenn die bei de Estaung stak untekühlt ist, so weist die eine niedigee Tempeatu auf, als de Kistall. Man ehält eine Tempeatuvelauf, wie e qualitativ in Abbildung.7 gezeigt ist.

6 60. KRISTALLISATION Kistall T T S Abbildung.7: Tempeatuvelauf an de Estaungsfont eines Kistalls bei Wämeabfuh duch die. x Wächst in diesem Regime de Kistall übe die Font hinaus, so wächst e seh schnell weite, da an ihm die kalte kistallisiet. Es bilden sich lange und dünne Kistalle, die sich häufig in andee Richtungen weite vezweigen. Diese Gebilde heißen Denditen. In diesem Fall bewegt sich die Estaungsfont uneben und nicht stabil. Abbildung.8: Stuktubildung eines wachsenden Denditen (T. Wilke) Einfluß von Femdatomen Femdatome neigen bei de Estaung dazu, sich in de anzueichen. Hieduch wid die Estaungstempeatu weite abgesenkt. In Legieungen besteht in de Regel ein endliche Tempeatubeeich, in dem und Kistall nebeneinande im Gleichgewicht stehen. Auf diesen Sachvehalt wid im Zusammenhang mit den Phasendiagammen im nächsten Kapitel eingegangen.. Estaung von Legieungen Da es neben de Kenntnis übe die Existenz und das Aussehen von Phasendiagammen wichtig ist, diese auch lesen zu können, weden nun noch einige besondee Punkte bei de Estaung von mehkomponentigen n heausgestellt und danach im Detail auf die Phasendiagamme eingegangen. Da in Legieungen die und eine feste Phase duch ein Homogenitätsgebiet, in dem beide Phasen nebeneinande voliegen, getennt sind ist es wichtig zu vestehen, wie die Kistallisation eine festen Phase von Statten geht.

Einführung in die Physik I. Wärme 3

Einführung in die Physik I. Wärme 3 Einfühung in die Physik I Wäme 3 O. von de Lühe und U. Landgaf Duckabeit Mechanische Abeit ΔW kann von einem Gas geleistet weden, wenn es sein olumen um Δ gegen einen Duck p ändet. Dies hängt von de At

Mehr

PN 2 Einführung in die Experimentalphysik für Chemiker und Biologen

PN 2 Einführung in die Experimentalphysik für Chemiker und Biologen PN 2 Einfühung in die alphysik fü Chemike und Biologen 2. Volesung 27.4.07 Nadja Regne, Thomas Schmiee, Gunna Spieß, Pete Gilch Lehstuhl fü BioMolekulae Optik Depatment fü Physik LudwigMaximiliansUnivesität

Mehr

1. Kondensierte Materie

1. Kondensierte Materie 1. Kondensiete Mateie Die Physik de kondensieten Mateie bescheibt gebundene Mateie wie Festköpe und Flüssigkeiten. Im Vegleich zu Gasen, ist die Atomdichte ρ bei kondensiete Mateie deutlich höhe, wie folgende

Mehr

Die Schrödingergleichung für das Elektron im Wasserstoffatom lautet Op2 e2 Or. mit

Die Schrödingergleichung für das Elektron im Wasserstoffatom lautet Op2 e2 Or. mit 4 Stak-Effekt Als Anwendung de Stöungstheoie behandeln wi ein Wassestoffatom in einem elektischen Feld. Fü den nichtentateten Gundzustand des Atoms füht dies zum quadatischen Stak-Effekt, fü die entateten

Mehr

Elektrostatik. Arbeit und potenzielle Energie

Elektrostatik. Arbeit und potenzielle Energie Elektostatik. Ladungen Phänomenologie. Eigenschaften von Ladungen 3. Käfte zwischen Ladungen, quantitativ 4. Elektisches Feld 5. De Satz von Gauß 6. Potenzial und Potenzialdiffeenz i. Abeit im elektischen

Mehr

Statische Magnetfelder

Statische Magnetfelder Statische Magnetfelde Bewegte Ladungen ezeugen Magnetfelde. Im Magnetfeld efäht eine bewegte Ladung eine Kaft. Elektische Felde weden von uhenden und bewegten Ladungen gleichemaßen ezeugt. Die Kaft duch

Mehr

Inhalt der Vorlesung A1

Inhalt der Vorlesung A1 PHYSIK A S 03/4 Inhalt de Volesung A. Einfühung Methode de Physik Physikalische Gößen Übesicht übe die vogesehenen Theenbeeiche. Teilchen A. Einzelne Teilchen Bescheibung von Teilchenbewegung Kineatik:

Mehr

F63 Gitterenergie von festem Argon

F63 Gitterenergie von festem Argon 1 F63 Gitteenegie von festem Agon 1. Einleitung Die Sublimationsenthalpie von festem Agon kann aus de Dampfduckkuve bestimmt weden. Dazu vewendet man die Clausius-Clapeyon-Gleichung. Wenn außedem noch

Mehr

Übung zur Einführung in die VWL / Makroökonomie. Teil 7: Das IS-LM-Modell

Übung zur Einführung in die VWL / Makroökonomie. Teil 7: Das IS-LM-Modell Begische Univesität Wuppetal FB B Schumpete School of Economics and Management Makoökonomische Theoie und Politik Übung zu Einfühung in die VWL / Makoökonomie Teil 7: Das IS-LM-Modell Thomas Domeatzki

Mehr

Integration von Ortsgrößen zu Bereichsgrößen

Integration von Ortsgrößen zu Bereichsgrößen Integation von Otsgößen zu Beeichsgößen 1 Integation von Otsgößen zu Beeichsgößen Stömungen sind Bewegungen von Teilchen innehalb von Stoffen. Ihe wesentlichen Gesetzmäßigkeiten gehen aus Zusammenhängen

Mehr

Stereo-Rekonstruktion. Stereo-Rekonstruktion. Geometrie der Stereo-Rekonstruktion. Geometrie der Stereo-Rekonstruktion

Stereo-Rekonstruktion. Stereo-Rekonstruktion. Geometrie der Stereo-Rekonstruktion. Geometrie der Stereo-Rekonstruktion Steeo-Rekonstuktion Geometie de Steeo-Rekonstuktion Steeo-Kalibieung Steeo-Rekonstuktion Steeo-Rekonstuktion Kameakalibieung kann dazu vewendet weden, um aus einem Bild Weltkoodinaten zu ekonstuieen, falls

Mehr

Einführung in die Physik I. Mechanik deformierbarer Körper 1

Einführung in die Physik I. Mechanik deformierbarer Körper 1 Einfühung in die Physik I Mechanik defomiebae Köe O. von de Lühe und U. Landgaf Defomationen Defomationen, die das Volumen änden Dehnung Stauchung Defomationen, die das Volumen nicht änden Scheung Dillung

Mehr

Einführung in die Theoretische Physik

Einführung in die Theoretische Physik Einfühung in die Theoetische Physik De elektische Stom Wesen und Wikungen Teil : Gundlagen Siegfied Pety Fassung vom 19. Janua 013 n h a l t : 1 Einleitung Stomstäke und Stomdichte 3 3 Das Ohmsche Gesetz

Mehr

2 Theoretische Grundlagen

2 Theoretische Grundlagen 2 Theoetische Gundlagen 2.1 Gundlagen de dielektischen Ewämung 2.1.1 Mechanismen de dielektischen Ewämung Die dielektische Ewämung beuht auf de Wechselwikung atomae Ladungstäge elektisch nicht leitende

Mehr

Elektrischer Strom. Strom als Ladungstransport

Elektrischer Strom. Strom als Ladungstransport Elektische Stom 1. Elektische Stom als Ladungstanspot 2. Wikungen des ektischen Stomes 3. Mikoskopische Betachtung des Stoms, ektische Widestand, Ohmsches Gesetz i. Diftgeschwindigkeit und Stomdichte ii.

Mehr

j D = D x r = D x (8.1)

j D = D x r = D x (8.1) 8 Diffusion Die Diffusion ist die Bewegung von Atomen ode Molekülen. Zunächst ist jedoch klazustellen, daß diese Bewegung nicht auf eine äußee Kafteinwikung zuückzufühen ist. Vielmeh beuht die Diffusion

Mehr

Gravitationsgesetz. Name. d in km m in kg Chaldene 4 7, Callirrhoe 9 8, Ananke 28 3, Sinope 38 7, Carme 46 1,

Gravitationsgesetz. Name. d in km m in kg Chaldene 4 7, Callirrhoe 9 8, Ananke 28 3, Sinope 38 7, Carme 46 1, . De Jupite hat etwa 60 Monde auch Tabanten genannt. De Duchesse seines gößten Mondes Ganyed betägt 56k. Es gibt abe auch Monde die nu einen Duchesse von etwa eine Kiloete haben. Die Monde des Jupites

Mehr

Kinematik und Dynamik der Rotation - Der starre Körper (Analogie zwischen Translation und Rotation eine Selbstlerneinheit)

Kinematik und Dynamik der Rotation - Der starre Körper (Analogie zwischen Translation und Rotation eine Selbstlerneinheit) Kinematik und Dynamik de Rotation - De stae Köpe (Analogie zwischen Tanslation und Rotation eine Selbstleneinheit) 1. Kinematische Gößen de Rotation / Bahn- und Winkelgößen A: De ebene Winkel Bei eine

Mehr

Abiturprüfung Physik, Grundkurs

Abiturprüfung Physik, Grundkurs Seite 1 von 10 Abitupüfung 2011 Physik, Gundkus Aufgabenstellung: Aufgabe 1: Definition und Messung de Feldstäke B (auch Flussdichte genannt) magnetische Felde kontaktlose Messung goße Stöme 1.1 Die Abbildung

Mehr

3 Das kanonische und das großkanonische Ensemble

3 Das kanonische und das großkanonische Ensemble 3 Das kanonische und das goßkanonische Ensemble 3. Definition kanonisches Ensemble Wie in de Themodynamik entspechen die Bedingungen des abgeschlossenen Systems, nämlich vogegebene E, V und N, nicht de

Mehr

Herrn N. SALIE danke ich für interessante Diskussionen.

Herrn N. SALIE danke ich für interessante Diskussionen. nen wi, daß das metische Feld im allgemeinen nicht konsevativ ist. Lediglich in dem Fall eines statischen metischen Feldes ( «.,4 = 0) existiet Enegieehaltung: Die bisheigen enegetischen Betachtungen basieen

Mehr

Kerne sind stark gebundene Systeme aus farbneutralen Nukleonen:

Kerne sind stark gebundene Systeme aus farbneutralen Nukleonen: X. Kenphysik. ukleonen und Kenkaft Kene sind stak gebundene Systeme aus fabneutalen ukleonen: Impuls de ukleonen aufgund Unschäfeelationen elativ goß (s. späte). Bild feie ukleonen in einem effektiven

Mehr

Laborpraktikum Sensorik. Versuch. Füllstandssensoren PM 1

Laborpraktikum Sensorik. Versuch. Füllstandssensoren PM 1 Otto-von-Gueicke-Univesität Magdebug Fakultät fü Elektotechnik und Infomationstechnik Institut fü Miko- und Sensosysteme (IMOS) Labopaktikum Sensoik Vesuch Füllstandssensoen PM 1 Institut fü Miko- und

Mehr

6. Das Energiebändermodell für Elektronen

6. Das Energiebändermodell für Elektronen 6. Das Enegiebändemodell fü Eletonen Modell des feien Eletonengases ann nicht eläen: - Unteschied Metall - Isolato (Metall: ρ 10-11 Ωcm, Isolato: ρ 10 Ωcm), Halbleite? - positive Hall-Konstante - nichtsphäische

Mehr

VERFESTIGUNGSMECHANISMEN

VERFESTIGUNGSMECHANISMEN 216 1. VERFESTIGUNGSMECHANISMEN Schließlich hängt die Stapelfehleenegie von de Zusammensetzung ab, man spicht in diesem Fall von chemische Wechselwikung. Die Stapelfehleenegie nimmt fü gewöhnlich mit zunehmende

Mehr

Übungsaufgaben zum Prüfungsteil 1 Lineare Algebra /Analytische Geometrie

Übungsaufgaben zum Prüfungsteil 1 Lineare Algebra /Analytische Geometrie Übungsaufgaben zum Püfungsteil Lineae Algeba /Analytische Geometie Aufgabe Von de Ebene E ist folgende Paametefom gegeben: 3 E: x= 4 + 0 + s 3 ;,s 0 3 4 a) Duch geeignete Wahl de Paamete und s ehält man

Mehr

Einführung in die Physik I. Elektromagnetismus 1

Einführung in die Physik I. Elektromagnetismus 1 infühung in die Physik I lektomagnetismus O. von de Lühe und. Landgaf lektische Ladung lektische Ladung bleibt in einem abgeschlossenen System ehalten s gibt zwei Aten elektische Ladung positive und negative

Mehr

2 Kinetik der Erstarrung

2 Kinetik der Erstarrung Studieneinheit II Kinetik de Estaung. Keibildung. Keiwachstu. Gesatkinetik R. ölkl: Schelze Estaung Genzflächen Kinetik de Phasenuwandlungen Nach Übescheiten eines Uwandlungspunktes hätte das vollständig

Mehr

Klassische Mechanik - Ferienkurs. Sommersemester 2011, Prof. Metzler

Klassische Mechanik - Ferienkurs. Sommersemester 2011, Prof. Metzler Klassische Mechanik - Feienkus Sommesemeste 2011, Pof. Metzle 1 Inhaltsvezeichnis 1 Kelegesetze 3 2 Zweiköeoblem 3 3 Zentalkäfte 4 4 Bewegungen im konsevativen Zentalkaftfeld 5 5 Lenzsche Vekto 7 6 Effektives

Mehr

Seminarvortrag Differentialgeometrie: Rotationsflächen konstanter Gaußscher

Seminarvortrag Differentialgeometrie: Rotationsflächen konstanter Gaußscher Seminavotag Diffeentialgeometie: Rotationsflächen konstante Gaußsche Kümmung Paul Ebeman, Jens Köne, Mata Vitalis 1. Juni 22 Inhaltsvezeichnis Vobemekung 2 1 Einfühung 2 2 Este Fundamentalfom 2 3 Vetägliche

Mehr

A A Konservative Kräfte und Potential /mewae/scr/kap2 14s

A A Konservative Kräfte und Potential /mewae/scr/kap2 14s 2.4 Konsevative Käfte und Potential /mewae/sc/kap2 4s3 29-0-0 Einige Begiffe: Begiff des Kaftfeldes: Def.: Kaftfeld: von Kaft-Wikung efüllte Raum. Dastellung: F ( ) z.b. Gavitation: 2. Masse m 2 in Umgebung

Mehr

9.2. Bereichsintegrale und Volumina

9.2. Bereichsintegrale und Volumina 9.. Beeichsintegale und Volumina Beeichsintegale Rein fomal kann man Integale übe einem (meßbaen) Beeich B bilden, indem man eine möglicheweise auf einem gößeen Beeich definiete Funktion f mit de chaakteistischen

Mehr

7 Trigonometrie. 7.1 Definition am Einheitskreis. Workshops zur Aufarbeitung des Schulstoffs Sommersemester TRIGONOMETRIE

7 Trigonometrie. 7.1 Definition am Einheitskreis. Workshops zur Aufarbeitung des Schulstoffs Sommersemester TRIGONOMETRIE 7 Tigonometie Wi beschäftigen uns hie mit de ebenen Tigonometie, dabei geht es hauptsächlich um die geometische Untesuchung von Deiecken in de Ebene. Ein wichtiges Hilfsmittel dafü sind die Winkelfunktionen

Mehr

Übungsaufgaben zum Thema Kreisbewegung Lösungen

Übungsaufgaben zum Thema Kreisbewegung Lösungen Übungsaufgaben zum Thema Keisbewegung Lösungen 1. Ein Käfe (m = 1 g) otiet windgeschützt auf de Flügelspitze eine Windkaftanlage. Die Rotoen de Anlage haben einen Duchmesse von 30 m und benötigen fü eine

Mehr

Abiturprüfung Physik 2016 (Nordrhein-Westfalen) Leistungskurs Aufgabe 1: Induktion bei der Torlinientechnik

Abiturprüfung Physik 2016 (Nordrhein-Westfalen) Leistungskurs Aufgabe 1: Induktion bei der Torlinientechnik Abitupüfung Physik 2016 (Nodhein-Westfalen) Leistungskus Aufgabe 1: Induktion bei de Tolinientechnik Im Fußball sogen egelmäßig umstittene Entscheidungen übe zu Unecht gegebene bzw. nicht gegebene Toe

Mehr

Versuch M21 - Oberflächenspannung

Versuch M21 - Oberflächenspannung Enst-Moitz-Andt Univesität Geifswald Institut fü Physik Vesuch M1 - Obeflächensannung Name: Mitabeite: Guennumme: lfd. Numme: Datum: 1. Aufgabenstellung 1.1. Vesuchsziel Bestimmen Sie die Obeflächensannung

Mehr

II Wärmelehre 16. Phasenübergänge (Verdampfen, Schmelzen, Sublimieren) pt-diagramm

II Wärmelehre 16. Phasenübergänge (Verdampfen, Schmelzen, Sublimieren) pt-diagramm 16. Volesung EP II Wämelehe 16. Phasenübegänge (Vedampfen, Schmelzen, Sublimieen) pv-diagamm pt-diagamm III. Elektizität und Magnetismus 17. Elektostatik Elektische Ladung q Elektisches Feld E Potential

Mehr

Berechnung der vorhandenen Masse von Biogas in Biogasanlagen zur Prüfung der Anwendung der StörfallV

Berechnung der vorhandenen Masse von Biogas in Biogasanlagen zur Prüfung der Anwendung der StörfallV Beechnung de vohandenen Masse von Biogas in Biogasanlagen zu Püfung de Anwendung de StöfallV 1. Gundlagen Zu Püfung de Anwendbakeit de StöfallV auf Betiebsbeeiche, die Biogasanlagen enthalten, muss das

Mehr

Abiturprüfung 2015 Grundkurs Biologie (Hessen) A1: Ökologie und Stoffwechselphysiologie

Abiturprüfung 2015 Grundkurs Biologie (Hessen) A1: Ökologie und Stoffwechselphysiologie Abitupüfung 2015 Gundkus Biologie (Hessen) A1: Ökologie und Stoffwechselphysiologie Veteidigungsstategien von Pflanzen BE 1 Benennen Sie die esten dei Tophieebenen innehalb eines Ökosystems und bescheiben

Mehr

3.1 Elektrostatische Felder symmetrischer Ladungsverteilungen

3.1 Elektrostatische Felder symmetrischer Ladungsverteilungen 3 Elektostatik Das in de letzten Volesung vogestellte Helmholtz-Theoem stellt eine fomale Lösung de Maxwell- Gleichungen da. Im Folgenden weden wi altenative Methoden kennenlenen (bzw. wiedeholen), die

Mehr

Aufgabe P1 Bewegungen (15 BE)

Aufgabe P1 Bewegungen (15 BE) Abitu 2003 Physik Lk Seite 3 Pflichtaufgaben (30 BE) Aufgabe P1 Bewegungen (15 BE) 1. In de Physik weden Bewegungen mit den Modellen Massenpunkt" und stae Köpe" beschieben. Welche Gundaussagen beinhalten

Mehr

2.3 Elektrisches Potential und Energie

2.3 Elektrisches Potential und Energie 2.3. ELEKTRISCHES POTENTIAL UND ENERGIE 17 2.3 Elektisches Potential un Enegie Aus e Mechanik wissen wi, ass ie Abeit Q, ie an einem Massepunkt veichtet wi, wenn iese um einen (kleinen) Vekto veschoben

Mehr

Einführung in die Finanzmathematik - Grundlagen der Zins- und Rentenrechnung -

Einführung in die Finanzmathematik - Grundlagen der Zins- und Rentenrechnung - Einfühung in die Finanzmathematik - Gundlagen de ins- und Rentenechnung - Gliedeung eil I: insechnung - Ökonomische Gundlagen Einfache Vezinsung - Jähliche, einfache Vezinsung - Untejähliche, einfache

Mehr

Materie im Magnetfeld

Materie im Magnetfeld Mateie i Magnetfeld Die Atoe in Mateie haben agnetische Eigenschaften, die akoskopisch Magnetfelde beeinflussen, wenn an Mateie in sie einbingt. Man untescheidet veschiede Typen von agnetischen Eigenschaften:

Mehr

Stochastik: Nutzung sozialer Netzwerke

Stochastik: Nutzung sozialer Netzwerke Stochastik: Nutzung soziale Netzweke Die Nutzung von sozialen Netzweken wid imme beliebte. Dabei nutzen imme meh Jugendliche veschiedene soziale Netzweke. Es wid davon ausgegangen, dass 30 % alle Jugendlichen

Mehr

Übungen zur Physik 1 - Wintersemester 2012/2013. Serie Oktober 2012 Vorzurechnen bis zum 9. November

Übungen zur Physik 1 - Wintersemester 2012/2013. Serie Oktober 2012 Vorzurechnen bis zum 9. November Seie 3 29. Oktobe 2012 Vozuechnen bis zum 9. Novembe Aufgabe 1: Zwei Schwimme spingen nacheinande vom Zehn-Mete-Tum ins Becken. De este Schwimme lässt sich vom Rand des Spungbetts senkecht heuntefallen,

Mehr

b) Drehimpuls r r Für Massenpunkt auf Kreisbahn: L=r p Für Massenpunkt auf beliebiger Bahn im Raum:

b) Drehimpuls r r Für Massenpunkt auf Kreisbahn: L=r p Für Massenpunkt auf beliebiger Bahn im Raum: b) Dehimpuls De Bewegungszustand eines otieenden Köpes wid duch seinen Dehimpuls L beschieben. Analog zum Dehmoment nimmt de Dehimpuls mit dem Impuls p und dem Bahnadius zu. Fü Massenpunkt auf Keisbahn:

Mehr

( ) ( ) 5. Massenausgleich. 5.1 Kräfte und Momente eines Einzylindermotors. 5.1.1 Kräfte und Momente durch den Gasdruck

( ) ( ) 5. Massenausgleich. 5.1 Kräfte und Momente eines Einzylindermotors. 5.1.1 Kräfte und Momente durch den Gasdruck Pof. D.-Ing. Victo Gheoghiu Kolbenmaschinen 88 5. Massenausgleich 5. Käfte und Momente eines Einzylindemotos 5.. Käfte und Momente duch den Gasduck S N De Gasduck beitet sich in alle Richtungen aus und

Mehr

3b) Energie. Wenn Arbeit W von außen geleistet wird: W = E gesamt = E pot + E kin + EPI WS 2006/07 Dünnweber/Faessler

3b) Energie. Wenn Arbeit W von außen geleistet wird: W = E gesamt = E pot + E kin + EPI WS 2006/07 Dünnweber/Faessler 3b) Enegie (Fotsetzung) Eines de wichtigsten Natugesetze Die Gesamtenegie eines abgeschlossenen Systems ist ehalten, also zeitlich konstant. Enegie kann nu von eine Fom in eine andee vewandelt weden kann

Mehr

An welche Stichwörter von der letzten Vorlesung können Sie sich noch erinnern?

An welche Stichwörter von der letzten Vorlesung können Sie sich noch erinnern? An welche Stichwöte von de letzten Volesung können Sie sich noch einnen? Magnetfeld: Pemanentmagnete und Elektomagnete F = qv B B Gekeuzte Felde De Hall-Effekt Geladene Teilchen auf eine Keisbahn = mv

Mehr

Komplexe Widerstände

Komplexe Widerstände Paktikum Gundlagen de Elektotechnik Vesuch: Komplexe Widestände Vesuchsanleitung 0. Allgemeines Eine sinnvolle Teilnahme am Paktikum ist nu duch eine gute Vobeeitung auf dem jeweiligen Stoffgebiet möglich.

Mehr

Magische Zaubertränke

Magische Zaubertränke Magische Zaubetänke In diese Unteichtseinheit waten auf Ihe SchüleInnen magische Zaubetänke, die die Fabe wechseln. Begiffe wie Säue, Base, Indikato und Salz können nochmals thematisiet bzw. wiedeholt

Mehr

7 Trigonometrie. 7.1 Defintion am Einheitskreis. Workshops zur Aufarbeitung des Schulsto s Wintersemester 2014/15 7 TRIGONOMETRIE

7 Trigonometrie. 7.1 Defintion am Einheitskreis. Workshops zur Aufarbeitung des Schulsto s Wintersemester 2014/15 7 TRIGONOMETRIE 7 Tigonometie Wi beschäftigen uns hie mit de ebenen Tigonometie, dabei geht es hauptsächlich um die geometische Untesuchung von Deiecken in de Ebene. Ein wichtiges Hilfsmittel dafü sind die Winkelfunktionen

Mehr

Mustertexte. Auftrag nach 11 BDSG. Gegenstand Auftrag nach 11 BDSG 2009

Mustertexte. Auftrag nach 11 BDSG. Gegenstand Auftrag nach 11 BDSG 2009 Mustetexte Auftag nach 11 BDSG Gegenstand Auftag nach 11 BDSG 2009 Soweit die DMC ode eine ihe Efüllungsgehilfen als Datenschutzbeauftagte i.s. des 4f Abs. 2 Satz 3 BDSG bestellt und tätig ist, beziehen

Mehr

Der eigentliche Druck

Der eigentliche Druck 147 De eigentliche Duck 5 Kamea: Konica Minolta Maxxum 7D Ist das Bild gut vobeeitet und teten keine Pobleme auf, so ist das Ducken mit den heutigen fü Fine-At geeigneten Tintenducken ein Vegnügen. Leide

Mehr

Einführung in die Physik I. Elektromagnetismus 3. O. von der Lühe und U. Landgraf

Einführung in die Physik I. Elektromagnetismus 3. O. von der Lühe und U. Landgraf Einfühung in die Physik Elektomagnetismus 3 O. von de Lühe und U. Landgaf Magnetismus Neben dem elektischen Feld gibt es eine zweite Kaft, die auf Ladungen wikt: die magnetische Kaft (Loentz-Kaft) Die

Mehr

Kondensatoren & Dielektrika. Kapazität, Kondensatortypen,

Kondensatoren & Dielektrika. Kapazität, Kondensatortypen, Kondensatoen & Dielektika Kapazität, Kondensatotypen, Schaltungen, Dielektika 9.6. Sanda Stein Kondensatoen Bauelement, das elektische Ladung speichen kann besteht aus zwei leitenden Köpen, die voneinande

Mehr

IV. Elektrizität und Magnetismus

IV. Elektrizität und Magnetismus IV. Elektizität und Magnetismus IV.3. Stöme und Magnetfelde Physik fü Medizine 1 Magnetfeld eines stomduchflossenen Leites Hans Chistian Oested 1777-1851 Beobachtung Oesteds: in de Nähe eines stomduchflossenen

Mehr

8. Transmissionsmechanismen: Der Zinskanal und Tobins q. Pflichtlektüre:

8. Transmissionsmechanismen: Der Zinskanal und Tobins q. Pflichtlektüre: z Pof. D. Johann Gaf Lambsdoff Univesität Passau WS 2007/08 Pflichtlektüe: Engelen, C. und J. Gaf Lambsdoff (2006), Das Keynesianische Konsensmodell, Passaue Diskussionspapiee N. V-47-06, S. 1-7. 8. Tansmissionsmechanismen:

Mehr

Abstandsbestimmungen

Abstandsbestimmungen Abstandsbestimmungen A) Vektoechnungsmethoden (mit Skalapodukt): ) Abstand eines Punktes P von eine Ebene IE im Raum (eine Geade g in de Ebene ): Anmekung: fü Geaden im Raum funktioniet diese Vektomethode

Mehr

IM6. Modul Mechanik. Zentrifugalkraft

IM6. Modul Mechanik. Zentrifugalkraft IM6 Modul Mechanik Zentifugalkaft Damit ein Köpe eine gleichfömige Keisbewegung ausfüht, muss auf ihn eine Radialkaft, die Zentipetalkaft, wiken, die imme zu einem festen Punkt, dem Zentum, hinzeigt. In

Mehr

Magnetismus EM 63. fh-pw

Magnetismus EM 63. fh-pw Magnetismus Elektische Fluß 64 Elektische Fluß, Gauss sches Gesetz 65 Magnetische Fluß 66 eispiel: magnetische Fluß 67 Veschiebungsstom 68 Magnetisches Moment bewegte Ladungen 69 Magnetisches Moment von

Mehr

lassen sich die beiden ersten Eigenschaften von (2,4)- Bäume auch mit binären Knoten erreichen?

lassen sich die beiden ersten Eigenschaften von (2,4)- Bäume auch mit binären Knoten erreichen? .7 Rot-Schwaz Schwaz-Bäume (2,4)-Bäume sind ausgeglichen: gleiche Höhe fü alle Blätte Standadopeationen auf Mengen in O(h), d.h. O(log n) unteschiedliche Knoten (, 2 ode Schlüssel) Fage: lassen sich die

Mehr

Rendite gesucht! Union Investment Wir optimieren Risikobudgets. r r. e i. 29. Euro

Rendite gesucht! Union Investment Wir optimieren Risikobudgets. r r. e i. 29. Euro 01-U4-JB-2009-Umschlag-Y:01-U4-JB-2008-Umschlag-A 11.03.2010 9:51 Uh Seite 1 JAHRBUCH 2010 29. Euo s unte o f n I Meh sikoi e i d www..de e manag Union Investment Wi optimieen Risikobudgets Union Investment

Mehr

Versuch M04 - Auswuchten rotierender Wellen

Versuch M04 - Auswuchten rotierender Wellen FACHHOCHSCHULE OSNABRÜCK Messtechnik Paktikum Vesuch M 04 Fakultät I&I Pof. D. R. Schmidt Labo fü Mechanik und Messtechnik 13.09.2006 Vesuch M04 - Auswuchten otieende Wellen 1 Zusammenfassung 2 1.1 Lenziele

Mehr

Energieeffiziente Abscheidung von hochkonzentrierten flüssigen Aerosolen mit einem Autogenen Raumladungsgetriebenen Abscheider (ARA) Dissertation

Energieeffiziente Abscheidung von hochkonzentrierten flüssigen Aerosolen mit einem Autogenen Raumladungsgetriebenen Abscheider (ARA) Dissertation Enegieeffiziente Abscheidung von hochkonzentieten flüssigen Aeosolen mit einem Autogenen Raumladungsgetiebenen Abscheide (ARA) Von de Fakultät fü Umweltwissenschaften und Vefahenstechnik de Bandenbugischen

Mehr

Lk Physik in 12/2 1. Klausur aus der Physik Blatt 1 (von 2)

Lk Physik in 12/2 1. Klausur aus der Physik Blatt 1 (von 2) Lk Physik in 1/ 1. Klausu aus de Physik 4. 03. 003 latt 1 (von ) 1. Elektonenablenkung duch Zylindespule Eine Zylindespule mit Radius 6, 0 cm, Länge l 30 cm, Windungszahl N 1000 und Widestand R 5, 0 Ω

Mehr

Anhang V zur Vorlesung Kryptologie: Hashfunktionen

Anhang V zur Vorlesung Kryptologie: Hashfunktionen Anhang V zu Volesung Kyptologie: Hashfunktionen von Pete Hellekalek Fakultät fü Mathematik, Univesität Wien, und Fachbeeich Mathematik, Univesität Salzbug Tel: +43-0)662-8044-5310 Fax: +43-0)662-8044-137

Mehr

Der Graph der Logarithmusfunktion entsteht aus dem Graphen der Exponentialfunktion durch Spiegelung an der 1. Winkelhalbierenden.

Der Graph der Logarithmusfunktion entsteht aus dem Graphen der Exponentialfunktion durch Spiegelung an der 1. Winkelhalbierenden. 0. Logaithmusfunktion n de Abbildung sind de Gaph de Exponentialfunktion zu Basis und de Gaph ihe Umkehfunktion, de Logaithmusfunktion zu Basis dagestellt. Allgemein: Die Exponentialfunktion odnet jede

Mehr

8.2 Nominaler Zinssatz und die Geldnachfrage

8.2 Nominaler Zinssatz und die Geldnachfrage 8.2 Nominale Zinssatz und die Geldnachfage Die Geldnachfage ist die Menge an monetäen Vemögensweten welche die Leute in ihen Potfolios halten wollen Die Geldnachfage hängt vom ewateten Etag, Risiko und

Mehr

Makroökonomie 1. Prof. Volker Wieland Professur für Geldtheorie und -politik J.W. Goethe-Universität Frankfurt. Gliederung

Makroökonomie 1. Prof. Volker Wieland Professur für Geldtheorie und -politik J.W. Goethe-Universität Frankfurt. Gliederung Makoökonomie 1 Pof. Volke Wieland Pofessu fü Geldtheoie und -politik J.W. Goethe-Univesität Fankfut Pof.Volke Wieland - Makoökonomie 1 Mundell-Fleming / 1 Gliedeung 1. Einfühung 2. Makoökonomische Analyse

Mehr

2 Prinzip der Faser-Chip-Kopplung

2 Prinzip der Faser-Chip-Kopplung Pinzip de Fase-Chip-Kopplung 7 Pinzip de Fase-Chip-Kopplung Dieses Kapitel behandelt den theoetischen Hintegund, de fü das Veständnis de im Rahmen diese Abeit duchgefühten Untesuchungen de Fase-Chip- Kopplung

Mehr

Ruhende Flüssigkeiten (Hydrostatik)

Ruhende Flüssigkeiten (Hydrostatik) Ruhende lüssigkeiten (Hydostatik) lüssigkeitsshihten sind fei gegeneinande veshiebba. Keine Rükstellkäfte bei Sheung, Tosion; Reibungskäfte möglih. Nu Volumenändeung liefet Rükstellkaft. Unte Duk p efolgt

Mehr

2.1. Mechanische Beanspruchung von Kristallen - Elastizität, Anelastizität und Plastizität

2.1. Mechanische Beanspruchung von Kristallen - Elastizität, Anelastizität und Plastizität 2. Theoetische Gundlagen In diesem Kapitel sollen fü das Veständnis de folgenden Abschnitte wesentliche Gundlagen zusammengefaßt dagelegt weden. Nach de phänomenologischen (2.) und de themodynamischen

Mehr

Testnormal. Mikroprozessorgesteuerter Universal-Simulator für fast alle gängigen Prozessgrössen im Auto- Mobilbereich und Maschinenbau

Testnormal. Mikroprozessorgesteuerter Universal-Simulator für fast alle gängigen Prozessgrössen im Auto- Mobilbereich und Maschinenbau Testnomal Mikopozessogesteuete Univesal-Simulato fü fast alle gängigen Pozessgössen im Auto- Mobilbeeich und Maschinenbau Inhalt 1. Einsatzmöglichkeiten 2. Allgemeines 2.1. Einstellbae Sensoaten 2.2. Tastatu

Mehr

Strahlungseffekte bei instationären Heizdrahtmessungen an porösen Wärmedämmstoffen

Strahlungseffekte bei instationären Heizdrahtmessungen an porösen Wärmedämmstoffen Stahlungseffekte bei instationäen Heizdahtmessungen an poösen Wämedämmstoffen Von de Fakultät fü Maschinenbau, Vefahens- und Enegietechnik de Technischen Univesität Begakademie Feibeg genehmigte DISSERTATION

Mehr

Kerne und Teilchen. Kernkraft. Moderne Experimentalphysik III Vorlesung 16. MICHAEL FEINDT INSTITUT FÜR EXPERIMENTELLE KERNPHYSIK

Kerne und Teilchen. Kernkraft. Moderne Experimentalphysik III Vorlesung 16.  MICHAEL FEINDT INSTITUT FÜR EXPERIMENTELLE KERNPHYSIK Kene und Teilchen Modene Expeimentalphysik III Volesung 16 MICHAEL FEINDT INSTITUT FÜ EXPEIMENTELLE KENPHYSIK Kenkaft KIT Univesität des Landes Baden-Wüttembeg und nationales Foschungszentum in de Helmholtz-Gemeinschaft

Mehr

Experimentalphysik II (Kip SS 2007)

Experimentalphysik II (Kip SS 2007) Epeimentalphysik II (Kip SS 7) Zusatzvolesungen: Z- Ein- und mehdimensionale Integation Z- Gadient, Divegenz und Rotation Z-3 Gaußsche und Stokessche Integalsatz Z-4 Kontinuitätsgleichung Z-5 Elektomagnetische

Mehr

1 Strömungsmechanische Grundlagen 1

1 Strömungsmechanische Grundlagen 1 Stömungsmechanische Gundlagen -i Stömungsmechanische Gundlagen. Eigenschaften von Gasen und Flüssigkeiten.. Fluide.. Extensive und intensive Gößen..3 Zähigkeit und Fließvehalten 4. Bilanzgleichungen 0.3

Mehr

Gleichseitige Dreiecke im Kreis. aus der Sicht eines Punktes. Eckart Schmidt

Gleichseitige Dreiecke im Kreis. aus der Sicht eines Punktes. Eckart Schmidt Gleichseitige Deiecke im Keis aus de Sicht eines Punktes Eckat Schmidt Zu einem Punkt und einem gleichseitigen Deieck in seinem Umkeis lassen sich zwei weitee Deiecke bilden: das Lotfußpunktdeieck und

Mehr

Grundlagen der Elektrotechnik II

Grundlagen der Elektrotechnik II Volesungsfolien Gundlagen de Elektotechnik II Lehstuhl fü Allgemeine Elektotechnik und Plasmatechnik Pof. D. P. Awakowicz Ruh Univesität Bochum SS 009 Die Volesung wid in Anlehnung an das Buch von Pof.

Mehr

Das makroökonomische Grundmodell

Das makroökonomische Grundmodell Univesität Ulm 89069 Ulm Gemany Dipl.-WiWi Sabina Böck Institut fü Witschaftspolitik Fakultät fü Mathematik und Witschaftswissenschaften Ludwig-Ehad-Stiftungspofessu Wintesemeste 2008/2009 Übung 3 Das

Mehr

v A 1 v B D 2 v C 3 Aufgabe 1 (9 Punkte)

v A 1 v B D 2 v C 3 Aufgabe 1 (9 Punkte) Institut fü Technische und Num. Mechanik Technische Mechanik II/III Pof. D.-Ing. Pof. E.h. P. Ebehad WS 009/10 P 1 4. Mäz 010 Aufgabe 1 (9 Punkte) Bestimmen Sie zeichneisch die Momentanpole alle vie Köpe

Mehr

1.3. Prüfungsaufgaben zur Statik

1.3. Prüfungsaufgaben zur Statik .3. Püfungsaufgaben zu Statik Aufgabe a: Käftezelegung (3) Eine 0 kg schwee Lape ist in de Mitte eines 6 beiten Duchganges an eine Seil aufgehängt, welches dot duchhängt. Wie goß sind die Seilkäfte? 0

Mehr

Fußball. Ernst-Ludwig von Thadden. 1. Arbeitsmarktökonomik: Ringvorlesung Universität Mannheim, 21. März 2007

Fußball. Ernst-Ludwig von Thadden. 1. Arbeitsmarktökonomik: Ringvorlesung Universität Mannheim, 21. März 2007 Fußball Enst-Ludwig von Thadden Ringvolesung Univesität Mannheim, 21. Mäz 2007 1. Abeitsmaktökonomik: 1 Ausgangsbeobachtung: Fußballspiele sind Angestellte wie andee Leute auch. Deshalb sollte de Makt

Mehr

Der Einfluss der Lichtquellengeometrie auf die Entfernungsmessung

Der Einfluss der Lichtquellengeometrie auf die Entfernungsmessung NESER, S., A. SEYFARTH: De Einfluss de Lichtquellengeometie auf die Entfenungsmessung von PMD- Kameas, in Th. Luhmann/Ch. Mülle (Hsg.) Photogammetie-Lasescanning Optische 3D-Messtechni, Beitäge de Oldenbuge

Mehr

1925 Einstein: Für ein ideales Bose-Gas ist in einer 3-dimensionalen Box gilt für die Temperatur T c : definiert ist als

1925 Einstein: Für ein ideales Bose-Gas ist in einer 3-dimensionalen Box gilt für die Temperatur T c : definiert ist als Übeblick. Vobemekungen. Ideale ose-gas im goßkanonischen Ensemble ose-veteilungsfunktion. Makoskopische esetzung des Gundzustandes. Übegangstempeatu c 4. Spezifische Wäme in de Umgebung von c 5. finit-size

Mehr

34. Elektromagnetische Wellen

34. Elektromagnetische Wellen Elektizitätslehe Elektomagnetische Wellen 3. Elektomagnetische Wellen 3.. Die MXWELLschen Gleichungen Die MXWELLschen Gleichungen sind die Diffeentialgleichungen, die die gesamte Elektodynamik bestimmen.

Mehr

Wärmestrom. Wärmeleitung. 19.Nov.09. Ende. j u. Dieses wird zweckmäßiger pro Einheitsfläche definiert:

Wärmestrom. Wärmeleitung. 19.Nov.09. Ende. j u. Dieses wird zweckmäßiger pro Einheitsfläche definiert: Winteseeste 009 / 00 FK Wäeleitung I teodynaiscen Gleicgewict: Sind die beiden Seiten auf untesciedlice Tep., so fließt ein Wäesto. Diese ist popotional zu Tepeatudiffeenz TT -T, zu Quescnittsfläce A,

Mehr

Solare Brennstoffe Erzeugung, Nutzungsverfahren und Umwandlungseffizienzen

Solare Brennstoffe Erzeugung, Nutzungsverfahren und Umwandlungseffizienzen Solae Bennstoffe Ezeugung, Nutzungsvefahen und Umwandlungseffizienzen Die dezeitige Enegievesogung insbesondee fü mobile Anwendungen basiet zu einem Goßteil auf de Nutzung fossile Bennstoffe. De hohe Vebauch

Mehr

k r Reziprokes Gitter Abb. 1 Elektronenbeugung im TEM. Die RG-Vektoren sind sehr viel kürzer als k o senkrecht dazu.

k r Reziprokes Gitter Abb. 1 Elektronenbeugung im TEM. Die RG-Vektoren sind sehr viel kürzer als k o senkrecht dazu. Elektonenbeugung im Tansmissions-Elektonenmikoskop Oganisatoisches Duchfühung: D. T. Link Gundlagen Das Tansmissions-Elektonenmikoskop TEM wude pimä entwickelt, um seh viel höhee Auflösungen zu eeichen

Mehr

Unterlagen Fernstudium - 3. Konsultation 15.12.2007

Unterlagen Fernstudium - 3. Konsultation 15.12.2007 Untelagen Fenstudium - 3. Konsultation 5.2.2007 Inhaltsveeichnis Infomationen u Püfung 2 2 Aufgabe 7. Umstömte Keisylinde mit Auftieb 3 3 Aufgabe 8. Komplexes Potential und Konfome Abbildung 0 Infomationen

Mehr

6. Arbeit, Energie, Leistung

6. Arbeit, Energie, Leistung 30.0.03 6. beit, negie, Leitung a it beit? Heben: ewegung Halten: tatich g g it halten: gefühlte beit phikalich: keine beit Seil fetbinden: Haltepunkt veichtet keine beit. Mit Köpegewicht halten: keine

Mehr

ϕ = 3dB Öffnungswinkel im H-Feld

ϕ = 3dB Öffnungswinkel im H-Feld Selbstbauantennen fü VHF-, UHF-, SHF Votag on DL9NAM bei B11 am 16.04.02 Mit diesem Beitag soll gezeigt weden, daß mit egleichsweise einfachen Mitteln, die jedem Amateu zu Vefügung stehen, bauchbae Antennen

Mehr

Aktoren. Wirbelstrom- und Hysteresebremse

Aktoren. Wirbelstrom- und Hysteresebremse Aktoen Wibelstom- und Hysteesebemse Inhalt 1. Physikalisches Gundpinzip Magnetische Induktion De magnetische Fluß Faadaysches Gesetz und Lenzsche Regel Wibelstöme 2. Wibelstom- und Hysteesebemsen Aufbau

Mehr

Zentrale Klausur 2015 Aufbau der Prüfungsaufgaben

Zentrale Klausur 2015 Aufbau der Prüfungsaufgaben Zentale Klausu 2015 Aufbau de Püfungsaufgaben Die Zentale Klausu 2015 wid umfassen: hilfsmittelfeie Aufgaben zu Analysis und Stochastik eine Analysisaufgabe mit einem außemathematischen Kontextbezug eine

Mehr

Konzeptionierung eines Feldsondenmeßplatzes zum EMV-gerechten Design von Chip/Multichipmodulen 1

Konzeptionierung eines Feldsondenmeßplatzes zum EMV-gerechten Design von Chip/Multichipmodulen 1 Konzeptionieung eines Feldsondenmeßplatzes zum EMV-geechten Design von Chip/Multichipmodulen 1 D. Manteuffel, Y. Gao, F. Gustau und I. Wolff Institut fü Mobil- und Satellitenfunktechnik, Cal-Fiedich-Gauß-St.

Mehr

I)Mechanik: 1.Kinematik, 2.Dynamik

I)Mechanik: 1.Kinematik, 2.Dynamik 3. Volesung EP I) Mechanik 1.Kinematik Fotsetzung 2.Dynamik Anfang Vesuche: 1. Feie Fall im evakuieten Falloh 2.Funkenflug (zu Keisbewegung) 3. Affenschuss (Übelageung von Geschwindigkeiten) 4. Luftkissen

Mehr

ERDGASENTSPANNUNGSANLAGE OBERBUCHSITEN UT WISI ENIM AD MINIM VENIAM,QUIS NOSTRUD EXERCI TATION.

ERDGASENTSPANNUNGSANLAGE OBERBUCHSITEN UT WISI ENIM AD MINIM VENIAM,QUIS NOSTRUD EXERCI TATION. ERDGASENTSPANNUNGSANLAGE OBERBUCHSITEN UT WISI ENIM AD MINIM VENIAM,QUIS NOSTRUD EXERCI TATION. DIE GASVERBUND MITTELLAND AG Die Gasvebund Mittelland AG (GVM) ist mit und 33 Pozent des nationalen Edgasabsatzes

Mehr

Elektrostatik. Kräfte zwischen Ladungen: quantitative Bestimmung. Messmethode: Coulombsche Drehwaage

Elektrostatik. Kräfte zwischen Ladungen: quantitative Bestimmung. Messmethode: Coulombsche Drehwaage Elektostatik. Ladungen Phänomenologie. Eigenschaften von Ladungen 3. Käfte zwischen Ladungen, quantitativ 4. Elektisches Feld i) Feldbegiff, Definitionen ii) Dastellung von Felden iii) Feldbeechnungen

Mehr