11. Übung zur Vorlesung. Zahlentheorie. im Wintersemester 2015/16

Save this PDF as:
 WORD  PNG  TXT  JPG

Größe: px
Ab Seite anzeigen:

Download "11. Übung zur Vorlesung. Zahlentheorie. im Wintersemester 2015/16"

Transkript

1 11. Übung zur Vorlesung Aufgabe 41. Zeige, dass das Polynom (X 2 13)(X 2 17)(X ) Z[X] modulo jeder natürlichen Zahl n N eine Nullstelle hat, aber keine Nullstelle in Z besitzt. Aufgabe 42. Sei p eine Primzahl. Zeige, dass die diophantische Gleichung x 3 = y 4 +p keine Lösung x, y Z p besitzt mit x y 0 mod p. Abgabe am Freitag, den , um 13 Uhr.

2 10. Übung zur Vorlesung Aufgabe 37. Zeige, dass x = 3 5 und y = 2 3 Elemente in Z 7 sind und berechne die ersten vier Stellen der Potenzreihenentwicklung. Aufgabe 38. Berechne eine Lösung der Gleichung 7X 2 2 mod Aufgabe 39. Entscheide, ob die folgenden Gleichungen eine Lösung besitzen und berechne gegebenenfalls die ersten drei Stellen einer Lösung. X 2 = 7 in Z 3, X 2 = 17 in Z 5003, X 2 = 1 in Z 2 Aufgabe 40. Zeige für jede Primzahl p: (a) Z p ist kompakt (b) Q p ist lokalkompakt Abgabe am Freitag, den , um 13 Uhr.

3 9. Übung zur Vorlesung Aufgabe 33. Zeige: Für jede Primzahl p 3 hat die Gleichung (x + y)(x y) 2 = p 2015 jeweils 2016 ganzzahlige Lösungen. Aufgabe 34. Bestimme die Fundamentaleinheit des Ringes ganzer Zahlen des Zahlkörper Q( 47). Aufgabe 35. Berechne die Klassenzahl von Q( 35) und von Q( 23). Hinweis: Benutze, ( dass ) Ideale in O K, K ein quadratischer Zahlkörper mit Diskriminante, die Form mit a, b Z besitzen. a, b+ 2 Aufgabe 36. Zeige: Q( 23) Q(ζ 23 ). Betrachte dazu das Kreisteilungspolynom Φ p (X) = p 1 i=1 (X ζi ) aus Ausgabe 29 für X = 1 und stelle Φ p (1) mithilfe von Faktoren der Form (1 ζ)(1 ζ 1 ) dar. Abgabe am Freitag, den , um 13 Uhr.

4 8. Übung zur Vorlesung Am Montag, den , wird während der Vorlesung eine Probeklausur geschrieben, die am Freitag, den , während der Vorlesung besprochen wird. Der zweite Online-Test wird am Freitag, den , um 14 Uhr auf Ilias veröffentlicht. (Dazu auf nach WS15/16 suchen.) Den/die erste, der/die alle Fragen des Tests richtig beantwortet, erwartet eine kleine Überraschung. Für die Zulassung zur Klausur der müssen in allen Online-Tests alle Fragen richtig beantwortet werden. Die Tests dürfen bis zum beliebig oft durchgeführt werden. Aufgabe 29. Sei ζ eine primitive p-te Einheitswurzel für p > 2 prim. In zwei Teilen sollen der Ganzheitsring O Q(ζ) und die Diskriminante des Kreisteilungskörpers Q(ζ) berechnet werden. Zeige zuerst O Q(ζ) = Z[ζ] wie folgt. (a) Zeige, dass Φ p (x) := X p 1 + X p X + 1 = Xp 1 X 1 das Minimalpolynom von ζ ist. Wende dazu das Eisenstein-Kriterium auf Φ p (X + 1) an. Insbesondere hat die Körpererweiterung Q(ζ)/Q also den Grad p 1. (b) Zeige nun, dass das durch p gegebene Ideal po Q(ζ) eine Potenz des von λ := 1 ζ erzeugten Hauptideals ist, genauer, po Q(ζ) = (λ) p 1. Betrachte dazu Φ p (X) = p 1 i=1 (X ζi ) für X = 1 und 1 ζ i = (1 ζ)(1+ζ +...+ζ i 1 ) um p = λ p 1 ɛ zu folgern. Zeige: ɛ ist eine Einheit in O Q(ζ). (c) Berechne für ein Element α = a 0 + a 1 ζ a p 2 ζ p 2 Q[ζ] die Spuren der Elemente um pα Z[ζ] zu zeigen. αζ k αζ, k = 0,..., p 2 (d) Schreibe pα = p 2 i=0 c iλ i und zeige mittels Induktion, dass c i 0 mod p. Benutze die Norm, um daraus p c i für alle i zu folgern. Schließe, dass bereits die pa i durch p teilbar waren und somit α Z[ζ] ist, wenn α ganz ist. Nach dem Obigen ist 1, ζ,..., ζ p 2 eine Ganzheitsbasis. Um nun deren Diskriminante zu bestimmen, gehe wie folgt vor. (e) Zeige, dass (1, ζ,..., ζ p 2 ) = p 1 i j(ζ i ζ j ) = ± Φ p(ζ i ). i=1 (f) Zeige durch Ableiten von (X 1)Φ p (X) = X p 1 und einsetzen, dass Φ p(ζ i ) = Bestimme damit die Diskriminante (bis auf Vorzeichen). p ζ i 1 ζ i.

5 Aufgabe 30. Es seien m, n Z zwei quadratfreie, teilerfremde ganze Zahlen von denen mindestens eine 1 mod 4 ist. Betrachte K := Q( m, n). Zeige: i) Ist 1, ω bzw. 1, ω eine Ganzheitsbasis von O Q( m) bzw. O Q( n), so ist 1, ω, ω, ωω eine Ganzheitsbasis von O K ii) Berechne den Ring der ganzen Zahlen für (m, n) = (3, 5) und (m, n) = (5, 13). iii) Was ist jeweils die Diskriminante der obigen Zahlkörper? Hinweise: Schreibe ein α O K als α = β 0 + β 1 ω mit β i Q[ω]. Bezeichne mit d bzw. d die Diskriminanten von O( m) bzw. O( n). Zeige: d,d sind teilerfremd. Zeige nun β i d O( m) und folgere, dass d α Koeffizienten in Z besitzt. Vertausche nun die Rollen von d und d, um i) zu zeigen. Aufgabe 31. Berechne im Ring der ganzen Zahlen des Zahlkörpers K = Q( 2) die Inversen der Ideale I = (3, ) und J = (7, ) Aufgabe 32. Sei K = Q( d) ein quadratischer Zahlkörper. Zerlege die Hauptideale (p), p P in Primideale. Abgabe am Freitag, den , um 13 Uhr.

6 7. Übung zur Vorlesung Aufgabe 25. Untersuche die folgenden komplexen Zahlen darauf, ob sie ganz über Z oder zumindest algebraisch über Q sind: 4 25, 1 + 5, exp(2πi/17). 7 Aufgabe 26. Zeige, dass die Näherungsbrüche pn q n einer irrationalen Zahl α für n > 1 die besten Approximationen von α durch Brüche der Form p q, 1 q q n, p, q teilerfremd, liefern. Mit anderen Worten, zeige, dass p q α p n α q n für alle teilerfremden p, q Z mit 1 q q n. Aufgabe 27. Zeige, dass die beiden folgenden Aussagen äquivalent sind: (a) Für α C existiert ein Zahlkörper K, so dass α K. (b) Es existiert ein Polynom 0 f(x) Z[x], so dass f(α) = 0. Aufgabe 28. (a) Sei α eine Nullstelle des Polynoms X 3 X 4 Z[X]. Zeige, dass 1 2 (α + α2 ) eine ganze algebraische Zahl ist, 1 2 (1 + α) aber nicht. (b) Sei β eine Nullstelle des Polynoms X 3 2X 2 + 6X + 40 Z[X]. Zeige, dass 1 2 β nicht ganz über Z ist, obwohl Norm und Spur ganze Zahlen sind. Abgabe am Freitag, den , um 13 Uhr.

7 6. Übung zur Vorlesung Aufgabe 21. Entwickle m 2 1 und m für m N in einen Kettenbruch. Aufgabe 22. Berechne die Kettenbruchentwicklung der Zahl x > n, die x 2 = nx + 1 erfüllt. Aufgabe 23. Berechne jeweils 3 Lösungen der Pellschen Gleichungen x 2 13y 2 = 1 und x 2 13y 2 = 4, die sich nicht nur um ein Vorzeichen unterscheiden. Aufgabe 24. Man kann die Pellsche Gleichung x 2 dy 2 = 1 für d Z auch schreiben als ( ) x dy det = 1. y x Zeige, dass damit die ganzzahligen Lösungen der Pellschen Gleichung zu einer Untergruppe der Gruppe Gl(2, Q) werden. Abgabe am Freitag, den , um 13 Uhr.

8 5. Übung zur Vorlesung Aufgabe 17. Es soll ein Spezialfall der Vermutung von Fermat (für n = 4) bewiesen werden, und zwar, dass die Gleichung x 4 + y 4 = z 2 nur Lösungen mit xyz = 0 besitzt. (a) Zeige zunächst, dass es reicht die Aussage für teilerfremde Tripel (x, y, z) ganzer Zahlen zu zeigen. (b) Sei nun (x, y, z) ein teilerfremdes Tripel ganzer Zahlen mit x 4 + y 4 = z 2, xyz 0. Dann gibt es nach evtl Vertauschung von x und y teilerfremde p, q Z mit p q mod 2, p > q > 0 und x 2 = 2pq, y 2 = p 2 q 2, z = p 2 + q 2. (c) Zeige, dass für die Zahlen p, q Z aus Teil b) gilt: Es gibt teilerfremde a, b Z mit a b mod 2, a > b > 0 so, dass q = 2ab, y = a 2 b 2, p = a 2 + b 2. (d) Zeige, dass ab und a 2 + b 2 und somit auch a, b Quadrate in Z sind. (e) Sei a = X 2, b = Y 2 und a 2 + b 2 = Z 2 mit X, Y, Z Z. Verwende das Tripel (X, Y, Z) um durch ein Abstiegsargument die Vermutung von Fermat für n = 4 zu beweisen. (f) Zeige: Ist die Vermutung von Fermat für jede ungerade Primzahl bewiesen, dann gilt sie für alle n > 2. Aufgabe 18. Stelle die Zahlen 178, 373 und 4797 als Summe zweier Quadrate dar. Aufgabe 19. Berechne die Kettenbruchentwicklung von 49 13, und Aufgabe 20. Berechne den Wert der Kettenbrüche [2, 3], [1, 2, 3], [3, 2, 1] und [0, 2, 4, 2, 1, 3, 2]. Abgabe am Freitag, den , um 13 Uhr.

9 4. Übung zur Vorlesung Der erste Online-Test wird am Montag, den , um 14 Uhr auf Ilias veröffentlicht. (Dazu auf nach WS15/16 suchen.) Den/die erste, der/die alle Fragen des Tests richtig beantwortet, erwartet eine kleine Überraschung. Für die Zulassung zur Klausur der müssen in allen Online-Tests alle Fragen richtig beantwortet werden. Die Tests dürfen bis zum beliebig oft durchgeführt werden. Aufgabe 13. Berechne log 2 18 in F 37 und log 5 22 in F 547 mit dem baby steps - giant steps Algorithmus. Aufgabe 14. Zeige, dass die Einheitengruppe U n genau dann zyklisch ist, wenn entweder n = 4, n = p r+1 oder n = 2p r (für r N 0 und p P \ {2}). Aufgabe 15. Berechne die Jacobi-Symbole ( ) ( und ). Aufgabe 16. Sei p 3 prim. Zeige: ) (a) = 1 genau dann, wenn p 1 mod 6. (b) (c) ( 3 p ( 3 p) = 1 genau dann, wenn p 1 mod 12 oder p 11 mod 12. ( ) 2 p = 1 genau dann, wenn p 1 mod 8 oder p 3 mod 8. Abgabe am Freitag, den , um 13 Uhr.

10 3. Übung zur Vorlesung Aufgabe 9. Es bezeichne ϕ(n) die Eulersche ϕ-funktion, d.h. die Mächtigkeit der Einheitengruppe U n. Zeige: (a) ϕ(n) ist gerade für n 3. (b) ϕ(n) ist eine Zweierpotenz genau dann, wenn n das Produkt einer Zweierpotenz mit paarweise verschiedenen Fermatschen Primzahlen ist. (c) n ist prim genau dann, wenn ϕ(n) = n 1. (d) n = d n ϕ(d). Aufgabe 10. Es seien p = 241, q = 251 und n = pq deren Produkt. Bestimme ϕ(n) und finde ein e > 1 mit ggt(e, ϕ(n)) = 1. Dann bestimme ein d mit ed 1 mod ϕ(n). Kodiere daraufhin x = 24 unter der Einwegfunktion E(x) = x e. Überprüfe das Ergebnis durch Dekodieren. Aufgabe 11. Finde alle Primitivwurzeln zu p = 19 und p = 37. Drücke jeweils alle Primitivwurzeln zu p = 17 durch Potenzen einer gefundenen aus. Aufgabe 12. (a) Zeige: Es gibt kein n N mit U n = Z/14Z. (b) Bestimme ein n N, so dass U n eine zu (Z/7Z) 3 isomorphe Untergruppe enthält. Abgabe am Freitag, den , um 13 Uhr.

11 2. Übung zur Vorlesung Wichtige Informationen: Aktuelle Informationen zur Vorlesung/Übung und Übungsblätter gibt es im Netz auf der Seite Die Übungen dürfen in Zweiergruppen abgegeben werden. Aufgabe 5. Zeige: Z[ 5] und 3 Z[ 5] sind irreduzibel, aber nicht prim. Hinweis: Betrachte (2 + 5)(2 5) = 3 3. Aufgabe 6. Entscheide, ob die folgenden Ideale in Z[X] Hauptideale sind und finde gegebenenfalls einen Erzeuger: (a) I 1 := (3, X) (b) I 2 := (X + 7, 2X + 13) Aufgabe 7. Bestimme die letzte Dezimalstelle der Zahlen n für n = 7 und n = 3. Aufgabe 8. Löse die folgende simultane Kongruenz: 3x 1 mod 5, x 7 mod 14 und x 5 mod 18. Abgabe am Freitag, den , um 13 Uhr.

12 1. Übung zur Vorlesung Wichtige Informationen: Aktuelle Informationen zur Vorlesung/Übung und Übungsblätter gibt es im Netz auf der Seite Die Übungen dürfen in Zweiergruppen abgegeben werden. Aufgabe 1. Bestimme alle Primzahlen 200 ohne Rechner durch die Siebmethode. Aufgabe 2. Modifiziere den Beweis des Satzes von Euklid um zu zeigen, dass es unendlich viele Primzahlen der Form 4k 1(bzw. 4k + 1) gibt. Aufgabe 3. Zeige, dass für n 1 keine der Zahlen (n + 1)! + k mit 2 k n + 1 eine Primzahl ist. Aufgabe 4. Zeige, dass es keine Polynomfunktion f : N 0 Z gibt, die nur Primzahlen als Werte hat. Abgabe am Freitag, den , um 13 Uhr.

Seminar zur Zahlentheorie Spezialfälle des Satzes von Fermat

Seminar zur Zahlentheorie Spezialfälle des Satzes von Fermat Seminar zur Zahlentheorie Spezialfälle des Satzes von Fermat Vortrag von Kristina Rupp und Benjamin Letschert am 29.01.2008 Inhaltsverzeichnis 13 Speziallfälle des Satzes von Fermat 1 13.1 Der Große Satz

Mehr

Einführung in die algebraische Zahlentheorie

Einführung in die algebraische Zahlentheorie Alexander Schmidt Einführung in die algebraische Zahlentheorie Springer-Lehrbuch Springer Berlin Heidelberg New York ISBN 978-3-540-45973-6 Kapitel 7 Der Große Fermatsche Satz Die folgende Behauptung wurde

Mehr

Musterlösung zur Probeklausur zur Angewandten Diskreten Mathematik

Musterlösung zur Probeklausur zur Angewandten Diskreten Mathematik UNIVERSITÄT ULM Institut für Zahlentheorie und Wahrscheinlichkeitstheorie Musterlösung zur Probeklausur zur Angewandten Diskreten Mathematik Prof. Dr. Helmut Maier, Hans- Peter Reck Gesamtpunktzahl: 100

Mehr

Lösungsvorschlag für die Probeklausuren und Klausuren zu Algebra für Informations- und Kommunikationstechniker bei Prof. Dr.

Lösungsvorschlag für die Probeklausuren und Klausuren zu Algebra für Informations- und Kommunikationstechniker bei Prof. Dr. Lösungsvorschlag für die Probeklausuren und Klausuren zu Algebra für Informations- und Kommunikationstechniker bei Prof. Dr. Kurzweil Florian Franzmann André Diehl Kompiliert am 10. April 2006 um 18:33

Mehr

Inhaltsverzeichnis Vorlesung Zahlentheorie

Inhaltsverzeichnis Vorlesung Zahlentheorie J. Wolfart SoSe 2007 Inhaltsverzeichnis Vorlesung Zahlentheorie 1. Elementare Zahlentheorie, sehr summarisch Teilbarkeit, euklidischer Algorithmus, eindeutige Primfaktorzerlegung, einige einfache Konsequenzen:

Mehr

1. Übung Elemente der Zahlentheorie SS2016

1. Übung Elemente der Zahlentheorie SS2016 1. Übung Elemente der Zahlentheorie SS2016 1. Sei n IN eine natürliche Zahl. Zeigen Sie mit Hilfe vollständiger Induktion: (a) 1+2+3+...+(n 1)+n = n(n+1), 2 (b) 1+4+9+...+(n 1) 2 +n 2 = n(n+1)(2n+1), 6

Mehr

Aufgabenblatt 5 (Schnellübung)

Aufgabenblatt 5 (Schnellübung) Frühlingssemester 0, Aufgabenblatt (Schnellübung) Aufgabenblatt (Schnellübung) 30 Punkte Aufgabe (Kettenbrüche) a) Bestimme [b 0, b,..., b ] = [,... ], die Kettenbruchentwicklung von r = 3/9. b) Bestimme

Mehr

Übungen zu Zahlentheorie für TM, SS 2013

Übungen zu Zahlentheorie für TM, SS 2013 Übungen zu Zahlentheorie für TM, SS 2013 zusammengestellt von Johannes Morgenbesser Übungsmodus: Ausarbeitung von 10 der Beisiele 1 38, 5 der Beisiele A O und 15 der Beisiele i xxxi. 1. Zeigen Sie, dass

Mehr

13. Der diskrete Logarithmus

13. Der diskrete Logarithmus 13. Der diskrete Logarithmus 13.1. Definition. Sei p eine Primzahl. Wie wir in 9 bewiesen haben, ist die multiplikative Gruppe F p des Körpers F p = Z/p zyklisch. Sei g ein erzeugendes Element von F p

Mehr

Algebra und Diskrete Mathematik, PS3. Sommersemester Prüfungsfragen

Algebra und Diskrete Mathematik, PS3. Sommersemester Prüfungsfragen Algebra und Diskrete Mathematik, PS3 Sommersemester 2016 Prüfungsfragen Erläutern Sie die Sätze über die Division mit Rest für ganze Zahlen und für Polynome (mit Koeffizienten in einem Körper). Wodurch

Mehr

Einführung in die Zahlentheorie

Einführung in die Zahlentheorie Einführung in die Zahlentheorie Jörn Steuding Uni Wü, SoSe 2015 I Zahlen II Modulare Arithmetik III Quadratische Reste IV Diophantische Gleichungen V Quadratische Formen Wir behandeln die wesentliche Zahlentheorie

Mehr

Mathematisches Institut SS 2010 Heinrich-Heine-Universität Prof. Dr. Stefan Schröer. Algebra. Blatt 1. ω = u + v,

Mathematisches Institut SS 2010 Heinrich-Heine-Universität Prof. Dr. Stefan Schröer. Algebra. Blatt 1. ω = u + v, Blatt 1 Aufgabe 1. Sei z = re iϕ C eine komplexe Zahl mit r, ϕ R, und n 1. Geben Sie alle ω C mit ω n = z in Polarkoordinaten an. Aufgabe 2. Sei X 3 + px + q C[X] ein kubisches Polynom. Dessen drei Nullstellen

Mehr

Kapitel 2. Ganze Zahlen. 2.1 Teilbarkeit

Kapitel 2. Ganze Zahlen. 2.1 Teilbarkeit Kapitel 2 Ganze Zahlen In diesem Kapitel setzen wir voraus, dass die Menge Z der ganzen Zahlen, ihre Ordnung und die Eigenschaften der Addition und Multiplikation ganzer Zahlen dem Leser vertraut sind.

Mehr

Musterlösung zur Probeklausur zur Angewandten Diskreten Mathematik Dr. Hartmut Lanzinger, Hans- Peter Reck

Musterlösung zur Probeklausur zur Angewandten Diskreten Mathematik Dr. Hartmut Lanzinger, Hans- Peter Reck Musterlösung zur Probeklausur zur Angewandten Diskreten Mathematik Dr. Hartmut Lanzinger, Hans- Peter Reck Gesamtpunktzahl: 114 Punkte, 100 Punkte= 100 %, keine Abgabe 1. Es seien m = 1155 und n = 1280.

Mehr

Klausur zur Elementaren Algebra und Zahlentheorie Mittwoch, 02.03.05

Klausur zur Elementaren Algebra und Zahlentheorie Mittwoch, 02.03.05 Prof. Dr. Duco van Straten Oliver Weilandt Klausur zur Elementaren Algebra und Zahlentheorie Mittwoch, 0.03.05 Bitte tragen Sie hier gut lesbar Ihren Namen und Ihre Matrikelnummer ein. Name, Vorname Matrikelnummer

Mehr

Inhaltsverzeichnis. Kapitel 1. Teilbarkeit... 1

Inhaltsverzeichnis. Kapitel 1. Teilbarkeit... 1 Inhaltsverzeichnis Kapitel 1. Teilbarkeit... 1 1. Fundamentalsatz der Arithmetik... 2 1. Natürliche und ganze Zahlen 2. Teiler 3. Primzahlen 4. Satz von Euklid 5. Der Fundamentalsatz der Arithmetik 6.

Mehr

Probabilistische Primzahltests

Probabilistische Primzahltests 23.01.2006 Motivation und Überblick Grundsätzliches Vorgehen Motivation und Überblick Als Primzahltest bezeichnet man ein mathematisches Verfahren, mit dem ermittelt wird, ob eine gegebene Zahl eine Primzahl

Mehr

Seminarvortrag aus Reiner Mathematik Existenz von Primitivwurzeln

Seminarvortrag aus Reiner Mathematik Existenz von Primitivwurzeln Seminarvortrag aus Reiner Mathematik Existenz von Primitivwurzeln Michael Kniely November 2009 1 Vorbemerkungen Definition. Sei n N +, ϕ(n) := {d [0, n 1] ggt (d, n) = 1}. Die Abbildung ϕ : N + N + heißt

Mehr

Angewandte Diskrete Mathematik

Angewandte Diskrete Mathematik Vorabskript zur Vorlesung Angewandte Diskrete Mathematik Wintersemester 2010/ 11 Prof. Dr. Helmut Maier Dipl.-Math. Hans- Peter Reck Institut für Zahlentheorie und Wahrscheinlichkeitstheorie Universität

Mehr

Prof. Dr. H. Brenner Osnabrück SS Zahlentheorie. Vorlesung 4. Die Restklassenringe Z/(n)

Prof. Dr. H. Brenner Osnabrück SS Zahlentheorie. Vorlesung 4. Die Restklassenringe Z/(n) Prof. Dr. H. Brenner Osnabrück SS 2008 Zahlentheorie Vorlesung 4 Die Restklassenringe Z/(n) Satz 4.1. (Einheiten modulo n) Genau dann ist a Z eine Einheit modulo n (d.h. a repräsentiert eine Einheit in

Mehr

5 Grundlagen der Zahlentheorie

5 Grundlagen der Zahlentheorie 5 Grundlagen der Zahlentheorie 1 Primfaktorzerlegung Seienm, n N + := {k N k > 0} Man schreibt n n, gesprochen m teilt n oder m ist ein Teiler von n, wenn es eine positive natürliche Zahl k gibt mit mk

Mehr

3-9 Elementare Zahlentheorie

3-9 Elementare Zahlentheorie 3-9 Elementare Zahlentheorie 332 Satz (Charakterisierung zyklischer Gruppen) Sei G eine Gruppe der Ordnung n Die folgenden Aussagen sind äquivalent: (1) G ist zyklisch (2) Die Anzahl der Elemente der Ordnung

Mehr

L-Funktionen in Geometrie und Arithmetik

L-Funktionen in Geometrie und Arithmetik Fachbereich Mathematik Technische Universität Darmstadt bruinier@mathematik.tu-darmstadt.de 30. Januar 2008 Leonhard Euler (1707 1783) Bernhard Riemann (1826-1866) Die rationalen Zahlen Prinzahlen Die

Mehr

Seminararbeit zur Zahlentheorie. Die Gaußschen Zahlen

Seminararbeit zur Zahlentheorie. Die Gaußschen Zahlen Universität Paderborn WS 2007/2008 Warburger Str. 100 33098 Paderborn Seminararbeit zur Zahlentheorie Die Gaußschen Zahlen Tatjana Linkin, Svetlana Krez 20. November 2007 INHALTSVERZEICHNIS 1 Inhaltsverzeichnis

Mehr

1 Zahlentheorie. 1.1 Kongruenzen

1 Zahlentheorie. 1.1 Kongruenzen 3 Zahlentheorie. Kongruenzen Der letzte Abschnitt zeigte, daß es sinnvoll ist, mit großen Zahlen möglichst einfach rechnen zu können. Oft kommt es nicht darauf, an eine Zahl im Detail zu kennen, sondern

Mehr

Zusatztutorium, 25.01.2013

Zusatztutorium, 25.01.2013 Zusatztutorium, 25.01.2013 David Müßig muessig[at]mi.fu-berlin.de http://page.mi.fu-berlin.de/def/tutorium/ WiSe 12/13 1 Der Homomorphiesatz Der Homomorphiesatz scheint für viele eine Art rotes Tuch zu

Mehr

Vorlesung Diskrete Strukturen Gruppe und Ring

Vorlesung Diskrete Strukturen Gruppe und Ring Vorlesung Diskrete Strukturen Gruppe und Ring Bernhard Ganter Institut für Algebra TU Dresden D-01062 Dresden bernhard.ganter@tu-dresden.de WS 2009/10 1 Bernhard Ganter, TU Dresden Modul Einführung in

Mehr

Zahlentheorie III. smo osm. Thomas Huber. Inhaltsverzeichnis. Aktualisiert: 1. August 2016 vers

Zahlentheorie III. smo osm. Thomas Huber. Inhaltsverzeichnis. Aktualisiert: 1. August 2016 vers Schweizer Mathematik-Olympiade smo osm Zahlentheorie III Thomas Huber Aktualisiert: 1. August 2016 vers. 1.6.8 Inhaltsverzeichnis 1 Spezielle Gleichungstypen 2 1.1 Quadratische Gleichungen..........................

Mehr

Einführung in die Algebra

Einführung in die Algebra Prof. Dr. H. Brenner Osnabrück SS 2009 Einführung in die Algebra Vorlesung 19 Algebraisch abgeschlossene Körper Wir haben zuletzt erwähnt, dass ein lineares Polynom X a über einem Körper stets irreduzibel

Mehr

11. Primfaktorzerlegungen

11. Primfaktorzerlegungen 78 Andreas Gathmann 11 Primfaktorzerlegungen Euch ist sicher aus der Schule bekannt, dass sich jede positive ganze Zahl a als Produkt a = p 1 p n von Primzahlen schreiben lässt, und dass diese Darstellung

Mehr

3: Zahlentheorie / Primzahlen

3: Zahlentheorie / Primzahlen Stefan Lucks Diskrete Strukturen (WS 2009/10) 96 3: Zahlentheorie / Primzahlen 3: Zahlentheorie / Primzahlen Stefan Lucks Diskrete Strukturen (WS 2009/10) 97 Definition 37 (Teiler, Vielfache, Primzahlen,

Mehr

$Id: ring.tex,v /05/03 15:13:26 hk Exp $

$Id: ring.tex,v /05/03 15:13:26 hk Exp $ $Id: ring.tex,v 1.13 2012/05/03 15:13:26 hk Exp $ 3 Ringe 3.1 Der Ring Z m In der letzten Sitzung hatten wir die sogenannten Ringe eingeführt, dies waren Mengen A versehen mit einer Addition + und einer

Mehr

Public-Key Kryptographie mit dem RSA Schema. Torsten Büchner

Public-Key Kryptographie mit dem RSA Schema. Torsten Büchner Public-Key Kryptographie mit dem RSA Schema Torsten Büchner 7.12.2004 1.Einleitung 1. symmetrische-, asymmetrische Verschlüsselung 2. RSA als asymmetrisches Verfahren 2.Definition von Begriffen 1. Einwegfunktionen

Mehr

Computeralgebra PARI

Computeralgebra PARI Universität Wien Prof. Dr. D. Burde Computeralgebra PARI 1. Eine kleine Einführung in PARI-GP. PARI-GP ist ein Computeralgebrasystem (CAS), das hauptsächlich für Berechnungen in der Zahlentheorie entworfen

Mehr

TECHNISCHE UNIVERSITÄT MÜNCHEN

TECHNISCHE UNIVERSITÄT MÜNCHEN TECHNISCHE UNIVERSITÄT MÜNCHEN Zentrum Mathematik PROF. DR.DR. JÜRGEN RICHTER-GEBERT, VANESSA KRUMMECK, MICHAEL PRÄHOFER Höhere Mathematik für Informatiker I (Wintersemester 2003/2004) Aufgabenblatt 9

Mehr

1.1 Teilbarkeit, Primzahlen und Teilerfremdheit

1.1 Teilbarkeit, Primzahlen und Teilerfremdheit Kapitel Primzahlen Bevor wir uns allgemeineren Themen und Begriffen der Algebra zuwenden, wollen wir einige zugleich elementare und schöne Ideen aus der Theorie der Primzahlen zusammenstellen, da diese

Mehr

5. Galoisgruppen. 5. Galoisgruppen 45

5. Galoisgruppen. 5. Galoisgruppen 45 5. Galoisgruppen 45 5. Galoisgruppen Nach dem Studium von Zerfällungskörpern im letzten Kapitel wollen wir nun wieder zu unseren Problemen aus der Einleitung zurückkehren. Dazu erinnern wir uns zunächst

Mehr

1 Vorbereitung: Potenzen 2. 2 Einstieg und typische Probleme 3

1 Vorbereitung: Potenzen 2. 2 Einstieg und typische Probleme 3 Das vorliegende Skript beschäftigt sich mit dem Thema Rechnen mit Kongruenzen. Das Skript entsteht entlang einer Unterrichtsreihe in der Mathematischen Schülergesellschaft (MSG) im Jahr 2013. Die vorliegende

Mehr

Ganzzahlige Division mit Rest

Ganzzahlige Division mit Rest Modulare Arithmetik Slide 1 Ganzzahlige Division mit Rest Für a,b Æ mit a b gibt es stets eine Zerlegung von a der Form a = q b+r mit 0 r b 1. Hierbei gilt q = a b (salopp formuliert: b passt q-mal in

Mehr

3.5 Ringe und Körper. Diese Eigenschaften kann man nun auch. 1. (R, +) ist eine kommutative Gruppe. 2. Es gilt das Assoziativgesetz bezüglich.

3.5 Ringe und Körper. Diese Eigenschaften kann man nun auch. 1. (R, +) ist eine kommutative Gruppe. 2. Es gilt das Assoziativgesetz bezüglich. 3.5 Ringe und Körper Gehen wir noch mal zu den ganzen Zahlen zurück. Wir wissen: (Z, + ist eine Gruppe, es gibt aber als Verknüpfung noch die Multiplikation, es gibt ein neutrales Element bezüglich, es

Mehr

4.2 Das quadratische Reziprozitätsgesetz

4.2 Das quadratische Reziprozitätsgesetz 4. Das quadratische Rezirozitätsgesetz Die Grundlage zur Berechnung des Legendre- (und Jacobi-) -Symbols sind die folgenden beiden Sätze; zunächst aber ein Hilfssatz, mit dem sich zusammengesetzte Moduln

Mehr

Zahlentheorie. Vorlesung 14. Fermatsche Primzahlen

Zahlentheorie. Vorlesung 14. Fermatsche Primzahlen Prof. Dr. H. Brenner Osnabrück SS 2008 Zahlentheorie Vorlesung 14 Fermatsche Primzahlen Definition 14.1. Eine Primzahl der Form 2 s + 1, wobei s eine positive natürliche Zahl ist, heißt Fermatsche Primzahl.

Mehr

Übungsblätter zur Vorlesung Elementare Zahlentheorie Sommersemester Dipl.-Math. Daniel Haase

Übungsblätter zur Vorlesung Elementare Zahlentheorie Sommersemester Dipl.-Math. Daniel Haase Übungsblätter zur Vorlesung Elementare Zahlentheorie Sommersemester 2006 Dipl.-Math. Daniel Haase Prof. Dr. H. Maier 04.05.2006 Dipl.-Math. D. Haase SS 2006 daniel.haase@uni-ulm.de Elementare Zahlentheorie

Mehr

Lineare Algebra I Klausur. Klausur - Musterlösung

Lineare Algebra I Klausur. Klausur - Musterlösung Prof. Dr. B. Hanke Dr. J. Bowden Lineare Algebra I Klausur Klausur - Musterlösung 20. Februar 203 Aufgabe - Lösung Aussage wahr falsch (Z, +, 0) ist eine abelsche Gruppe. Der Ring Z/24Z ist nullteilerfrei.

Mehr

Lösung zur Klausur zu Krypographie Sommersemester 2005

Lösung zur Klausur zu Krypographie Sommersemester 2005 Lösung zur Klausur zu Krypographie Sommersemester 2005 1. Bestimmen Sie die zwei letzten Ziffern der Dezimaldarstellung von 12 34 Es gilt: 12 34 = 12 32+2 = 12 32 12 2 = 12 (25) 12 2 = ((((12 2 ) 2 ) 2

Mehr

Diophantische Gleichungen

Diophantische Gleichungen Diophantische Gleichungen Pythagoras, Fermat und Homer Simpson Tag der Mathematik 2013 Lars Kindler, Freie Universität Berlin Benannt nach Diophant von Alexandrien (~ 250 v.chr) Sein wichtigstes Werk war

Mehr

Seminar: Lösen Spezieller Gleichungen Wintersemester 2009/2010 Prof. Dr. Annette Huber-Klawitter Betreuer: Stephen Enright-Ward

Seminar: Lösen Spezieller Gleichungen Wintersemester 2009/2010 Prof. Dr. Annette Huber-Klawitter Betreuer: Stephen Enright-Ward Seminar: Lösen Spezieller Gleichungen Wintersemester 2009/2010 Prof. Dr. Annette Huber-Klawitter Betreuer: Stephen Enright-Ward Ort und Zeit: Dienstag, 14-16 Uhr, SR 127 Inhalt: Wir wollen uns in diesem

Mehr

Skript zur Vorlesung Algebraische Zahlentheorie

Skript zur Vorlesung Algebraische Zahlentheorie Skript zur Vorlesung Algebraische Zahlentheorie Matthias Wendt WS 2011/12 2 Inhaltsverzeichnis 1 Überblick 5 2 Ganze Ringerweiterungen 7 3 Ganzheitsbasis und Diskriminante 11 3.1 Beispiel 1: Quadratische

Mehr

WIEDERHOLUNG (BIS ZU BLATT 7)

WIEDERHOLUNG (BIS ZU BLATT 7) Universität Bielefeld SS 2016 WIEDERHOLUNG (BIS ZU BLATT 7) JULIA SAUTER Wir wiederholen, welche Aufgabentypen bis zu diesem Zeitpunkt behandelt worden sind. Auf der nächsten Seite können Sie sich selber

Mehr

Äquivalenzrelation. Tischler-Problem. Euklidischer Algorithmus. Erweiterter euklidischer Algorithmus. Lineare diophantische Gleichung

Äquivalenzrelation. Tischler-Problem. Euklidischer Algorithmus. Erweiterter euklidischer Algorithmus. Lineare diophantische Gleichung Äquivalenzrelation Tischler-Problem Euklidischer Algorithmus Erweiterter euklidischer Algorithmus Lineare diophantische Gleichung Rechnen mit Resten Restklassen Teilbarkeit in Z Beispiel einer Kongruenzgleichung

Mehr

Zahlentheorie II. smo osm. Thomas Huber. Inhaltsverzeichnis. Aktualisiert: 1. August 2016 vers

Zahlentheorie II. smo osm. Thomas Huber. Inhaltsverzeichnis. Aktualisiert: 1. August 2016 vers Schweizer Mathematik-Olympiade smo osm Zahlentheorie II Thomas Huber Aktualisiert: 1. August 2016 vers. 1.2.1 Inhaltsverzeichnis 1 Kongruenzen I 2 1.1 Denitionen.................................. 2 1.2

Mehr

Elementare Zahlentheorie

Elementare Zahlentheorie Elementare Zahlentheorie Thomas Markwig Fachbereich Mathematik Technische Universität Kaiserslautern Vorlesungsskript März 2010 Inhaltsverzeichnis 1. Einleitung 1 2. Lineare diophantische Gleichungen 25

Mehr

Der Zwei-Quadrate-Satz von Fermat

Der Zwei-Quadrate-Satz von Fermat Der Zwei-Quadrate-Satz von Fermat Proseminar: Das BUCH der Beweise Fridtjof Schulte Steinberg Institut für Informatik Humboldt-Universität zu Berlin 29.November 2012 1 / 20 Allgemeines Pierre de Fermat

Mehr

Arbeitsblatt 2 Übungen zu Mathematik I für das Lehramt an der Grund- und Mittelstufe sowie an Sonderschulen H. Strade, B. Werner WiSe 06/

Arbeitsblatt 2 Übungen zu Mathematik I für das Lehramt an der Grund- und Mittelstufe sowie an Sonderschulen H. Strade, B. Werner WiSe 06/ 14. November 2006 Arbeitsblatt 2 Übungen zu Mathematik I für das Lehramt an der Grund- und Mittelstufe sowie an Sonderschulen H. Strade, B. Werner WiSe 06/07 31.10.06 Präsenzaufgaben: 1) Welche rationale

Mehr

7 Der kleine Satz von Fermat

7 Der kleine Satz von Fermat 7 Der kleine Satz von Fermat Polynomkongruenz modulo p. Sei p eine Primzahl, n 0 und c 0,..., c n Z. Wir betrachten die Kongruenz ( ) c 0 + c 1 X +... + c n 1 X n 1 + c n X n 0 mod p d.h.: Wir suchen alle

Mehr

4: Algebraische Strukturen / Gruppen

4: Algebraische Strukturen / Gruppen Stefan Lucks Diskrete Strukturen (WS 2009/10) 120 4: Algebraische Strukturen / Gruppen Definition 46 Sei G eine nichtleere Menge. Eine Funktion : G G G bezeichnen wir als Verknüpfung auf G. Das Paar (G,

Mehr

Lenstras Algorithmus für Faktorisierung

Lenstras Algorithmus für Faktorisierung Lenstras Algorithmus für Faktorisierung Bertil Nestorius 9 März 2010 1 Motivation Die schnelle Faktorisierung von Zahlen ist heutzutage ein sehr wichtigen Thema, zb gibt es in der Kryptographie viele weit

Mehr

Algebra I. Zwischenprüfung. 19. Februar 2016

Algebra I. Zwischenprüfung. 19. Februar 2016 Name: Vorname: Studiengang: Legi-Nr.: Algebra I D-MATH, HS 2015 Prof. Richard Pink Algebra I Zwischenprüfung Wichtig: 19. Februar 2016 Die Prüfung dauert 120 Minuten. Bitte legen Sie Ihre Legi (Studierendenausweis)

Mehr

Äquivalenzrelation Restklassen Teilbarkeit in Z Kleiner Satz von Fermat Satz von Euler Eulersche ϕ-funktion

Äquivalenzrelation Restklassen Teilbarkeit in Z Kleiner Satz von Fermat Satz von Euler Eulersche ϕ-funktion Äquivalenzrelation Restklassen Teilbarkeit in Z Kleiner Satz von Fermat Satz von Euler Eulersche ϕ-funktion Äquivalenzrelation Nehmen wir die Menge A = {,,,,,,,,}, z.b. nummerierte Personen. Unter Berücksichtigung

Mehr

Übungen zur Algebra I. F. Lorenz, F. Lemmermeyer

Übungen zur Algebra I. F. Lorenz, F. Lemmermeyer Übungen zur Algebra I F. Lorenz, F. Lemmermeyer. April 007 Inhaltsverzeichnis Übungen zu Kapitel 1 Übungen zu Kapitel 7 Übungen zu Kapitel 3 9 Übungen zu Kapitel 4 13 Übungen zu Kapitel 5 Übungen zu Kapitel

Mehr

Symmetrische Polynome,Diskriminante und Resultante, Fermatscher Satz für Polynome

Symmetrische Polynome,Diskriminante und Resultante, Fermatscher Satz für Polynome Proseminar Lineare Algebra SS10 Symmetrische Polynome,Diskriminante und Resultante, Fermatscher Satz für Polynome Natalja Shesterina Heinrich-Heine-Universität ASymmetrische Polynome Definition 1 Sei n

Mehr

Primzahlen. Herbert Koch Mathematisches Institut Universität Bonn Die Primfaktorzerlegung. a = st

Primzahlen. Herbert Koch Mathematisches Institut Universität Bonn Die Primfaktorzerlegung. a = st Primzahlen Herbert Koch Mathematisches Institut Universität Bonn 12.08.2010 1 Die Primfaktorzerlegung Wir kennen die natürlichen Zahlen N = 1, 2,..., die ganzen Zahlen Z, die rationalen Zahlen (Brüche

Mehr

Anhang I zur Vorlesung Kryptologie: Elementare Zahlentheorie

Anhang I zur Vorlesung Kryptologie: Elementare Zahlentheorie Anhang I zur Vorlesung Kryptologie: Elementare Zahlentheorie von Peter Hellekalek Fakultät für Mathematik, Universität Wien, und Fachbereich Mathematik, Universität Salzburg Tel: +43-(0)662-8044-5310 Fax:

Mehr

Proseminar Lineare Algebra II, SS 11. Blatt

Proseminar Lineare Algebra II, SS 11. Blatt Blatt 1 1. Berechnen Sie die Determinante der Matrix 0 0 4 1 2 5 1 7 1 2 0 3 1 3 0 α. 2. Stellen Sie folgende Matrix als Produkt von Elementarmatrizen dar: 1 3 1 4 2 5 1 3 0 4 3 1. 3 1 5 2 3. Seien n 2

Mehr

Surjektive, injektive und bijektive Funktionen.

Surjektive, injektive und bijektive Funktionen. Kapitel 1: Aussagen, Mengen, Funktionen Surjektive, injektive und bijektive Funktionen. Definition. Sei f : M N eine Funktion. Dann heißt f surjektiv, falls die Gleichung f(x) = y für jedes y N mindestens

Mehr

Modul Diskrete Mathematik WiSe 2011/12

Modul Diskrete Mathematik WiSe 2011/12 1 Modul Diskrete Mathematik WiSe 2011/12 Ergänzungsskript zum Kapitel 4.2. Hinweis: Dieses Manuskript ist nur verständlich und von Nutzen für Personen, die regelmäßig und aktiv die zugehörige Vorlesung

Mehr

Aus dem Schulunterricht ist bekannt, dass die Seitenlängen a, b, c eines rechtwinkligen Dreiecks die Gleichung

Aus dem Schulunterricht ist bekannt, dass die Seitenlängen a, b, c eines rechtwinkligen Dreiecks die Gleichung Aus dem Schulunterricht ist bekannt, dass die Seitenlängen a, b, c eines rechtwinkligen Dreiecks die Gleichung a 2 + b 2 = c 2 erfüllen, wobei c die Seitenlänge der Hypothenuse und a, b die beiden übrigen

Mehr

Übungen Mathematik I, M

Übungen Mathematik I, M Übungen Mathematik I, M Übungsblatt, Lösungen (Stoff aus Mathematik 0) 09.0.0. Kommissar K hat 3 Tatverdächtige P, Q und R. Er weiß: (a) Wenn sich Q oder R als Täter herausstellen, dann ist P unschuldig.

Mehr

Kleiner Fermatscher Satz, Chinesischer Restsatz, Eulersche '-Funktion, RSA

Kleiner Fermatscher Satz, Chinesischer Restsatz, Eulersche '-Funktion, RSA Kleiner Fermatscher Satz, Chinesischer Restsatz, Eulersche '-Funktion, RSA Manfred Gruber http://www.lrz-muenchen.de/~gruber SS 2009, KW 15 Kleiner Fermatscher Satz Satz 1. Sei p prim und a 2 Z p. Dann

Mehr

Hast du auch wirklich versucht, die Aufgaben einmal selbständig zu lösen? Wenn nicht, tue es, bevor du dir die Lösungen anschaust!

Hast du auch wirklich versucht, die Aufgaben einmal selbständig zu lösen? Wenn nicht, tue es, bevor du dir die Lösungen anschaust! Chr.Nelius: Zahlentheorie (SoSe 2016) 1 14. Aufgabenblatt ZAHLENTHEORIE (für Master G und HRG) Lösungen Hast du auch wirklich versucht, die Aufgaben einmal selbständig zu lösen? Wenn nicht, tue es, bevor

Mehr

Probabilistische Primzahltests

Probabilistische Primzahltests Probabilistische Primzahltests Daniel Tanke 11. Dezember 2007 In dieser Arbeit wird ein Verfahren vorgestellt, mit welchem man relativ schnell testen kann, ob eine ganze Zahl eine Primzahl ist. Für einen

Mehr

2 Die Dimension eines Vektorraums

2 Die Dimension eines Vektorraums 2 Die Dimension eines Vektorraums Sei V ein K Vektorraum und v 1,..., v r V. Definition: v V heißt Linearkombination der Vektoren v 1,..., v r falls es Elemente λ 1,..., λ r K gibt, so dass v = λ 1 v 1

Mehr

1 Algebraische Strukturen

1 Algebraische Strukturen Prof. Dr. Rolf Socher, FB Technik 1 1 Algebraische Strukturen In der Mathematik beschäftigt man sich oft mit Mengen, auf denen bestimmte Operationen definiert sind. Es kommt oft vor, dass diese Operationen

Mehr

Seminar Kommutative Algebra und Varietäten Vortrag 1: Ideale kommutativer Ringe

Seminar Kommutative Algebra und Varietäten Vortrag 1: Ideale kommutativer Ringe Seminar Kommutative Algebra und Varietäten Vortrag 1: Ideale kommutativer Ringe Sebastian Dobrzynski 17042014 1 Grundsätzliches zu Idealen Vorab legen wir fest: Alle im Vortrag betrachteten Ringe sind

Mehr

Basiswissen Zahlentheorie

Basiswissen Zahlentheorie Kristina Reiss Gerald Schmieder Basiswissen Zahlentheorie Eine Einführung in Zahlen und Zahlbereiche Zweite Auflage Mit 43 Abbildungen ^y Springer Inhaltsverzeichnis 1 Grundlagen und Voraussetzungen 1.1

Mehr

Zahlentheorie für den Landeswettbewerb für Anfängerinnen und Anfänger der Österreichischen Mathematik-Olympiade

Zahlentheorie für den Landeswettbewerb für Anfängerinnen und Anfänger der Österreichischen Mathematik-Olympiade Zahlentheorie für den Landeswettbewerb für Anfängerinnen und Anfänger der Österreichischen Mathematik-Olympiade Clemens Heuberger 22. September 2014 Inhaltsverzeichnis 1 Dezimaldarstellung 1 2 Teilbarkeit

Mehr

Probeklausur zur Algebra I

Probeklausur zur Algebra I Probeklausur zur Algebra I Prof. Dr. S. Bosch/C. Löh Februar 2008 Name: Matrikelnummer: ZIV-Kennung: Vorname: Studiengang: Übungsleiter: Diese Klausur besteht aus 8 Seiten (die ersten beiden Seiten sind

Mehr

SCHRIFTLICHE ZUSAMMENFASSUNG ZUM VORTRAG DIE GRUNDLAGEN DER RSA-VERSCHLÜSSELUNG VON DANIEL METZSCH

SCHRIFTLICHE ZUSAMMENFASSUNG ZUM VORTRAG DIE GRUNDLAGEN DER RSA-VERSCHLÜSSELUNG VON DANIEL METZSCH SCHRIFTLICHE ZUSAMMENFASSUNG ZUM VORTRAG DIE GRUNDLAGEN DER RSA-VERSCHLÜSSELUNG VON DANIEL METZSCH Freie Universität Berlin Fachbereich für Mathematik & Informatik Institut für Mathematik II Seminar über

Mehr

Technische Universität München Zentrum Mathematik. Übungsblatt 7

Technische Universität München Zentrum Mathematik. Übungsblatt 7 Technische Universität München Zentrum Mathematik Mathematik (Elektrotechnik) Prof. Dr. Anusch Taraz Dr. Michael Ritter Übungsblatt 7 Hausaufgaben Aufgabe 7. Für n N ist die Matrix-Exponentialfunktion

Mehr

Schulstoff. Übungen zur Einführung in die Analysis. (Einführung in das mathematische Arbeiten) Sommersemester 2010

Schulstoff. Übungen zur Einführung in die Analysis. (Einführung in das mathematische Arbeiten) Sommersemester 2010 Übungen zur Einführung in die Analysis (Einführung in das mathematische Arbeiten) Sommersemester 010 Schulstoff 1. Rechnen mit Potenzen und Logarithmen 1. Wiederholen Sie die Definiton des Logarithmus

Mehr

Primzahlen und RSA-Verschlüsselung

Primzahlen und RSA-Verschlüsselung Primzahlen und RSA-Verschlüsselung Michael Fütterer und Jonathan Zachhuber 1 Einiges zu Primzahlen Ein paar Definitionen: Wir bezeichnen mit Z die Menge der positiven und negativen ganzen Zahlen, also

Mehr

Quadratische Funktionen und Gleichungen Mathematik Jahrgangsstufe 9 (G8) Bergstadt-Gymnasium Lüdenscheid. Friedrich Hattendorf

Quadratische Funktionen und Gleichungen Mathematik Jahrgangsstufe 9 (G8) Bergstadt-Gymnasium Lüdenscheid. Friedrich Hattendorf Mathematik Jahrgangsstufe 9 (G8) Lüdenscheid Friedrich Hattendorf 4. September 2014 Vorbemerkung Die Datei entsteht noch; noch nicht alles ist optimal Hinweis zum Ausdruck: (Fast) Alles sollte noch gut

Mehr

Quadratische Zahlenkörper. 22. April 2005

Quadratische Zahlenkörper. 22. April 2005 Quadratische Zahlenkörper 22. April 2005 1 Inhaltsverzeichnis 1 Einleitung 3 2 Klassenzahl Algebraischer Zahlkörper 7 2.1 Algebraische Zahlkörper..................... 7 2.2 Noethersche und Dedekindsche

Mehr

Zahlentheorie. Axel Schüler, Mathematisches Institut, Univ. Leipzig mailto:schueler@mathematik.uni-leipzig.de 24.10.2002

Zahlentheorie. Axel Schüler, Mathematisches Institut, Univ. Leipzig mailto:schueler@mathematik.uni-leipzig.de 24.10.2002 Zahlentheorie Axel Schüler, Mathematisches Institut, Univ. Leipzig mailto:schueler@mathematik.uni-leipzig.de 24.10.2002 Zur Zahlentheorie rechnen wir Aufgaben, die über dem Bereich = {1, 2,... } der natürlichen

Mehr

Vortrag 11: Der Satz von Mordell-Weil

Vortrag 11: Der Satz von Mordell-Weil Vortrag 11: Der Satz von Mordell-Weil Max Daniel 30. Januar 2013 Inhaltsverzeichnis 1 Höhenfunktionen auf elliptischen Kurven 2 2 Ausblick 7 Einleitung Sei E/K eine über einem Zahlkörper K definierte elliptische

Mehr

Protokoll zur Zahlentheorie (gymnasiales Lehramt)

Protokoll zur Zahlentheorie (gymnasiales Lehramt) Protokoll zur Zahlentheorie (gymnasiales Lehramt) W. Bley 2. Februar 2016 1 Ringtheorie 1.1 Ringe und Ringhomomorhismen Definition 1.1.1 Ein Ring ist eine nicht-leere Menge R zusammen mit zwei binären

Mehr

Elementare Zahlentheorie

Elementare Zahlentheorie Elementare Zahlentheorie Prof. Dr. L. Kramer WWU Münster, Sommersemester 2009 Vorlesungsmitschrift von Christian Schulte zu Berge 27. Juli 2009 Inhaltsverzeichnis 1 Primzerlegung 3 1.1 Grundlagen.............................................

Mehr

4.2 Endliche und algebraische Körpererweiterungen

4.2 Endliche und algebraische Körpererweiterungen Algebra und Zahlentheorie c Rudolf Scharlau, 2002 2014 321 4.2 Endliche und algebraische Körpererweiterungen Die beiden ersten Definitionen und Bemerkungen dieses Abschnittes stehen im unmittelbaren Zusammenhang

Mehr

Musterlösung zu den Übungen zur Vorlesung Mathematik für Physiker II. x 2

Musterlösung zu den Übungen zur Vorlesung Mathematik für Physiker II. x 2 Musterlösung zu den Übungen zur Vorlesung Mathematik für Physiker II Wiederholungsblatt: Analysis Sommersemester 2011 W. Werner, F. Springer erstellt von: Max Brinkmann Aufgabe 1: Untersuchen Sie, ob die

Mehr

Reihen/Partialsummenfolgen und vollständige Induktion. Robert Klinzmann

Reihen/Partialsummenfolgen und vollständige Induktion. Robert Klinzmann Reihen/Partialsummenfolgen und vollständige Induktion Robert Klinzmann 3. Mai 00 Reihen / Partialsummen 1 Inhaltsverzeichnis 1 Vorwort Das Prinzip der vollständigen Induktion 3 3 Herleitung der Gauß schen

Mehr

Mathematik: Mag. Schmid Wolfgang Arbeitsblatt 8 2. Semester ARBEITSBLATT 8 DIE REELLEN ZAHLEN

Mathematik: Mag. Schmid Wolfgang Arbeitsblatt 8 2. Semester ARBEITSBLATT 8 DIE REELLEN ZAHLEN Mathematik: Mag. Schmid Wolfgang Arbeitsblatt 8. Semester ARBEITSBLATT 8 DIE REELLEN ZAHLEN Bisher kennen wir bereits folgende Zahlenbereiche: N Natürliche Zahlen Z Ganze Zahlen Q Rationale Zahlen Bei

Mehr

4 Vollkommene Zahlen

4 Vollkommene Zahlen Sei a > 0 4 Vollkommene Zahlen T (a) bezeichnet die Anzahl der positiven Teiler von a. S(a) bezeichnet die Summe der positiven Teiler von a. Es ist also T (1) = S(1) = 1. Jede Zahl a > 1 hat eine eindeutige

Mehr

Folgerungen aus dem Auflösungsatz

Folgerungen aus dem Auflösungsatz Folgerungen aus dem Auflösungsatz Wir haben in der Vorlesung den Satz über implizite Funktionen (Auflösungssatz) kennen gelernt. In unserer Formulierung lauten die Resultate: Seien x 0 R m, y 0 R n und

Mehr

Primzahltests mit Elliptischen Kurven

Primzahltests mit Elliptischen Kurven Primzahltests mit Elliptischen Kurven vorgelegt als Bachelorarbeit der Fakultät für Mathematik, Informatik und Naturwissenschaften der Rheinisch-Westfälischen Technischen Hochschule Aachen Gutachterin:

Mehr

Q(n) = n 0 +n 1 +n 2 +...+n k.

Q(n) = n 0 +n 1 +n 2 +...+n k. 25 2 Kongruenzen Mit Hilfe der hier definierten Kongruenz können Aussagen über Teilbarkeit einfacher formuliert und bewiesen werden, und man erhält eine Differenzierung der Zahlen, die bezüglich einer

Mehr

Zahlentheorie, Arithmetik und Algebra I

Zahlentheorie, Arithmetik und Algebra I Zahlentheorie, Arithmetik und Algebra I Viktoria Ronge 04.06.2014 Viktoria Ronge Zahlentheorie, Arithmetik und Algebra I 04.06.2014 1 / 63 Übersicht 1 Modulare Arithmetik 2 Primzahlen 3 Verschiedene Teiler

Mehr

Körper- und Galoistheorie

Körper- und Galoistheorie Prof. Dr. H. Brenner Osnabrück SS 2011 Körper- und Galoistheorie Vorlesung 17 Kummererweiterungen Ernst Eduard Kummer (1810-1893) Wir haben in der letzten Vorlesung gesehen, dass sich einige Eigenschaften

Mehr

Kapitel 4. Euklidische Ringe und die Jordansche Normalform. 4.1 Euklidische Ringe

Kapitel 4. Euklidische Ringe und die Jordansche Normalform. 4.1 Euklidische Ringe Kapitel 4 Euklidische Ringe und die Jordansche Normalform 4.1 Euklidische Ringe Die Ringe der ganzen Zahlen, Z, sowie Polynomringe über Körpern, K[X], wobei K ein Körper ist, haben die folgenden Gemeinsamheiten:

Mehr

Übungen zu Einführung in die Lineare Algebra und Geometrie

Übungen zu Einführung in die Lineare Algebra und Geometrie Übungen zu Einführung in die Lineare Algebra und Geometrie Andreas Cap Sommersemester 2010 Kapitel 1: Einleitung (1) Für a, b Z diskutiere analog zur Vorlesung das Lösungsverhalten der Gleichung ax = b

Mehr

Mathematik für Informatiker II. Beispiellösungen zur Probeklausur. Aufgabe 1. Aufgabe 2 (5+5 Punkte) Christoph Eisinger Sommersemester 2011

Mathematik für Informatiker II. Beispiellösungen zur Probeklausur. Aufgabe 1. Aufgabe 2 (5+5 Punkte) Christoph Eisinger Sommersemester 2011 Mathematik für Informatiker II Christoph Eisinger Sommersemester 211 Beispiellösungen zur Probeklausur Aufgabe 1 Gegeben sind die Polynome f, g, h K[x]. Zu zeigen: Es gibt genau dann Polynome h 1 und h

Mehr