Luisenburg-Gymnasium Wunsiedel

Größe: px
Ab Seite anzeigen:

Download "Luisenburg-Gymnasium Wunsiedel"

Transkript

1 Luisenbur-Gymnasium Wunsiedel Grundwissen für das Fac Matematik Jaransstufe 5 Natürlice und anze Zalen 1;2;3;4;5;6; ist die Mene der natürlicen Zalen. ; 4; 3; 2; 1;0;1;2;3;4; ist die Mene der anzen Zalen. Grundmene Für Platzalter benutzen wir auc ucstaben. etra und Geenzalen Zur anzen Zal eißt Geenzal zu. m Zalenstral befindet sic die Geenzal auf der anderen Seite, aber im leicen bstand zur Null. Dieser positive bstand eißt etra von bzw. und wird mit zwei senkrecten Stricen ekennzeicnet: nordnun von Zalen Die Mene der anzen Zalen lässt sic in eine sinnvolle Reienfole brinen, die sic am Zalenstral veranscaulicen lässt. Die Null ist nict estandteil der natürlicen Zalen und muss im Falle irer Verwendun explizit mit aneeben werden: 0;1;2;3;4;5; Teilbereice der anzen Zalen können mit folenden Symbolen veranscaulict werden: ; ; ; 4; 3; 2; 1 Möcte man die Null bei mit dazu nemen, screibt man. Die Zal a soll Werte aus den neativen, anzen Zalen annemen können. Kurz: Die Geenzal von 5 ist 5. Der bstand zur Null beträt in beiden Fällen Zalenstral: Veranscaulicun von nzalen nzalen versciedener Kateorien lassen sic mitilfe von Diarammen veranscaulicen. Man untersceidet Fiurendiaramme, Säulen- oder alkendiaramme und Stricdiaramme. Eine esondereit der Fiurendiaramme sind Striclisten Note 1 Note 2 Note 3 Note 4 Note 5 Note 6 bbildun eines Säulendiaramms. Zenersystem In unserem Zalensystem können alle Zalen mitilfe der Ziffern 0 bis 9 escrieben werden. Es ist ein Stellenwertsystem, denn die Stelle der Ziffer bestimmt iren Wert inneralb der Zal bedeutet: Zur besseren Übersict kann man die Ziffern einer Zal auc in eine Stellenwerttafel eintraen. Jede Stelle at entsprecend irem Wert einen Namen. Grundwissen Matematik 5. Klasse, Luisenbur-Gymnasium Wunsiedel Seite 1 von 5

2 Recenausdrücke (Terme) Zwei Zalen, die mit einem Pluszeicen verknüpft sind, bilden eine Summe. Der Recenvoran eißt ddition. Die beiden Zalen eißen 1. und 2. Summand. Zwei Zalen, die mit einem Minuszeicen verknüpft sind, bilden eine Differenz. Der Recenvoran eißt Subtraktion. Die beiden Zalen eißen Minuend und Subtraend. Zwei Zalen, die mit einem Malzeicen verknüpft sind, bilden ein Produkt. Der Recenvoran eißt Multiplikation. Die beiden Zalen eißen 1. und 2. Faktor. Zwei Zalen, die mit einem Geteiltzeicen verknüpft sind, bilden einen Quotienten. Der Recenvoran eißt Division. Die beiden Zalen eißen Dividend und Divisor. Zwei Zalen, die in exponentieller Screibweise miteinander verknüpft sind, bilden eine Potenz. Die untere Zal eißt asis und die obere Zal eißt Exponent. Der Exponent ibt die nzal der leicen Faktoren an. Quadratzalen lle Potenzen mit dem Exponenten 2 sind Quadratzalen. Primzalen lle Zalen, die enau zwei untersciedlice Teiler besitzen, eißen Primzalen. Jede Zal kann in Potenzen von Primfaktoren zerlet werden. ddiere die Summanden 2 und 3 und berecne den Wert der Summe! Subtraiere den Subtraenden 3 vom Minuenden 5 und ib den Wert der Differenz an! Mulitpliziere die beiden Faktoren 2 und 3 und ib den Wert des Produkts an! Dividiere den Dividend 6 durc den Divisor 3 und ib den Wert des Quotienten an! 6:3 2 Potenziere die asis 3 mit dem Exponent 4 und ib den Wert der Potenz an! ;2 4;3 9;4 16;5 25; 2;3;5;7;11;13;17;19;23;29;31; Primfaktorenzerleeun von 72: Scriftlices Recnen Einzelne Recnunen können untereinander erecnet werden. Dabei ist es wicti, leice Stellen exakt untereinander zu screiben. Übersclasrecnun Um Erebnisse abscätzen zu können, rundet man die einzelnen Zalen eines Terms so, dass sic sein unefärer Wert leict berecnen lässt. Zur Kennzeicnun einer Übersclasrecnun verwendet man das Zeicen. ddieren und Subtraieren anzer Zalen Eine neative Zal addiert man, indem man ire Geenzal subtraiert. Eine neative Zal subtraiert man, indem man ire Geenzal addiert Grundwissen Matematik 5. Klasse, Luisenbur-Gymnasium Wunsiedel Seite 2 von 5

3 Multiplikation und Division anzer Zalen eträe der Zalen multiplizieren (oder dividieren) ei unleicen Vorzeicen ist das Erebnis neativ, sonst positiv Recenvorteile und Recenesetze a) Kommutativesetz (KG) Der Wert einer Summe (eines Produkts) ändert sic nict, wenn man die Reienfole der Summanden (Faktoren) vertausct: bzw., b) ssoziativesetz (G) Der Wert einer Summe (eines Produkts) ändert sic nict, wenn man in der Summe (im Produkt) Klammern setzt oder welässt:,, c) Distributivesetz (DG) ei einem Produkt darf der erste oder der zweite Faktor in eine Summe zerlet werden:,, d) Recenreeln Klammern zuerst Potenzen vor Punktrecnunen vor Stricrecnunen Von links nac rects recnen aumdiaramme und Zälprinzip Muss man aus mereren Dinen auswälen, so kann man dies in einem aumdiaramm darstellen. Nac dem Zälprinzip entsprict die Gesamtzal aller Mölickeiten der nzal der aumenden. Diese nzal eribt sic aus dem Produkt der nzalen der Mölickeiten jeder aumebene : : Was noc nict zum Recnen dran, das screibe unverändert an! Wie viele Kombinationsmölickeiten ereben sic beim Zieen aus zwei Lostrommeln mit zwei untersciedlicen rünen bzw. drei untersciedlicen blauen Kueln? 2 Möl Möl ntwort: Kombinationen Grundwissen Matematik 5. Klasse, Luisenbur-Gymnasium Wunsiedel Seite 3 von 5

4 Geometrisce Grundberiffe Strecke a oder a Halberade oder C D Gerade oder Zueinander parallel Zueinander senkrect E F Winkel eißt erster Scenkel eißt zweiter Scenkel S S Winkel eißt erster Scenkel eißt zweiter Scenkel Winkelarten: Nullwinkel 0 Spitzer Winkel 0 90 Recter Winkel 90 Stumpfer Winkel Gestreckter Winkel 180 Überstumpfer Winkel Vollwinkel 360 Koordinatensystem Das Koordinatensystem bestet aus einer Rectswertacse (x-cse) und einer Hocwertacse (y-cse). Jeder Punkt im Koordinatensystem at einen Wert auf der x- cse (x-koordinate) und einen Wert auf der y- cse (y-koordinate). Der Punkt P wird mit seinen Koordinaten so aneeben:, Mance PC-Proramme trennen die Koordinaten auc mit einem ; oder, y x Symmetrieeienscaft einer Fiur esitzt jeder Punkt einer Fiur einen passenden ildpunkt, der von der Symmetrieacse den leicen bstand at wie der Oriinalpunkt, so ist die Fiur acsensymmetrisc. Mölice Symmetrieacse a Grundwissen Matematik 5. Klasse, Luisenbur-Gymnasium Wunsiedel Seite 4 von 5

5 Scräbild eines Quaders oder Würfels Nac inten verlaufende Kanten werden verkürzt darestellt. Umfan und Fläceninalt Recteck: 2 2 Quadrat mit Seitenläne s: 4 Maßstab Die Wirklickeit ist in einer Karte immer verkleinert darestellt. Der Maßstab ibt für 1cm an, wie viele cm in der Wirklickeit abebildet wurden. Größen a) Zeit 1 Ta = 24 1 = 60min 1min = 60s Oberfläceninalt des Quaders: 2 Oberfläcenialt des Würfels mit Seitenläne s: 6 Maßstab 1: bedeutet: 1cm auf der Karte entsprecen cm in Wirklickeit. Das sind umerecnet 1km. Umrecnunsfaktor 24 Umrecnunsfaktor 60 Umrecnunsfaktor 60 b) Geld 1 = 100ct Umrecnunsfaktor 100 c) Masse 1t = 1000k 1k = = 1000m d) Läne 1km = 1000m 1m = 10dm 1dm = 10cm 1cm = 10mm e) Fläce 1km² = 100a 1a = 100a 1a = 100m² 1m² = 100dm² 1dm² = 100cm² 1cm² = 100mm² Immer Umrecnunsfaktor 1000 Umrecnunsfaktor 1000 Umrecnunsfaktor 10 Umrecnunsfaktor 10 Umrecnunsfaktor 10 Immer Umrecnunsfaktor 100 Grundwissen Matematik 5. Klasse, Luisenbur-Gymnasium Wunsiedel Seite 5 von 5

Zahlenmengen Menge der natürlichen Zahlen mit Null

Zahlenmengen Menge der natürlichen Zahlen mit Null Zahlenmenen N = {1,2,3,...} Mene der natürlichen Zahlen N o = {0,1,2,3,...} Mene der natürlichen Zahlen mit Null Z = {..., -3, -2, -1, 0, 1, 2, 3,...} Mene der anzen Zahlen Vielfachmenen eispiel: V(3)

Mehr

Grundwissen 5. Klasse

Grundwissen 5. Klasse Grundwissen 5. Klasse 1/5 1. Zahlenmengen Grundwissen 5. Klasse Natürliche Zahlen ohne Null: N 1;2;3;4;5;... mit der Null: N 0 0;1;2;3;4;... Ganze Zahlen: Z... 3; 2; 1;0;1;2;3;.... 2. Die Rechenarten a)

Mehr

Grundwissen Ebene Geometrie

Grundwissen Ebene Geometrie Micael Körner Grundwissen bene Geometrie 5.0. Klasse eredorfer Kopiervorlaen Zu diesem Material: Was ist ein Stufenwinkel? Wie findet man die Höen von reiecken eraus? Wie werden Fläceninalt und Umfan bei

Mehr

I = 1; V = 5; X =10; L = 50; C = 100; D = 500; M = 1000; Bsp.: MCLVIII = 1158

I = 1; V = 5; X =10; L = 50; C = 100; D = 500; M = 1000; Bsp.: MCLVIII = 1158 Grundwissen Mathematik G8 5. Klasse 1 Zahlen 1.1 Zahlenmengen IN = {1; 2; 3; } Menge der natürlichen Zahlen IN o = {0; 1; 2; 3; } Menge der natürlichen Zahlen mit Null Z = { ; -3; -2; -1; 0; 1; 2; 3; }

Mehr

1.Weiterentwicklung der Zahlvorstellung 1.1Die natürlichen Zahlen Mengenschreibweise: N = {1,2,3,...} N 0 = {0,1,2,3,...}

1.Weiterentwicklung der Zahlvorstellung 1.1Die natürlichen Zahlen Mengenschreibweise: N = {1,2,3,...} N 0 = {0,1,2,3,...} 1 Grundwissen Mathematik 5.Klasse Gymnasium SOB 1.Weiterentwicklung der Zahlvorstellung 1.1Die natürlichen Zahlen Mengenschreibweise: N = {1,2,3,...} N 0 = {0,1,2,3,...} Darstellung am Zahlenstrahl: Darstellung

Mehr

Grundwissen. 5. Jahrgangsstufe. Mathematik

Grundwissen. 5. Jahrgangsstufe. Mathematik Grundwissen 5. Jahrgangsstufe Mathematik Grundwissen Mathematik 5. Jahrgangsstufe Seite 1 1 Natürliche Zahlen 1.1 Große Zahlen und Zehnerpotenzen eine Million = 1 000 000 = 10 6 eine Milliarde = 1 000

Mehr

Demo-Text für Geometrie Winkel und Dreiecke. Teil 1 INTERNETBIBLIOTHEK FÜR SCHULMATHEMATIK. Mit Index am Ende des Textes

Demo-Text für  Geometrie Winkel und Dreiecke. Teil 1 INTERNETBIBLIOTHEK FÜR SCHULMATHEMATIK. Mit Index am Ende des Textes Teil 1 it Index am Ende des Textes Stand: 22. Februar 212 Datei Nr. 1111 Friedric Buckel Geometrie Winkel und Dreiecke INTERNETBIBLITHEK FÜR SCHULTHETIK www.mate-cd.de Inalt 1. Dreunen durc Winkel messen

Mehr

sfg Natürliche Zahlen und Zahlenstrahl Die Zahlen 1, 2, 3, 4, nennt man natürliche Zahlen: N = {1; 2; 3; 4; }

sfg Natürliche Zahlen und Zahlenstrahl Die Zahlen 1, 2, 3, 4, nennt man natürliche Zahlen: N = {1; 2; 3; 4; } M 5.1 Natürliche Zahlen und Zahlenstrahl Die Zahlen 1, 2, 3, 4, nennt man natürliche Zahlen: N = {1; 2; 3; 4; } Nimmt man auch die 0 hinzu, schreibt man: N 0 = {0; 1; 2; 3; 4; } Zahlenstrahl 0 1 2 3 4

Mehr

GRUNDWISSEN MATHEMATIK

GRUNDWISSEN MATHEMATIK GRUNDWISSEN MATHEMATIK 5 Grundwissenskatalog G8-Lehrplanstandard Basierend auf den Grundwissenskatalogen des Rhöngymnasiums Bad Neustadt und des Kurt-Huber-Gymnasiums Gräfelfing J O H A N N E S - N E P

Mehr

Natürliche Zahlen und. Zahlenstrahl

Natürliche Zahlen und. Zahlenstrahl M 5.1 Die Zahlen Nimmt man auch die Natürliche Zahlen und Zahlenstrahl nennt man natürliche Zahlen: hinzu, schreibt man: Zahlenstrahl Je weiter rechts eine Zahl auf dem Zahlenstrahl liegt, desto größer

Mehr

Natürliche Zahlen und. Zahlenstrahl

Natürliche Zahlen und. Zahlenstrahl M 5.1 Natürliche Zahlen und Zahlenstrahl Die Zahlen 1, 2, 3, 4, nennt man natürliche Zahlen: 1; 2; 3; 4; Nimmt man auch die 0 hinzu, schreibt man: 0; 1; 2; 3; 4; Zahlenstrahl Je weiter rechts eine Zahl

Mehr

Maria-Theresia-Gymnasium München Grundwissen Mathematik 5. Klasse. Wendelstein. Osser. Wank. Nebelhorn

Maria-Theresia-Gymnasium München Grundwissen Mathematik 5. Klasse. Wendelstein. Osser. Wank. Nebelhorn Mri-Teresi-Gymnsium Müncen Grundwissen Mtemtik. Klsse 1. Ntürlice Zlen Dezimlsystem Mn nennt die Zlen, die mn zum Zälen verwendet, ntürlice Zlen. Wir recnen im Dezimlsystem. Dei enutzen wir die zen Ziffern

Mehr

fwg Natürliche Zahlen und Zahlenstrahl nennt man natürliche Zahlen: Zahlenstrahl

fwg Natürliche Zahlen und Zahlenstrahl nennt man natürliche Zahlen: Zahlenstrahl M 5.1 Die Zahlen Nimmt man auch die Natürliche Zahlen und Zahlenstrahl nennt man natürliche Zahlen: hinzu, schreibt man: Zahlenstrahl 0 1 2 3 4 5 6 7 8 Je weiter rechts eine Zahl auf dem Zahlenstrahl liegt,

Mehr

2.7. Aufgaben zu Ähnlichkeitsabbildungen

2.7. Aufgaben zu Ähnlichkeitsabbildungen .7. Aufaben zu Änlickeitsabbildunen Aufabe 1 Strecke das Dreieck AB mit A(3 1), B( 3) und ( ) an Z(1 1) um die Streckfaktoren k 1 =, k = 1, k 3 = 1, k 4 = und k =. Aufabe Strecke das Dreieck AB mit A(

Mehr

Grundwissen Mathematik 5

Grundwissen Mathematik 5 Grundwissen Mathematik 5 Dieser Grundwissenskatalog gehört: Name: Klasse: Inhaltsverzeichnis Zahlen 1.1 Zahlenmengen 1.2 Besondere Zahlen 1.3 Stellenwertsystem 1.4 Runden 1.5 Darstellen von Zahlen in Tabellen

Mehr

GW Mathematik 5. Klasse

GW Mathematik 5. Klasse Begriffe zur Gliederung von Termen Term Rechenart a heißt b heißt a + b (Summe) Addition 1. Summand 2. Summand a b (Differenz) Subtraktion Minuend Subtrahend a b ( Produkt) Multiplikation 1. Faktor 2.

Mehr

Teil 1. 2 Gleichungen mit 2 Unbekannten mit Textaufgaben. und 3 Gleichungen mit 2 Unbekannten. Datei Nr. 12180. Friedrich Buckel. Stand 11.

Teil 1. 2 Gleichungen mit 2 Unbekannten mit Textaufgaben. und 3 Gleichungen mit 2 Unbekannten. Datei Nr. 12180. Friedrich Buckel. Stand 11. Teil Gleicungen mit Unbekannten mit Textaufgaben und 3 Gleicungen mit Unbekannten Datei Nr. 80 Stand. April 0 Lineare Gleicungssysteme INTERNETBIBLIOTHEK FÜR SCHULMATHEMATIK 80 Gleicungssysteme Vorwort

Mehr

Basiswissen 5. Klasse

Basiswissen 5. Klasse Basiswissen 5. Klasse 1. Daten Zur Darstellung von Daten werden oft Strichlisten, Figurendiagramme oder Säulen- und Strichdiagramme verwendet. Strichliste: Alter Strichliste Anzahl 5-10 Jahre 3 10-15 Jahre

Mehr

Größere Zahl minus kleinerer Zahl anschreiben. Komma unter Komma schreiben. 33,8 : 1,3 = 33,8 : 13 = 26

Größere Zahl minus kleinerer Zahl anschreiben. Komma unter Komma schreiben. 33,8 : 1,3 = 33,8 : 13 = 26 E1 E E3 E4 E5 E6 E7 Lösungen 1 Mein Wissen aus der 1. Klasse z. B., 1 F angemalt im Plan Da sie in unterschiedlichen Abteilungen des Flugzeugs saßen (Business-Class + Economy-Class), konnten sie einander

Mehr

Grundwissen JS 5 Algebra

Grundwissen JS 5 Algebra GYMNASIUM MIT SCHÜLERHEIM PEGNITZ math.-technolog. u. sprachl. Gymnasium Grundwissen JS 5 Algebra WILHELM-VON-HUMBOLDT-STRASSE 7 91257 PEGNITZ FERNRUF 09241/48333 FAX 09241/2564 Rechnen in N 29. Juli 2009

Mehr

Natürliche Zahlen und. Zahlenstrahl

Natürliche Zahlen und. Zahlenstrahl M 5.1 Die Zahlen Nimmt man auch die Natürliche Zahlen und Zahlenstrahl nennt man natürliche Zahlen: hinzu, schreibt man: Zahlenstrahl Je weiter rechts eine Zahl auf dem Zahlenstrahl liegt, desto größer

Mehr

Fragen und Aufgaben zum Grundwissen Mathematik

Fragen und Aufgaben zum Grundwissen Mathematik Natürliche Zahlen Kapitel I ZÄHLEN UND ORDNEN GROßE ZAHLEN UND ZEHNERPOTENZEN Acht Schwimmer bestreiten einen Wettkampf. Miriam gewinnt die Bronzemedaille. Franz wird Vorletzter. Welche Platzierung haben

Mehr

Rudolphs Schlitten. Aufgabe. Autor: Jochen Ricker

Rudolphs Schlitten. Aufgabe. Autor: Jochen Ricker Rudolps Sclitten Autor: Jocen Ricker Aufgabe Endlic ist es wieder soweit: Weinacten stet vor der Tür! Diesmal at der Weinactsmann sic ein ganz besonderes Gescenk für seine Rentiere einfallen lassen. Sie

Mehr

ANALYSIS Differenzialrechnung Kapitel 1 5

ANALYSIS Differenzialrechnung Kapitel 1 5 TELEKOLLEG MULTIMEDIAL ANALYSIS Differenzialrecnung Kapitel 5 Ferdinand Weber BRmedia Service GmbH Inaltsverzeicnis Jedes Kapitel beginnt mit der Seitenzal.. Das Tangentenproblem. Steigung einer Geraden

Mehr

1. Rationale Zahlen. Brüche Brüche haben die Form nz. Beispiele: 3. mit z I

1. Rationale Zahlen. Brüche Brüche haben die Form nz. Beispiele: 3. mit z I . Rationale Zahlen Brüche Brüche haben die Form nz mit z I N 0, n I N. z heißt der Zähler, n der Nenner des Bruches. Unechte Brüche kann man in gemischte Zahlen umwandeln. Bruchzahlen: Zu jeder Bruchzahl

Mehr

Grundwissen Klasse 7

Grundwissen Klasse 7 Grundwissen Klasse 7 Zahlenmenen = {1; 2; 3; 4; 5; 6;... } Die ene der natürlichen Zahlen. = {... 3; 2; 1; 0; + 1; + 2; + 3;...} Die ene der anzen Zahlen. Die ene der rationalen Zahlen. ultiplikation und

Mehr

Linear. Halbkreis. Parabel

Linear. Halbkreis. Parabel Vom Parabolspiegel zur Ableitungsfunktion Im Folgenden get es darum erauszufinden, was ein Parabolspiegel ist und wie er funktioniert. Das fürt uns auf wictige Fragen eines Teilgebietes der Matematik,

Mehr

Negative Zahlen. Lösung: Ordne in einen Zahlenstrahl ein! 7;5; 3; 6. Das Dezimalsystem

Negative Zahlen. Lösung: Ordne in einen Zahlenstrahl ein! 7;5; 3; 6. Das Dezimalsystem Negative Zahlen Negative Zahlen Ordne in einen Zahlenstrahl ein! 7;5; 3; 6 Das Dezimalsystem Zerlege in Stufen! Einer, Zehner, usw. a) 3.185.629 b) 24.045.376 c) 3.010.500.700 Das Dezimalsystem a) 3M 1HT

Mehr

Tangenten an Funktionsgraphen (Differenzialrechnung) Aufgaben ab Seite 4

Tangenten an Funktionsgraphen (Differenzialrechnung) Aufgaben ab Seite 4 Klasse / Augaben ab Seite 4 rundlagen und Begrie der Dierenzialrecnung Die Zeicnungen und Erklärungen sind etwas ausürlicer als notwendig u versciedene Screibweisen und Darstellungen auzuzeigen. Steigung

Mehr

Grundwissen Klasse 6

Grundwissen Klasse 6 Zahlenmengen = {; 2; ; 4; ; 6;... } Die Menge der natürlichen Zahlen. = {... ; 2; ; 0; ; 2; ;...} Die Menge der ganzen Zahlen. 0 Die Menge der positiven rationalen Zahlen mit Null. ddition und Subtraktion

Mehr

Analytische Geometrie

Analytische Geometrie nalytisce Geometrie. Vektoren Mitte einer Strecke B M B Verbindunsvektor B B B Mittelwert der zwei Ortsvektoren ( 6 ) B( 5 ) m B ( a + b) M( ( ) ( + 5) ( + 6) M( ) Spitze nfan: B b a ( 6 ) B( 5 ) 6 B Scwerpunkt

Mehr

Mathematik 1 für Studierende der Biologie Teil II: Limes & Konvergenz

Mathematik 1 für Studierende der Biologie Teil II: Limes & Konvergenz Matematik 1 für Studierende der Biologie Teil II: Limes & Konvergenz Cristian Leibold 7. Oktober 2014 Folgen Allgemeines zu Folgen Monotonie und Bescränkteit Grenzwerte und Konvergenz Summen und Reien

Mehr

Rechnen mit natürlichen Zahlen

Rechnen mit natürlichen Zahlen Addieren und Subtrahieren einer Zahl Fachausdrücke bei der Addition und Subtraktion: Addition (+) 52 + 27 = 79 1. Summand + 2. Summand = Summe Rechnen mit natürlichen Zahlen Subtraktion ( - ) Strichrechnungen

Mehr

MATHEMATIK GRUNDWISSEN 5. KLASSE LESSING GYMNASIUM

MATHEMATIK GRUNDWISSEN 5. KLASSE LESSING GYMNASIUM MATHEMATIK GRUNDWISSEN 5. KLASSE LESSING GYMNASIUM NEU-ULM Lessing-Gymnasium Neu-Ulm 2/17 I. ZAHLEN 1. Natürliche und ganze Zahlen 1.1 Zahlenmengen Natürliche Zahlen N = { 1, 2, 3, 4,...} Natürliche Zahlen

Mehr

Begriffe zur Gliederung von Termen, Potenzen 5

Begriffe zur Gliederung von Termen, Potenzen 5 Begriffe zur Gliederung von Termen, Potenzen 5 Begriffe zur Gliederung von Termen Term Rechenart Termbezeichnung a heißt b heißt a + b Addition Summe 1. Summand 2. Summand a b Subtraktion Differenz Minuend

Mehr

Kreise Winkel Drehung

Kreise Winkel Drehung Kreise Winkel Drehun.) Der Kreis: ufabe: Zeichne in ein Koordinatensystem folende Punkte ein: M(4/) ; (/) ; (6/8) ; D(/8) ; E(6/) 9 8 D Durchmesser (d) 7 6 M Sehne (s) 4 Radius (r) E - 4 6 7 8 9 a.) Zeichne

Mehr

Wirsberg-Gymnasium Grundwissen Mathematik 7. Jahrgangsstufe

Wirsberg-Gymnasium Grundwissen Mathematik 7. Jahrgangsstufe Wirsber-Gymnasium Grundwissen Mathematik 7. Jahransstufe Lerninhalte Fakten-Reeln-eispiele Symmetrie Eienschaften der chsensymmetrie: - Zueinander symmetrische Strecken sind leich lan. - Zueinander symmetrische

Mehr

Deutsch. a hoch 3. a zum Quadrat. acht. achtzig. dividiert. drei. dreißig. dreizehn

Deutsch. a hoch 3. a zum Quadrat. acht. achtzig. dividiert. drei. dreißig. dreizehn Deutsch Deutsch Plural a hoch 3 a zum Quadrat acht achtzig Addition, die Ar, das Basis, die Betrag von a, der Binom, das Bruch, der Bruchstrich, der Deckfläche, die Dekagramm, das Deltoid, das Dezimalbruch,

Mehr

a) b) c) d) e) f) g) h) i) j) k) l) s) t) u) v) w) x) y) z)

a) b) c) d) e) f) g) h) i) j) k) l) s) t) u) v) w) x) y) z) Aufabe 1: a) b) c) d) e) f) ) h) i) j) k) l) m) n) o) p) q) r) s) t) u) v) w) x) y) z) a) Welche der Fiuren a) z) ist achsensymmetrisch? Trae die Symmetrieachsen ein. b) Gib an, welche der Fiuren a) z)

Mehr

Natürliche Zahlen. Natürliche Zahlen addieren und subtrahieren. Addiere die Ziffern stellengerecht untereinander.

Natürliche Zahlen. Natürliche Zahlen addieren und subtrahieren. Addiere die Ziffern stellengerecht untereinander. Grundwissen Natürliche Zahlen 1 Zeichne eine Zahlenhalbgerade und markiere. 8; 4; ; 11; 2; 6; 9 ; 1; 0; 4; 10; 60 2 Welches ist die größte (kleinste) natürliche Zahl, die man aus den Ziffern 8, 1,, und

Mehr

Lösung: a) 1093 1100 b) 1093 1090

Lösung: a) 1093 1100 b) 1093 1090 OvTG Guting, Grundwissen Mthemtik 5. Klsse 1. Ntürliche Zhlen Dezimlsystem Mn nennt die Zhlen, die mn zum Zählen verwendet, 10963 = 1 10000+ 0 1000+ 9 100+ 6 10 + 3 1 ntürliche Zhlen. Der Stellenwert der

Mehr

Schriftliche Prüfung Schuljahr: 2008/2009 Schulform: Gymnasium. Mathematik

Schriftliche Prüfung Schuljahr: 2008/2009 Schulform: Gymnasium. Mathematik Ministerium für Bildung, Jugend und Sport Prüfungen am Ende der Jargangsstufe 10 Scriftlice Prüfung Sculjar: 2008/2009 Sculform: Matematik Allgemeine Arbeitsinweise Die Prüfungszeit beträgt 160 Minuten.

Mehr

Notwendiges Grundwissen am Ende der Klasse 5 für den Übergang in Klasse 6

Notwendiges Grundwissen am Ende der Klasse 5 für den Übergang in Klasse 6 Notwendiges Grundwissen am Ende der Klasse 5 für den Übergang in Klasse 6 In dieser Anfangsphase sollen die Schülerinnen und Schüler keine Wiederholung des Grundschulstoffs durchmachen, sondern bereits

Mehr

Zentrale schriftliche Abiturprüfungen im Fach Mathematik

Zentrale schriftliche Abiturprüfungen im Fach Mathematik Aufgabe 2 Wetterstation Aufgabe aus der scriftlicen Abiturprüfung Hamburg 05. In einer Wetterstation wird die Aufzeicnung eines Niedersclagmessgeräts vom Vortag (im Zeitraum von 0 Ur bis Ur) ausgewertet.

Mehr

Potenzen mit ganzzahligen Exponenten: Rechenregeln

Potenzen mit ganzzahligen Exponenten: Rechenregeln Lüneburg, Fragment Potenzen mit ganzzahligen Exponenten: Rechenregeln 5-E1 5-E2 Potenzen: Rechenregeln Regel 1: Potenzen mit gleicher Basis können dadurch miteinander multipliziert werden, dass man die

Mehr

Längen (km m dm cm mm) umrechnen. Flächeninhalte (km² ha a m² dm² cm² mm²) umrechnen. Rauminhalte (m³ dm³ cm³ mm³) umrechnen

Längen (km m dm cm mm) umrechnen. Flächeninhalte (km² ha a m² dm² cm² mm²) umrechnen. Rauminhalte (m³ dm³ cm³ mm³) umrechnen 1 Längen (km m dm cm mm) umrechnen Längen (mm - µm nm) Zeitspannen (d h min s) umrechnen Flächeninhalte (km² ha a m² dm² cm² mm²) umrechnen Rauminhalte (m³ dm³ cm³ mm³) umrechnen Gewichte (t kg g mg) umrechnen

Mehr

I. Natürliche Zahlen (Seite 1)

I. Natürliche Zahlen (Seite 1) I. Natürliche Zahlen (Seite 1) Natürliche Zahlen und der Zahlenstrahl: Man bezeichnet die Zahlen 1, 2, 3, als natürliche Zahlen. Jede natürliche Zahl hat einen Nachfolger und jede (außer 1) einen Vorgänger.

Mehr

Gemischte Zahlen Unechte Brüche können als gemischte Zahlen geschrieben werden und umgekehrt: Bruchzahlen A 6_02

Gemischte Zahlen Unechte Brüche können als gemischte Zahlen geschrieben werden und umgekehrt: Bruchzahlen A 6_02 Brüche A6_01 Brüche haben die Form z n mit z I, n IN. z N 0 heißt der Zähler, n der Nenner des Bruches. Zerlegt man ein Ganzes z. B. in vier gleich große Teile und fasst dann drei dieser Teile zusammen,

Mehr

= (Kürzen mit 4) Gleichnamige Brüche werden addiert (subtrahiert), indem man die Zähler addiert (subtrahiert) und den Nenner beibehält.

= (Kürzen mit 4) Gleichnamige Brüche werden addiert (subtrahiert), indem man die Zähler addiert (subtrahiert) und den Nenner beibehält. GRUNDWISSEN MATHEMATIK. JAHRGANGSSTUFE a b. Bruchzahlen: mit a, b N. a heißt Zähler, b heißt Nenner. a) Ein Bruch wird mit einer natürlichen Zahl erweitert (gekürzt), indem man Zähler und Nenner mit dieser

Mehr

Grundwissen l Klasse 5

Grundwissen l Klasse 5 Grundwissen l Klsse 5 1 Zhlenmengen und Punktmengen {1; 2; 3; 4; 5; 6;... } Die Menge der ntürlichen Zhlen. 0 {0; 1; 2; 3; 4; 5;... } Die Menge der ntürlichen Zhlen mit Null. M {; ; C;... } Die Menge der

Mehr

Mathematik 5. Klasse. 1. Grundlagen der Algebra. Zahlenmengen

Mathematik 5. Klasse. 1. Grundlagen der Algebra. Zahlenmengen Mathematik 5. Klasse Diese Stoffübersicht ist in drei Hauptteile gegliedert: 1. Grundlagen der Algebra (Zahlenmengen, Rechenarten, Rechengesetze); 2. Geometrie; 3. Darstellung und Kombinatorik Quellen:

Mehr

Grundwissen Seite 1 von 17 Klasse6

Grundwissen Seite 1 von 17 Klasse6 Grundwissen Seite 1 von 17 Klasse6 IN = {1; 2; 3; 4; 5; 6; } Menge der natürlichen Zahlen 5 ist eine natürliche Zahl kurz: 5 IN 5 ist ein Element von IN Natürliche Zahlen -2 ist keine natürliche Zahl kurz:

Mehr

Grundwissen 5 - Aufgaben Seite Gegeben sind die drei (graugetönten) Figuren A, B und C (vergleiche Abbildung).

Grundwissen 5 - Aufgaben Seite Gegeben sind die drei (graugetönten) Figuren A, B und C (vergleiche Abbildung). Grundwissen 5 - Aufgaben 22.01.2016 Seite 1 1. Gegeben sind die drei (graugetönten) Figuren A, B und C (vergleiche Abbildung). a) Gib an, welche dieser drei Figuren den größten und welche den kleinsten

Mehr

Voransicht. Grundrechen Führerschein: Aufwärmtraining

Voransicht. Grundrechen Führerschein: Aufwärmtraining Grundrechen Führerschein: Aufwärmtraining Mit dieser Seite kannst du dich auf den Grundrechen Führerschein vorbereiten. 1 Additionspuzzle. Zerschneide das Bild rechts, rechne die Aufgabe links in deinem

Mehr

Lernzirkel Schriftliches Rechnen

Lernzirkel Schriftliches Rechnen Lernzirkel Schriftliches Rechnen Name: An jeder Station müssen mindestens drei Aufgaben gerechnet werden, davon mindestens eine Textaufgabe ( ). An jeder Station gibt es leichte, mittelschwere und schwere

Mehr

5. bis 10. Klasse. Schnell-Merk-System. Mathematik. Kompaktwissen Testfragen SMS. Mit Lernquiz fürs Handy

5. bis 10. Klasse. Schnell-Merk-System. Mathematik. Kompaktwissen Testfragen SMS. Mit Lernquiz fürs Handy 5. bis 10. Klasse SMS Schnell-Merk-System Mathematik Kompaktwissen Testfragen Mit Lernquiz fürs Handy 2 Zahlen und Rechnen Rechnen mit natürlichen Zahlen Multiplikation ist die mehrfache Addition gleicher

Mehr

Addition und Subtraktion Addieren heißt zusammenzählen, plus rechnen oder die Summe bilden.

Addition und Subtraktion Addieren heißt zusammenzählen, plus rechnen oder die Summe bilden. 1 Grundwissen Rechenarten Addition und Subtraktion Addieren heißt zusammenzählen, plus rechnen oder die Summe bilden. 418 + 2 987 = 3 405 + 2 987 418 Umkehraufgabe 3 405 Summe Ergebnis der Summe 2 987

Mehr

1.Weiterentwicklung der Zahlvorstellung 1.1.Bruchteile und Bruchzahlen

1.Weiterentwicklung der Zahlvorstellung 1.1.Bruchteile und Bruchzahlen Grundwissen Mathematik 6.Klasse Gymnasium SOB.Weiterentwicklung der Zahlvorstellung..Bruchteile und Bruchzahlen 3 des Kreises ist rot, des Kreises ist blau gefärbt. Über dem Bruchstrich steht der Zähler,

Mehr

Reise nach Rio Klimadiagramme lesen

Reise nach Rio Klimadiagramme lesen Reise nac Rio Klimadiagramme lesen Maria will im Juli nac Brasilien fliegen und dort Urlaub macen. Um iren Koffer passend zu packen und Unternemungen planen zu können, suct sie im Internet zunäcst nac

Mehr

Tangentensteigung. Gegeben ist die Funktion f(x) = x 2.

Tangentensteigung. Gegeben ist die Funktion f(x) = x 2. Tangentensteigung Gegeben ist die Funktion () =. Um die Steigung der Tangente im Punkt P( ) zu bestimmen, ermitteln wir zunäcst die Steigung der Sekante durc P( ) und Q( ). Q soll so beweglic sein, dass

Mehr

Mathematik für die Ferien Seite 1

Mathematik für die Ferien Seite 1 Mathematik für die Ferien Seite. Zähle die natürlichen geraden Zahlen auf, die größer als 0 und kleiner oder gleich 0 sind.. Schreib als Zahl: Deutschland hat 8 Millionen Einwohner. China hat Milliarde

Mehr

MATHE - CHECKER. 5. Klasse. by W. Rasch

MATHE - CHECKER. 5. Klasse. by W. Rasch MATHE - CHECKER 5. Klasse by W. Rasch 1. Aufgabe Gegeben ist die Zahl 5 909 999. Wie heißt ihr Nachfolger? A: 5909000 B: 5909100 C: 5910000 D: 6000000 2. Aufgabe Gegeben ist der Term 41 555 + 4 927-8 062.

Mehr

Fragen und Aufgaben zum Grundwissen Mathematik JGST. 7

Fragen und Aufgaben zum Grundwissen Mathematik JGST. 7 Fragen und Aufgaben zum Grundwissen Mathematik JGST. 7 LÖSUNGEN. Gib die Primfaktorzerlegung der Zahlen 0 und an. 0 0 7 7 7. Erkläre, wie man zwei ganze Zahlen addiert bzw. multipliziert. Bei gleichem

Mehr

Physik I Übung 7, Teil 2 - Lösungshinweise

Physik I Übung 7, Teil 2 - Lösungshinweise Pysik I Übung 7, Teil - Lösungsinweise Stefan Reutter SoSe 0 Moritz Kütt Stand:.06.0 Franz Fujara Aufgabe Clausius- Klappermann Clapeyron Revisited (Vorsict, Aufgabe vom Cef!) Da sic Prof. Fujara wie immer

Mehr

Mathematik-Arbeitsblatt Klasse: Aufgabe 1 (5Z e) H2:I1:K Setze < oder > ein! a) c) e)

Mathematik-Arbeitsblatt Klasse: Aufgabe 1 (5Z e) H2:I1:K Setze < oder > ein! a) c) e) Mathematik-Arbeitsblatt Klasse: 29.10.2015 Aufgabe 1 (5Z1.11-004-e) H2:I1:K1 0 1 2 Setze < oder > ein! a) 397 3397 c) 456 655 e) 2345 2435 1 b) 67 890 67 980 d) 632 432 f) 10 001 1001 Aufgabe 2 (5Z1.11-013-m)

Mehr

5 Grundwissen der 5. Klasse

5 Grundwissen der 5. Klasse Gymnasium bei St. Anna, Augsburg Seite 1 Grundwissen 5. Klasse 5 Grundwissen der 5. Klasse 5.1 Natürliche Zahlen und ganze Zahlen Definition: 1. Alle natürlichen Zahlen 1, 2, 3, 4,... fasst man zur Zahlenmenge

Mehr

Grundwissen 5 Lösungen

Grundwissen 5 Lösungen Grundwissen 5 Lösungen Zahlengerade Zeichne eine Zahlengerade, wähle eine passende Einheit und trage folgende Zahlen ein: 12 30 3 60 Welche Zahlen werden auf den Zahlengeraden in der Figur durch die Pfeile

Mehr

Musterlösung zu Übungsblatt 1

Musterlösung zu Übungsblatt 1 Prof. R. Pandaripande J. Scmitt, C. Scießl Funktionenteorie 23. September 16 HS 2016 Musterlösung zu Übungsblatt 1 Aufgabe 1. Sei F ein Körper, der R als einen Unterkörper entält. Das eisst R ist eine

Mehr

MATHEMATIK GRUNDWISSEN KLASSE 5

MATHEMATIK GRUNDWISSEN KLASSE 5 MATHEMATIK GRUNDWISSEN KLASSE 5 Them NATÜRLICHE ZAHLEN Zählen und Ordnen Ntürliche Zhlen werden zum Zählen und Ordnen verwendet Stefn ist beim 100m-Luf ls 2. ins Ziel gekommen. Große Zhlen und Zehnerpotenzen

Mehr

Anhang 6. Eingangstest II. 1. Berechnen Sie den Durchschnitt von 6 + 3,9 + 12, 0 = 2. Berechnen Sie: : = 3. Berechnen Sie: = 3 und 6

Anhang 6. Eingangstest II. 1. Berechnen Sie den Durchschnitt von 6 + 3,9 + 12, 0 = 2. Berechnen Sie: : = 3. Berechnen Sie: = 3 und 6 Anhang 6 Eingangstest II 1. Berechnen Sie den Durchschnitt von 6 + 3,9 + 12, 0 = 8 4 2. Berechnen Sie: : = 3 1 2x x 3. Berechnen Sie: = 9 9 4. Wie groß ist die Summe von 4 3 und 6?. Berechnen Sie: 3 (

Mehr

Hilfe zum neuen Online-Shop

Hilfe zum neuen Online-Shop Hilfe zum neuen Online-Sop Hier finden Sie umfassend bescrieben, wie Sie sic in unserem neuen Sop zurectfinden. Wenn Sie Fragen zur Kunden-Nr., Kunden-ID oder zum Passwort aben, rufen Sie uns bitte an:

Mehr

Treffpunkte für die kantonale Vergleichsarbeit der 6. Klassen. Mathematik

Treffpunkte für die kantonale Vergleichsarbeit der 6. Klassen. Mathematik Treffpunkte für die kantonale Vergleichsarbeit der 6. Klassen Mathematik Solothurn, 21. Mai 2012 1 Arithmetik 1.1 Natürliche Zahlen 1.1.1 Die Sch können natürliche Zahlen lesen und schreiben. S. 6/7 S.

Mehr

Grundwissen. 6. Jahrgangsstufe. Mathematik

Grundwissen. 6. Jahrgangsstufe. Mathematik Grundwissen 6. Jahrgangsstufe Mathematik 1 Brüche Grundwissen Mathematik 6. Jahrgangsstufe Seite 1 1.1 Bruchteil 1.2 Erweitern und Kürzen Erweitern: Zähler und Nenner mit der selben Zahl multiplizieren

Mehr

Á 4. Differenzierbarkeit, Stetigkeit

Á 4. Differenzierbarkeit, Stetigkeit Á 4. Differenzierbarkeit, Stetigkeit Historisc ist der Begriff der Differenzierbarkeit lange vor dem der Stetigkeit entwickelt worden. Untersciedlice Definitionen der Differenzierbarkeit werden von Gottfried

Mehr

3 heißt 1. Faktor und 4 heißt 2. Faktor. 12 heißt Wert des Produkts. Beispiele : a) 4 5 = = 20. b) 3 12 = = 36

3 heißt 1. Faktor und 4 heißt 2. Faktor. 12 heißt Wert des Produkts. Beispiele : a) 4 5 = = 20. b) 3 12 = = 36 VI. Die Multiplikation und Division natürlicher Zahlen ================================================================= 6.1 Die Multiplikation 3 4 Wir schreiben 4 + 4 + 4 = 3 4 und damit ist 3 4 = 12.

Mehr

Addition und Subtraktion natürlicher Zahlen

Addition und Subtraktion natürlicher Zahlen 0 Minuten Addition und Subtraktion natürlicher Zahlen Kurztest : Addieren und Subtrahieren 1 Bei der linken Rechenmauer wird nach oben addiert, bei der rechten Rechenmauer nach oben subtrahiert. a) b)

Mehr

Vorbereitung auf die 1. Schularbeit: MATHEMATIK KL.: M3/I. - S.1 L E R N Z I E L H I L F E N

Vorbereitung auf die 1. Schularbeit: MATHEMATIK KL.: M3/I. - S.1 L E R N Z I E L H I L F E N . Schularbeit: MTHEMTIK KL.: M/I. - S. Kommen in einer Rechnung mehrere Rechnungsarten bzw. Klammern vor, so muss folgende Reihenfolge eingehalten werden: ) Rechne zuerst den Wert einer Klammer aus! )

Mehr

{ } Menge der natürlichen Zahlen { } Menge der natürlichen Zahlen mit Null { } Menge der ganzen Zahlen

{ } Menge der natürlichen Zahlen { } Menge der natürlichen Zahlen mit Null { } Menge der ganzen Zahlen Themen Ntürliche und gnze gerde Eigenschften Besonderheiten - Beispiele { } Menge der ntürlichen { } Menge der ntürlichen mit Null { } Menge der gnzen IN = 1;2;3;4;... IN 0 = 0;1;2;3;4;... Z =...; 3; 2;

Mehr

BRUCHRECHNEN. Erweitern und Kürzen:

BRUCHRECHNEN. Erweitern und Kürzen: BRUCHRECHNEN Jede Bruchzahl läßt sich als Dezimalzahl darstellen 5 5:8 0.65 endlicher Dezimalbruch 8 0,6 unendlicher Dezimalbruch Nachfolgend werden die wesentlichen Zusammenhänge der Bruchrechnung angeführt.

Mehr

Inhaltsbezogene Kompetenzen 1 Klasse 5 und 6 Curriculum Klasse 5 Schulcurriculum für alle Kompetenzen: Üben und Vertiefen

Inhaltsbezogene Kompetenzen 1 Klasse 5 und 6 Curriculum Klasse 5 Schulcurriculum für alle Kompetenzen: Üben und Vertiefen Curriculum Mathematik Klasse 5 und 6 SCHÖNBUCH-GYMNASIUM HOLZGERLINGEN Natürliche Zahlen natürliche Zahlen dezimales Stellenwertsystem Zweiersystem (Schulcurriculum) Primzahlen, Primfaktoren Teilbarkeitsregeln

Mehr

Solche Abbildungen nennt man ZENTRISCHE STRECKUNGEN. DEFINITION:

Solche Abbildungen nennt man ZENTRISCHE STRECKUNGEN. DEFINITION: ZENTRICHE TRECKUNG DER TORCHENCHNABEL ol Farstift Zeicenstift ol, Farstift und Zeicenstift lieen immer auf einer Geraden! Früer at man den torcenscnabel (antorap) benutzt um Bilder maßstäblic zu verrößern,

Mehr

Fachrechnen für die Feuerwehr

Fachrechnen für die Feuerwehr Die Roten Hefte e, Bd. 31 Fachrechnen für die Feuerwehr Bearbeitet von Kurt Klingsohr überarbeitet 2007. Taschenbuch. 145 S. Paperback ISBN 978 3 17 019903 3 Format (B x L): 10,5 x 14,8 cm Gewicht: 100

Mehr

gebrochene Zahl gekürzt mit 9 sind erweitert mit 8 sind

gebrochene Zahl gekürzt mit 9 sind erweitert mit 8 sind Vorbereitungsaufgaben Mathematik. Bruchrechnung.. Grundlagen: gebrochene Zahl gemeiner Bruch Zähler Nenner Dezimalbruch Ganze, Zehntel Hundertstel Tausendstel Kürzen: Zähler und Nenner durch dieselbe Zahl

Mehr

M 5.1. Natürliche Zahlen und Zahlenstrahl. Welche Zahlen gehören zur Menge der natürlichen Zahlen?

M 5.1. Natürliche Zahlen und Zahlenstrahl. Welche Zahlen gehören zur Menge der natürlichen Zahlen? M 5.1 Natürliche Zahlen und Zahlenstrahl Welche Zahlen gehören zur Menge der natürlichen Zahlen? Zeichne die Zahlen, und auf einem Zahlenstrahl ein. Woran erkennt man auf dem Zahlenstrahl, welche der Zahlen

Mehr

Fertigungstechnik Technische Kommunikation - Technisches Zeichnen

Fertigungstechnik Technische Kommunikation - Technisches Zeichnen Uwe Rat Eckleinjarten 13a. 7580 Bremeraven 0471 3416 rat-u@t-online.de Fertigungstecnik Tecnisce Kommunikation - Tecnisces Zeicnen 11 Projektionszeicnen 11. Körperscnitte und bwicklungen 11..4 Kegelige

Mehr

6. KLASSE MATHEMATIK GRUNDWISSEN

6. KLASSE MATHEMATIK GRUNDWISSEN 6. KLASSE MATHEMATIK GRUNDWISSEN Thema BRÜCHE Bruchteil - Man teilt das Ganze durch den Nenner und multipliziert das Ergebnis mit dem Zähler von 24 kg = (24 kg : 4) 2 = 6 kg 2 = 12 kg h = von 1 h = (1

Mehr

Einstieg in die Differenzialrechnung

Einstieg in die Differenzialrechnung Lern-Online.net Matematikportal Dierenzialrecnung (Einstieg) Einstieg in die Dierenzialrecnung Einstiegsbeispiel: Der ideale Kasten Augabenstellung: Ein DIN-A4-Blatt soll zu einem (deckellosen) Kasten

Mehr

Ein Bruchteil vom Ganzen lässt sich mit Hilfe von Bruchzahlen darstellen. Bsp.: Ganzes: 20 Kästchen

Ein Bruchteil vom Ganzen lässt sich mit Hilfe von Bruchzahlen darstellen. Bsp.: Ganzes: 20 Kästchen Grundwissen Mathematik G8 6. Klasse Zahlen. Brüche.. Bruchteile und Bruchzahlen Ein Bruchteil vom Ganzen lässt sich mit Hilfe von Bruchzahlen darstellen. Ganzes: 0 Kästchen 6 6 graue Kästchen, also: 0

Mehr

Aufgabensammlung Klasse 8

Aufgabensammlung Klasse 8 Aufgabensammlung Klasse 8 Inhaltsverzeichnis 1 Potenzen mit natürlichen Hochzahlen 3 1.1 Rechenregeln für das Rechnen mit Potenzen..................... 3 1.1.1 Addition und Subtraktion von Potenzen...................

Mehr

Die folgenden Aufgaben stellen als Überblick die Grundlagen für einen erfolgreichen Start im EA-Kurs dar.

Die folgenden Aufgaben stellen als Überblick die Grundlagen für einen erfolgreichen Start im EA-Kurs dar. Die folgenden Aufgaben stellen als Überblick die Grundlagen für einen erfolgreichen Start im EA-Kurs dar. Es gelten der Stoff aus www.mathbu.ch 8+ resp. 9+. A00 Arithmetisches Rechnen / allgemeines Rechnen

Mehr

GRUNDWISSEN MATHEMATIK KLASSENSTUFEN 5 UND 6 1. ZAHLEN. 1.1 Zahlenmengen. 1.2 Teiler und Vielfache. 1.3 Teilbarkeitsregeln

GRUNDWISSEN MATHEMATIK KLASSENSTUFEN 5 UND 6 1. ZAHLEN. 1.1 Zahlenmengen. 1.2 Teiler und Vielfache. 1.3 Teilbarkeitsregeln 1.1 Zahlenmengen 1. ZAHLEN { } Menge der natürlichen Zahlen { } Menge der natürlichen Zahlen mit Null { } Menge der ganzen Zahlen 1.2 Teiler und Vielfache Teiler: 4 32, also 4 ist Teiler von 32, d. h.

Mehr

PACKAGING DESIGN LIMBIC SCHMIDT SPIELE KNIFFEL MASTER

PACKAGING DESIGN LIMBIC SCHMIDT SPIELE KNIFFEL MASTER PAKAGING DESIGN LIMBI SHMIDT SPIELE KNIFFEL MASTER 16. Präsentation 03. Dezember 2014 Für alle Kniffel-Fans dürfte Einiges bei Kniffel Master scon bekannt sein. Der blaue Text kann daer von allen überspruen

Mehr

Grundwissen Mathematik 6. Dieser Grundwissenskatalog gehört: Name: Klasse:

Grundwissen Mathematik 6. Dieser Grundwissenskatalog gehört: Name: Klasse: Grundwissen Mathematik 6 Dieser Grundwissenskatalog gehört: Name: Klasse: Inhaltsverzeichnis Zahlen 1. Brüche 1.1 Bruchteile 1.2 Brüche als Werte von Quotienten 1.3 Bruchzahlen 1.4 Anordnung der Bruchzahlen

Mehr

Landeswettbewerb Mathematik Baden-Württemberg Musterlösungen 1. Runde 2011/2012

Landeswettbewerb Mathematik Baden-Württemberg Musterlösungen 1. Runde 2011/2012 Landeswettbewerb Matematik aden-württemberg Musterlösungen. Runde 0/0 Aufgabe avid wirft einen besonderen Würfel und screibt jeweils die oben liegende Zal auf. ie Abbildung zeigt ein Netz seines Würfels.

Mehr

Grundrechnungsarten mit Dezimalzahlen

Grundrechnungsarten mit Dezimalzahlen Grundrechnungsarten mit Dezimalzahlen Vorrangregeln Die Rechnungsarten zweiter Stufe haben Vorrang vor den Rechnungsarten erster Stufe. Man sagt: "Punktrechnung geht vor Strichrechnung" Treten in einer

Mehr

Luisenburg-Gymnasium Wunsiedel

Luisenburg-Gymnasium Wunsiedel Luisenburg-Gymnasium Wunsiedel Grundwissen für das Fach Mathematik Jahrgangsstufe 7 1. chsen- und unktspiegelung a) chsensymmetrie Die chse halbiert die Strecke [ ] senkrecht. lle chsenpunkte sind von

Mehr

e-funktion und natürlicher Logarithmus

e-funktion und natürlicher Logarithmus e-funktion und natürlicer Logaritmus. Die Differentialgleicung y=y' Gibt es eine Funktion, die mit irer Ableitung identisc ist, d.. dass f = f ' für alle gilt? Wenn die Ableitung trigonometriscer Funktionen

Mehr

Grundwissenskatalog der 6. Jahrgangsstufe G8 - Mathematik Friedrich-Koenig-Gymnasium Würzburg

Grundwissenskatalog der 6. Jahrgangsstufe G8 - Mathematik Friedrich-Koenig-Gymnasium Würzburg Grundwissenskatalog der. Jahrgangsstufe G8 - Mathematik Friedrich-Koenig-Gymnasium Würzburg. Brüche und Dezimalzahlen Bruchteile Berechnung von Bruchteilen Bruchzahlen als Quotient Gemischte Zahlen Erweitern

Mehr

Grundwissen Mathematik 5/1

Grundwissen Mathematik 5/1 1. Wihtie Symole Grundwissen Mthemtik 5/1 Wihtie Symole Rehenrten Qudrtzhlen IN Mene der ntürlihen Zhlen { 1; 2; 3; 4;... } IN 0 Mene der ntürlihen Zhlen einshließlih der Null {0; 1; 2; 3; 4;... } GI Grundmene

Mehr

1 Rechnen. Addition rationaler Zahlen gleicher Vorzeichen Summand + Summand = Summe

1 Rechnen. Addition rationaler Zahlen gleicher Vorzeichen Summand + Summand = Summe Rationale Zahlen Die ganzen Zahlen zusammen mit allen positiven und negativen Bruchzahlen heißen rationale Zahlen. Die Menge der rationalen Zahlen wird mit Q bezeichnet. Je weiter links eine Zahl auf dem

Mehr