6 Lineare Kongruenzen

Größe: px
Ab Seite anzeigen:

Download "6 Lineare Kongruenzen"

Transkript

1 6 Lineare Kongruenzen Sei m > 0 un a, b beliebig. Wir wollen ie Frage untersuchen, unter welchen Beingungen an a, b un m eine Zahl x 0 existiert, so aß ax 0 b mo m. Wenn ein solches x 0 existiert, sagen wir: Die lineare Kongruenz ( ) ax b mo m in einer Unbestimmten X ist lösbar (un zwar, inem man ie Unbestimmte urch ie Zahl x 0 ersetzt). Ist x 0 eine Lösung er Kongruenz ( ), so ist auch jees y aus er Restklasse von x 0 moulo m eine Lösung von ( ). (y x 0 = ay ax 0 b mo m nach 5.5 (b)). Deshalb versteht man unter er Anzahl er Lösungen von ( ) ie Anzahl er verschieenen Restklassen von Lösungen. Dies ist auch ie Anzahl er Lösungen x 0 mit 0 x 0 < m. Ferner gilt: Ist a 0 a un b 0 b, so hat a 0 X b 0 mo m ie gleiche Lösungsmenge wie ( ). (Beweis: Übungsaufgabe.) 6.1 Satz. Ist (a, m) = 1 so hat ie lineare Kongruenz ax b mo m genau eine Lösung. Also gibt es genau ein x 0, 0 x 0 < m mit ax 0 b mo m. Beweis. Nach 5.4(b) bilen a 0, a 1,..., a(m 1) ein vollstäniges Restsystem moulo m. Also gibt es genau ein x 0 mit 0 x 0 < m, so aß ax 0 b mo m. Beispiel. a = 10, b = 4, m = 7 : (a, m) = 1 Betrachte ie Kongruenz 10X 4 mo 7. Sie ist wegen 10 3 mo 7 äquivalent zur Kongruenz 3X 4 mo 7. Berechne en Divisionsrest von 3x 0 moulo 7 für 0 x 0 < 7. 1

2 3 0 = = = = = = = 18 4 mo 7 Also ist x 0 = 6 ie einzige Zahl x 0 mit 0 x 0 < 7 un 3x 0 4 mo 7. Alle Lösungen bilen ie Restklasse von 6 moulo 7. Die Lösungsmenge ist also..., 22, 8, 1, 6, 13, 20, 27, Satz. Die Kongruenz ax = b mo m ist genau ann lösbar, (a, m) b. Zusatz. Ist (a, m) b, so bilen ie Lösungen von ax b mo m genau eine m Restklasse moulo. (a,m) Zum Beweis von 6.2 zeigen wir zunächst 6.3 Lemma. Sei n 2 un a 1,..., a n nicht alle Null. Genau ann ist ie lineare Gleichung ( ) a 1 X a n X n = c in en Unbestimmten X 1,..., X n ganzzahlig lösbar, wenn (a 1,..., a n ) c. Insbesonere gilt ax + by = c lösbar (a, b) c Ist (a, b) = 1, so ist ax + by = c lösbar für alle c Beweis von 6.3 Nach 3.10 besteht ie Menge M = {a 1 x a n x n x 1,..., x n Z} gerae aus en Vielfachen von (a 1,..., a n ). Also gilt: ( ) ist lösbar c ist Vielfaches von (a 1,... a n ),.h. (a 1,..., a n ) c. Beweis es Satzes. ax b mo m ist lösbar Es gibt ein x 0 mit ax 0 b mo m. Es gibt ein x 0 mit m ax 0 b. Es gibt x 0, y 0 mit 2

3 ax 0 b = my 0. Es gibt x 0, y 0 mit ax 0 + ( m)y 0 = b. Letzteres ist nach 6.3 amit äquivalent, aß (a, m) = (a, m) b. Beweis es Zusatzes. Sei (a, m) b ; Wir setzen a = a (a, m), b = b (b, m) un m = m (a, m) Dann gilt nach 5.6(b): ax 0 b mo m a x 0 b mo m. Also stimmen ie Lösungsmengen von ax b mo m un von a X b mo m überein. Nun gilt aber nach 2.8(e) (a, m a ) = (, m ) = 1. Aus 6.1 folgt: Die (a,m) (a,m) Lösungsmenge von a X b mo m besteht aus genau einer Restklasse moulo m. 6.4 Korollar. Wir betrachten ie lineare Gleichung (L) ax + by = c, a 0 oer b 0 (i) Ist = (a, b) kein Teiler von c, so ist (L) nicht (ganzzahlig) lösbar. (ii) Ist c (etwa wenn (a, b) = 1), so ist (L) lösbar. (iii) Aus einem Lösungspaar x 0, y 0 bekommt man wie folgt ie Gesamtheit aller Lösungen: x = x 0 + h b, y = y 0 h a urchläuft ie Gesamtheit aller Lösungen von (L), wenn h alle ganzen Zahlen urchläuft. Beweis von (iii). ax + by = ax 0 + h ab + by 0 h ab = ax 0 + by 0 = c, somit sin ie angegebenen Paare Lösungen. Wir zeigen nun, aß jee Lösung von (L) ie angegebene Gestalt hat. Dazu können wir b 0 annehmen. Sei x, y ein Lösungspaar von (L), also ax + by = c = ax 0 + by 0 = } 6.2 = Zusatz ax c mo b x x ax 0 c mo b 0 mo b = x = x 0 + h b mit h Z = by = c ax = = c a(x 0 + h b ) = (c ax 0) b ha = by 0 b ha = = b(y 0 ha) un b 0 = y = y 0 ha. 3

4 Spezialfall (a, b) = 1: Ist (a, b) = 1 un x 0, y 0 eine beliebige Lösung von ax + by = c, so wir ie Lösungseinheit beschrieben urch ie Formeln Der Chinesische Restsatz. x = x 0 + hb, y = y 0 ha, h Z beliebig. 6.5 Lemma. Seien m 1 > 0 un m 2 > 0 teilerfrem. Dann haben ie Kongruenzen X a 1 mo m 1 eine gemeinsame Lösung. X a 2 mo m 2 Zusatz. Die Menge aller gemeinsamen Lösungen besteht aus genau einer Restklasse moulo m 1 m 2. Beweis. Es sin z 1, z 2 zu finen, so aß a 1 + z 1 m 1 = a 2 + z 2 m 2. Dann ist x = a 1 +z 1 m 1 = a 2 +z 2 m 2 eine gemeinsame Lösung er obigen Kongruenzen. Äquivalente Aufgabe: Fine z 1, z 2, so aß a 2 a 1 = z 1 m 1 + z 2 ( m 2 ). Wegen (m 1, m 2 ) = (m 1, m 2 ) = 1 gibt es nach 6.3 solche z 1, z 2. Eineutigkeit er Lösung moulo m 1 m 2 : Wegen (m 1, m 2 ) = 1 gilt nach 2.7: m 1 m 2 = kgv(m 1, m 2 ). Sin x un y Lösungen er beien Kongruenzen, so ist x y a 1 mo m 1 un x y a 2 mo m 2, also m 1 (x y) un m 2 (x y). Nach 2.6 gilt aher m 1 m 2 = kgv (m 1, m 2 ) (x y) = x y mo m 1 m 2. Ist umgekehrt x gemeinsame Lösung un y x mo m 1 m 2, so gilt auch y x mo m 1 un y x mo m 2. Es folgt y x a 1 mo m 1, y x a 2 mo m 2,.h. y ist ebenfalls gemeinsame Lösung. 6.6 Der Chinesische Restsatz. Sei r 2 un seien m 1,..., m r positiv un paarweise teilerfrem (.h. (m i, m j ) = 1 falls i j). Dann hat as System von Kongruenzen ( ) X a 1 mo m 1 X a 2 mo m 2. X a n mo m n 4

5 eine gemeinsame Lösung. Zusatz. Die Menge er gemeinsamen Lösungen besteht aus genau einer Restklasse moulo m = m 1... m r. Beweis. (Inuktion nach r.) Für r = 2 bewiesen in 6.5. Sei r > 2 un ie Behauptung sei für r 1 schon bewiesen. Inuktionsschluß: Es gibt nach Annahme eine Zahl a, so aß ie Lösungsmenge von X a 1 mo m 1 ( ). X a r 1 mo m r 1 aus allen Zahlen x mit x a mo (m 1... m r 1 ) besteht. M.a.W.: Die Lösungsmenge von ( ) stimmt mit er Lösungsmenge er Kongruenz X a mo (m 1... m r 1 ) überein. Daher stimmt ie Lösungsmenge von ( ) mit er Lösungsmenge von { X a ( ) mo (m 1... m r 1 ) X a r mo m r überein. Dabei ist auch (m 1... m r 1, m r ) = 1, a (m i, m r ) = 1 für i = 1,..., r 1. Nach 6.5 ist aher ( ) lösbar, un ie Lösungsmenge besteht aus genau einer Restklasse moulo (m 1... m r 1 )m r = m. Verfahren zur Lösung einer simultanen linearen Kongruenz. Seien Kongruenzen X a i mo m i, i = 1,..., r vorgegeben mit paarweise teilerfremen m 1,..., m r. 1. Schritt. Setze b i = j i m j für i = 1,..., r 2. Schritt. Löse ie Kongruenzen b i X i a i mo m i. Dies ist nach 6.1 möglich, enn (b i, m i ) = Schritt. Berechne x := b 1 x 1 + b 2 x b r x r. Behauptung: x löst as obige System von linearen Kongruenzen. Beweis. m i b j für i j = b j x j 0 mo m i für i j = x b i x i a i mo m i für i = 1,..., r. Beispiel. X 1 mo 2, X 2 mo 3, X 4 mo 5. 5

6 1. m = = 30, b 1 = 15, b 2 = 10, b 3 = 6. Löse 2. (a) 15X 1 1 mo 2 : x 1 = 1 (b) 10X 2 2 mo 3 : x 2 = 2 (c) 6X 3 4 mo 5 : x 3 = 4 3. x = b 1 x 1 + b 2 x 2 + b 3 x 3 = = 59 x = 59 ist eine Lösung. Die allgemeine Lösung ist 59 + λ 30, λ Z Also sin z.b. auch = 29 un = 1 Lösungen. Anmerkung. Beim obigen Lösungsverfahren waren im 2. Schritt Kongruenzen er Form b i X a i mo m i mit (b i, m i ) = 1 aufgetreten. Bei großen Zahlen hilft Probieren nicht viel: Verfahren zur Lösung einer Kongruenz cx mo n mit (c, n) = Schritt. Fine (mit Hilfe es eukliischen Algorithmus) Zahlen y un z, so aß cy + nz = 1 2. Schritt. Setze x := y. Dann ist cx mo n. (Änert man x um ein Vielfaches von n ab (x = x+kn), so gilt ebenfalls: cx = cx+(ck)n cx mo n.) Beweis. cy + nz = 1 = cy 1 mo n = cx = (cy) 1 = mo n, also cx mo n. Beispiel. 44X 5 mo 97 : c = 44, = 5, n = Schritt. Zeige aß (44, 97) = 1 un löse 44Y + 97Z = 1 (vgl. 2) 97 = = = = (44, 97) = 1 Liest man en Algorithmus von unten nach oben, so ergibt sich eine Lösung von 44Y + 97Z = 1 (vgl. 2) 6

7 1 = = = ( 1) = Es folgt y = 11. } 1 = 9 1(44 4 9) = ( 1) Schritt. X = y = ( 11) 5 = 55 Dann ist auch = 42 eine Lösung. Fazit: mo 97 Probe: = : 97 = 19 Rest 5,.h mo 97. } 1 = ( 1) ( ) = 44 ( 11)

Binomische Formel mod p

Binomische Formel mod p Binomische Formel mo p Lemma Binomische Formel mo p Seien a, b Z un p P. Dann gilt (a+b) p a p + b p mo p. Nach Binomischer Formel gilt (a+b) p = p p ) i=0( i a i b p i = a p + b p + p 1( p ) i=1 i a i

Mehr

Kleiner Satz von Fermat

Kleiner Satz von Fermat Kleiner Satz von Fermat Satz Kleiner Satz von Fermat Sei p P. Dann gilt a p a mo p für alle a Z. Wir führen zunächst eine Inuktion für a 0 urch. IA a = 0: 0 p 0 mo p. IS a a+1: Nach vorigem Lemma gilt

Mehr

ELEMENTE DER ZAHLENTHEORIE UND AUFBAU DES ZAHLENSYSTEMS

ELEMENTE DER ZAHLENTHEORIE UND AUFBAU DES ZAHLENSYSTEMS ELEMENTE DER ZAHLENTHEORIE UND AUFBAU DES ZAHLENSYSTEMS von Rolf Waldi Inhaltsverzeichnis Kapitel I. Elementare Zahlentheorie 1 Grundlegende Regeln und Prinzipien 3-11 2 Teilbarkeit in Z 12-18 3 Primzahlen

Mehr

Übungsklausur Lineare Algebra I - Wintersemester 2008/09

Übungsklausur Lineare Algebra I - Wintersemester 2008/09 1 Übungsklausur Lineare Algebra I - Wintersemester 008/09 Teil 1: Multiple Choice (1 Punkte Für ie ganze Klausur bezeichne K einen beliebigen Körper. 1. Welche er folgenen Aussagen sin ann un nur ann erfüllt,

Mehr

7. Teile, und beherrsche den Rest

7. Teile, und beherrsche den Rest 7. Teile, un beherrsche en Rest 7.1. Division mit Rest Nicht alle natürlichen Zahlen sin urch 3 teilbar: Es lässt 17 en Rest 2 [17 = 5 3+2] 18 geht auf 1 lässt Rest 1 20 lässt Rest 2 21 geht auf 22 lässt

Mehr

Determinanten. a e b f a c b d. b) x = , y = c) zu einem Spaltenvektor das Vielfache des anderen Spaltenvektors addiert wird,

Determinanten. a e b f a c b d. b) x = , y = c) zu einem Spaltenvektor das Vielfache des anderen Spaltenvektors addiert wird, Determinanten Wir entwickeln eine Lösungsformel für Gleichungssysteme mit zwei Variablen. ax + cy = e b bx + y = f a } abx bcy = be + abx + ay = af ya bc = af be Man schreibt y = af be a bc = a e b f analog

Mehr

7 Der kleine Satz von Fermat

7 Der kleine Satz von Fermat 7 Der kleine Satz von Fermat Polynomkongruenz modulo p. Sei p eine Primzahl, n 0 und c 0,..., c n Z. Wir betrachten die Kongruenz ( ) c 0 + c 1 X +... + c n 1 X n 1 + c n X n 0 mod p d.h.: Wir suchen alle

Mehr

2 Teilbarkeit in Z. (a) Aus a b folgt a b und a b und a b und a b. (b) Aus a b und b c folgt a c.

2 Teilbarkeit in Z. (a) Aus a b folgt a b und a b und a b und a b. (b) Aus a b und b c folgt a c. 2 Teilbarkeit in Z Bis auf weiteres stehen kleine Buchstaben für ganze Zahlen. Teilbarkeit. Sei a 0. Eine Zahl b heißt durch a teilbar, wenn es ein q gibt mit b = qa. Wir sagen dann auch: a teilt b (ist

Mehr

1 Zahlentheorie. 1.1 Kongruenzen

1 Zahlentheorie. 1.1 Kongruenzen 3 Zahlentheorie. Kongruenzen Der letzte Abschnitt zeigte, daß es sinnvoll ist, mit großen Zahlen möglichst einfach rechnen zu können. Oft kommt es nicht darauf, an eine Zahl im Detail zu kennen, sondern

Mehr

8.1. Das unbestimmte Integral

8.1. Das unbestimmte Integral 8 Das unbestimmte Integral So wie ie Bilung von Reihen, also Summenfolgen, ein zur Bilung er Differenzenfolgen inverser Prozess ist, kann man ie Integration als Umkehrung er Differentiation ansehen Stammfunktionen

Mehr

7. Arithmetische Funktionen. Möbiussche Umkehrformel

7. Arithmetische Funktionen. Möbiussche Umkehrformel O. Forster: Einführung in ie Zahlentheorie 7. Arithmetische Funktionen. Möbiussche Umkehrformel 7.1. Definition. Unter einer arithmetischen Funktion versteht man eine Abbilung α : N 1 C. Die arithmetische

Mehr

Kapitel 6: Das quadratische Reziprozitätsgesetz

Kapitel 6: Das quadratische Reziprozitätsgesetz Kapitel 6: Das quadratische Reziprozitätsgesetz Ziel dieses Kapitels: die Untersuchung der Lösbarkeit der Kongruenzgleichung X also die Frage, ob die ganze Zahl Z eine Quadratwurzel modulo P besitzt. Im

Mehr

LUDWIG-MAXIMILIANS-UNIVERSITÄT MÜNCHEN. 2. Übung/Lösung Mathematik für Studierende der Biologie

LUDWIG-MAXIMILIANS-UNIVERSITÄT MÜNCHEN. 2. Übung/Lösung Mathematik für Studierende der Biologie LUDWIG-MAXIMILIANS-UNIVERSITÄT MÜNCHEN FAKULTÄT FÜR BIOLOGIE Prof. Anreas Herz, Dr. Stefan Häusler email: haeusler@biologie.uni-muenchen.e Department Biologie II Telefon: 089-80-74800 Großhaernerstr. Fa:

Mehr

Lösungshinweise zu den Hausaufgaben:

Lösungshinweise zu den Hausaufgaben: P. Engel, T. Pfrommer S. Poppitz, Dr. I. Rybak 4. Gruppenübung zur Vorlesung Höhere Mathematik Sommersemester 9 Prof. Dr. M. Stroppel Prof. Dr. N. Knarr Lösungshinweise zu en Hausaufgaben: Aufgabe H. a)

Mehr

Lösung polynomialer Kongruenzen

Lösung polynomialer Kongruenzen Seminar zur Zahlentheorie Sommersemester 2019 Lösung polynomialer Kongruenzen 16.05.2019 In diesem Vortrag beschäftigen wir uns mit dem Finden von Lösungen polynomialer Kongruenzen. Dazu werden wir das

Mehr

Der chinesische Restsatz mit Anwendung

Der chinesische Restsatz mit Anwendung Der chinesische Restsatz mit Anwendung Nike Garath n.garath@gmx.de Martrikelnummer: 423072 Seminar: Verschlüsslungs- und Codierungstheorie Dozent: Dr. Thomas Timmermann Sommersemester 2017 Inhaltsverzeichnis

Mehr

DIE ABLEITUNG FRANZ LEMMERMEYER

DIE ABLEITUNG FRANZ LEMMERMEYER DIE ABLEITUNG FRANZ LEMMERMEYER Eine Gerae y mx+b hat in jeem Punkt ieselbe Steigung m. Bei einer Parabel y x 2 agegen änert sich ie Steigung von Punkt zu Punkt. Sin zwei Punkte P (x f(x)) un Q(u f(u))

Mehr

Zahlentheorie. Kapitel 14 Quadratische Zahlkörper. Markus Klenke und Fabian Mogge Universität Paderborn

Zahlentheorie. Kapitel 14 Quadratische Zahlkörper. Markus Klenke und Fabian Mogge Universität Paderborn Zahlentheorie Kaitel 14 Quaratische Zahlkörer Markus Klenke un Fabian Mogge Universität Paerborn 9. Mai 008 Inhaltsverzeichnis 14 Quaratische Zahlkörer 0 Vorwort............................... A Wieerholung...........................

Mehr

MA 440 GEOMETRIE 2 HS 07

MA 440 GEOMETRIE 2 HS 07 MA 440 GEOMETRIE 2 HS 07 Zielsetzung Die Stuierenen lernen, ass geometrische Ieen vielfach verwenet weren. Sie erweitern Ihr Wissen er Eukliischen Geometrie. Sie lernen, ass geometrisches Denken weitere

Mehr

Lösungen zu Kapitel 6

Lösungen zu Kapitel 6 Lösungen zu Kapitel 6 Lösung zu Aufgabe : Es ist T (a) = {b b 0, b a}. Wir erhalten Es folgt un amit T (54) = {, 2, 3, 6, 9, 8, 27, 54}, T (72) = {, 2, 3, 4, 6, 8, 9, 2, 8,.24, 36, 72}. T (54) T (72) =

Mehr

LUDWIG-MAXIMILIANS-UNIVERSITÄT MÜNCHEN. 3. Übung/Lösung Mathematik für Studierende der Biologie

LUDWIG-MAXIMILIANS-UNIVERSITÄT MÜNCHEN. 3. Übung/Lösung Mathematik für Studierende der Biologie LUDWIG-MAXIMILIANS-UNIVERSITÄT MÜNCHEN FAKULTÄT FÜR BIOLOGIE Prof. Anreas Herz, Dr. Stefan Häusler email: haeusler@biologie.uni-muenchen.e Department Biologie II Telefon: 089-80-74800 Großhaernerstr. Fax:

Mehr

Kapitel VI. Euklidische Geometrie

Kapitel VI. Euklidische Geometrie Kapitel VI. Euklidische Geometrie 1 Abstände und Lote Wiederholung aus Kapitel IV. Wir versehen R n mit dem Standard Skalarprodukt x 1 y 1.,. := x 1 y 1 +... + x n y n x n y n Es gilt für u, v, w R n und

Mehr

Übung ln(p) x aus dem Primzahlsatz π(x) x/ ln(x) folgt. Gehen Sie dabei wie folgt vor: i) p x

Übung ln(p) x aus dem Primzahlsatz π(x) x/ ln(x) folgt. Gehen Sie dabei wie folgt vor: i) p x Übung 0 Übung 0 Zeigen Sie, dass der Primzahlsatz π(x) x/ ln(x) aus p x ln(p) x folgt Übung 02 Zeigen Sie, dass p x ln(p) x aus dem Primzahlsatz π(x) x/ ln(x) folgt Gehen Sie dabei wie folgt vor: i) p

Mehr

7 Anwendungen der Linearen Algebra

7 Anwendungen der Linearen Algebra 7 Anwenungen er Linearen Algebra 7.1 Extremwertaufgaben mit Nebenbeingungen Bemerkung 7.1. Wir behaneln as Problem: Gegeben ist eine zweimal stetig ifferenzierbare Funktion f : R n R un ein stetig ifferenzierbares

Mehr

4 Der Gauß Algorithmus

4 Der Gauß Algorithmus 4 Der Gauß Algorithmus Rechenverfahren zur Lösung homogener linearer Gleichungssysteme Wir betrachten ein GLS (1) a 11 x 1 + a 1 x + + a 1n x n = a 1 x 1 + a x + + a n x n = a m1 x 1 + a m x + + a mn x

Mehr

15 Differentialrechnung in R n

15 Differentialrechnung in R n 36 15 Differentialrechnung in R n 15.1 Lineare Abbilungen Eine Abbilung A : R n R m heißt linear falls A(αx + βy) = αa(x) + βa(y) für alle x, y R n un alle α, β R. Man schreibt oft Ax statt A(x) un spricht

Mehr

Lösungen für Klausur A

Lösungen für Klausur A Lösungen für Klausur A Aufgabe Skizze es Zelts im Querschnitt: h. (a) Aus sin folgt cos un aher h tan, also h. (b) Aus 9 4 4 folgt urch Wurzelziehen. Einsetzen von m in ie Beziehung aus (a) liefert h 6

Mehr

2. Goldener Schnitt. Der Goldene Schnitt ist das wohl berühmteste Zahlenverhältnis.

2. Goldener Schnitt. Der Goldene Schnitt ist das wohl berühmteste Zahlenverhältnis. 8 2. Golener Schnitt Die Geometrie birgt zwei grosse Schätze: er eine ist er Satz von Pythagoras, er anere ist er Golene Schnitt. Den ersten können wir mit einem Scheffel Gol vergleichen, en zweiten ürfen

Mehr

9 Konvexe Funktionen, Stütz- und Distanzfunktion

9 Konvexe Funktionen, Stütz- und Distanzfunktion U BREHM: Konvexgeometrie 9-9 Konvexe Funktionen, Stütz- un Distanzfunktion Definition: Sei K IR, f : K IR eine Abbilung f heißt konvex, wenn K konvex ist un für alle x, y K un alle, gilt f( x( ) y) f(

Mehr

ÜBUNGEN ZUR VORLESUNG ZAHLENTHEORIE, SS 2018

ÜBUNGEN ZUR VORLESUNG ZAHLENTHEORIE, SS 2018 ÜBUNGEN ZUR VORLESUNG ZAHLENTHEORIE, SS 2018 KARLHEINZ GRÖCHENIG So wie Sport Training erfordert, erfordert Mathematik das selbständige Lösen von Übungsaufgaben. Das wesentliche an den Übungen ist das

Mehr

Übungen zur Vorlesung. Einführung in Dynamische Systeme. Musterlösungen zu Aufgabenblatt 9

Übungen zur Vorlesung. Einführung in Dynamische Systeme. Musterlösungen zu Aufgabenblatt 9 Prof. Rolan Gunesch Sommersemester 2010 Übungen zur Vorlesung Einführung in Dynamische Systeme Musterlösungen zu Aufgabenblatt 9 Aufgabe 1: Eine Isometrie eines metrischen Raums X ist eine Abbilung f :

Mehr

f x n ) 2 1 Gleichung (*) f' x 1 f'' x 1

f x n ) 2 1 Gleichung (*) f' x 1 f'' x 1 Das Newtonsche Näherungsverfahren, Teil Theorie - Konvergenzkriterium f x n Allgemeine Lösung: x n = x n f' x f' x n n 0 Nach er Fachliteratur (Bronstein/Semenjajew) arf man hier von einer Cauchy-Folge

Mehr

Mathematik III. Vorlesung 87. Die äußere Ableitung

Mathematik III. Vorlesung 87. Die äußere Ableitung Prof. Dr. H. Brenner Osnabrück WS 2010/2011 Mathematik III Vorlesung 87 Die äußere Ableitung In ieser Vorlesung weren wir ein neuartiges mathematisches Objekt kennenlernen, ie sogenannte äußere Ableitung.

Mehr

Diskrete Mathematik Kongruenzen

Diskrete Mathematik Kongruenzen Diskrete Mathematik Kongruenzen 31. Mai 2006 1 Inhaltsverzeichnis 1. Einleitung 2. Prime Restklassen 3. Die Sätze von Euler und Fermat 4. Lineare Kongruenzen 5. Systeme 2 Einleitung 3 Fragestellung Wie

Mehr

Klausur zur Höheren Mathematik 1/2

Klausur zur Höheren Mathematik 1/2 Stroppel/Sänig 4. 0. 0 Klausur zur Höheren Mathematik / für Ingenieurstuiengänge Bitte beachten Sie ie folgenen Hinweise: Bearbeitungszeit: 40 Minuten Erlaubte Hilfsmittel: Vier Seiten DIN A4 eigenhänig

Mehr

1 5. Endliche Körper Situation: Satz: Beispiel: Z iel: Klassifikation endlicher Körper und ihrer Beziehungen.

1 5. Endliche Körper Situation: Satz: Beispiel: Z iel: Klassifikation endlicher Körper und ihrer Beziehungen. 1 5. Enliche Körper Z iel: Klassifikation enlicher Körper un ihrer Beziehungen. 1 5. 1. Situation: K sei eine enliche Erweiterung es Körpers F p = Z/ p, p P, [ K: F p ] = n #( K = p n = : q K ist zyklisch

Mehr

4. ggt und kgv. Chr.Nelius: Zahlentheorie (SS 2007) 9

4. ggt und kgv. Chr.Nelius: Zahlentheorie (SS 2007) 9 Chr.Nelius: Zahlentheorie (SS 2007) 9 4. ggt und kgv (4.1) DEF: Eine ganze Zahl g heißt größter gemeinsamer Teiler (ggt) zweier ganzer Zahlen a und b, wenn gilt: GGT 0 ) g 0 GGT 1 ) g a und g b GGT 2 )

Mehr

Teil I. Lineare Algebra I Vorlesung Sommersemester Olga Holtz. MA 378 Sprechstunde Fr und n.v.

Teil I. Lineare Algebra I Vorlesung Sommersemester Olga Holtz. MA 378 Sprechstunde Fr und n.v. Teil I Lineare Algebra I Vorlesung Sommersemester 2 Olga Holtz MA 378 Sprechstunde Fr 4-6 und nv holtz@mathtu-berlinde Sadegh Jokar MA 373 Sprechstunde, Do 2-4 und nv jokar@mathtu-berlinde Kapitel 4 Der

Mehr

1. Tangente, Ableitung, Dierential

1. Tangente, Ableitung, Dierential 1. Tangente, Ableitung, Dierential Variablen un Funktionen 1.1. Verallgemeinern Sie ie folgenen Gruppen von Gleichungen mithilfe von Variablen. (1) 5 + 3 = 3 + 5, 1 2 = 2 + 1. (2) 3 2 + 5 2 = (3 + 5) 2,

Mehr

2 Die Dimension eines Vektorraums

2 Die Dimension eines Vektorraums 2 Die Dimension eines Vektorraums Sei V ein K Vektorraum und v 1,..., v r V. Definition: v V heißt Linearkombination der Vektoren v 1,..., v r falls es Elemente λ 1,..., λ r K gibt, so dass v = λ 1 v 1

Mehr

Chr.Nelius: Zahlentheorie (WS 2006/07) ggt und kgv

Chr.Nelius: Zahlentheorie (WS 2006/07) ggt und kgv ChrNelius: Zahlentheorie (WS 2006/07) 8 3 ggt und kgv Wir erinnern uns hoffentlich an die folgenden Definitionen des ggt s und des kgv s zweier ganzer Zahlen (31) DEF: Eine ganze Zahl g heißt größter gemeinsamer

Mehr

2 Lineare Gleichungssysteme

2 Lineare Gleichungssysteme 2 Lineare Gleichungssysteme Betrachte ein beliebiges System von m linearen Gleichungen in den n Unbekannten x,,x n : a x + a 2 x 2 + + a n x n = b a 2 x + a 22 x 2 + + a 2n x n = b 2 () a m x + a m2 x

Mehr

Solution Hints to Exercise Sheet 11

Solution Hints to Exercise Sheet 11 Avance algebra Homological algebra an representation theory Wintersemester 24/5 Prof. C. Schweigert Algebra an Number Theory Department of Mathematics University Hamburg Aufgabe Solution Hints to Exercise

Mehr

Erste schriftliche Wettbewerbsrunde. Klasse 7

Erste schriftliche Wettbewerbsrunde. Klasse 7 Erste schriftliche Wettbewerbsrune Die hinter en Lösungen stehenen Prozentzahlen zeigen, wie viel Prozent er Wettbewerbsteilnehmer ie gegebene Lösung angekreuzt haben. Die richtigen Lösungen weren fettgeuckt

Mehr

WIEDERHOLUNG (BIS ZU BLATT 7)

WIEDERHOLUNG (BIS ZU BLATT 7) Universität Bielefeld SS 2016 WIEDERHOLUNG (BIS ZU BLATT 7) JULIA SAUTER Wir wiederholen, welche Aufgabentypen bis zu diesem Zeitpunkt behandelt worden sind. Auf der nächsten Seite können Sie sich selber

Mehr

Schwache Konvergenz von W-Verteilungen auf der Zahlengeraden

Schwache Konvergenz von W-Verteilungen auf der Zahlengeraden Kapitel 5 Schwache Konvergenz von W-Verteilungen auf er Zahlengeraen 5.1 Schwache Konvergenz bzw. Verteilungskonvergenz Bezeichne W(, B 1 ie Menge aller W-Verteilungen auf (, B 1. Definition 5.1 (Schwache

Mehr

Aufgaben zum Wochenende (2)

Aufgaben zum Wochenende (2) Aufgaben zum Wochenene () Alle Koorinatensysteme seien kartesisch.. Berechnen Sie zu a =(, 3, ) un b =(,, ), c =(, 3, ) : a 3, 4 a b, b ( a c), a 4 b ( ) c. Rechnen Sie möglichst praktisch.. Lösen Sie

Mehr

AlZAGK-Seminar: Pellsche Gleichung: Kettenbruchverfahren und das Archimedische problema bovinum

AlZAGK-Seminar: Pellsche Gleichung: Kettenbruchverfahren und das Archimedische problema bovinum AlZAGK-Seminar: Pellsche Gleichung: Kettenbruchverfahren un as Archimeische roblema bovinum Claas Grenzebach 25. Juni 2002 Die Pellsche Gleichung Wenn Harols Streitkräfte, ie in 3 Quarate aufgeteilt waren,

Mehr

3 Trennungs- und Stützeigenschaften, sowie elementare Hilfssätze

3 Trennungs- und Stützeigenschaften, sowie elementare Hilfssätze U BREHM: Konvegeoetrie 3-1 3 Trennungs- un Stützeigenschaften, sowie eleentare Hilfssätze Zunächst einige Hilfssätze, in enen Begriffe aus er Konveität it topologischen Eigenschaften zusaengebracht weren

Mehr

Die Lösung linearer Gleichungssysteme

Die Lösung linearer Gleichungssysteme Die Lösung linearer Gleichungssysteme Lineare Algebra I Kapitel 6 6 Mai 22 Logistik Dozent: Olga Holtz, MA 378, Sprechstunden Freitag 4-6 Webseite: wwwmathtu-berlinde/ holtz Email: holtz@mathtu-berlinde

Mehr

Prof. Dr. Elmar Grosse-Klönne Institut für Mathematik

Prof. Dr. Elmar Grosse-Klönne Institut für Mathematik Prof. Dr. Elmar Grosse-Klönne Institut für Mathematik Lineare Algebra Analytische Geometrie I* Übungsaufgaben, Blatt Musterlösungen Aufgabe. Es seien A, B, C Teilmengen einer Menge X. Zeige: i A B C =

Mehr

6 Lineare Gleichungssysteme

6 Lineare Gleichungssysteme 6 LINEARE GLEICHUNGSSYSTEME 3 6 Lineare Gleichungssysteme Unter einem linearen Gleichungssystem verstehen wir ein System von Gleichungen α ξ + + α n ξ n = β α m ξ + + α mn ξ n = β m mit Koeffizienten α

Mehr

Mathematisches Institut II Universität Karlsruhe Priv.-Doz. Dr. N. Grinberg

Mathematisches Institut II Universität Karlsruhe Priv.-Doz. Dr. N. Grinberg 1 Mathematisches Institut II 06.07.004 Universität Karlsruhe Priv.-Doz. Dr. N. Grinberg SS 05 Schnupperkurs: Ausgewählte Methoden zur Aufgabenlösung Vorlesung 5: Elementare Zahlentheorie: Teilbarkeit Primfaktorzerlegung

Mehr

Elemente der Algebra

Elemente der Algebra Prof. Dr. H. Brenner Osnabrüc SS 2015 Elemente der Algebra Vorlesung 16 Der Chinesische Restsatz für Z Satz 16.1. Sei n eine positive natürliche Zahl mit anonischer Primfatorzerlegung 1 p r 2 2 p r (die

Mehr

Bonusmaterial ElementareZahlentheorie Jonglieren mit Zahlen

Bonusmaterial ElementareZahlentheorie Jonglieren mit Zahlen Bonusmaterial ElementareZahlentheorie Jonglieren mit Zahlen Wieso sin ie Primzahlen ie Bausteine er ganzen Zahlen? Wie viele Teiler hat ie Zahl 73626273893493625252? Wie berechnet man effizient en ggt

Mehr

3 Elementare Umformung von linearen Gleichungssystemen und Matrizen

3 Elementare Umformung von linearen Gleichungssystemen und Matrizen 3 Elementare Umformung von linearen Gleichungssystemen und Matrizen Beispiel 1: Betrachte das Gleichungssystem x 1 + x 2 + x 3 = 2 2x 1 + 4x 2 + 3x 3 = 1 3x 1 x 2 + 4x 3 = 7 Wir formen das GLS so lange

Mehr

Grundlagen Algebra. Bruchgleichungen

Grundlagen Algebra. Bruchgleichungen Bruchgleichungen EL / GS -.0.05 - _Bruchgl.mc Definition: Eine Gleichung, bei er eine Variable x auch im Nenner vorkommt, ohne ass man sie kürzen kann, heißt Bruchgleichung. Bezeichnung: Gleichungen, ie

Mehr

1.Vortrag: Rechnen mit Restklassen/modulo einer Zahl

1.Vortrag: Rechnen mit Restklassen/modulo einer Zahl Westfälische Wilhelms-Universität Münster Mathematik Sommersemester 2017 Seminar: Verschlüsselungs- und Codierungstheorie Leitung: Thomas Timmermann 1.Vortrag: Rechnen mit Restklassen/modulo einer Zahl

Mehr

Stochastische Prozesse

Stochastische Prozesse INSTITUT FÜR STOCHASTIK SS 9 UNIVERSITÄT KARLSRUHE Blatt 5 Priv-Doz Dr D Kaelka Dipl-Math W Lao Übungen zur Vorlesung Stochastische Prozesse Musterlösungen Aufgabe : Wir betrachten eine Markovkette in

Mehr

Lineare Algebra I (WS 12/13)

Lineare Algebra I (WS 12/13) Lineare Algebra I (WS 12/13) Alexander Lytchak Nach einer Vorlage von Bernhard Hanke 18.10.2012 Alexander Lytchak 1 / 12 Lineare Gleichungssysteme Wir untersuchen nun allgemeiner Gleichungssysteme der

Mehr

Druckverluste in thermostatischen Heizkörperventilen

Druckverluste in thermostatischen Heizkörperventilen Drucverluste in thermostatischen Heizörerventilen Allgemeines: in Thermostatventil muss zwei eventuell bis zu vier Aufgaben erfüllen: 1. Abserrung es Heizörers,. Regelung er Raumtemeratur urch Drosselung

Mehr

Lineare Differentialgleichungen mit festen Koeffizienten

Lineare Differentialgleichungen mit festen Koeffizienten Lineare Differentialgleichungen mit festen Koeffizienten Wir fangen mit folgender Definition an: Definition: Linear abhängige (unabhängige) Funktionen. Seien u i (x), i = 1,, n Funktionen, vorgegeben auf

Mehr

1 Lokale Umkehrbarkeit und implizite Funktionen

1 Lokale Umkehrbarkeit und implizite Funktionen Christina Schinler Karolina Stoiber Ferienkurs Analysis 2 für Physiker SS 2013 A 1 Lokale Umkehrbarkeit un implizite Funktionen In iesem Kapitel weren Kriterien vorgestellt, wann eine Funktion umkehrbar

Mehr

Differentialrechnung

Differentialrechnung Differentialrechnung Um Funktionen genauer zu untersuchen bzw. sie zu analysieren, ist es notwenig, etwas über ihren Verlauf, as qualitative Verhalten er Funktion, sagen zu können. Das heisst, wir suchen

Mehr

Elliptische Kurven in der Kryptographie, Teil III. 1 Supersingularität

Elliptische Kurven in der Kryptographie, Teil III. 1 Supersingularität Elliptische Kurven in der Kryptographie, Teil III Vortrag zum Seminar zur Funktionentheorie, 03.1.007 Julia Baumgartner In diesem Vortrag wollen wir supersinguläre elliptische Kurven betrachten und dann

Mehr

Lineare Algebra I (WS 13/14)

Lineare Algebra I (WS 13/14) Lineare Algebra I (WS 13/14) Alexander Lytchak Nach einer Vorlage von Bernhard Hanke 22.10.2013 Alexander Lytchak 1 / 16 Wiederholung des Beispiels 3x 6 + x 7 = 2 2x 2 + 4x 4 + 6x 5 + 5x 7 = 3 2x 2 + x

Mehr

Technische Universität Berlin Fakultät II Institut für Mathematik Sommersemester 2014 Dr. Sebastian Riedel 21. Juli 2014

Technische Universität Berlin Fakultät II Institut für Mathematik Sommersemester 2014 Dr. Sebastian Riedel 21. Juli 2014 Technische Universität Berlin Fakultät II Institut für Mathematik Sommersemester 24 Dr. Sebastian ieel 2. Juli 24 Klausur Mathematik II für Wirtschaftswissenschaftler Name:.......................................

Mehr

Übung zur Vorlesung Diskrete Strukturen I

Übung zur Vorlesung Diskrete Strukturen I Technische Universität München WS 2002/03 Institut für Informatik Aufgabenblatt 8 Prof. Dr. J. Csirik 2. Dezember 2002 Brandt & Stein Übung zur Vorlesung Diskrete Strukturen I Abgabetermin: Tutorübungen

Mehr

Übungen zur Theoretischen Physik 2 für das Lehramt L3 Blatt 3

Übungen zur Theoretischen Physik 2 für das Lehramt L3 Blatt 3 H. van Hees Sommersemester 218 Übungen zur Theoretischen Physik 2 für as Lehramt L3 Blatt 3 Aufgabe 1: Vektorproukt Im Manuskript haben wir as Vektorproukt zweier Vektoren a un b geometrisch efiniert.

Mehr

Klausur zur Höheren Mathematik 1/2

Klausur zur Höheren Mathematik 1/2 Stroppel/Sänig 4.. Klausur zur Höheren Mathematik / für Ingenieurstuiengänge Bitte beachten Sie ie folgenen Hinweise: Bearbeitungszeit: 8 Minuten Erlaubte Hilfsmittel: Vier Seiten DIN A4 eigenhänig hanbeschrieben.

Mehr

n a k (a 1 1) a k a k a 1 (mod n) gilt, erhalten wir für jeden Index i = 1,..., k 1

n a k (a 1 1) a k a k a 1 (mod n) gilt, erhalten wir für jeden Index i = 1,..., k 1 Aufgabe 1 Es seien n un k positive ganze Zahlen mit k 2. Ferner seien a 1,...,a k paarweise verschieene ganze Zahlen aus er Menge {1,..., n} erart, ass n ie Zahl a i (a i+1 1) für jees i = 1,...,k 1 teilt.

Mehr

Serie 6 - Funktionen II + Differentialrechnung

Serie 6 - Funktionen II + Differentialrechnung Analysis D-BAUG Dr. Meike Akvel HS 05 Serie 6 - Funktionen II + Differentialrechnung. a) Sei Lösung 3, falls < 0, f : R R, f) c +, falls 0, + 8, falls >. Bestimmen Sie c R un R, so ass f überall stetig

Mehr

Eigenwerte und Eigenvektoren

Eigenwerte und Eigenvektoren Eigenwere un Eigenvekoren Vorbemerkung: Is ie n n Marix inverierbar, so ha as lineare Gleichungssysem A x b für jees b genau eine Lösung, nämlich x A b. Grun: i A x A A b b, ii Is y eine weiere Lösung,

Mehr

Beispiel für simultane Kongruenz

Beispiel für simultane Kongruenz Beispiel für simultane Kongruenz Jetzt wollen wir das Lemma der letzten Einheit anwenden. Wenn man eine Zahl sucht, die kongruent zu y modulo m und kongruent zu z modulo n ist, so nehme man zam + ybn wobei

Mehr

5 Lineare Gleichungssysteme und Determinanten

5 Lineare Gleichungssysteme und Determinanten 5 Lineare Gleichungssysteme und Determinanten 51 Lineare Gleichungssysteme Definition 51 Bei einem linearen Gleichungssystem (LGS) sind n Unbekannte x 1, x 2,, x n so zu bestimmen, dass ein System von

Mehr

Die Lösungsmenge besteht aus allen n-tupeln reeller Zahlen x 1

Die Lösungsmenge besteht aus allen n-tupeln reeller Zahlen x 1 III. Lineare Gleichungssysteme ================================================================= 3. Einführung ---------------------------------------------------------------------------------------------------------------

Mehr

Kongruenz ist Äquivalenzrelation

Kongruenz ist Äquivalenzrelation Kongruenz ist Äquivalenzrelation Lemma Kongruenz ist Äquivalenzrelation Die Kongruenz modulo n ist eine Äquivalenzrelation auf Z. D.h. für alle a, b, c Z gilt 1 Reflexivität: a a mod n 2 Symmetrie: a b

Mehr

LUDWIG-MAXIMILIANS-UNIVERSITÄT MÜNCHEN. 3. Übung/Lösung Mathematik für Studierende der Biologie

LUDWIG-MAXIMILIANS-UNIVERSITÄT MÜNCHEN. 3. Übung/Lösung Mathematik für Studierende der Biologie LUDWIG-MAXIMILIANS-UNIVERSITÄT MÜNCHEN FAKULTÄT FÜR BIOLOGIE Prof. Anreas Herz, Dr. Stefan Häusler email: haeusler@biologie.uni-muenchen.e Department Biologie II Telefon: 089-80-74800 Großhaernerstr. Fa:

Mehr

Mathematik 1 -Arbeitsblatt 1-9: Multiplizieren mehrgliedriger Termee. 1F Wintersemester 2012/2013 Unterlagen: LehrerInnenteam GFB

Mathematik 1 -Arbeitsblatt 1-9: Multiplizieren mehrgliedriger Termee. 1F Wintersemester 2012/2013 Unterlagen: LehrerInnenteam GFB Schule Thema Personen Bunesgymnasium für Berufstätige Salzburg Mathematik 1 -Arbeitsblatt 1-9: Multiplizieren mehrglieriger Termee 1F Wintersemester 01/013 Unterlagen: LehrerInnenteam GFB Ein neues Problem

Mehr

Musterlösung Serie 6

Musterlösung Serie 6 D-ITET Analysis III WS 3/4 Prof. Dr. H. Knörrer Musterlösung Serie 6. a) Mithilfe er Kettenregel berechnen wir u x = w ξ ξ x + w η η x u y = w ξ ξ y + w η η y u xx = w ξξ ξx 2 + 2w ξη ξ x η x + w ηη ηx

Mehr

Koordinaten des Höhenschnittpunkts:

Koordinaten des Höhenschnittpunkts: Koordinaten des Höhenschnittpunkts: Die Höhen eines Dreiecks ABC schneiden einander in einem Punkt S(Sx;Sy. Die Koordinaten Sx Sy errechnen sich unter Heranziehung der Koordinaten der Dreieckspunkte A(Ax;Ay,

Mehr

1 Einführung Gleichungen und 2 Unbekannte Gleichungen und 3 Unbekannte... 4

1 Einführung Gleichungen und 2 Unbekannte Gleichungen und 3 Unbekannte... 4 Wirtschaftswissenschaftliches Zentrum 3 Universität Basel Mathematik 2 Dr Thomas Zehrt Lineare Gleichungssysteme Inhaltsverzeichnis Einführung 2 2 Gleichungen und 2 Unbekannte 2 2 3 Gleichungen und 3 Unbekannte

Mehr

Lineare Algebra I (WS 12/13)

Lineare Algebra I (WS 12/13) Lineare Algebra I (WS 12/13) Bernhard Hanke Universität Augsburg 17.10.2012 Bernhard Hanke 1 / 9 Wir beschreiben den folgenden Algorithmus zur Lösung linearer Gleichungssysteme, das sogenannte Gaußsche

Mehr

TECHNISCHE UNIVERSITÄT MÜNCHEN. Vektorräume: Basen und lineare Unabhängigkeit

TECHNISCHE UNIVERSITÄT MÜNCHEN. Vektorräume: Basen und lineare Unabhängigkeit TECHNISCHE UNIERSITÄT MÜNCHEN Zentrum Mathematik Prof. Dr. Frierich Roesler Ralf Franken, PhD Max Lein Lineare Algebra WS 26/7 en Blatt 8.2.26 ektorräume: Basen un lineare Unabhängigkeit Zentralübungsaufgaben

Mehr

1 Kryptographie - alt und neu

1 Kryptographie - alt und neu 1 Krytograhie - alt und neu 1.1 Krytograhie - alt [H] S. 9-14 und S. 18:.3.1. (Idee) - olyalhabetische Verschlüsselung, Vigenère (1550) 1. Primzahlen [RS] S. 89-93, wohl im wesenlichen ohne Beweise. Ausnahme

Mehr

ELEMENTARE ZAHLENTHEORIE FÜR LAK Kapitel 2: Kongruenzen und Restklassen

ELEMENTARE ZAHLENTHEORIE FÜR LAK Kapitel 2: Kongruenzen und Restklassen ELEMENTARE ZAHLENTHEORIE FÜR LAK Kapitel 2: Kongruenzen und Restklassen 621.242 Vorlesung mit Übung im WS 2015/16 Günter LETTL Institut für Mathematik und wissenschaftliches Rechnen Karl-Franzens-Universität

Mehr

1 Analytische Geometrie und Grundlagen

1 Analytische Geometrie und Grundlagen $Id: vektor.tex,v 1.39 2018/05/03 14:55:15 hk Exp $ 1 Analytische Geometrie und Grundlagen 1.5 Abstände und Winkel Nachdem wir uns am Ende der letzten Sitzung an den Orthogonalitätsbegriff der linearen

Mehr

a) b) Abb. 1: Buchstaben

a) b) Abb. 1: Buchstaben Hans Walser, [20171019] Magische Quarate ungeraer Seitenlänge nregung: uler (1782) 1 Worum geht es? Zu einer gegebenen ungeraen Zahl u wir ein magisches Quarat mit er Seitenlänge u konstruiert. 2 as Vorgehen

Mehr

Hauptachsentransformation

Hauptachsentransformation Haupachsenransformaion Erinnerung: A M n is genau ann nich inverierbar, wenn es ein x R n, x gib, mi A x. Definiion. Sei A M n eine Marix. Ein Vekor v R n, v heiß Eigenvekor von A zum Eigenwer λ R, wenn

Mehr

1.1.8 Radialsymmetrisches elektrisches Feld, Coulomb-Gesetz; Kapazität des Kugelkondensators

1.1.8 Radialsymmetrisches elektrisches Feld, Coulomb-Gesetz; Kapazität des Kugelkondensators 8 Raialsymmetrisches elektrisches Fel, Coulomb-Gesetz; Kapazität es Kugelkonensators Die Felstärke im raialen Fel - as Coulombsche Gesetz Am Ene es letzten Kapitels wure ie Grungleichung es elektrischen

Mehr

Gewöhnliche inhomogene Differentialgleichungen der 1. und 2. Ordnung. Christopher Schael

Gewöhnliche inhomogene Differentialgleichungen der 1. und 2. Ordnung. Christopher Schael Gewöhnliche inhomogene Differentialgleichungen der 1. und. Ordnung 1.1.) Anleitung DGL der 1. Ordnung 1.) DGL der 1. Ordnung In diesem Abschnitt werde ich eine Anleitung zur Lösung von inhomogenen und

Mehr

Technische Universität Berlin Wintersemester 2010/11. Allgemeine Volkswirtschaftslehre 2 - Makroökonomie Wiederholung mathematischer Grundlagen

Technische Universität Berlin Wintersemester 2010/11. Allgemeine Volkswirtschaftslehre 2 - Makroökonomie Wiederholung mathematischer Grundlagen Prof. Dr. Frank Heinemann Technische Universität Berlin Wintersemester 2010/11 Allgemeine Volkswirtschaftslehre 2 - Makroökonomie Wieerholung mathematischer Grunlagen Dieses Übungsblatt enthält keine abzugebenen

Mehr

2.4. GAUSSSCHER SATZ π ε 0 r 2. π r 2)

2.4. GAUSSSCHER SATZ π ε 0 r 2. π r 2) 2.4. GAUSSSCHER SATZ 23 2.4 Gaußscher Satz Das Fel einer Punktlaung genügt er Gleichung: E = 1 4 π ε 0 Q r 2 Desweiteren berechnet sich ie Oberfläche einer Kugel, eren Punkte vom Mittelpunkt en Abstan

Mehr

8 Summen von Quadraten

8 Summen von Quadraten 8 Summen von Quadraten A. Summen von zwei Quadraten. Sei p eine Primzahl. Beispiele. = 1 + 1, 5 = 1 +, 13 = + 3 Aber 3 und 7 sind nicht Summen von zwei Quadraten. 8.1 Satz. Genau dann ist p Summe von zwei

Mehr

Kapitel V. Affine Geometrie

Kapitel V. Affine Geometrie Kapitel V Affine Geometrie 1 Affine Räume Betrachte ein lineares Gleichungssystem Γ : a 11 x 1 + a 12 x 2 + + a 1n x n = b 1 a 21 x 1 + a 22 x 2 + + a 2n x n = b 2 a m1 x 1 + a m2 x 2 + + a mn x n = b

Mehr

Mathematik I. k=0 c k(x a) k bilden die Teilpolynome n k=0 c k(x a) k polynomiale Approximationen für die Funktion f

Mathematik I. k=0 c k(x a) k bilden die Teilpolynome n k=0 c k(x a) k polynomiale Approximationen für die Funktion f Prof. Dr. H. Brenner Osnabrück WS 2009/2010 Mathematik I Vorlesung 30 Zu einer konvergenten Potenzreihe f(x) = c k(x a) k bilden die Teilpolynome n c k(x a) k polynomiale Approximationen für die Funktion

Mehr

2. Musterlösung. Problem 1: Das Postamtplatzierungsproblem ** = min w i ( x p x i ) + w i ( y p y i ) i=1. w i + w m w i. 0 wegen (3) w m+1 m,m+1

2. Musterlösung. Problem 1: Das Postamtplatzierungsproblem ** = min w i ( x p x i ) + w i ( y p y i ) i=1. w i + w m w i. 0 wegen (3) w m+1 m,m+1 Universität Karlsruhe Algorithmentechnik Fakultät für Informatik WS 05/06 ITI Wagner 2. Musterlösung Problem 1: Das Postamtplatzierungsproblem ** Sei OE x 1 x 2 x n. Gesucht ist ein Punkt p = (x, y) mit

Mehr

Kapitel 3: Die Sätze von Euler, Fermat und Wilson. 8 Der Satz von Euler

Kapitel 3: Die Sätze von Euler, Fermat und Wilson. 8 Der Satz von Euler Kapitel 3: Die Sätze von Euler, Fermat und Wilson In diesem Kapitel wollen wir nun die eulersche -Funktion verwenden, um einen berühmten Satz von Euler zu formulieren, aus dem wir dann mehrere interessante

Mehr

Lineare Algebra I 5. Tutorium Die Restklassenringe /n

Lineare Algebra I 5. Tutorium Die Restklassenringe /n Lineare Algebra I 5. Tutorium Die Restklassenringe /n Fachbereich Mathematik WS 2010/2011 Prof. Dr. Kollross 19. November 2010 Dr. Le Roux Dipl.-Math. Susanne Kürsten Aufgaben In diesem Tutrorium soll

Mehr