Kristallisation. von T S positiv. Diese treibende Kraft ist proportional zu der Differenz der beiden freie Enthalpie Kurven, G U = G S G K

Save this PDF as:
 WORD  PNG  TXT  JPG

Größe: px
Ab Seite anzeigen:

Download "Kristallisation. von T S positiv. Diese treibende Kraft ist proportional zu der Differenz der beiden freie Enthalpie Kurven, G U = G S G K"

Transkript

1 Kistallisation Bishe wuden de atomistische Aufbau von Festköpen behandelt. Offen blieb jedoch die Fage, wie man dahin gelangt. Diese Fage soll in diesem Kapitel geklät weden. Festköpe, gleich welche At, entstehen aus n, in Sondefällen gehen sie auch aus Reaktionen andee Festköpe hevo. Zunächst wid eine teibende Kaft benötigt - und zwa in allen Fällen. Denn nu wenn de Zustand des Festköpes enegetisch günstige als sein Ausgangszustand ist, wid e sich bilden. In de Regel ist die teibende Kaft duch eine Tempeatueniedigung begündet. Eine von außen angelegte geingee Tempeatu zwingt die diese anzunehmen, bis sich das System im themodynamischen Gleichgewicht mit de Umgebung befindet. Daübehinaus ist es genauso möglich aufgund de Ändeung andee Potentiale, wie zum Beispiel des äußeen Ducks, eine angelegten Spannung ode eines veändeten chemischen Potentials (und andee meh) das System in ein neues Gleichgewicht zu übefühen. Zu Bildung eines Festköpes muß dann noch eine Genze übeschitten weden, die ihn entstehen läßt. Dies ist im Fall eine Tempeatueniedigung die Schmelztempeatu. Man spicht von themodynamische Übescheitung. Bei gegebenen äußeen Bedingungen ist imme de Zustand stabil, de das geingste themodynamische Potential besitzt. Im Fall, da die Tempeatu und de Duck gegeben sind muß die feie Enthalpie den geingsten Wet einnehmen. Da Phasendiagamme (s. nächstes Kapitel) stets Gleichgewichtsbedingungen kennzeichnen, die bei konstantem Duck und bei konstante Tempeatu beobachtet weden, ist die feie Enthalpie G von besondee Bedeutung. Zu Einneung: feie Enegie F = U T S isotheme Pozesse Enthalpie H = U + pv isobae Pozesse feie Enthalpie G = U T S + pv isotheme und isobae Pozesse goßkanonisches Potential Φ = U T S µn isotheme Pozesse mit konstante Teilchenzahl Hiein ist: U - innee Enegie; T - Tempeatu; S - Entopie; p - Duck; V - Volumen; µ - chemisches Potential; N - Teilchenzahl Am Schmelzpunkt müssen demnach die feien Enthalpien von und Kistall gleich sein (G S = G K ). Wid zunächst von eine lineaen Ändeung de feien Enthalpie ausgegangen, so ehält man qualitativ den nebenstehenden Velauf. Obehalb de Schmelztempeatu T S hat die die geingee feie Enthalpie und die Phase befindet sich im themodynamischen Gleichgewicht; untehalb von T S befindet sich de Kistall im themodynamischen Gleichgewicht. Kühlt man eine unte die Schmelztempeatu ab, so esultiet dies in eine teibenden Kaft, die eine Kistallisation de fodet. Diese teibende Kaft ist negativ obehalb von T S und est untehalb G G K Kistall G S G U von T S positiv. Diese teibende Kaft ist popotional zu de Diffeenz de beiden feie Enthalpie Kuven, die mit göße wedende Entfenung zu Schmelztempeatu göße wid. G U = G S G K T S T 55

2 56. KRISTALLISATION. Keimbildung Wid eine unte die Schmelztempeatu abgekühlt, so stellt sich nicht spontan de feste Zustand ein. Dies liegt daan, daß sich ein feste Keim, also ein kleines Volumen mit kistalline Anodnung von endliche Göße duch themische Fluktuationen bilden muß. Solche Fluktuationen kommen aufgund themisch veusachte Atombewegungen imme vo. Obehalb de Schmelztempeatu ist de Keim gundsätzlich instabil, das heißt e löst sich schnelle auf, als e wachsen kann. Bei Tempeatuen untehalb des Schmelzpunktes gibt es zwa eine teibende Kaft, die ein Wachstum des Keimes fodet. Da es abe auch bei diesen Tempeatuen themische Fluktuationen gibt, kommt es auch zu Auflösepozessen, die den Keim vekleinen. Es gibt noch einen weiteen Beitag, de einen Keim wiede aufzulösen vesucht. Die Obefläche eines Keimes liefet imme einen positiven Beitag zu spezifischen Enegie eines Objektes (γ). Bildet man einen Keim, so gewinnt man Volumenenegie aufgund de Tatsache, daß das Volumen des Keimes eine geingee feie Enthalpie aufweist, als die umgebene. Zum andeen muß Obeflächenenegie aufgewendet weden. Ein kleine Keim kann in este Näheung als und betachtet weden. Damit gilt fü einen kugelfömigen Keim: G K = 4 π G U + 4π γ (.) G G GK GO~ GO~ G ~ V * GK G V ~ Abbildung.: Feie Enthalpie und deen Obeflächen und Volumenanteil eines idealen kugelfömigen Keims fü T > T S (links) und T < T S (echts). Fü T > T S ist G U < 0 G K ist imme positiv. Jede Keim zefällt dahe unte Enegiegewinn. Fü T < T S nimmt die feie Enthalpie eines Keimes est ab einem kitischen Radius ab. Um diesen Wet zu bestimmen, wid das Maximum de feien Enthalpie bestimmt (Ableitung). d( G K ) = 0 d (.) 4π G U + 8πγ = 0 (.) 8πγ = 4π G U (.4) γ G U = = (.5) Im Maximum de feien Enthalpie sind die chemischen Potentiale im Keim und in de umgebenen Phase gleich. Alledings ist das Gleichgewicht labil, da sowohl eine Vegößeung, als auch eine Vekleineung des Keims eine Veingeung de feien Enthalpie des Systems bewiken. Est gößee Keime haben im Vegleich mit ihe Umgebung (Genzfläche) eine positive Enegiebillanz und wachsen weite. Jede Keim muß diesen Potentialwall übewinden. Man nennt dies auch Keimbildungsabeit, sie entspicht eine Aktivieungsenegie fü die Keimbildung, die duch themische Fluktuationen aufgebacht weden muß. Damit hängen die G K und Wete empfindlich von de Übescheitung ab. Sie sind fü

3 .. KEIMBILDUNG 57 kleine Übescheitungen unendlich goß und veingen sich mit zunehmende Tempeatueniedigung untehalb des Schmelzpunktes. Gk T eq G (T ) K * G K (T ) K (T ) T T T (T ) K (T ) K T Abbildung.: Feie Enthalpie eines Keimes in Abhängigkeit von de Tempeatu T < T < T < T S (links). Kitische Keimadius in Abhängigkeit von de Untekühlung (echts). Da die Keimbildung duch themische Fluktuationen efolgt kann man eine Keimbildungsgeschwindigkeit definieen: [ ] G Ṅ exp (.6) kt Da G stak von de Tempeatu abhängt machen sich kleine Untekühlungen in staken Ändeungen von Ṅ bemekba. Es wid zwischen homogene Keimbildung und heteogene Keimbildung unteschieden. Homogene Keimbildung findet in de Schmel- Keime ze nach den eben beschiebenen Abläufen statt. Im Fall de heteogenen Keimbildung kann ein Teil de Obefläche des Keime Keimes duch die Tiegelwand, ode duch Schwebeteilchen in de beeitgestellt weden. Hieduch veinget sich die zu Keimbildung notwendigeweise aufzubingende Abbildung.: Schemata de homogenen (links) und heteogenen Keimbildung (echts). Obeflächenenegie und de Keim kann leichte wachsen, als dies im homogenen Fall de Fall wäe. Es gilt: G het = f G hom ; f (.7) Beispielsweise gilt fü die Keimbildung an eine glatten Wand: γ γ SK SW Θ Keim γ KW Wand Θ Θ f = ( + cos Θ)( cos Θ) 4 Θ - Benetzungswinkel. Ist diese seh goss geht f, was bedeutet, daß de Topfen so gut wie nicht benetzt. Es liegt de Fall de homogenen Keimbildung vo. Ist de Winkel seh klein, wid die gesamte Wand bekeimt f 0. Ist de Winkel geade θ = 90 so wid cos Θ = 0 und f = /. In diesem Fall ist die Gestalt des Keimes an de Wand geade eine Halbkugel. Im Vegleich zu einem homogenen Keim muß nu die Hälfte an Obeflächenenegie aufgebacht weden. Wenn bei de Kistallisation von spontane Keimbildung ausgegangen wid kommt es bei de Einkistallzüchtung zu eine Reihe von Poblemen. Zunächst muß eine elativ goße Übescheitung hegestellt weden, die Keimbildung setzt dann abe seh vehement und mit eine unewünscht goßen Anzahl von

4 58. KRISTALLISATION Keimen ein, die nicht schnell genug zuückgenommen weden kann. Die kistallisiet an vielen Stellen gleichzeitig. Eine Möglichkeit, dies Poblem in den Giff zu bekommen, besteht dain, die nu an einem Punkt zu untekühlen. Bei de Czochalski-Methode wid ein kalte Keimkistall in die eingetaucht, an dem die Kistallisation efolgt. Diese Keim wid langsam wiede aus de hinausgezogen; an ihm wächst de Kistall. Duch den Einsatz eines solchen Impfkistalls kann die spontane Keimbildung in de untedückt weden. Duch den Impfkistall kann auch die Wachstumsichtung und -kinetik vogegeben weden. Alledings muß dafü Soge getagen weden, daß de Impfkistall nicht beim Eintauchen in die aufgelöst wid. Wenn es möglich ist vewendet man dahe gene isostuktuelle Kistalle mit höheen Schmelzpunkten. Eine andee Möglichkeit besteht in de Auslese de wachsenden Keime. Dies kann am wikungsvollsten duch eine Vejüngung des fü die wachsenden Kistalle zu Vefügung stehenden Queschnitts efolgen.. Kistallwachstum Nach de Bildung eines stabilen Keimes wächst diese duch die Anlageung weitee Bausteine weite. Da die Enegie de Obefläche des wachsenden Kistalls von de Kistallogaphischen Richtung abhängt, vesucht das System seine Enegie so geing wie möglich zu halten, indem die Obefläche mit höhee Enegie so geing wie möglich gehalten wid. a b a b Abbildung.4: Kistallwachstum auf eine Fläche geinge Enegie; sie wid schnelle bedeckt, als de Kistall in andee Richtungen (z.b. senkecht dazu) wachsen kann. Die Obefläche wid von den langsam wachsenden Ebenen gebildet, denn die schnell wachsenden Ebenen veschwinden im Laufe de Zeit. Das wohl bekannteste Modell fü das Kistallwachstum stammt von Kossel und Stanski. Nach diesem Modell gibt es fü die Bausteine (Atome / Moleküle) an den Obeflächen eines Kistalls veschiedene Positionen, die duch unteschiedliche Bindungsenegien gekennzeichnet sind. 5 5 Abbildung.5: Zum Modell von Kossel und Stanski: Veschiedene Stadien des Flächenwachstums eine Obefläche (von links nach echts: vollständige Fläche - Wachstum von Rand - Wachstum von Nukleationszenten auf de Obefläche) sowie veschiedene Lagen auf de Obefläche eines Kistalls gekennzeichnet duch ihe Bindungsenegien. Die Abtennabeit, die aufgewendet weden muß, um einen Baustein aus dem Kistallvebund abzutennen, hängt empfindlich von seine Position ab, was sich aus Unteschieden in de Anzahl und Anodnung de Nachban fü die einzelnen Positionen eklät. Von Besondee Bedeutung ist hiebei die Halbkistalllage. Beim Aufbau eines Kistalls weden fast alle Bausteine übe solche Halbkistalllagen angelaget. De Enegiegewinn beim Anlagen eines Bausteines in ein Loch ist göße als de Gewinn bei de

5 .. KRISTALLWACHSTUM 59 Anlageung auf eine Fläche. Hieduch wid de Kistall im themodynamischen Gleichgewicht von eine kleinen Anzahl bestimmte Flachen {hkl} begenzt, die atoma glatt sind. Dieses Modell gilt steng genommen nu bei T = 0, ohne themische Fluktuationen, da die Entopie nicht beücksichtigt wude. Bei endlichen Tempeatuen kommt es zu eine atomaen Aufauhung de Obefläche. Diese Sachvehalt ist auch schon in Modellen beschieben, füht abe an diese Stelle zu weit. De Einbau von Bausteinen in den Kistall läuft nach folgenden Schitten ab: Tanspot de Bausteine zu Phasengenze (duch Konvektion / Volumendiffusion).. Absoption auf eine atoma glatten Teasse (evtl. mit. Desolvation beteiligte Atome).. Tanspot zu Stufe (Obeflächendiffusion). 4. Anlageung an eine Stufe (mit. Desolvation). 5. Tanspot entlang de Stufe (Stufendiffusion) zu Halbkistalllage. 6. Einbau in die Stufe (mit. Desolvation). Desolvation=Umwandlung des Zustandes de molekulaen Bausteine.. Einfluß de Estaungswäme ZUM NACHDENKEN: Was ist de Unteschied zwischen homogene und heteogene Keimbildung? Duch welche Flächen wid ein wachsende Kistall begenzt und waum? Die Gestalt de Köne in eine estaenden wid im Wesentlichen duch die Abfuh de Estaungswäme bestimmt. Diese kann entwede duch den wachsenden Kistall, ode duch die abgefüht weden. Efolgt die Wämeabfuh duch den Kistall, so ist de Tempeatugadient im Kistall göße, als in de. Wächst dann ein Kistall an de Estaungsfont vo, so geät e in ein Gebiet höhee Tempeatu und bildet sich zuück. Auf diese Weise bleibt die Font eben und stabil. Kistall T T S Abbildung.6: Tempeatuvelauf an de Estaungsfont eines Kistalls bei Wämeabfuh duch den Kistall. x Wid die Wäme jedoch duch die abgefüht, was de Fall ist, wenn die bei de Estaung stak untekühlt ist, so weist die eine niedigee Tempeatu auf, als de Kistall. Man ehält eine Tempeatuvelauf, wie e qualitativ in Abbildung.7 gezeigt ist.

6 60. KRISTALLISATION Kistall T T S Abbildung.7: Tempeatuvelauf an de Estaungsfont eines Kistalls bei Wämeabfuh duch die. x Wächst in diesem Regime de Kistall übe die Font hinaus, so wächst e seh schnell weite, da an ihm die kalte kistallisiet. Es bilden sich lange und dünne Kistalle, die sich häufig in andee Richtungen weite vezweigen. Diese Gebilde heißen Denditen. In diesem Fall bewegt sich die Estaungsfont uneben und nicht stabil. Abbildung.8: Stuktubildung eines wachsenden Denditen (T. Wilke) Einfluß von Femdatomen Femdatome neigen bei de Estaung dazu, sich in de anzueichen. Hieduch wid die Estaungstempeatu weite abgesenkt. In Legieungen besteht in de Regel ein endliche Tempeatubeeich, in dem und Kistall nebeneinande im Gleichgewicht stehen. Auf diesen Sachvehalt wid im Zusammenhang mit den Phasendiagammen im nächsten Kapitel eingegangen.. Estaung von Legieungen Da es neben de Kenntnis übe die Existenz und das Aussehen von Phasendiagammen wichtig ist, diese auch lesen zu können, weden nun noch einige besondee Punkte bei de Estaung von mehkomponentigen n heausgestellt und danach im Detail auf die Phasendiagamme eingegangen. Da in Legieungen die und eine feste Phase duch ein Homogenitätsgebiet, in dem beide Phasen nebeneinande voliegen, getennt sind ist es wichtig zu vestehen, wie die Kistallisation eine festen Phase von Statten geht.

Einführung in die Physik I. Wärme 3

Einführung in die Physik I. Wärme 3 Einfühung in die Physik I Wäme 3 O. von de Lühe und U. Landgaf Duckabeit Mechanische Abeit ΔW kann von einem Gas geleistet weden, wenn es sein olumen um Δ gegen einen Duck p ändet. Dies hängt von de At

Mehr

Die Schrödingergleichung für das Elektron im Wasserstoffatom lautet Op2 e2 Or. mit

Die Schrödingergleichung für das Elektron im Wasserstoffatom lautet Op2 e2 Or. mit 4 Stak-Effekt Als Anwendung de Stöungstheoie behandeln wi ein Wassestoffatom in einem elektischen Feld. Fü den nichtentateten Gundzustand des Atoms füht dies zum quadatischen Stak-Effekt, fü die entateten

Mehr

1. Kondensierte Materie

1. Kondensierte Materie 1. Kondensiete Mateie Die Physik de kondensieten Mateie bescheibt gebundene Mateie wie Festköpe und Flüssigkeiten. Im Vegleich zu Gasen, ist die Atomdichte ρ bei kondensiete Mateie deutlich höhe, wie folgende

Mehr

Statische Magnetfelder

Statische Magnetfelder Statische Magnetfelde Bewegte Ladungen ezeugen Magnetfelde. Im Magnetfeld efäht eine bewegte Ladung eine Kaft. Elektische Felde weden von uhenden und bewegten Ladungen gleichemaßen ezeugt. Die Kaft duch

Mehr

Elektrostatik. Arbeit und potenzielle Energie

Elektrostatik. Arbeit und potenzielle Energie Elektostatik. Ladungen Phänomenologie. Eigenschaften von Ladungen 3. Käfte zwischen Ladungen, quantitativ 4. Elektisches Feld 5. De Satz von Gauß 6. Potenzial und Potenzialdiffeenz i. Abeit im elektischen

Mehr

Inhalt der Vorlesung A1

Inhalt der Vorlesung A1 PHYSIK A S 03/4 Inhalt de Volesung A. Einfühung Methode de Physik Physikalische Gößen Übesicht übe die vogesehenen Theenbeeiche. Teilchen A. Einzelne Teilchen Bescheibung von Teilchenbewegung Kineatik:

Mehr

F63 Gitterenergie von festem Argon

F63 Gitterenergie von festem Argon 1 F63 Gitteenegie von festem Agon 1. Einleitung Die Sublimationsenthalpie von festem Agon kann aus de Dampfduckkuve bestimmt weden. Dazu vewendet man die Clausius-Clapeyon-Gleichung. Wenn außedem noch

Mehr

Übung zur Einführung in die VWL / Makroökonomie. Teil 7: Das IS-LM-Modell

Übung zur Einführung in die VWL / Makroökonomie. Teil 7: Das IS-LM-Modell Begische Univesität Wuppetal FB B Schumpete School of Economics and Management Makoökonomische Theoie und Politik Übung zu Einfühung in die VWL / Makoökonomie Teil 7: Das IS-LM-Modell Thomas Domeatzki

Mehr

Elektrischer Strom. Strom als Ladungstransport

Elektrischer Strom. Strom als Ladungstransport Elektische Stom 1. Elektische Stom als Ladungstanspot 2. Wikungen des ektischen Stomes 3. Mikoskopische Betachtung des Stoms, ektische Widestand, Ohmsches Gesetz i. Diftgeschwindigkeit und Stomdichte ii.

Mehr

Einführung in die Theoretische Physik

Einführung in die Theoretische Physik Einfühung in die Theoetische Physik De elektische Stom Wesen und Wikungen Teil : Gundlagen Siegfied Pety Fassung vom 19. Janua 013 n h a l t : 1 Einleitung Stomstäke und Stomdichte 3 3 Das Ohmsche Gesetz

Mehr

Stereo-Rekonstruktion. Stereo-Rekonstruktion. Geometrie der Stereo-Rekonstruktion. Geometrie der Stereo-Rekonstruktion

Stereo-Rekonstruktion. Stereo-Rekonstruktion. Geometrie der Stereo-Rekonstruktion. Geometrie der Stereo-Rekonstruktion Steeo-Rekonstuktion Geometie de Steeo-Rekonstuktion Steeo-Kalibieung Steeo-Rekonstuktion Steeo-Rekonstuktion Kameakalibieung kann dazu vewendet weden, um aus einem Bild Weltkoodinaten zu ekonstuieen, falls

Mehr

Einführung in die Physik I. Mechanik deformierbarer Körper 1

Einführung in die Physik I. Mechanik deformierbarer Körper 1 Einfühung in die Physik I Mechanik defomiebae Köe O. von de Lühe und U. Landgaf Defomationen Defomationen, die das Volumen änden Dehnung Stauchung Defomationen, die das Volumen nicht änden Scheung Dillung

Mehr

2 Theoretische Grundlagen

2 Theoretische Grundlagen 2 Theoetische Gundlagen 2.1 Gundlagen de dielektischen Ewämung 2.1.1 Mechanismen de dielektischen Ewämung Die dielektische Ewämung beuht auf de Wechselwikung atomae Ladungstäge elektisch nicht leitende

Mehr

Gravitationsgesetz. Name. d in km m in kg Chaldene 4 7, Callirrhoe 9 8, Ananke 28 3, Sinope 38 7, Carme 46 1,

Gravitationsgesetz. Name. d in km m in kg Chaldene 4 7, Callirrhoe 9 8, Ananke 28 3, Sinope 38 7, Carme 46 1, . De Jupite hat etwa 60 Monde auch Tabanten genannt. De Duchesse seines gößten Mondes Ganyed betägt 56k. Es gibt abe auch Monde die nu einen Duchesse von etwa eine Kiloete haben. Die Monde des Jupites

Mehr

Kinematik und Dynamik der Rotation - Der starre Körper (Analogie zwischen Translation und Rotation eine Selbstlerneinheit)

Kinematik und Dynamik der Rotation - Der starre Körper (Analogie zwischen Translation und Rotation eine Selbstlerneinheit) Kinematik und Dynamik de Rotation - De stae Köpe (Analogie zwischen Tanslation und Rotation eine Selbstleneinheit) 1. Kinematische Gößen de Rotation / Bahn- und Winkelgößen A: De ebene Winkel Bei eine

Mehr

Abiturprüfung Physik, Grundkurs

Abiturprüfung Physik, Grundkurs Seite 1 von 10 Abitupüfung 2011 Physik, Gundkus Aufgabenstellung: Aufgabe 1: Definition und Messung de Feldstäke B (auch Flussdichte genannt) magnetische Felde kontaktlose Messung goße Stöme 1.1 Die Abbildung

Mehr

VERFESTIGUNGSMECHANISMEN

VERFESTIGUNGSMECHANISMEN 216 1. VERFESTIGUNGSMECHANISMEN Schließlich hängt die Stapelfehleenegie von de Zusammensetzung ab, man spicht in diesem Fall von chemische Wechselwikung. Die Stapelfehleenegie nimmt fü gewöhnlich mit zunehmende

Mehr

Laborpraktikum Sensorik. Versuch. Füllstandssensoren PM 1

Laborpraktikum Sensorik. Versuch. Füllstandssensoren PM 1 Otto-von-Gueicke-Univesität Magdebug Fakultät fü Elektotechnik und Infomationstechnik Institut fü Miko- und Sensosysteme (IMOS) Labopaktikum Sensoik Vesuch Füllstandssensoen PM 1 Institut fü Miko- und

Mehr

6. Das Energiebändermodell für Elektronen

6. Das Energiebändermodell für Elektronen 6. Das Enegiebändemodell fü Eletonen Modell des feien Eletonengases ann nicht eläen: - Unteschied Metall - Isolato (Metall: ρ 10-11 Ωcm, Isolato: ρ 10 Ωcm), Halbleite? - positive Hall-Konstante - nichtsphäische

Mehr

Herrn N. SALIE danke ich für interessante Diskussionen.

Herrn N. SALIE danke ich für interessante Diskussionen. nen wi, daß das metische Feld im allgemeinen nicht konsevativ ist. Lediglich in dem Fall eines statischen metischen Feldes ( «.,4 = 0) existiet Enegieehaltung: Die bisheigen enegetischen Betachtungen basieen

Mehr

A A Konservative Kräfte und Potential /mewae/scr/kap2 14s

A A Konservative Kräfte und Potential /mewae/scr/kap2 14s 2.4 Konsevative Käfte und Potential /mewae/sc/kap2 4s3 29-0-0 Einige Begiffe: Begiff des Kaftfeldes: Def.: Kaftfeld: von Kaft-Wikung efüllte Raum. Dastellung: F ( ) z.b. Gavitation: 2. Masse m 2 in Umgebung

Mehr

2 Kinetik der Erstarrung

2 Kinetik der Erstarrung Studieneinheit II Kinetik de Estaung. Keibildung. Keiwachstu. Gesatkinetik R. ölkl: Schelze Estaung Genzflächen Kinetik de Phasenuwandlungen Nach Übescheiten eines Uwandlungspunktes hätte das vollständig

Mehr

Übungsaufgaben zum Prüfungsteil 1 Lineare Algebra /Analytische Geometrie

Übungsaufgaben zum Prüfungsteil 1 Lineare Algebra /Analytische Geometrie Übungsaufgaben zum Püfungsteil Lineae Algeba /Analytische Geometie Aufgabe Von de Ebene E ist folgende Paametefom gegeben: 3 E: x= 4 + 0 + s 3 ;,s 0 3 4 a) Duch geeignete Wahl de Paamete und s ehält man

Mehr

9.2. Bereichsintegrale und Volumina

9.2. Bereichsintegrale und Volumina 9.. Beeichsintegale und Volumina Beeichsintegale Rein fomal kann man Integale übe einem (meßbaen) Beeich B bilden, indem man eine möglicheweise auf einem gößeen Beeich definiete Funktion f mit de chaakteistischen

Mehr

Versuch M21 - Oberflächenspannung

Versuch M21 - Oberflächenspannung Enst-Moitz-Andt Univesität Geifswald Institut fü Physik Vesuch M1 - Obeflächensannung Name: Mitabeite: Guennumme: lfd. Numme: Datum: 1. Aufgabenstellung 1.1. Vesuchsziel Bestimmen Sie die Obeflächensannung

Mehr

Abiturprüfung Physik 2016 (Nordrhein-Westfalen) Leistungskurs Aufgabe 1: Induktion bei der Torlinientechnik

Abiturprüfung Physik 2016 (Nordrhein-Westfalen) Leistungskurs Aufgabe 1: Induktion bei der Torlinientechnik Abitupüfung Physik 2016 (Nodhein-Westfalen) Leistungskus Aufgabe 1: Induktion bei de Tolinientechnik Im Fußball sogen egelmäßig umstittene Entscheidungen übe zu Unecht gegebene bzw. nicht gegebene Toe

Mehr

Berechnung der vorhandenen Masse von Biogas in Biogasanlagen zur Prüfung der Anwendung der StörfallV

Berechnung der vorhandenen Masse von Biogas in Biogasanlagen zur Prüfung der Anwendung der StörfallV Beechnung de vohandenen Masse von Biogas in Biogasanlagen zu Püfung de Anwendung de StöfallV 1. Gundlagen Zu Püfung de Anwendbakeit de StöfallV auf Betiebsbeeiche, die Biogasanlagen enthalten, muss das

Mehr

II Wärmelehre 16. Phasenübergänge (Verdampfen, Schmelzen, Sublimieren) pt-diagramm

II Wärmelehre 16. Phasenübergänge (Verdampfen, Schmelzen, Sublimieren) pt-diagramm 16. Volesung EP II Wämelehe 16. Phasenübegänge (Vedampfen, Schmelzen, Sublimieen) pv-diagamm pt-diagamm III. Elektizität und Magnetismus 17. Elektostatik Elektische Ladung q Elektisches Feld E Potential

Mehr

Abiturprüfung 2015 Grundkurs Biologie (Hessen) A1: Ökologie und Stoffwechselphysiologie

Abiturprüfung 2015 Grundkurs Biologie (Hessen) A1: Ökologie und Stoffwechselphysiologie Abitupüfung 2015 Gundkus Biologie (Hessen) A1: Ökologie und Stoffwechselphysiologie Veteidigungsstategien von Pflanzen BE 1 Benennen Sie die esten dei Tophieebenen innehalb eines Ökosystems und bescheiben

Mehr

3.1 Elektrostatische Felder symmetrischer Ladungsverteilungen

3.1 Elektrostatische Felder symmetrischer Ladungsverteilungen 3 Elektostatik Das in de letzten Volesung vogestellte Helmholtz-Theoem stellt eine fomale Lösung de Maxwell- Gleichungen da. Im Folgenden weden wi altenative Methoden kennenlenen (bzw. wiedeholen), die

Mehr

Aufgabe P1 Bewegungen (15 BE)

Aufgabe P1 Bewegungen (15 BE) Abitu 2003 Physik Lk Seite 3 Pflichtaufgaben (30 BE) Aufgabe P1 Bewegungen (15 BE) 1. In de Physik weden Bewegungen mit den Modellen Massenpunkt" und stae Köpe" beschieben. Welche Gundaussagen beinhalten

Mehr

Einführung in die Finanzmathematik - Grundlagen der Zins- und Rentenrechnung -

Einführung in die Finanzmathematik - Grundlagen der Zins- und Rentenrechnung - Einfühung in die Finanzmathematik - Gundlagen de ins- und Rentenechnung - Gliedeung eil I: insechnung - Ökonomische Gundlagen Einfache Vezinsung - Jähliche, einfache Vezinsung - Untejähliche, einfache

Mehr

2.3 Elektrisches Potential und Energie

2.3 Elektrisches Potential und Energie 2.3. ELEKTRISCHES POTENTIAL UND ENERGIE 17 2.3 Elektisches Potential un Enegie Aus e Mechanik wissen wi, ass ie Abeit Q, ie an einem Massepunkt veichtet wi, wenn iese um einen (kleinen) Vekto veschoben

Mehr

Übungen zur Physik 1 - Wintersemester 2012/2013. Serie Oktober 2012 Vorzurechnen bis zum 9. November

Übungen zur Physik 1 - Wintersemester 2012/2013. Serie Oktober 2012 Vorzurechnen bis zum 9. November Seie 3 29. Oktobe 2012 Vozuechnen bis zum 9. Novembe Aufgabe 1: Zwei Schwimme spingen nacheinande vom Zehn-Mete-Tum ins Becken. De este Schwimme lässt sich vom Rand des Spungbetts senkecht heuntefallen,

Mehr

b) Drehimpuls r r Für Massenpunkt auf Kreisbahn: L=r p Für Massenpunkt auf beliebiger Bahn im Raum:

b) Drehimpuls r r Für Massenpunkt auf Kreisbahn: L=r p Für Massenpunkt auf beliebiger Bahn im Raum: b) Dehimpuls De Bewegungszustand eines otieenden Köpes wid duch seinen Dehimpuls L beschieben. Analog zum Dehmoment nimmt de Dehimpuls mit dem Impuls p und dem Bahnadius zu. Fü Massenpunkt auf Keisbahn:

Mehr

( ) ( ) 5. Massenausgleich. 5.1 Kräfte und Momente eines Einzylindermotors. 5.1.1 Kräfte und Momente durch den Gasdruck

( ) ( ) 5. Massenausgleich. 5.1 Kräfte und Momente eines Einzylindermotors. 5.1.1 Kräfte und Momente durch den Gasdruck Pof. D.-Ing. Victo Gheoghiu Kolbenmaschinen 88 5. Massenausgleich 5. Käfte und Momente eines Einzylindemotos 5.. Käfte und Momente duch den Gasduck S N De Gasduck beitet sich in alle Richtungen aus und

Mehr

Materie im Magnetfeld

Materie im Magnetfeld Mateie i Magnetfeld Die Atoe in Mateie haben agnetische Eigenschaften, die akoskopisch Magnetfelde beeinflussen, wenn an Mateie in sie einbingt. Man untescheidet veschiede Typen von agnetischen Eigenschaften:

Mehr

Magische Zaubertränke

Magische Zaubertränke Magische Zaubetänke In diese Unteichtseinheit waten auf Ihe SchüleInnen magische Zaubetänke, die die Fabe wechseln. Begiffe wie Säue, Base, Indikato und Salz können nochmals thematisiet bzw. wiedeholt

Mehr

Komplexe Widerstände

Komplexe Widerstände Paktikum Gundlagen de Elektotechnik Vesuch: Komplexe Widestände Vesuchsanleitung 0. Allgemeines Eine sinnvolle Teilnahme am Paktikum ist nu duch eine gute Vobeeitung auf dem jeweiligen Stoffgebiet möglich.

Mehr

Mustertexte. Auftrag nach 11 BDSG. Gegenstand Auftrag nach 11 BDSG 2009

Mustertexte. Auftrag nach 11 BDSG. Gegenstand Auftrag nach 11 BDSG 2009 Mustetexte Auftag nach 11 BDSG Gegenstand Auftag nach 11 BDSG 2009 Soweit die DMC ode eine ihe Efüllungsgehilfen als Datenschutzbeauftagte i.s. des 4f Abs. 2 Satz 3 BDSG bestellt und tätig ist, beziehen

Mehr

Einführung in die Physik I. Elektromagnetismus 3. O. von der Lühe und U. Landgraf

Einführung in die Physik I. Elektromagnetismus 3. O. von der Lühe und U. Landgraf Einfühung in die Physik Elektomagnetismus 3 O. von de Lühe und U. Landgaf Magnetismus Neben dem elektischen Feld gibt es eine zweite Kaft, die auf Ladungen wikt: die magnetische Kaft (Loentz-Kaft) Die

Mehr

8. Transmissionsmechanismen: Der Zinskanal und Tobins q. Pflichtlektüre:

8. Transmissionsmechanismen: Der Zinskanal und Tobins q. Pflichtlektüre: z Pof. D. Johann Gaf Lambsdoff Univesität Passau WS 2007/08 Pflichtlektüe: Engelen, C. und J. Gaf Lambsdoff (2006), Das Keynesianische Konsensmodell, Passaue Diskussionspapiee N. V-47-06, S. 1-7. 8. Tansmissionsmechanismen:

Mehr

Der eigentliche Druck

Der eigentliche Druck 147 De eigentliche Duck 5 Kamea: Konica Minolta Maxxum 7D Ist das Bild gut vobeeitet und teten keine Pobleme auf, so ist das Ducken mit den heutigen fü Fine-At geeigneten Tintenducken ein Vegnügen. Leide

Mehr

Kondensatoren & Dielektrika. Kapazität, Kondensatortypen,

Kondensatoren & Dielektrika. Kapazität, Kondensatortypen, Kondensatoen & Dielektika Kapazität, Kondensatotypen, Schaltungen, Dielektika 9.6. Sanda Stein Kondensatoen Bauelement, das elektische Ladung speichen kann besteht aus zwei leitenden Köpen, die voneinande

Mehr

IV. Elektrizität und Magnetismus

IV. Elektrizität und Magnetismus IV. Elektizität und Magnetismus IV.3. Stöme und Magnetfelde Physik fü Medizine 1 Magnetfeld eines stomduchflossenen Leites Hans Chistian Oested 1777-1851 Beobachtung Oesteds: in de Nähe eines stomduchflossenen

Mehr

Rendite gesucht! Union Investment Wir optimieren Risikobudgets. r r. e i. 29. Euro

Rendite gesucht! Union Investment Wir optimieren Risikobudgets. r r. e i. 29. Euro 01-U4-JB-2009-Umschlag-Y:01-U4-JB-2008-Umschlag-A 11.03.2010 9:51 Uh Seite 1 JAHRBUCH 2010 29. Euo s unte o f n I Meh sikoi e i d www..de e manag Union Investment Wi optimieen Risikobudgets Union Investment

Mehr

lassen sich die beiden ersten Eigenschaften von (2,4)- Bäume auch mit binären Knoten erreichen?

lassen sich die beiden ersten Eigenschaften von (2,4)- Bäume auch mit binären Knoten erreichen? .7 Rot-Schwaz Schwaz-Bäume (2,4)-Bäume sind ausgeglichen: gleiche Höhe fü alle Blätte Standadopeationen auf Mengen in O(h), d.h. O(log n) unteschiedliche Knoten (, 2 ode Schlüssel) Fage: lassen sich die

Mehr

Versuch M04 - Auswuchten rotierender Wellen

Versuch M04 - Auswuchten rotierender Wellen FACHHOCHSCHULE OSNABRÜCK Messtechnik Paktikum Vesuch M 04 Fakultät I&I Pof. D. R. Schmidt Labo fü Mechanik und Messtechnik 13.09.2006 Vesuch M04 - Auswuchten otieende Wellen 1 Zusammenfassung 2 1.1 Lenziele

Mehr

Energieeffiziente Abscheidung von hochkonzentrierten flüssigen Aerosolen mit einem Autogenen Raumladungsgetriebenen Abscheider (ARA) Dissertation

Energieeffiziente Abscheidung von hochkonzentrierten flüssigen Aerosolen mit einem Autogenen Raumladungsgetriebenen Abscheider (ARA) Dissertation Enegieeffiziente Abscheidung von hochkonzentieten flüssigen Aeosolen mit einem Autogenen Raumladungsgetiebenen Abscheide (ARA) Von de Fakultät fü Umweltwissenschaften und Vefahenstechnik de Bandenbugischen

Mehr

Anhang V zur Vorlesung Kryptologie: Hashfunktionen

Anhang V zur Vorlesung Kryptologie: Hashfunktionen Anhang V zu Volesung Kyptologie: Hashfunktionen von Pete Hellekalek Fakultät fü Mathematik, Univesität Wien, und Fachbeeich Mathematik, Univesität Salzbug Tel: +43-0)662-8044-5310 Fax: +43-0)662-8044-137

Mehr

8.2 Nominaler Zinssatz und die Geldnachfrage

8.2 Nominaler Zinssatz und die Geldnachfrage 8.2 Nominale Zinssatz und die Geldnachfage Die Geldnachfage ist die Menge an monetäen Vemögensweten welche die Leute in ihen Potfolios halten wollen Die Geldnachfage hängt vom ewateten Etag, Risiko und

Mehr

Makroökonomie 1. Prof. Volker Wieland Professur für Geldtheorie und -politik J.W. Goethe-Universität Frankfurt. Gliederung

Makroökonomie 1. Prof. Volker Wieland Professur für Geldtheorie und -politik J.W. Goethe-Universität Frankfurt. Gliederung Makoökonomie 1 Pof. Volke Wieland Pofessu fü Geldtheoie und -politik J.W. Goethe-Univesität Fankfut Pof.Volke Wieland - Makoökonomie 1 Mundell-Fleming / 1 Gliedeung 1. Einfühung 2. Makoökonomische Analyse

Mehr

Der Graph der Logarithmusfunktion entsteht aus dem Graphen der Exponentialfunktion durch Spiegelung an der 1. Winkelhalbierenden.

Der Graph der Logarithmusfunktion entsteht aus dem Graphen der Exponentialfunktion durch Spiegelung an der 1. Winkelhalbierenden. 0. Logaithmusfunktion n de Abbildung sind de Gaph de Exponentialfunktion zu Basis und de Gaph ihe Umkehfunktion, de Logaithmusfunktion zu Basis dagestellt. Allgemein: Die Exponentialfunktion odnet jede

Mehr

Testnormal. Mikroprozessorgesteuerter Universal-Simulator für fast alle gängigen Prozessgrössen im Auto- Mobilbereich und Maschinenbau

Testnormal. Mikroprozessorgesteuerter Universal-Simulator für fast alle gängigen Prozessgrössen im Auto- Mobilbereich und Maschinenbau Testnomal Mikopozessogesteuete Univesal-Simulato fü fast alle gängigen Pozessgössen im Auto- Mobilbeeich und Maschinenbau Inhalt 1. Einsatzmöglichkeiten 2. Allgemeines 2.1. Einstellbae Sensoaten 2.2. Tastatu

Mehr

Strahlungseffekte bei instationären Heizdrahtmessungen an porösen Wärmedämmstoffen

Strahlungseffekte bei instationären Heizdrahtmessungen an porösen Wärmedämmstoffen Stahlungseffekte bei instationäen Heizdahtmessungen an poösen Wämedämmstoffen Von de Fakultät fü Maschinenbau, Vefahens- und Enegietechnik de Technischen Univesität Begakademie Feibeg genehmigte DISSERTATION

Mehr

1 Strömungsmechanische Grundlagen 1

1 Strömungsmechanische Grundlagen 1 Stömungsmechanische Gundlagen -i Stömungsmechanische Gundlagen. Eigenschaften von Gasen und Flüssigkeiten.. Fluide.. Extensive und intensive Gößen..3 Zähigkeit und Fließvehalten 4. Bilanzgleichungen 0.3

Mehr

Fußball. Ernst-Ludwig von Thadden. 1. Arbeitsmarktökonomik: Ringvorlesung Universität Mannheim, 21. März 2007

Fußball. Ernst-Ludwig von Thadden. 1. Arbeitsmarktökonomik: Ringvorlesung Universität Mannheim, 21. März 2007 Fußball Enst-Ludwig von Thadden Ringvolesung Univesität Mannheim, 21. Mäz 2007 1. Abeitsmaktökonomik: 1 Ausgangsbeobachtung: Fußballspiele sind Angestellte wie andee Leute auch. Deshalb sollte de Makt

Mehr

34. Elektromagnetische Wellen

34. Elektromagnetische Wellen Elektizitätslehe Elektomagnetische Wellen 3. Elektomagnetische Wellen 3.. Die MXWELLschen Gleichungen Die MXWELLschen Gleichungen sind die Diffeentialgleichungen, die die gesamte Elektodynamik bestimmen.

Mehr

2 Prinzip der Faser-Chip-Kopplung

2 Prinzip der Faser-Chip-Kopplung Pinzip de Fase-Chip-Kopplung 7 Pinzip de Fase-Chip-Kopplung Dieses Kapitel behandelt den theoetischen Hintegund, de fü das Veständnis de im Rahmen diese Abeit duchgefühten Untesuchungen de Fase-Chip- Kopplung

Mehr

FUSIONS- UND GRAVITATIONSENERGIE VON STERNEN

FUSIONS- UND GRAVITATIONSENERGIE VON STERNEN FUSIONS- UND GRAVITATIONSENERGIE VON STERNEN Spezialgebiet in Physik Maco Masse BG Bluenstasse 2003 Inhaltsvezeichnis 1.Kenfusion 1 1.1. Allgeeines 1 1.2. Veschelzung 1 1.3. Theonukleae Reaktion 1 2.Die

Mehr

1925 Einstein: Für ein ideales Bose-Gas ist in einer 3-dimensionalen Box gilt für die Temperatur T c : definiert ist als

1925 Einstein: Für ein ideales Bose-Gas ist in einer 3-dimensionalen Box gilt für die Temperatur T c : definiert ist als Übeblick. Vobemekungen. Ideale ose-gas im goßkanonischen Ensemble ose-veteilungsfunktion. Makoskopische esetzung des Gundzustandes. Übegangstempeatu c 4. Spezifische Wäme in de Umgebung von c 5. finit-size

Mehr

Der Einfluss der Lichtquellengeometrie auf die Entfernungsmessung

Der Einfluss der Lichtquellengeometrie auf die Entfernungsmessung NESER, S., A. SEYFARTH: De Einfluss de Lichtquellengeometie auf die Entfenungsmessung von PMD- Kameas, in Th. Luhmann/Ch. Mülle (Hsg.) Photogammetie-Lasescanning Optische 3D-Messtechni, Beitäge de Oldenbuge

Mehr

1.3. Prüfungsaufgaben zur Statik

1.3. Prüfungsaufgaben zur Statik .3. Püfungsaufgaben zu Statik Aufgabe a: Käftezelegung (3) Eine 0 kg schwee Lape ist in de Mitte eines 6 beiten Duchganges an eine Seil aufgehängt, welches dot duchhängt. Wie goß sind die Seilkäfte? 0

Mehr

Solare Brennstoffe Erzeugung, Nutzungsverfahren und Umwandlungseffizienzen

Solare Brennstoffe Erzeugung, Nutzungsverfahren und Umwandlungseffizienzen Solae Bennstoffe Ezeugung, Nutzungsvefahen und Umwandlungseffizienzen Die dezeitige Enegievesogung insbesondee fü mobile Anwendungen basiet zu einem Goßteil auf de Nutzung fossile Bennstoffe. De hohe Vebauch

Mehr

6. Arbeit, Energie, Leistung

6. Arbeit, Energie, Leistung 30.0.03 6. beit, negie, Leitung a it beit? Heben: ewegung Halten: tatich g g it halten: gefühlte beit phikalich: keine beit Seil fetbinden: Haltepunkt veichtet keine beit. Mit Köpegewicht halten: keine

Mehr

Grundlagen der Elektrotechnik II

Grundlagen der Elektrotechnik II Volesungsfolien Gundlagen de Elektotechnik II Lehstuhl fü Allgemeine Elektotechnik und Plasmatechnik Pof. D. P. Awakowicz Ruh Univesität Bochum SS 009 Die Volesung wid in Anlehnung an das Buch von Pof.

Mehr

Unterlagen Fernstudium - 3. Konsultation 15.12.2007

Unterlagen Fernstudium - 3. Konsultation 15.12.2007 Untelagen Fenstudium - 3. Konsultation 5.2.2007 Inhaltsveeichnis Infomationen u Püfung 2 2 Aufgabe 7. Umstömte Keisylinde mit Auftieb 3 3 Aufgabe 8. Komplexes Potential und Konfome Abbildung 0 Infomationen

Mehr

Konzeptionierung eines Feldsondenmeßplatzes zum EMV-gerechten Design von Chip/Multichipmodulen 1

Konzeptionierung eines Feldsondenmeßplatzes zum EMV-gerechten Design von Chip/Multichipmodulen 1 Konzeptionieung eines Feldsondenmeßplatzes zum EMV-geechten Design von Chip/Multichipmodulen 1 D. Manteuffel, Y. Gao, F. Gustau und I. Wolff Institut fü Mobil- und Satellitenfunktechnik, Cal-Fiedich-Gauß-St.

Mehr

ϕ = 3dB Öffnungswinkel im H-Feld

ϕ = 3dB Öffnungswinkel im H-Feld Selbstbauantennen fü VHF-, UHF-, SHF Votag on DL9NAM bei B11 am 16.04.02 Mit diesem Beitag soll gezeigt weden, daß mit egleichsweise einfachen Mitteln, die jedem Amateu zu Vefügung stehen, bauchbae Antennen

Mehr

Aktoren. Wirbelstrom- und Hysteresebremse

Aktoren. Wirbelstrom- und Hysteresebremse Aktoen Wibelstom- und Hysteesebemse Inhalt 1. Physikalisches Gundpinzip Magnetische Induktion De magnetische Fluß Faadaysches Gesetz und Lenzsche Regel Wibelstöme 2. Wibelstom- und Hysteesebemsen Aufbau

Mehr

ERDGASENTSPANNUNGSANLAGE OBERBUCHSITEN UT WISI ENIM AD MINIM VENIAM,QUIS NOSTRUD EXERCI TATION.

ERDGASENTSPANNUNGSANLAGE OBERBUCHSITEN UT WISI ENIM AD MINIM VENIAM,QUIS NOSTRUD EXERCI TATION. ERDGASENTSPANNUNGSANLAGE OBERBUCHSITEN UT WISI ENIM AD MINIM VENIAM,QUIS NOSTRUD EXERCI TATION. DIE GASVERBUND MITTELLAND AG Die Gasvebund Mittelland AG (GVM) ist mit und 33 Pozent des nationalen Edgasabsatzes

Mehr

I)Mechanik: 1.Kinematik, 2.Dynamik

I)Mechanik: 1.Kinematik, 2.Dynamik 3. Volesung EP I) Mechanik 1.Kinematik Fotsetzung 2.Dynamik Anfang Vesuche: 1. Feie Fall im evakuieten Falloh 2.Funkenflug (zu Keisbewegung) 3. Affenschuss (Übelageung von Geschwindigkeiten) 4. Luftkissen

Mehr

Drei Kreise. Fahrrad r = = = 3 = 3. r r r. n = = = Der Flächeninhalt beträgt 6,34 cm 2.

Drei Kreise. Fahrrad r = = = 3 = 3. r r r. n = = = Der Flächeninhalt beträgt 6,34 cm 2. Dei Keise Bestimmt den Flächeninhalt de schaffieten Fläche. Die schaffiete Figu besteht aus einem gleichseitigen Deieck ( cm) und dei Keisabschnitten (gau gezeichnet). Damit beechnet sich die Gesamtfläche:

Mehr

Inhalt Dynamik Dynamik, Kraftstoß Dynamik, Arbeit Dynamik, Leistung Kinetische Energie Potentielle Energie

Inhalt Dynamik Dynamik, Kraftstoß Dynamik, Arbeit Dynamik, Leistung Kinetische Energie Potentielle Energie Inhalt 1.. 3. 4. 5. 6. Dynamik Dynamik, Kaftstoß Dynamik, beit Dynamik, Leistung Kinetische Enegie Potentielle Enegie Pof. D.-Ing. abaa Hippauf Hochschule fü Technik und Witschaft des Saalandes; 1 Liteatu

Mehr

Möglichkeiten und Grenzen einer Marktbewertung von Krediten

Möglichkeiten und Grenzen einer Marktbewertung von Krediten 7 B e i c h t e Möglichkeiten und Genzen eine Maktbewetung von Kediten von ofesso D. homas Hatmann-Wendels * Gliedeung oblemstellung 2 Bewetung von Kediten bei vollkommenem Kapitalmakt 2. De Fall sichee

Mehr

Inertialsysteme. Physikalische Vorgänge kann man von verschiedenen Standpunkten aus beobachten.

Inertialsysteme. Physikalische Vorgänge kann man von verschiedenen Standpunkten aus beobachten. Inetialsysteme Physikalische Vogänge kann man on eschiedenen Standpunkten aus beobachten. Koodinatensysteme mit gegeneinande eschobenem Uspung sind gleichbeechtigt. Inetialsysteme Gadlinig-gleichfömig

Mehr

Messungen am Kondensator Q C = (1) U

Messungen am Kondensator Q C = (1) U E3 Physikalisches Paktiku Messungen a Kondensato Die Abhängigkeit de Kapazität eines Plattenkondensatos von de Göße bzw. de Abstand de Platten ist nachzuweisen. De Einfluss von Dielektika ist zu untesuchen..

Mehr

Unverbindliche Musterberechnung für den Wealthmaster Classic Plan von

Unverbindliche Musterberechnung für den Wealthmaster Classic Plan von Unvebindliche Mustebeechnung fü den Wealthmaste Classic Plan von Die anteilsgebundene Lebensvesicheung mit egelmäßige Beitagszahlung bietet Ihnen die pefekte Kombination aus de Sicheheit eine Kapitallebensvesicheung

Mehr

Wichtige Begriffe dieser Vorlesung:

Wichtige Begriffe dieser Vorlesung: Wichtige Begiffe diese Volesung: Impuls Abeit, Enegie, kinetische Enegie Ehaltungssätze: - Impulsehaltung - Enegieehaltung Die Newtonschen Gundgesetze 1. Newtonsches Axiom (Tägheitspinzip) Ein Köpe, de

Mehr

Das makroökonomische Grundmodell

Das makroökonomische Grundmodell Univesität Ulm 89069 Ulm Gemany Dipl.-WiWi Sabina Böck Institut fü Witschaftspolitik Fakultät fü Mathematik und Witschaftswissenschaften Ludwig-Ehad-Stiftungspofessu Wintesemeste 2008/2009 Übung 3 Das

Mehr

Wärmestrom. Wärmeleitung. 19.Nov.09. Ende. j u. Dieses wird zweckmäßiger pro Einheitsfläche definiert:

Wärmestrom. Wärmeleitung. 19.Nov.09. Ende. j u. Dieses wird zweckmäßiger pro Einheitsfläche definiert: Winteseeste 009 / 00 FK Wäeleitung I teodynaiscen Gleicgewict: Sind die beiden Seiten auf untesciedlice Tep., so fließt ein Wäesto. Diese ist popotional zu Tepeatudiffeenz TT -T, zu Quescnittsfläce A,

Mehr

Einführung in die Physik I. Elektromagnetismus 3

Einführung in die Physik I. Elektromagnetismus 3 infühung in die Physik lektomagnetismus 3 O. on de Lühe und U. Landgaf Magnetismus Neben dem elektischen Feld gibt es eine zweite Kaft, die auf Ladungen wikt: die magnetische Kaft (Loentz-Kaft) Die magnetische

Mehr

1.2.2 Gravitationsgesetz

1.2.2 Gravitationsgesetz VAK 5.04.900, WS03/04 J.L. Vehey, (CvO Univesität Oldenbug ) 1.. Gavitationsgesetz Heleitung aus Planetenbewegung Keplesche Gesetze 1. Planeten bewegen sich auf Ellipsen. De von Sonne zum Planeten gezogene

Mehr

Magnetismus EM 33. fh-pw

Magnetismus EM 33. fh-pw Magnetismus Das magnetische eld 34 Magnetische Kaft (Loentz-Kaft) 37 Magnetische Kaft auf einen elektischen Leite 38 E- eld s. -eld 40 Geladenes Teilchen im homogenen Magnetfeld 41 Magnetische lasche (inhomogenes

Mehr

Für den Endkunden: Produkt- und Preissuche

Für den Endkunden: Produkt- und Preissuche Fü den Endkunden: Podukt- und Peissuche Ducke Mit finde.ch bietet PoSelle AG eine eigene, umfassende Podukt- und Peissuchmaschine fü die Beeiche IT und Elektonik. Diese basiet auf de umfassenden Datenbank

Mehr

I)Mechanik: 1.Kinematik, 2.Dynamik

I)Mechanik: 1.Kinematik, 2.Dynamik 3. Volesung EP I) Mechanik 1.Kinematik Fotsetzung 2.Dynamik Anfang Vesuche: 1. Feie Fall im evakuieten Falloh 2.Funkenflug (zu Keisbewegung) 3. Affenschuss (Übelageung von Geschwindigkeiten) 4. Luftkissen

Mehr

Modellbasen für virtuelle Behaglichkeitssensoren

Modellbasen für virtuelle Behaglichkeitssensoren Modellbasen fü vituelle Behaglichkeitssensoen Felix Felgne, Lotha Litz felgne@eit.uni-kl.de Technische Univesität Kaiseslauten / Lehstuhl fü Autoatisieungstechnik Ewin-Schödinge-Staße 12, D-67663 Kaiseslauten

Mehr

Computer-Graphik II. Kompexität des Ray-Tracings. G. Zachmann Clausthal University, Germany cg.in.tu-clausthal.de

Computer-Graphik II. Kompexität des Ray-Tracings. G. Zachmann Clausthal University, Germany cg.in.tu-clausthal.de lausthal ompute-aphik II Komplexität des Ray-Tacings. Zachmann lausthal Univesity, emany cg.in.tu-clausthal.de Die theoetische Komplexität des Ray-Tacings Definition: das abstakte Ray-Tacing Poblem (ARTP)

Mehr

Parameter-Identifikation einer Gleichstrom-Maschine

Parameter-Identifikation einer Gleichstrom-Maschine Paamete-dentifikation eine Gleichtom-Machine uto: Dipl.-ng. ngo öllmecke oteile de Paamete-dentifikationvefahen eduzieung de Zeit- und Kotenaufwand im Püfpoze olltändige Püfung und Chaakteiieung von Elektomotoen

Mehr

Mechanik. 2. Dynamik: die Lehre von den Kräften. Physik für Mediziner 1

Mechanik. 2. Dynamik: die Lehre von den Kräften. Physik für Mediziner 1 Mechanik. Dynamik: die Lehe von den Käften Physik fü Medizine 1 Usache von Bewegungen: Kaft Bislang haben wi uns auf die Bescheibung von Bewegungsvogängen beschänkt, ohne nach de Usache von Bewegung zu

Mehr

Aufgabe 1: LKW. Aufgabe 2: Drachenviereck

Aufgabe 1: LKW. Aufgabe 2: Drachenviereck Aufgabe 1: LKW Ein LKW soll duch einen Tunnel mit halbkeisfömigem Queschnitt fahen. Die zweispuige Fahbahn ist insgesamt 6 m beit; auf beiden Seiten befindet sich ein Randsteifen von je 2 m Beite. Wie

Mehr

ENTMISCHUNG LÖSLICHKEITSKURVE EINES BINÄREN SYSTEMS MIT MISCHUNGSLÜCKE. 1. Versuchsplatz. 2. Allgemeines zum Versuch

ENTMISCHUNG LÖSLICHKEITSKURVE EINES BINÄREN SYSTEMS MIT MISCHUNGSLÜCKE. 1. Versuchsplatz. 2. Allgemeines zum Versuch Paktikum Teil und 04. ENTMISCHUNG Stand 22/10/2010 ENTMISCHUNG LÖSLICHKEITSKURVE EINES INÄREN SYSTEMS MIT MISCHUNGSLÜCKE 1. Vesuchsplatz Komponenten: - Magnetühe mit Heizung - echeglas mit Wasse - Themomete

Mehr

Generalthema: Ausgewählte Fragen der Fremdfinanzierung

Generalthema: Ausgewählte Fragen der Fremdfinanzierung Institut fü Geld- und Kaitalvekeh de Univesität Hambug Pof. D. Hatmut Schmidt Semina zu llgemeinen Betiebswitschaftslehe und Bankbetiebslehe Wintesemeste 1999/2000 Zuständige Mitabeite: Dil.-Kfm. Dik Niedeeichholz

Mehr

e r a Z = v2 die zum Mittelpunkt der Kreisbahn gerichtet ist. herbeigeführt. Diese Kraft lässt sich an ausgelenkter Federwaage ablesen.

e r a Z = v2 die zum Mittelpunkt der Kreisbahn gerichtet ist. herbeigeführt. Diese Kraft lässt sich an ausgelenkter Federwaage ablesen. Im (x 1, y 1 ) System wikt auf Masse m die Zentipetalbeschleunigung, a Z = v2 e die zum Mittelpunkt de Keisbahn geichtet ist. Folie: Ableitung von a Z = v2 e Pfeil auf Keisscheibe, Stoboskop Die Keisbewegung

Mehr

Magnetostatik I Grundlagen

Magnetostatik I Grundlagen Physik VL31 (08.01.2013) Magnetostatik I Gundlagen Magnetische Käfte und Felde Magnetfelde - Dipolnatu Das Magnetfeld de Ede De magnetische Fluß 1. & 2. Maxwellsche Gleichungen Flußdichte und magnetische

Mehr

Zur Gleichgewichtsproblematik beim Fahrradfahren

Zur Gleichgewichtsproblematik beim Fahrradfahren technic-didact 9/4, 57 (984). u Gleichgewichtspoblematik beim Fahadfahen Hans Joachim Schlichting Gleichgewicht halten ist die efolgeichste Bewegung des Lebens. Beutelock. Einleitung Die physikalische

Mehr

Unsere Energiezukunft III

Unsere Energiezukunft III Unsee Enegiezukunft III Zusammenfassung des Pogessia-Enegie-Podiums vom 1. Mäz 2012 Bei den nachstehenden Enegiewandlungskonzepten gilt de Vosatz - Die lokal vohandenen Enegieessoucen (Sonne, Wind, Geothemie,

Mehr

46 Elektrizität 3.2 ELEKTRISCHER STROM 3.2.1 DER ELEKTRISCHER STROM

46 Elektrizität 3.2 ELEKTRISCHER STROM 3.2.1 DER ELEKTRISCHER STROM 46 Elektizität 3.2 ELEKTRISCHER STROM Bishe haben wi uns mit statischen Felden beschäftigt. Wi haben dot uhende Ladungen, die ein elektisches Feld ezeugen. Jetzt wollen wi uns dem Fall zuwenden, dass ein

Mehr

Financial Leverage. Die unendliche Rendite des Eigenkapitals und ihr Risiko. Finanzwirtschaft VII Matthias Paesel Hochschule Magdeburg-Stendal

Financial Leverage. Die unendliche Rendite des Eigenkapitals und ihr Risiko. Finanzwirtschaft VII Matthias Paesel Hochschule Magdeburg-Stendal Financial Leveage Die unendliche Rendite des Eigenkapitals und ih Risiko Finanzwitschaft VII Matthias Paesel Hochschule Magdebug-Stendal Gliedeung I. Was besagt de Leveage-Effekt? II. Die Leveage Chance

Mehr

Schaltwerke. e = 0 z. e = 0 1 z. z neu. z = z = z???? z(t + ) = z neu = z(t) Schaltnetze und Schaltwerke

Schaltwerke. e = 0 z. e = 0 1 z. z neu. z = z = z???? z(t + ) = z neu = z(t) Schaltnetze und Schaltwerke Schaltweke Schaltnete und Schaltweke Schaltnete dienen u Becheibung deen, wa innehalb eine Poeotakt abläuft. Die akteit de Poeo mu imme etwa göße ein al die Signallaufeit de Schaltnete. Damit wid ichegetellt,

Mehr