02.3 Schreibweisen Das Bohrsche Atommodell Elektronen Schalen Relativer Atomdurchmesser. φ = m

Größe: px
Ab Seite anzeigen:

Download "02.3 Schreibweisen Das Bohrsche Atommodell Elektronen Schalen Relativer Atomdurchmesser. φ = m"

Transkript

1 . Das Bohrsche tommodell. Schreibweisen φ = m Schreibweise: Nukleonenzahl Ordnungszahl Element Kern: Protonen (+) Neutronen (n) Elektronenhülle: Elektronen (-) Neutron Nukleonenzahl Ordnungszahl Element Proton H He 6 C 6. Relativer tomdurchmesser.5 Elektronen Schalen n Elektronen pro Schale E n = N-Schale n = M-Schale n = L- Schale n = K- Schale Haselnuss m cm Z e E = r m Z e = n h Z = Ordnungszahl e = Elementarladung r = Orbitalradius m = Elektronenmasse n = Schalennummer h = Planck sches Wirkungsquantum

2 .6 Wellenmechanik tome - Nuklide - Elemente Elektron = stehende Welle Wellenfunktion eines Elektrons ufenthaltsbereich eines Elektrons Schrödinger-Gleichung Energiezustände eines Elektrons Kernabstand Ψ (r,e) Ψ (r,e) HΨ = EΨE E r tome Die stoffliche Welt um uns herum lässt sich zerlegen in kleine - einst als unteilbar geglaubte - Teilchen, die als tome bezeichnet werden. Nuklide Zur Zeit sind ca. 5 tomsorten - sogenannte Nuklide - bekannt, die sich auf verschiedene chemische Elemente verteilen. Davon sind nur 7 Nuklide stabil! Chemische Elemente Unter einem chemischen Element versteht man einen Stoff, der aus tomen mit gleichen chemischen Eigenschaften aufgebaut ist.. Nuklidkarte. Nuklidgruppen Isotope Nuklide weisen die gleiche Ordnungszahl auf und gehören damit zum selben chemischen Element. He,6 σ abs <,5 H,79 σ, H- 99,985 σ, He-,7 σ,5 H-,5 σ,5 n,5 m β,8 He- 99,99986 β, H-, a β, He-5 99,99986 n N He-6 86,7 ms β -,5 Z Isotope Nuklide weisen die gleiche Ordnungszahl auf und gehören damit zum selben chemischen Element Isobare Nuklide haben gleiche Massen, jedoch unterschiedliche Kernladungszahlen. Sie finden sich in den Diagonalreihen der Nuklidkarte. Isotone Nuklide sind Nuklide mit gleicher Neutronenzahl. Sie stehen in den senkrechten Reihen der Nuklidkarte. Isomere Nuklide haben zwar gleiche nzahl von Protonen und Neutronen, besitzen aber unterschiedliche Energien im tomkern.

3 . Nuklidkarte FZ Karlsruhe. Nuklidkarte Erläuterungen Karlsruher Nuklidkarte: alle bekannten Nuklide X - chse: Protonenzahl Y - chse: Neutronenzahl Farben und Symbole: stabile Nuklide Positronzerfall β + Elektroneneinfang ε Negatronzerfall β - Isomerenzerfall Iγ lphazerfall α Spontanspaltung sf Protonzerfall p.7 Wasserstoffisotope Das Standardmodell

4 Das Standardmodell. Elementarteilchen und Quarks Elementarteilchen Leptonen leichte Teilchen Mesonen gerade nzahl von Quarks Baryonen schwere Teilchen Bosonen "Kraftteilchen" Neutrinos... Hyperonen Nukleonen Photonen Elektronen... Neutronen Protonen Quarks Quarks. Leptonen - leichte Teilchen. Mesonen - Teilchen aus Quarks Name Symbol Ruhe- masse [MeV] Ladung Spin Elektron e - e +,5 - + / stabil Müon µ - µ + 5,6 - + /. -6 Tau τ - τ /. - Elektron- Neutrino ν e ν e? / stabil? Müon-Neutrino ν µ ν µ? / stabil? Tau-Neutrino ν τ ν τ? / stabil? Leptonen + Quarks = Grundbausteine der Materie + ntimaterie Name Symbol Ruhe- masse [MeV] Ladung Quarkaufbau Spin mittlere Lebens- dauer [s] mittlere Lebens- dauer [s] Pionen π 5 u u d d Pionen π + π + - u d d u,6. -8 Kaonen K K 98 d s d s Kaonen K + K u s s u,. -8 J / Psi J / Ψ 98 c c. - D-Null D 86 c u. - D-Plus D + 86 c d. - Ypsilon Y 96 b b. -

5 . Baryonen - schwere Teilchen.5 Eichbosonen - ustauschteilchen Name Symbol Ruhe- masse [MeV] Proton p p 98, + - u u d u u d ½ stabil Neutron n n 99,6 d d u d d u ½ ca. 9 Lambda Λ Λ 5 u d s u d s ½,6. - Sigma-Plus Σ + Σ u u s u u s ½ 8. - Sigma-Minus Σ Σ d d s d d s ½,5. - Sigma-Null Σ Σ 9 u d s u d s ½ 6. - Xi-Minus Ξ Ξ - d s s d s s ½,6. - Xi-Null Ξ Ξ 5 u s s u s s ½. - Omega-Minus Ω Ω s s s s s s ½ 8. - Charm-Lambda Λ c Λ c u d c u d c ½. - Name Symbol Ruhe- masse [MeV] Ladung Spin ustauschteilchen, übertragen Kräfte Photon γ? stabil W-Teilchen W + W ~ Z-Teilchen Z ~9-5 Gluon g stabil.6 Quarks - Bausteine für Elementarteilchen.7 Visual - Quarks Name Symbol Ruhe- masse [MeV] Ladung Spin Ladung Quarkaufbau Spin mittlere Lebens- dauer [s] mittlere Lebens- dauer [s] mittlere Lebens- dauer [s] up u u ~5 / - / ½ stabil down d d ~ -/ / ½ verschieden strange s s ~ -/ / ½ verschieden charm c c ~5 / -/ ½ verschieden bottom (beauty) b b ~7 -/ / ½ verschieden top (truth) t t? / -/ ½ verschieden Elementarteilchen aus Quarktripletts : Baryonen Elementarteilchen aus Quarkdubletts: Mesonen top up down strange charm bottom

6 5 nti-materie 6 Stabile und instabile Materie Nukleon Masse [g] Relative tommasse [u] Ladung Spin t / Betazerfall Zu jedem Teilchen gibt es ein nti-teilchen (gleiche Masse, aber entgegengesetzte Ladung) Tritt ein Teilchen mit seinem nti-teilchen in Wechselwirkung, so werden beide vernichtet, es entstehen Photonen oder Mesonen h Proton,67 x -,78 + e stabil h Neutron,67 x -,867 min Das Photon ist mit seinem nti-teilchen identisch u =,66 x - g = 9,5 MeV 6. Massendefekt 6. Kernbindungsenergien ls Massendefekt bezeichnet man die Differenz zwischen den Ruhemassen gebundener Nukleonen und den Ruhemassen ungebundener Nukleonen. Mittlere Kernbindungsenergie pro Nukleon Der Massendefekt ist ein Maß für die Kernbindungsenergie. Massendefekt eines lphateilchens: m = m alpha -( x m proton -x m neutron ) m =,5 - ( x,78 + x,866) =,7u 8 MeV Massenzahl

7 6. Radioaktivität 6. ktivität ktivität = nzahl der Zerfälle pro Sekunde Eigenschaft bestimmter Stoffe, sich ohne äußere Einwirkung umzuwandeln und dabei charakteristische Strahlung auszusenden lpha-zerfälle Beta-Zerfälle Gamma-Zerfälle Röntgenstrahlung Spontanspaltung Spallation u.a. ussenden von He + - Teilchen ussenden von e -,e + aus dem Kern ussenden von Photonen aus dem Kern ussenden von Photonen aus inneren Elektronenschalen Spaltung eines tomkernes Zertrümmerung eines tomkernes Becquerel = Zerfall pro Sekunde Symbol : Bq Gramm Radium-6: 7 Milliarden Zerfälle pro Sekunde 7 Milliarden Bq = Curie (Ci) 6.5 Der radioaktive Zerfall 6.6 Das Zerfallsgesetz t ½ t ktivität Halbwertszeit vergangene Zeit ln t t / ( t) = e exponentieller Zerfall t ½ t (t) = ktivität nach einer Zeit t t = vergangene Zeit = ktivität am nfang ( t = t ) = Halbwertszeit t ½ Unter Halbwertszeit eines Radionuklids versteht man die Zeit, in der seine ktivität auf die Hälfte abgeklungen ist

8 6.7 Beispiele für Zerfälle 6.8 Die natürliche ktivität eines Standardmenschen ( - Jahre, 7 kg) Radionuklid Häufigkeit Zerfallsart Halbwertzeit t / Tritium, % β -,6 a Ra - 6 α / γ,6. a I - β - / γ 8, d Cs - β / γ,6 a,9 h U - 5,7 % α, β, γ, sf * 7,. 8 a U ,8 % α, β, sf,68. 9 a * sf bedeutet spontaneous fission = Spontanspaltung Radionuklid ktivität in Bq K - 5 C - 8 Rb Pb -, Bi -, Po - 6 Daughters Rn - H - 5 Be Daughters Rn - 5 Sonstige 7 Summe 9 (ca. Bq / kg) 6.9 Spezifische ktivität in Nahrungsmitteln 6. ktivität eines Frühstücks Stoff ktivität in Bq / kg KCl 5 9 vegetarische Nahrungsmittel * Rentierleber (Po-) Paranüsse (Ra- 6) * Mittelwert Nahrungsmittel ktivität in Bq g Mischbrot, 5 g Camenbert,9 5 g Corned Beef (Jugoslawien), g Nuß-Nougat-Creme, 5 ml schwarzer Tee (Türkei) 6,5 Nicht verkehrsfähig! g Quark, 5 g Blaubeeren,

9 6. ktivität eines Mittagessens 7 Tröpfchenmodell der tomkerne Nahrungsmittel ktivität in Bq 5 g Wildfleisch (Niedersachsen) 87, 6 g Nudeln, gekocht,6 g Maronen (Niedersachsen),6 Nicht verkehrsfähig! g Pfirsich (Konserve, Griechenland), g Preisselbeermus (Skandinavien), 5 g Vanilleeis, 5 g Kirschen 6,7 Kernvolumen Kernradius Kernbindungsenergie Massendefekt Kernmasse V = π R R = R E B / = E ~ R EB m = c EB m = Z mp + N mn c =,. - cm 7. Tröpfchenberechnungen 7. Energien im Tröpfchenmodell Nukleonenbindung an Kernoberfläche schwächer als im Inneren Kernoberfläche / O = π R Oberflächenenergie / EO = ao Kernvolumen Volumenenergie Coulombenergie V = π R E = a E V C V ( Ze) = 5 R Z = ac / Protonen- /Neutronenzahlasymmetrie schwächt Bindungsenergie Nukleonenpaare sind besonders stabil gebunden symmetrieenergie E = a ( N Z) Paarenergie (Nukleonenpaare mit jeweils antiparallelen Spin) E P = a P /

10 7. Kernbindungsenergien 7. Schalenmodell des tomkerns E a a B V P = E V E O E / Z ( N Z) = av ao ac a / / + ap für Z, N gerade + für ungerade / ap für Z, N ungerade = 5,75 MeV =,5 MeV C E a a C O + E P =,7 MeV = 7,8 MeV a =,69 MeV Strong Interaction Models Starke Ww zwischen den Nukleonen; Sie beeinflussen sich stark bei ihren Bewegungen Bewegung Independant Particle Models Schwache Ww zwischen den Nukleonen; Sie bewegen sich von einander unabhängig in einem gemeinsamen Potentialfeld Schalenmodell: analog zum tommodell (l+) Nukleonen pro Schale Bindungsenergien für die verschiedenen Schalen etwa gleich groβ Kein gemeinsames Kraftzentrum sondern Potentialminimum Starke Ww zwischen Spin und Bahndrehimpuls 7.5 Beispiele 7.6 Die fundamentalen Kräfte Elektromagnetische Kraft nziehung/bstoßung von Ladungsträgern (Reichweite: ) Uran: R = 7,6. - cm Deuterium m =,55 u E B = 9,5 (,78 +,867 -,55) =, MeV Gravitationskraft nziehung von Massen (Reichweite: ) Starke Kernkraft bindet Nukleonen (ca., x - cm Reichweite) Schwache Kernkraft bindet Quarks verursacht radioaktiven Beta-Zerfall (ca.,5 x - cm Reichweite)

11 8 Kernphysik 8. Nukleare Kettenreaktion Kernspaltung 8. Spaltproduktausbeute 9 Kernreaktionen usbeute bei Spaltung von U-5 Einfang von e -, He ++ e + 9K 8 r Einfang von Neutronen n 7 + B Li + He 5 + γ Massenzahl

12 9. Künstliche Kernreaktion 9. Der Bethe-Weizäcker-Zyklus Reaktion von α-strahlen mit Stickstoff Kohlenstoff-Stickstoff-Zyklus Bethe-Weizsäcker-Zyklus N(α,p) 7 O 8 7 He + 7N 9F 8O + p Lebensdauer C + H N + γ +,95 MeV, 7 Jahre N C + e + + ν e +,7 MeV 7 Minuten C + H N + γ + 7,5 MeV,7 6 Jahre N + H 5 O + γ + 7,5 MeV, 8 Jahre 5 O 5 N + e + + ν e +,86 MeV 8 Sekunden 5 N + H C + He +,96 MeV, 5 Jahre Energiequelle der schwereren Sterne! Durchlauf des Zyklus:, 8 Jahren Die Energieerzeugungsrate ist beim Bethe-Weizsäcker-Zyklus proportional zur 5. Potenz der Temperatur 9. Die Proton-Proton-Reaktion tomphysiker H + H H + e + + ν e +, MeV e + + e - γ +, MeV H + H He + γ + 5,9 MeV He + He He + H + H +,86 MeV Millionen Kelvin He + He 7 Be + γ 7 Be + e - 7 Li + ν e 7 Li + H He + He Millionen Kelvin He + He 7 Be + γ 7 Be + H 8 B + γ 8 B 8 Be + e + + ν e 8 Be He + He > Millionen Kelvin Die»sche«des Wasserstoffbrennens ist Helium He Bei Sternen mit Größen bis zur Masse der Sonne Hans Bethe Niels bohr John Chadwick Marie Curie Pierre Curie Paul Dirac lbert Einstein Otto Hahn Liese Meitner Max Planck Robert Oppenheimer Ernest Rutherford Snyder rnold Sommerfeld Fritz Straßner Carl Friedrich von Weizäcker

13 Übungsfragen () Übungsfragen (). Welche Erkenntnis gewann man aus dem Experiment von RUTHERFORD?. Was versteht man unter der Ordnungszahl eines toms?. Was versteht man unter der Massezahl eines toms?. Nennen Sie die drei Isotope des Wasserstoffs? 5. Besitzen die Isotope des Wasserstoff unterschiedliche physikalische Eigenschaften? Warum? 6. Besitzen die Isotope des Kohlenstoff unterschiedliche chemische Eigenschaften? Warum? 7. Was versteht man unter isomeren Nukliden? 8. Wie viele Elektronen können sich maximal in der L-Schale aufhalten? 9. Was ist eine stehende Welle?. Was versteht man unter einem Orbital?. Was sind Nukleonen, welche gibt es?. Woraus bestehen Protonen?. Zu welchen Elementarteilchengruppen gehören Elektronen, Protonen bzw. Neutronen?. Wie ist das nti-wasserstoff-tom aufgebaut? 5. Wie ist das nti-photon beschaffen 6. Was sind Quarks? 7. Was versteht man unter dem Massendefekt? 8. Welche fundamentalen Kräfte kennen Sie? 9. Was ist Kernfusion, bei welchen Nukliden tritt sie auf?. Was ist Kernspaltung, bei welchen Nukliden tritt sie auf? Literatur. B. Bröcker; DTV-tlas zur tomphysik; DTV-Verlag, 99. R.B. Firestone; CD: Table of Isotopes; Wiley-Interscience, 996. S. Hawking; CD: Eine kurze Geschichte der Zeit; Navigo, 997 B. Bröcker; DTV-tlas zur tomphysik; DTV Verlag 99. P.M. Magazin / 9 5. Bild der Wissenschaft / Volkmer Kernenergie Basiswissen 7. Volkmer Radiaoaktivität und Strahlenschutz 8. Koelzer, Lexikon der Kernenergie

Elektronen, Protonen und Neutronen haben folgende Eigenschaften, die in Tabelle 2.1 wiedergegeben sind:

Elektronen, Protonen und Neutronen haben folgende Eigenschaften, die in Tabelle 2.1 wiedergegeben sind: Aufbau der Atome.1 Elektronen, Protonen, Neutronen, Isotope Atome bestehen aus Elektronen, die die Atomhülle bilden, sowie den im Kern vereinigten Protonen und Neutronen. Die elektromagnetischen Wechselwirkungen

Mehr

Radioaktivität. den 7 Oktober Dr. Emőke Bódis

Radioaktivität. den 7 Oktober Dr. Emőke Bódis Radioaktivität den 7 Oktober 2016 Dr. Emőke Bódis Prüfungsfrage Die Eigenschaften und Entstehung der radioaktiver Strahlungen: Alpha- Beta- und Gamma- Strahlungen. Aktivität. Zerfallgesetz. Halbwertzeit.

Mehr

15 Kernphysik Physik für E-Techniker. 15 Kernphysik

15 Kernphysik Physik für E-Techniker. 15 Kernphysik 15 Kernphysik 15.1 Der Atomkern 15.2 Kernspin 15.3 Radioaktivität 15.4 Zerfallsgesetz radioaktiver Kerne 15.5 Kernprozesse 15.5.1 Kernfusion 15.5.2 Kernspaltung 15.5.3 Kettenreaktion 15. Kernphysik 15.

Mehr

15 Kernphysik Der Atomkern 15.2 Kernspin Zerfallsgesetz radioaktiver Kerne

15 Kernphysik Der Atomkern 15.2 Kernspin Zerfallsgesetz radioaktiver Kerne 15 Kernphysik 15.1 Der Atomkern 15.2 Kernspin 15.3 Radioaktivität ität 15.4 Zerfallsgesetz radioaktiver Kerne 15.5 Kernprozesse 15.5.1 Kernfusion 15.5.2 Kernspaltung 1553K 15.5.3 Kettenreaktion 15. Kernphysik

Mehr

15 Kernphysik Der Atomkern 15.2 Kernspin 15.3 Radioaktivität 15.4 Zerfallsgesetz radioaktiver Kerne

15 Kernphysik Der Atomkern 15.2 Kernspin 15.3 Radioaktivität 15.4 Zerfallsgesetz radioaktiver Kerne Inhalt 15 Kernphysik 15.1 Der Atomkern 15.2 Kernspin 15.3 Radioaktivität 15.4 Zerfallsgesetz radioaktiver Kerne 15.5 Kernprozesse 15.5.1 Kernfusion 15.5.2 Kernspaltung 15.5.3 Kettenreaktion Der Atomkern

Mehr

Röntgenstrahlen. Röntgenröhre von Wilhelm Konrad Röntgen. Foto: Deutsches Museum München.

Röntgenstrahlen. Röntgenröhre von Wilhelm Konrad Röntgen. Foto: Deutsches Museum München. Röntgenstrahlen 1 Wilhelm Konrad Röntgen Foto: Deutsches Museum München. Röntgenröhre von 1896 2 1 ev = 1 Elektronenvolt = Energie die ein Elektron nach Durchlaufen der Potentialdifferenz 1V hat (1.6 10-19

Mehr

41. Kerne. 34. Lektion. Kernzerfälle

41. Kerne. 34. Lektion. Kernzerfälle 41. Kerne 34. Lektion Kernzerfälle Lernziel: Stabilität von Kernen ist an das Verhältnis von Protonen zu Neutronen geknüpft. Zu viele oder zu wenige Neutronen führen zum spontanen Zerfall. Begriffe Stabilität

Mehr

2) Kernstabilität und radioaktive Strahlung (2)

2) Kernstabilität und radioaktive Strahlung (2) 2) Kernstabilität und radioaktive Strahlung (2) Periodensystem der Elemente vs. Nuklidkarte ca. 115 unterschiedliche chemische Elemente Periodensystem der Elemente 7 2) Kernstabilität und radioaktive Strahlung

Mehr

Thema heute: Aufbau der Materie, Atommodelle Teil 2

Thema heute: Aufbau der Materie, Atommodelle Teil 2 Wiederholung der letzten Vorlesungsstunde: Atomistischer Aufbau der Materie, historische Entwicklung des Atombegriffes Atome Thema heute: Aufbau der Materie, Atommodelle Teil 2 Vorlesung Allgemeine Chemie,

Mehr

Radioaktivität und Strahlenschutz. FOS: Kernumwandlungen und Radioaktivität

Radioaktivität und Strahlenschutz. FOS: Kernumwandlungen und Radioaktivität R. Brinkmann http://brinkmann-du.de Seite 25..23 -, Beta- und Gammastrahlen Radioaktivität und Strahlenschutz FOS: Kernumwandlungen und Radioaktivität Bestimmte Nuklide haben die Eigenschaft, sich von

Mehr

Radioaktiver Zerfall Strahlung Nukliderzeugung. Nukliderzeugung

Radioaktiver Zerfall Strahlung Nukliderzeugung. Nukliderzeugung Radioaktiver Zerfall Strahlung Nukliderzeugung Wiederholung: Struktur der Materie Radioaktivität Nuklidkarte, Nuklide Zerfallsarten Strahlung Aktivität Nukliderzeugung Was ist Radioaktivität? Eigenschaft

Mehr

Masse etwa 1 u = e-27 kg = MeV/c^2. Neutron (Entdeckung 1932 James Chadwick)

Masse etwa 1 u = e-27 kg = MeV/c^2. Neutron (Entdeckung 1932 James Chadwick) Masse etwa 1 u = 1.6605e-27 kg = 931.5 MeV/c^2 Neutron (Entdeckung 1932 James Chadwick) Kraft Reichweite (cm) Stärke bei 10 13 cm im Vergleich zu starker Kraft Gravitation unendlich 10 38 elektrische Kraft

Mehr

Physik für Mediziner Radioaktivität

Physik für Mediziner  Radioaktivität Physik für Mediziner http://www.mh-hannover.de/physik.html Radioaktivität Peter-Alexander Kovermann Institut für Neurophysiologie Kovermann.peter@mh-hannover.de Der Aufbau von Atomen 0-5 - 0-4 m 0-0 -4

Mehr

Radioaktivität und Radiochemie. Dr. Udo Gerstmann

Radioaktivität und Radiochemie. Dr. Udo Gerstmann Wintersemester 2011/2012 Radioaktivität und Radiochemie 20.10.2011 Dr. Udo Gerstmann Bundesamt für Strahlenschutz ugerstmann@bfs.de & gerstmann@gmx.de 089-31603-2430 Vorlesungsinhalte 1. Radioaktivität

Mehr

Kernmodell der Quantenphysik

Kernmodell der Quantenphysik Kernmodell der Quantenphysik M. Jakob Gymnasium Pegnitz 10. Dezember 2014 Inhaltsverzeichnis 1 Atomkerne 2 Potentialtopfmodell In diesem Abschnitt 1 Atomkerne 1.1 Aufbau 1.2 Starke Wechselwirkungen 2 Potentialtopfmodell

Mehr

1. Physikalische Grundlagen

1. Physikalische Grundlagen 1.2. Kernumwandlung und Radioaktivität - Entdeckung Antoine Henri Becquerel Entdeckte Radioaktivität 1896 Ehepaar Marie und Pierre Curie Nobelpreise 1903 und 1911 Liese Meitner, Otto Hahn 1. Kernspaltung

Mehr

Vorlesung Allgemeine Chemie (CH01)

Vorlesung Allgemeine Chemie (CH01) Vorlesung Allgemeine Chemie (CH01) Für Studierende im B.Sc.-Studiengang Chemie Prof. Dr. Martin Köckerling Arbeitsgruppe Anorganische Festkörperchemie Mathematisch-Naturwissenschaftliche Fakultät, Institut

Mehr

Einführung in die Physik II für Studierende der Naturwissenschaften und Zahnheilkunde. Sommersemester VL #47 am

Einführung in die Physik II für Studierende der Naturwissenschaften und Zahnheilkunde. Sommersemester VL #47 am Einführung in die Physik II für Studierende der Naturwissenschaften und Zahnheilkunde Sommersemester 007 VL #47 am 0.07.007 Vladimir Dyakonov Kernphysik 1 Zusammensetzung von Kernen Atomkerne bestehen

Mehr

1. Aufbau des Atomkerns

1. Aufbau des Atomkerns 801-1 1.1 Bausteine des Atomkerns VIII. Der Atomkern und Kernstrahlung 1. Aufbau des Atomkerns 1.1 Bausteine des Atomkerns Der Atomkern ist aus den Nukleonen aufgebaut. Dazu gehören die Protonen (p) und

Mehr

umwandlungen Atommodelle, Rutherford-Experiment, Atomaufbau, Elektronen, Protonen,

umwandlungen Atommodelle, Rutherford-Experiment, Atomaufbau, Elektronen, Protonen, Wiederholung der letzten Vorlesungsstunde: Atommodelle, Rutherford-Experiment, Atomaufbau, Elektronen, Protonen, Neutronen, Element, Ordnungszahl Thema heute: Aufbau von Atomkernen, Kern- umwandlungen

Mehr

Kernmodell der Quantenphysik

Kernmodell der Quantenphysik M. Jakob Gymnasium Pegnitz 10. Dezember 2014 Inhaltsverzeichnis In diesem Abschnitt 1.1 Aufbau 1.2 Starke Wechselwirkungen Aufbau Tröpfchenmodell Atomkerns Wesentliche Eigenschaften von n können im Tröpfchenmodell

Mehr

1.3 Historischer Kurzüberblick

1.3 Historischer Kurzüberblick 1.3 Historischer Kurzüberblick (zur Motivation des Standard-Modells; unvollständig) Frühphase: 1897,,Entdeckung des Elektrons (J.J. Thomson) 1905 Photon als Teilchen (Einstein) 1911 Entdeckung des Atomkerns

Mehr

Fachhochschule Hannover Radioökologie und Strahlenschutz 06.12.07 Fachbereich Maschinenbau WS0708 Zeit: 90 min Prof. Dr. U. J. Schrewe Hilfsmittel: diverse nlagen ------------------------------------------------------------------------------------------------------------------------

Mehr

Wintersemester 2011/2012. Radioaktivität und Radiochemie. Kernphysik Udo Gerstmann

Wintersemester 2011/2012. Radioaktivität und Radiochemie. Kernphysik Udo Gerstmann Wintersemester 2011/2012 Radioaktivität und Radiochemie Kernphysik 27.10.2011 Udo Gerstmann Bundesamt für Strahlenschutz ugerstmann@bfs.de & gerstmann@gmx.de 089-31603-2430 Der Atomkern besteht aus Protonen

Mehr

Aufbau und Struktur der Materie. Wellen- und Teilchencharakter

Aufbau und Struktur der Materie. Wellen- und Teilchencharakter Aufbau und Struktur der Materie Atommodelle Energie Wellen- und Teilchencharakter Periodensystem der Elemente Radioaktivität Modell des Atomkerns Nukleonen: Teilchen des Atomkerns = Protonen+Neutronen

Mehr

6. Elementarteilchen

6. Elementarteilchen 6. Elementarteilchen Ein Ziel der Physik war und ist, die Vielfalt der Natur auf möglichst einfache, evtl. auch wenige Gesetze zurückzuführen. Die Idee hinter der Atomvorstellung des Demokrit war, unteilbare

Mehr

9. Kernphysik 9.1. Zusammensetzung der Atomkerne

9. Kernphysik 9.1. Zusammensetzung der Atomkerne Prof. Dieter Suter Physik B2 SS 01 9. Kernphysik 9.1. Zusammensetzung der Atomkerne 9.1.1. Nukelonen Die Atomkerne bestehen aus Protonen und Neutronen. Die Zahl der Nukleonen wird durch die Massenzahl

Mehr

Lernziele zu Radioaktivität 1. Radioaktive Strahlung. Entdeckung der Radioaktivität. Entdeckung der Radioaktivität

Lernziele zu Radioaktivität 1. Radioaktive Strahlung. Entdeckung der Radioaktivität. Entdeckung der Radioaktivität Radioaktive Strahlung Entstehung Nutzen Gefahren du weisst, Lernziele zu Radioaktivität 1 dass Elementarteilchen nur bedingt «elementar» sind. welche unterschiedlichen Arten von radioaktiven Strahlungen

Mehr

Thema heute: Aufbau der Materie: Kernumwandlungen, Spaltung von Atomkernen

Thema heute: Aufbau der Materie: Kernumwandlungen, Spaltung von Atomkernen Wiederholung der letzten Vorlesungsstunde: Experiment von Rutherford, Atombau, atomare Masseneinheit u, 118 bekannte Elemente, Isotope, Mischisotope, Massenspektroskopie, Massenverlust 4H 4 He, Einstein:

Mehr

Struktur des Atomkerns

Struktur des Atomkerns Struktur des Atomkerns den 6 Oktober 2016 Dr. Emőke Bódis Prüfungsfrage Die Struktur des Atomkerns. Die Eigenschaften des Kernkraftes. Bindungsenergie. Massendefekt. Tröpfchenmodell und Schallmodell. Magische

Mehr

27. Vorlesung EP V. STRAHLUNG, ATOME, KERNE

27. Vorlesung EP V. STRAHLUNG, ATOME, KERNE 27. Vorlesung EP V. STRAHLUNG, ATOME, KERNE 28. Atomphysik, Röntgenstrahlung (Fortsetzung: Röntgenröhre, Röntgenabsorption) 29. Atomkerne, Radioaktivität (Nuklidkarte, α-, β-, γ-aktivität, Dosimetrie)

Mehr

Inhalte. Atomphysik. Prof. Dr. Sabine Mahling. Physik CE-B1 Di: A 3.22 Klausur:

Inhalte. Atomphysik. Prof. Dr. Sabine Mahling. Physik CE-B1 Di: A 3.22 Klausur: Atomphysik Prof. Dr. Sabine Mahling Physik CE-B1 Di: 9 30 12. 00 A 3.22 Klausur: 18.07.06 9.30 @designed by ms Inhalte 1. Grundbegriffe 2. Materiebegriff 3. Atommodelle 1. DALTONsche Atomhypothese 2. THOMSONsches

Mehr

Elementarteilchenphysik

Elementarteilchenphysik Masterclass 2010 Elementarteilchenphysik Robert Harlander Bergische Universität Wuppertal 17. Februar 2010 Robert Harlander Masterclass Uni Wuppertal p. 1 Elementarteilchenphysik Zentrale Fragen: Was sind

Mehr

Elementarteilchenphysik

Elementarteilchenphysik Masterclass 2011 Elementarteilchenphysik Robert Harlander Bergische Universität Wuppertal 9. März 2011 Robert Harlander Masterclass Uni Wuppertal p. 1 Elementarteilchenphysik Zentrale Fragen: Was sind

Mehr

42. Radioaktivität. 35. Lektion Radioaktivität

42. Radioaktivität. 35. Lektion Radioaktivität 42. Radioaktivität 35. Lektion Radioaktivität Lernziel: Unstabile Kerne zerfallen unter Emission von α, β, oder γ Strahlung Begriffe Begriffe Radioaktiver Zerfall ktivität Natürliche Radioaktivität Künstliche

Mehr

3. Das Atom 3.1. Geschichte des Atombegriffs 3.2. Elementarteilchen: Proton, Neutron und Elektron 3.3. Atomaufbau 3.4. Nuklide, Isotope und

3. Das Atom 3.1. Geschichte des Atombegriffs 3.2. Elementarteilchen: Proton, Neutron und Elektron 3.3. Atomaufbau 3.4. Nuklide, Isotope und 3. Das Atom 3.1. Geschichte des Atombegriffs 3.2. Elementarteilchen: Proton, Neutron und Elektron 3.3. Atomaufbau 3.4. Nuklide, Isotope und Reinelemente 3.5. Häufigkeit der Elemente 3.6. Atomare Masseneinheit

Mehr

Einheit 13 Subatomare Physik 2

Einheit 13 Subatomare Physik 2 Einheit 13 Subatomare Physik 2 26.01.2012 Markus Schweinberger Sebastian Miksch Markus Rockenbauer Subatomare Physik 2 Fundamentale Wechselwirkungen Das Standardmodell Elementarteilchen Erhaltungssätze

Mehr

Geochemie 1. 1. Entstehung und Häufigkeit der Nuklide/ Elemente

Geochemie 1. 1. Entstehung und Häufigkeit der Nuklide/ Elemente Geochemie 1 1. Entstehung und Häufigkeit der Nuklide/ Elemente Atome (Elementare Bausteine der Materie) Masse eines Atoms ist im Kern konzentriert (Neutonen + Protonen) Elektronenhülle dominiert das Eigenvolumen

Mehr

Markus Drapalik. Universität für Bodenkultur Wien Institut für Sicherheits- und Risikowissenschaften

Markus Drapalik. Universität für Bodenkultur Wien Institut für Sicherheits- und Risikowissenschaften Praxisseminar Strahlenschutz Teil 2: Ionisierende Strahlung Markus Drapalik 14.03.2013 26.03.2013 Praxisseminar Strahlenschutz Teil 2: Ionisierende Strahlung 1 1 Inhalt Aufbau des Atoms Atomarer Zerfall

Mehr

Theoretische Grundlagen Physikalisches Praktikum. Versuch 8: Radioaktivität

Theoretische Grundlagen Physikalisches Praktikum. Versuch 8: Radioaktivität Theoretische Grundlagen Physikalisches Praktikum Versuch 8: Radioaktivität Radioaktivität spontane Umwandlung instabiler tomkerne natürliche Radioaktivität: langlebige Urnuklide und deren Zerfallsprodukte

Mehr

Experimentalphysik Modul PH-EP4 / PH-DP-EP4

Experimentalphysik Modul PH-EP4 / PH-DP-EP4 10 Kernphysik Universität Leipzig, Fakultät für Physik und Geowissenschaften Experimentalphysik Modul PH-EP4 / PH-DP-EP4 Script für Vorlesung 29. Juni 2009 Nachdem in den vorangegangenen Kapiteln die Moleküle

Mehr

Kernphysik II Kernstruktur & Kernreaktionen Nuclear Structure & Reactions

Kernphysik II Kernstruktur & Kernreaktionen Nuclear Structure & Reactions Kernphysik II Kernstruktur & Kernreaktionen Nuclear Structure & Reactions Dozent: Prof. Dr. P. Reiter Ort: Seminarraum Institut für Kernphysik Zeit: Montag 14:00 14:45 Mittwoch 16:00 17:30 Kernphysik II

Mehr

41. Kerne. 33. Lektion Kerne

41. Kerne. 33. Lektion Kerne 41. Kerne 33. Lektion Kerne Lernziel: Kerne bestehen aus Protonen und Neutronen, die mit starken, ladungsunabhängigen und kurzreichweitigen Kräften zusammengehalten werden Begriffe Protonen, Neutronen

Mehr

Nuklidkarte Kernphysik

Nuklidkarte Kernphysik Nuklidkarte Kernphysik Prof. Dr. Sabine Prys Naturwissenschaftliche Grundlagen @designed by ps Skripte http://webuser.hsfurtwangen.de/~neutron/lehrveranstaltungen.html 1 5 Das Standardmodell 5 Das Standardmodell

Mehr

Aufbau der Atome und Atomkerne

Aufbau der Atome und Atomkerne ufbau der tome und tomkerne tome bestehen aus dem tomkern (d 10-15 m) und der Elektronenhülle (d 10-10 m). Der Raum dazwischen ist leer. (Rutherfordscher Streuversuch (1911): Ernest Rutherford beschoss

Mehr

Historisches Präludium

Historisches Präludium Historisches Präludium Sir saac Newton (1642-1727) "Now the smallest particles of matter may cohere by the strongest attractions, and compose bigger particles of weaker virtue... There are therefore agents

Mehr

Strahlenphysik Grundlagen

Strahlenphysik Grundlagen Dr. Martin Werner, 17.02.2010 Strahlentherapie und spezielle Onkologie Elektromagnetisches Spektrum aus Strahlentherapie und Radioonkologie aus interdisziplinärer Sicht, 5. Auflage, Lehmanns Media Ionisierende

Mehr

Stodienbücherei. der Grundlagen. Moleküle, Atomkern und Elementarteilchen. Mit 106 Abbildungen. VEB Deutscher Verlag der Wissenschaften Berlin 1977

Stodienbücherei. der Grundlagen. Moleküle, Atomkern und Elementarteilchen. Mit 106 Abbildungen. VEB Deutscher Verlag der Wissenschaften Berlin 1977 Stodienbücherei Physik, eine Darstellung der Grundlagen H. Hansel W. Neumann VI Moleküle, Atomkern und Elementarteilchen Mit 106 Abbildungen VEB Deutscher Verlag der Wissenschaften Berlin 1977 Inhaltsverzeichnis

Mehr

Atomphysik NWA Klasse 9

Atomphysik NWA Klasse 9 Atomphysik NWA Klasse 9 Atome wurden lange Zeit als die kleinsten Teilchen angesehen, aus denen die Körper bestehen. Sie geben den Körpern ihre chemischen und physikalischen Eigenschaften. Heute wissen

Mehr

SMART. Sammlung mathematischer Aufgaben als Hypertext mit TEX. Kernphysik (Physik)

SMART. Sammlung mathematischer Aufgaben als Hypertext mit TEX. Kernphysik (Physik) SMART Sammlung mathematischer Aufgaben als Hypertext mit TEX Kernphysik (Physik) herausgegeben vom Zentrum zur Förderung des mathematisch-naturwissenschaftlichen Unterrichts der Universität Bayreuth 1.

Mehr

Fachhochschule Hannover Radioökologie und Strahlenschutz

Fachhochschule Hannover Radioökologie und Strahlenschutz Fachhochschule Hannover Radioökologie und Strahlenschutz 22.01.07 Fachbereich Maschinenbau Zeit: 90 min Fach: R&S im WS0607 Hilfsmittel: diverse nlagen ------------------------------------------------------------------------------------------------------------------------

Mehr

Arbeitsfragen zur Vorbereitung auf den Quali

Arbeitsfragen zur Vorbereitung auf den Quali Arbeitsfragen zur Vorbereitung auf den Quali Atombau 1 Was bedeutet das Wort Atom? 2 Welche Aussage mache Dalton über die Atome? 3 Was ist der größte Teil eines Atoms? 4 Was sind Moleküle? 5 Durch welchen

Mehr

9. Dosimetrie 2L. 1. Radioaktivität. Stabile Kerne. Kern oder A Kern oder Kern A,

9. Dosimetrie 2L. 1. Radioaktivität. Stabile Kerne. Kern oder A Kern oder Kern A, 9. 2L 1. Radioaktivität Stabile Kerne tome enthalten Elektronenhüllen, welche die meisten makroskopischen Eigenschaften der Materie bestimmen (Magnetismus, Lichtabsorption, Leitfähigkeit, chemische Struktur,

Mehr

FOS: Radioaktivität und Strahlenschutz. Chemische Elemente und ihre kleinsten Teilchen

FOS: Radioaktivität und Strahlenschutz. Chemische Elemente und ihre kleinsten Teilchen R. Brinkmann http://brinkmann-du.de Seite 5..03 Chemische Elemente FOS: Radioaktivität und Strahlenschutz Chemische Elemente und ihre kleinsten Teilchen Der Planet Erde besteht aus 9 natürlich vorkommenden

Mehr

Allgemeine Chemie. Der Atombau

Allgemeine Chemie. Der Atombau Allgemeine Chemie Der Atombau Dirk Broßke Berlin, Dezember 2005 1 1. Atombau 1.1. Der Atomare Aufbau der Materie 1.1.1. Der Elementbegriff Materie besteht aus... # 6.Jh.v.Chr. Empedokles: Erde, Wasser,

Mehr

3) Natürliche und künstliche Radioaktivität (1)

3) Natürliche und künstliche Radioaktivität (1) 3) Natürliche und künstliche Radioaktivität (1) Kosmische Strahlung - Protonen (93 %) - Alpha-Teilchen (6.3 %) - schwerere Kerne (0. %) - Ohne Zerfallsreihen - 0 radioaktive Nuklide, die primordial auf

Mehr

Vorlesung Kern- und Teilchenphysik WS12/ November 2012

Vorlesung Kern- und Teilchenphysik WS12/ November 2012 Vorlesung Kern- und Teilchenphysik WS12/13 30. November 2012 0 Vorlesung Übersicht Film: CERN-Experimente CMS und LHCb Grundlagen Kernphysik 1. Historische Entwicklung 2. Aufbau und Eigenschaften von Kernen

Mehr

Globale Eigenschaften der Kerne

Globale Eigenschaften der Kerne Kerne und Teilchen Moderne Experimentalphysik III Vorlesung MICHAEL FEINDT INSTITUT FÜR EXPERIMENTELLE KERNPHYSIK Globale Eigenschaften der Kerne KIT Universität des Landes Baden-Württemberg und nationales

Mehr

Notizen zur Kern-Teilchenphysik II (SS 2004): 2. Erhaltungsgrößen. Prof. Dr. R. Santo Dr. K. Reygers

Notizen zur Kern-Teilchenphysik II (SS 2004): 2. Erhaltungsgrößen. Prof. Dr. R. Santo Dr. K. Reygers Notizen zur Kern-Teilchenphysik II (SS 4):. Erhaltungsgrößen Prof. Dr. R. Santo Dr. K. Reygers http://www.uni-muenster.de/physik/kp/lehre/kt-ss4/ Kern- Teilchenphysik II - SS 4 1 Parität (1) Paritätsoperator:

Mehr

Atome. Definition: das kleinste Teilchen eines chemischen Elementes, das mit chemischen Verfahren nicht mehr zerlegbar ist.

Atome. Definition: das kleinste Teilchen eines chemischen Elementes, das mit chemischen Verfahren nicht mehr zerlegbar ist. Atome Definition: das kleinste Teilchen eines chemischen Elementes, das mit chemischen Verfahren nicht mehr zerlegbar ist. Das Atom besitzt einen positiv geladene Atomkern und eine negative Elektronenhülle.

Mehr

3 SPF Bio/Che Name: r A. ρ g/cm 3

3 SPF Bio/Che Name: r A. ρ g/cm 3 3 SPF Bio/Che Name: 1. Radioaktivität und Kernreaktionen 1.1 Atomkerne und chemische Reaktionen Atomkerne sind ca. 100'000 mal kleiner als der Atomdurchmesser aber sie enthalten fast die gesamte Masse

Mehr

d 10 m Cusanus-Gymnasium Wittlich Das Bohrsche Atomodell Nils Bohr Atomdurchmesser 10 Kerndurchmesser 14 d 10 m Atom

d 10 m Cusanus-Gymnasium Wittlich Das Bohrsche Atomodell Nils Bohr Atomdurchmesser 10 Kerndurchmesser 14 d 10 m Atom Das Bohrsche Atomodell Nils Bohr 1885-1962 Atomdurchmesser 10 d 10 m Atom Kerndurchmesser 14 http://www.matrixquantenenergie.de d 10 m Kern 14 dkern 10 m 10 datom 10 m Masse und Ladung der Elementarteilchen

Mehr

Atomphysik Klasse 9. Aufgabe: Fülle die freien Felder aus!

Atomphysik Klasse 9. Aufgabe: Fülle die freien Felder aus! 1. Was gibt die Massenzahl A eines Atoms an? Die Zahl der Neutronen im Kern. Die Zahl der Protonen im Kern. Die Summe aus Kernneutronen und Kernprotonen. Die Zahl der Elektronen. Die Summe von Elektronen

Mehr

a) Notieren Sie die grundlegenden Modellvorstellungen zum Tröpfchenmodell.

a) Notieren Sie die grundlegenden Modellvorstellungen zum Tröpfchenmodell. ufgabe eizsäckersche Massenformel a) Notieren Sie die grundlegenden Modellvorstellungen zum Tröpfchenmodell. b) Interpretieren Sie die einzelnen Terme der semiempirischen Massenformel von v. eizsäcker:

Mehr

Kernreaktionen chemisch beschrieben

Kernreaktionen chemisch beschrieben Physics Meets Chemistry Kernreaktionen chemisch beschrieben 1 Kernreaktionen chemisch beschrieben 1. Ausgangslage 2. Ziele 3. Unterrichtsvorschlag mit Übungen Physics Meets Chemistry Kernreaktionen chemisch

Mehr

a) Notieren Sie die grundlegenden Modellvorstellungen zum Tröpfchenmodell.

a) Notieren Sie die grundlegenden Modellvorstellungen zum Tröpfchenmodell. ufgabe a) Notieren Sie die grundlegenden Modellvorstellungen zum Tröpfchenmodell. b) Interpretieren Sie die einzelnen Terme der semiempirischen Massenformel von v. Weizsäcker: W m c m c N ges n p 5 c)

Mehr

(in)stabile Kerne & Radioaktivität

(in)stabile Kerne & Radioaktivität Übersicht (in)stabile Kerne & Radioaktivität Zerfallsgesetz Natürliche und künstliche Radioaktivität Einteilung der natürlichen Radionuklide Zerfallsreihen Zerfallsarten Untersuchung der Strahlungsarten

Mehr

Übungen zu Moderne Experimentalphysik III (Kerne und Teilchen)

Übungen zu Moderne Experimentalphysik III (Kerne und Teilchen) KIT-Fakultät für Physik Institut für Experimentelle Kernphysik Prof. Dr. Günter Quast Priv. Doz. Dr. Roger Wolf Dr. Pablo Goldenzweig Übungen zu Moderne Experimentalphysik III (Kerne und Teilchen) Sommersemester

Mehr

Standardmodell der Materie und Wechselwirkungen:

Standardmodell der Materie und Wechselwirkungen: Standardmodell der Materie und en: (Quelle: Wikipedia) 1.1. im Standardmodell: sind die kleinsten bekannten Bausteine der Materie. Die meisten Autoren bezeichnen die Teilchen des Standardmodells der Teilchenphysik

Mehr

N.BORGHINI Version vom 11. Februar 2015, 14:53 Kernphysik

N.BORGHINI Version vom 11. Februar 2015, 14:53 Kernphysik Kinematik des γ-zerfalls. Mößbauer-Effekt Sei E die nregungsenergie des Mutterkerns, entsprechend einer Gesamtenergie in dessen Ruhesystem m Kern c 2 +E, mit m Kern der Masse des Tochternuklids. Unter

Mehr

Nuklidkarte & Radioaktivität

Nuklidkarte & Radioaktivität Nuklidkarte & Radioaktivität Prof. Dr. Sabine Prys Naturwissenschaftliche Grundlagen SSB @designed by ps Inhalte 1. Physik vs. Chemie 2. Isotope 3. Nuklidkarte 4. Radioaktivität 5. Strahlenschutz 1 1 Physik

Mehr

Fortgeschrittene Experimentalphysik für Lehramtsstudierende. Teil II: Kern- und Teilchenphysik

Fortgeschrittene Experimentalphysik für Lehramtsstudierende. Teil II: Kern- und Teilchenphysik Fortgeschrittene Experimentalphysik für Lehramtsstudierende Markus Schumacher 30.5.2013 Teil II: Kern- und Teilchenphysik Prof. Markus Schumacher Sommersemester 2013 Kapitel 4: Zerfälle instabiler Kerne

Mehr

Technologie/Informatik Kernaufbau und Kernzerfälle. Dipl.-Phys. Michael Conzelmann, StR Staatliche FOS und BOS Bad Neustadt a. d.

Technologie/Informatik Kernaufbau und Kernzerfälle. Dipl.-Phys. Michael Conzelmann, StR Staatliche FOS und BOS Bad Neustadt a. d. Technologie/Informatik Kernaufbau und Kernzerfälle Dipl.-Phys. Michael Conzelmann, StR Staatliche FOS und BOS Bad Neustadt a. d. Saale Übersicht Kernaufbau Rutherford-Experiment, Nukleonen Schreibweise,

Mehr

Struktur der Materie II (L) Kern und Teilchenphysik

Struktur der Materie II (L) Kern und Teilchenphysik Struktur der Materie II (L) Kern und Teilchenphysik Vorlesung für das Lehramt Physik Dr. Martin zur Nedden Humboldt-Universität zu Berlin, Institut für Physik nedden@physik.hu-berlin.de Berlin, Wintersemester

Mehr

Das Neutron. Eigenschaften des Neutrons m n = 1.001m p m i = m g ± 10 4 τ n = ± 0.8 s

Das Neutron. Eigenschaften des Neutrons m n = 1.001m p m i = m g ± 10 4 τ n = ± 0.8 s Vorlesung Fundamentale Experimente mit ultrakalten Neutronen (FundExpUCN) Die Entdeckung des Neutrons Fundamentale Eigenschaften des Neutrons Reaktorphysik und Erzeugung von Neutronen Spallationsneutronenquellen

Mehr

Heute Einführung: Gegenstand der Kernphysik Historisches Literatur

Heute Einführung: Gegenstand der Kernphysik Historisches Literatur Kernphysik I Vorlesung Physik VI (Kernphysik I) 3 Stunden: Di. 12:00-13:30, Fr. 9:00-9:45 im Hörsaal III der Physikalischen Institute Dozent: Prof. P. Reiter Heute Einführung: Gegenstand der Kernphysik

Mehr

Als Radioaktivität bezeichnet den spontanen Zerfall von Radionukliden unter Emission ionisierender Strahlung.

Als Radioaktivität bezeichnet den spontanen Zerfall von Radionukliden unter Emission ionisierender Strahlung. Als Radioaktivität bezeichnet den spontanen Zerfall von Radionukliden unter Emission ionisierender Strahlung. 1803 John Dalton, Atomtheorie 1869 D.I. Mendelejev, Periodensystem 1888 H. Hertz, experimenteller

Mehr

KERNPHYSIK. A. Gertsch. Physik-Skript für die 148. Promotion

KERNPHYSIK. A. Gertsch. Physik-Skript für die 148. Promotion KERNPHYSIK A. Gertsch Physik-Skript für die 148. Promotion Zürich im November 2018 Inhaltsverzeichnis 1 Die Zusammensetzung von Atomkernen 1 1.1 Die Bausteine der Atomkerne........................... 1

Mehr

Kernphysik. Elemententstehung. 2. Kernphysik. Cora Fechner. Universität Potsdam SS 2014

Kernphysik. Elemententstehung. 2. Kernphysik. Cora Fechner. Universität Potsdam SS 2014 Elemententstehung 2. Cora Fechner Universität Potsdam SS 2014 alische Grundlagen Kernladungszahl: Z = Anzahl der Protonen Massenzahl: A = Anzahl der Protonen + Anzahl der Neutronen Bindungsenergie: B

Mehr

Lösungsvorschlag Übung 4

Lösungsvorschlag Übung 4 Lösungsvorschlag Übung 4 ufgabe : tomradien-modelle im Vergleich a) Der Rutherford sche Streuversuch hat gezeigt, dass sich in den tomen ein sehr kleines Massenzentrum befindet, das die gesamte positive

Mehr

Vorlesung Allgemeine Chemie (CH01)

Vorlesung Allgemeine Chemie (CH01) Vorlesung Allgemeine Chemie (CH01) Für Studierende im B.Sc.-Studiengang Chemie Prof. Dr. Martin Köckerling Arbeitsgruppe Anorganische Festkörperchemie Mathematisch-Naturwissenschaftliche Fakultät, Institut

Mehr

Kernchemie und Kernreaktionen

Kernchemie und Kernreaktionen Kernchemie und Kernreaktionen Die Kernchemie befaßt sich mit der Herstellung, Analyse und chemische Abtrennung von Radionukliden. Weiterhin werden ihre Methoden in der Umweltanalytik verwendet. Radioaktive

Mehr

Kurs Juli Grundlagen I

Kurs Juli Grundlagen I Fachkunde im Strahlenschutz Kurs Juli 2010 Naturwissenschaftliche Grundlagen I Themen - Aufbau der Materie - Elemente, Nuklide - Radioaktiver Zerfall - Aktivität -Zerfallsarten fll - Strahlung, Strahlungsarten

Mehr

Der Teilchenzoo wächst Intermezzo Kosmische Strahlung

Der Teilchenzoo wächst Intermezzo Kosmische Strahlung Der Teilchenzoo wächst Intermezzo Kosmische Strahlung Entdeckung neuer Teilchen die niemand brauchte... Elementarteilchen (von lat. elementum Grundstoff ) sind die Bausteine der Materie. So besteht die

Mehr

11. Kernphysik. [55] Ianus Münze

11. Kernphysik. [55] Ianus Münze 11. Kernphysik Der griechische Gott Ianus ist einer der ältesten römischen Gottheiten. Er gehört zur rein römischen Mythologie, das heißt es gibt in der griechischen Götterwelt keine vergleichbare Gestalt.

Mehr

Klausur -Informationen

Klausur -Informationen Klausur -Informationen Datum: 4.2.2009 Uhrzeit und Ort : 11 25 im großen Physikhörsaal (Tiermediziner) 12 25 ibidem Empore links (Nachzügler Tiermedizin, bitte bei Aufsichtsperson Ankunft melden) 11 25

Mehr

Heute Einführung: Gegenstand der Kernphysik Begriffe und Nomenklatur Historisches

Heute Einführung: Gegenstand der Kernphysik Begriffe und Nomenklatur Historisches Kernphysik I Vorlesung Physik VI (Kernphysik I) 3 St. Di. 11-13, Fr. 9-10 im Hörsaal III der Physikalischen Institute P. Reiter Beginn: Dienstag, 20.4.2004, 11 Uhr c.t. Heute Einführung: Gegenstand der

Mehr

Radioaktivität Haller/ Hannover-Kolleg 1

Radioaktivität Haller/ Hannover-Kolleg 1 Radioaktivität 17.09.2007 Haller/ Hannover-Kolleg 1 Radioaktivität 17.09.2007 Haller/ Hannover-Kolleg 2 Radioaktivität 1. Was verstehe ich darunter? 2. Welche Wirkungen hat die Radioaktivität? 3. Muss

Mehr

A Z+1T + e + ν e. symbolisieren. Die Erhaltung der in III.4.1 b aufgelisteten Quantenzahlen ist trivial erfüllt.

A Z+1T + e + ν e. symbolisieren. Die Erhaltung der in III.4.1 b aufgelisteten Quantenzahlen ist trivial erfüllt. III.4.3 β-zerfall und verwandte Zerfälle Dieser bschnitt befasst sich mit einer zweiten häufig auftretenden rt von Zerfallsprozessen, in denen sich ein Neutron in ein Proton umwandelt oder umgekehrt, während

Mehr

Kernphysik. Physik Klasse 9. Quelle: AkadOR W. Wagner, Didaktik der Chemie, Universität Bayreuth (verändert für Kl.9/Sachsen

Kernphysik. Physik Klasse 9. Quelle: AkadOR W. Wagner, Didaktik der Chemie, Universität Bayreuth (verändert für Kl.9/Sachsen Kernphysik Physik Klasse 9 Quelle: AkadOR W. Wagner, Didaktik der Chemie, Universität Bayreuth (verändert für Kl.9/Sachsen Lehrplan Atomodelle Niels Bohr Rutherford Begriff: Modell Ein Modell zeichnet

Mehr

DIE THERMISCHE GESCHICHTE DES UNIVERSUMS & FREEZE-OUT. 14. Dezember Kim Susan Petersen. Proseminar Theoretische Physik & Astroteilchenphysik

DIE THERMISCHE GESCHICHTE DES UNIVERSUMS & FREEZE-OUT. 14. Dezember Kim Susan Petersen. Proseminar Theoretische Physik & Astroteilchenphysik DIE THERMISCHE GESCHICHTE DES UNIVERSUMS & FREEZE-OUT 14. Dezember 2010 Kim Susan Petersen Proseminar Theoretische Physik & Astroteilchenphysik INHALT 1. Das Standardmodell 2. Die Form des Universums 3.

Mehr

Musterlösung Übung 5

Musterlösung Übung 5 Musterlösung Übung 5 Aufgabe 1: Elektromagnetische Wellen und die Wellengleichung a) Da das Magnetfeld B senkrecht zum elektrischen Feld E und senkrecht zum Wellenvektor k steht ( k E B), zeigt das Magnetfeld

Mehr

Prof. Dr.-Ing. Wolfgang Schubert. Fachkunde im Strahlenschutz Kurs September Naturwissenschaftliche Grundlagen I

Prof. Dr.-Ing. Wolfgang Schubert. Fachkunde im Strahlenschutz Kurs September Naturwissenschaftliche Grundlagen I Fachkunde im Strahlenschutz Kurs September 01 Naturwissenschaftliche Grundlagen I 1 Themen - Aufbau der Materie - Elemente, Nuklide - Radioaktiver Zerfall - Aktivität - Zerfallsarten - Strahlung, Strahlungsarten

Mehr

Fachhochschule Hannover Radioökologie und Strahlenschutz Fachbereich Maschinenbau WS17/18 Zeit: 90 min. Name:...Vorname:...Mtrl. Nr:...

Fachhochschule Hannover Radioökologie und Strahlenschutz Fachbereich Maschinenbau WS17/18 Zeit: 90 min. Name:...Vorname:...Mtrl. Nr:... Fachhochschule Hannover Radioökologie und Strahlenschutz 4.11.17 Fachbereich Maschinenbau WS17/18 Zeit: 90 min Prof. Dr. U. J. Schrewe Hilfsmittel: diverse nlagen Name:...Vorname:...Mtrl. Nr:... 1. Das

Mehr

Energie wird normalerweise in Joule gemessen. Ein Joule (J) einspricht einem Newtonmeter

Energie wird normalerweise in Joule gemessen. Ein Joule (J) einspricht einem Newtonmeter Maße wie Gammastrahlen abgeschwächt werden. Im Gegensatz zu den Gammastrahlen sind die Neutronenstrahlen auch Teilchenstrahlen wie Alpha- und Betastrahlen. Die Reichweiten von Strahlen mit einer Energie

Mehr

Radioaktivität. Die Nuklidkarte. Der Alpha-Zerfall I. Zerfallsarten. Alphazerfall (α) Beta-minus-Umwandlung (β-) Beta-plus-Umwandlung (β+)

Radioaktivität. Die Nuklidkarte. Der Alpha-Zerfall I. Zerfallsarten. Alphazerfall (α) Beta-minus-Umwandlung (β-) Beta-plus-Umwandlung (β+) Radioaktivität erfallsarten Alphazerfall (α) Beta-minus-Umwandlung (β-) Beta-plus-Umwandlung (β) Elektroneneinfang (EC) Gammaemission (γ) Henri Becquerel 1852-1908 Innere Konversion (IC) Protonenzerfall

Mehr

Entdeckung der c/b/t - Quarks Seminarvortrag Fakultät für Physik und Astronomie Institut für Experimentalphysik I Hadronenphysik

Entdeckung der c/b/t - Quarks Seminarvortrag Fakultät für Physik und Astronomie Institut für Experimentalphysik I Hadronenphysik Entdeckung der c/b/t - Quarks Seminarvortrag 16.12.2014 Fakultät für Physik und Astronomie Institut für Experimentalphysik I Hadronenphysik Geschichte des Standardmodels Atom ist unteilbar? Bis Ende 19.

Mehr

1817/29 W. Döbereiner Elementgruppen (Triaden) 1869 L. Meyer und D. Mendelejew das Periodensystem

1817/29 W. Döbereiner Elementgruppen (Triaden) 1869 L. Meyer und D. Mendelejew das Periodensystem Atomtheorien Geschichtlicher Überblick 460 v.chr: Demokrit kleinste, unteilbare Materieteilchen atomos 1805 John Dalton (1766 1844) : Atome sind unteilbar! bei chemischen Reaktionen werden Atome verbunden

Mehr