) ergeben die i i. Es gelten folgende allgemeinen Resultate (in informeller Sprache formuliert).

Größe: px
Ab Seite anzeigen:

Download ") ergeben die i i. Es gelten folgende allgemeinen Resultate (in informeller Sprache formuliert)."

Transkript

1 V. Kolluson Im olgopolstschen Wettbewerb treffen mtunter mmer weder de glechen Frmen aufenander. Des eröffnet de Möglchket für stlles Zusammenspel, wel abwechendes Verhalten n späteren Zusammentreffen sanktonert werden kann. Solche Stuatonen können als wederholtes Spel (Superspel) (G, T, δ) modellert werden, n dem en 1-perodges konsttuerendes Spel G=(N, S, Π), z.b. das Cournot- oder Bertrandspel, T-mal wederholt wrd, wobe eder Speler versucht, T = t den mt dem Dskontfaktor δ < 1 abdskonterten Proftstrom Π t t δ 1 zu 1 maxmeren. In so enem dynamschen Spel (mt mehreren Zetpunkten) begnnt n edem Zetpunkt t en neues (Tel-)Spel, gegeben de bs dahn abgelaufene Geschchte Ht 1 = { x τ } τ = 1 der von den n Spelern bsher gewählten Aktonen xτ = ( x1 τ,..., xn τ ), τ = 1,..., t 1. In t=1 glt H 0 = { }. Ene Stratege s st en Plan, der eder möglchen Geschchte ene Akton xt = s( Ht 1 ) zuordnet. De Aktonen xt = ( x1 t,..., xnt ) ergeben de Perodenprofte Πt = Π ( x t ). En Strategenprofl s = ( s1,..., s n ) stellt en telspelperfektes Glechgewcht dar, wenn s n edem Telspel zu enem Nashglechgewcht führt. V.1. Allgemene Resultate Es gelten folgende allgemenen Resultate (n nformeller Sprache formulert). Resultat 1: Wenn das konsttuerende Spel en Nashglechgewcht x N bestzt, st de T-malge Wederholung von x N en telspelperfektes Glechgewcht. Resultat 2: Be endlchem T und vollkommener Informaton glt: Falls das konsttuerende Spel en endeutges Nashglechgewcht x N bestzt, st de T- malge Wederholung von x N das enzge telspelperfekte Glechgewcht. Resultat 3: Falls T unendlch st, glt: Wenn das konsttuerende Spel en Nashglechgewcht x N bestzt, dann exstert für alle Aktonen x, für welche N Π ( x) > Π ( x ), = 1,..., n, en δ < 1, so daß für alle δ > δ de unendlche Wederholung von x durch Trggerstrategen (Nash reverson strateges) als telspelperfektes Glechgewcht unterstützt werden kann. V-1

2 Deses Resultat kann dahngehend verallgemenert werden, daß alle x mt Π ( x) > Π als telspelperfektes Glechgewcht unterstützt werden können, wobe Π mn[max Π ( x, x )] der mnmal payoff st. Das Resultat wrd auch als Folk x x Theorem bezechnet, wel Varanten davon vor der präzsen speltheoretschen Bewesführung als Volksweshet bekannt waren. Graphsche Illustraton von Resultat 3 Π Π N Π = ( Π Π ), Π De schrafferte Fläche kann als telspelperfektes Glechgewcht unterstützt werden. Π N bezechnet de Profte ( Π ( x N ), Π ( x N )) m Nashglechgewcht des konsttuerenden Spels. Per defntonem glt: Π ( x ) Π. N Wetere Resultate be unvollkommener Informaton: Zumndest ene Zetlang können Profte über Π N auch be endlchem T gestützt werden, falls en Speler ncht perfekt über den Typ des anderen Spelers nformert st. Ebenso können Profte über Π N gestützt werden, wenn T unscher und der Erwartungswert E( T ) < st. V-2

3 V.2. Anwendung auf den Preswettbewerb Gegeben 2 dentsche Frmen, de mt konstanten Grenzkosten c en homogenes Gut produzeren und wederholt aufenandertreffen. Das konsttuerende Spel st der n IV.3. analyserte Bertrandwettbewerb. Das enzge Nashglechgewcht st p B = c mt Π ( p B ) = Π ( p B ) = 0. V.2.1. Ex ante bekannter endlcher Zethorzont Be endlchem Zethorzont T und vollkommener Informaton ergbt sch durch Rückwärtsndukton: Das enzge telspelperfekte Glechgewcht st de T-malge Wederholung des Grenzkostenpreses c. Bewes: Das telspelperfekte Glechgewcht muß n edem Telspel, also auch n enem, das n T stattfndet, zu enem Nashglechgewcht führen. Das letzte Spel n Perode T st dentsch mt dem konsttuerenden Bertrandspel, daher st p B T = c das enzge Glechgewcht. Daraus resultert, daß de Auszahlungen des n Perode T-1 begnnenden 2- Perodenspels nur aus den allenfalls n Perode T-1 erspelten Gewnnen besteht (da n der letzten Perode Nullprofte resulteren). Damt reduzert sch aber auch B deses Spel auf das schon bekannte Bertrandspel mt Glechgewcht p = T 1 c. Es wrd also n eder Perode t T en Spel gespelt, das strategsch we das letzte st, wel das Nullproftergebns der später kommenden Spele ncht beenflußt werden kann. Somt st p B = c das Presglechgewcht n allen Peroden t = 1,..., T. t V.2.2. Unendlcher Horzont Be unendlchem Horzont glt: Jeder Pres p [ c, p m ] kann durch Nash-reverson Strategen (Trggerstrategen) p1 = p und für t 2 p t {(, )} p wenn Ht = p p ( Ht 1) = c sonst. t 1 1 = 1 τ (5.1) V-3

4 als telspelperfektes Nashglechgewcht gestützt werden, wenn der Dskontfaktor δ > 1 α, wobe α = mn{ α, α } und α, α de Marktantele von, snd, wenn bede den Pres p verlangen. Bewes: Wr müssen zegen, daß (5.1) n edem Telspel en Nashglechgewcht st. Nun, n edem Zetpunkt t begnnt en neues Superspel. Dese Spele unterscheden sch durch de vorher abgelaufene Geschchte, wobe es nur zwe verschedene Geschchten gbt, nämlch Ht 1 = {( p, p)} τ = 1 oder Ht 1 {( p, p)} τ =. Das heßt, es gbt zwe verschedene Telspele, für welche überprüft werden muß, ob (5.1) en Nashglechgewcht st. Telspel 1: H t 1 {( p, p)} τ und damt H {( p, p)} τ für alle t t. t 1 = t 1 = Gemäß (5.1) wählt für alle t t den Grenzkostenpres c. Würde rgendwann p t c wählen, könnte er nchts gewnnen. p t < c bedeutet Verlust, p t > c bedeutet ken Markt (wel p t = c ). Telspel 2: H = {( p, p)} τ. t 1 = 1 Gemäß (5.1) wählt n desem Fall p Zetpunkt von p abzuwechen? t = p. Lohnt es sch für n rgendenem Wenn abwecht, ändert er damt de Geschchte, und en Spel vom Typ des Telspels 1 begnnt, mt Nullproft für alle Zukunft. In der enen Perode, wo er abwecht, kann er edoch den ganzen Markt erobern und maxmal enen Proft Π = ( p c) x( p ) gewnnen (wenn er zu enem margnal unter p legenden Pres abwecht). Das Abwechen brngt also den abdskonterten Proftstrom D Π = p c x p + + ( ) ( ) 0... (5.2) Wenn ne abwecht, ändert sch de Geschchte ne, so daß be p und der Markt aufgetelt blebt. Der abdskonterte Proftstrom für τ t st also dann: α ( p c) x( p) ( p c) x( p) (5.3) K τ 1 Π = δ α = τ = 1 1 δ Der Verglech von (5.2) und (5.3) zegt, daß sch Abwechen ne lohnt, wenn α > 1 also wenn δ α 1 δ > 1. QED. V-4

5 V.2.3. Endlcher, aber unbestmmter Zethorzont Praktsch leben Frmen ncht unendlch lange. Anderersets st das Ende normalerwese auch ncht von vornheren bekannt. Se ~ t de Zufallsvarable, de den Zetpunkt des Ausschedens der Frma beschrebt. Se 1 γ de Wahrschenlchket, daß ene Frma am Ende ener Perode ausschedet. γ ( < 1 ) st de Überlebenswahrschenlchket. De Wahrschenlchket, daß de Frma nach t Peroden noch am Markt st, st somt γ t. Da γ < 1, st de Lebensdauer der Frma mt ener Wahrschenlchket von 1 endlch. Mt der n IV.2.2. beschrebenen Nash-reverson Stratege kann auch auf so enem Markt en Pres p [ c, p m ] als telspelperfektes Glechgewcht gestützt werden, falls 1 >δ > 1 α γ (wobe α wederum den Marktantel der klensten Frma am Markt bezechnet). Bewes: Der durch Abwechen erzelte Proft D Π st dentsch mt (5.2). Der be Aufrechterhaltung der Kolluson n ener Perode τ erzelte Proftstrom st ( p c) α x( p). Deser wrd ncht nur abdskontert, er entsteht auch nur wenn de Perode τ noch erlebt wrd, also mt Wahrschenlchket γ τ 1. Daher glt statt (5.3) α ( p c) x( p) ( p c) x( p) (5.4) K τ 1 τ 1 Π = δ γ α = τ = 1 1 δγ Der Verglech von (5.2) und (5.4) ergbt: Abwechen lohnt sch ncht, wenn δ 1 α 1 1 ( = für α = ). γ 2γ 2 Man beachte: δ 1 α γ < 1, wenn γ > 1 α. QED. V-5

6 V-6

7 V.2.4. Interpretaton und Schlußfolgerungen Π 2 Π m m m Π Π, 2 2 Π( p B ) = 0 Π m Π 1 Jedes Ergebns n der schrafferten Fläche st be hnrechend großer Gewchtung der Zukunft (δ ) durch Trggerstrategen stützbar. Das bedeutet, es gbt außerordentlch vele Glechgewchte. Praktsch kann man sch vorstellen, daß sch zwe Frmen n ener stllen Absprache den Markt auftelen und Monopolprese verlangen. De Tatsache, daß m m ( Π 2, Π 2 ) als telspelperfektes Glechgewcht realsert werden kann, bedeutet, daß ene derartge stlle Kolluson auch ohne (enklagbare und damt schtbare) Kartellverträge hält, wel kene Frma enen Anrez hat abzuwechen. Der Grund st, daß de Rückkehr zur Nashstratege p B = c ene Sankton nsofern darstellt, daß dadurch für alle Zukunft möglche Kollusonsgewnne verloren gehen. Dese Sanktonsmöglchket und damt de Wahrschenlchket von stller Kolluson st verglechswese größer klener auf expansven Märkten wenn Boom erwartet wrd (Vgl. Trole und Übungsbespele). e mehr Frmen am Markt snd auf schrumpfenden Märkten be langen detecton lags wenn Rezesson erwartet wrd. V-7

Stochastische Prozesse

Stochastische Prozesse INSTITUT FÜR STOCHASTIK SS 009 UNIVERSITÄT KARLSRUHE Blatt 4 Prv.-Doz. Dr. D. Kadelka Dpl.-Math. W. Lao Übungen zur Vorlesung Stochastsche Prozesse Musterlösungen Aufgabe 16: (Success Run, Fortsetzung)

Mehr

4.6 Das Pumping-Lemma für reguläre Sprachen:

4.6 Das Pumping-Lemma für reguläre Sprachen: Theoretsche Informatk 1 Vorlesungsskrpt vom Fretag, 30 Jun 000 Index: Erstellt von: (Matrkelnummer: 70899) Sete : 46 Das Pumpng-Lemma für reguläre Sprachen 1 Satz W 1 Zugrundelegende Idee des Pumpng-Lemma

Mehr

Facility Location Games

Facility Location Games Faclty Locaton Games Semnar über Algorthmen SS 2006 Klaas Joeppen 1 Abstract Wr haben berets sehr häufg von Nash-Glechgewchten und vor allem von deren Exstenz gesprochen. Das Faclty Locaton Game betet

Mehr

Dr. Florian Englmaier 1 Übung Wettbewerbstheorie und -politik. Handout zu Übungsblatt 1: Einführung

Dr. Florian Englmaier 1 Übung Wettbewerbstheorie und -politik. Handout zu Übungsblatt 1: Einführung Dr. Floran Englmaer 1 Handout zu Übungsblatt 1: Enführung De Industreökonomk beschäftgt sch mt dem Marktverhalten und der nternen Organsaton von Unternehmen. (Preswettbewerb, Marktzutrttsverhalten, Produktdff.

Mehr

3.1 Extensive Form, Spielbaum und Teilspiele

3.1 Extensive Form, Spielbaum und Teilspiele 3. Spele n extensver Form 3.1 Extensve Form, Spelbaum und Telspele 3.2 Strategen n extensven Spelen 4. Spele mt vollkommener Informaton 4.1 Telspelperfekte Nash-Glechgewchte 4.2 Das chan-store -Paradox

Mehr

z.b. Münzwurf: Kopf = 1 Zahl = 2 oder z.b. 2 Würfel: Merkmal = Summe der Augenzahlen, also hier: Bilde die Summe der Augenzahlen der beiden Würfel!

z.b. Münzwurf: Kopf = 1 Zahl = 2 oder z.b. 2 Würfel: Merkmal = Summe der Augenzahlen, also hier: Bilde die Summe der Augenzahlen der beiden Würfel! Aufgabe : Vorbemerkung: Ene Zufallsvarable st ene endeutge Funkton bzw. ene Abbldungsvorschrft, de angbt, auf welche Art aus enem Elementareregns ene reelle Zahl gewonnen wrd. x 4 (, ) z.b. Münzwurf: Kopf

Mehr

Stochastische Prozesse

Stochastische Prozesse INSTITUT FÜR STOCHASTIK SS 2009 UNIVERSITÄT KARLSRUHE Blatt 2 Prv.-Doz. Dr. D. Kadelka Dpl.-Math. W. Lao Übungen zur Vorlesung Stochastsche Prozesse Musterlösungen Aufgabe 7: (B. Fredmans Urnenmodell)

Mehr

Geschichte, Sherlock Holmes Spiel (Definition) Einteilung und Eigenschaften von Spielen Modellierungsformen Strategietypen (dominant, rein, gemischt)

Geschichte, Sherlock Holmes Spiel (Definition) Einteilung und Eigenschaften von Spielen Modellierungsformen Strategietypen (dominant, rein, gemischt) Peter Garscha Geschchte, Sherlock Holmes Spel (Defnton) Entelung und Egenschaften von Spelen Modellerungsformen Strategetypen (domnant, ren, gemscht) Nash-Glechgewcht (Defnton, Exstenz) Gefangenendlemma

Mehr

Konkave und Konvexe Funktionen

Konkave und Konvexe Funktionen Konkave und Konvexe Funktonen Auch wenn es n der Wrtschaftstheore mest ncht möglch st, de Form enes funktonalen Zusammenhangs explzt anzugeben, so kann man doch n velen Stuatonen de Klasse der n Frage

Mehr

Arbeitsgruppe Radiochemie Radiochemisches Praktikum P 06. Einführung in die Statistik. 1. Zählung von radioaktiven Zerfällen und Statistik 2

Arbeitsgruppe Radiochemie Radiochemisches Praktikum P 06. Einführung in die Statistik. 1. Zählung von radioaktiven Zerfällen und Statistik 2 ETH Arbetsgruppe Radocheme Radochemsches Praktkum P 06 Enführung n de Statstk INHALTSVERZEICHNIS Sete 1. Zählung von radoaktven Zerfällen und Statstk 2 2. Mttelwert und Varanz 2 3. Momente ener Vertelung

Mehr

Determinanten - I. den i-ten Zeilenvektor der n n-matrix A bezeichnet.

Determinanten - I. den i-ten Zeilenvektor der n n-matrix A bezeichnet. Determnanten - I Ene Determnante st ene Abbldung, welche ener quadratschen (!) Matrx ene Zahl zuordnet. Wr verwenden n desem Zusammenhang de Schrebwese A = a 2, wobe den -ten Zelenvektor der n n-matrx

Mehr

Resultate / "states of nature" / mögliche Zustände / möglicheentwicklungen

Resultate / states of nature / mögliche Zustände / möglicheentwicklungen Pay-off-Matrzen und Entschedung unter Rsko Es stehen verschedene Alternatven (Strategen) zur Wahl. Jede Stratege führt zu bestmmten Resultaten (outcomes). Man schätzt dese Resultate für jede Stratege und

Mehr

Elemente der Mathematik - Sommer 2016

Elemente der Mathematik - Sommer 2016 Elemente der Mathematk - Sommer 2016 Prof Dr Matthas Lesch, Regula Krapf Lösungen Übungsblatt 3 Aufgabe 9 (10 Punkte) Das Horner-Schema st ene Methode zum Auswerten enes Polynoms n a0 x an der Stelle s

Mehr

Grundlagen der Mathematik I Lösungsvorschlag zum 12. Tutoriumsblatt

Grundlagen der Mathematik I Lösungsvorschlag zum 12. Tutoriumsblatt Mathematsches Insttut der Unverstät München Wntersemester 3/4 Danel Rost Lukas-Faban Moser Grundlagen der Mathematk I Lösungsvorschlag zum. Tutorumsblatt Aufgabe. a De Formel besagt, daß de Summe der umrahmten

Mehr

Musterlösung zur Einsendearbeit zum Kurs Preisbildung auf unvollkommenen Märkten und allgemeines Gleichgewicht, Kurseinheit 1

Musterlösung zur Einsendearbeit zum Kurs Preisbildung auf unvollkommenen Märkten und allgemeines Gleichgewicht, Kurseinheit 1 Musterlösung zum Kurs 40, A zu K, WS 008/09 Sete Musterlösung zur nsendearbet zum Kurs 40 Presbldung auf unvollkommenen Märkten und allgemenes lechgewcht, Kursenhet De folgende Lösungsskzze soll Ihnen

Mehr

Was erwarten wir als Ergebnis von freien Verhandlungen in einer Gruppe mit Koalitionsmöglichkeiten?

Was erwarten wir als Ergebnis von freien Verhandlungen in einer Gruppe mit Koalitionsmöglichkeiten? Prof. Dr. Fredel Bolle 1 Prof. Dr. Fredel Bolle Vorlesung 1 Defnton: Kooperatves Spel En ooperatves Spel Γ st en Tupel (N,V), wobe der N = {1,...,m} mt m > 1 de Menge der Speler bezechnet und Was erwarten

Mehr

Netzwerkstrukturen. Entfernung in Kilometer:

Netzwerkstrukturen. Entfernung in Kilometer: Netzwerkstrukturen 1) Nehmen wr an, n enem Neubaugebet soll für 10.000 Haushalte en Telefonnetz nstallert werden. Herzu muss von jedem Haushalt en Kabel zur nächstgelegenen Vermttlungsstelle gezogen werden.

Mehr

binäre Suchbäume Informatik I 6. Kapitel binäre Suchbäume binäre Suchbäume Rainer Schrader 4. Juni 2008 O(n) im worst-case Wir haben bisher behandelt:

binäre Suchbäume Informatik I 6. Kapitel binäre Suchbäume binäre Suchbäume Rainer Schrader 4. Juni 2008 O(n) im worst-case Wir haben bisher behandelt: Informatk I 6. Kaptel Raner Schrader Zentrum für Angewandte Informatk Köln 4. Jun 008 Wr haben bsher behandelt: Suchen n Lsten (lnear und verkettet) Suchen mttels Hashfunktonen jewels unter der Annahme,

Mehr

Aufgabe 8 (Gewinnmaximierung bei vollständiger Konkurrenz):

Aufgabe 8 (Gewinnmaximierung bei vollständiger Konkurrenz): LÖSUNG AUFGABE 8 ZUR INDUSTRIEÖKONOMIK SEITE 1 VON 6 Aufgabe 8 (Gewnnmaxmerung be vollständger Konkurrenz): Betrachtet wrd en Unternehmen, das ausschleßlch das Gut x produzert. De m Unternehmen verwendete

Mehr

1 Finanzmathematik. 1.1 Das Modell. Sei Xt

1 Finanzmathematik. 1.1 Das Modell. Sei Xt 1.1 Das Modell Se Xt der Pres enes Assets zur Zet t und X = X ) 1 d der Rd +-dmensonale Presprozess. Das Geld kann auch zu dem rskolosen Znssatz r be ener Bank angelegt werden. Der Wert deser Anlage wrd

Mehr

2 Zufallsvariable und Verteilungen

2 Zufallsvariable und Verteilungen Zufallsvarable und Vertelungen 7 Zufallsvarable und Vertelungen Wr wollen uns jetzt mt Zufallsexpermenten beschäftgen, deren Ausgänge durch (reelle) Zahlen beschreben werden können, oder be denen man jedem

Mehr

6. Übung zur Linearen Algebra II

6. Übung zur Linearen Algebra II Unverstät Würzburg Mathematsches Insttut Prof. Dr. Peter Müller Dr. Peter Fleschmann SS 2006 30.05.2006 6. Übung zur Lnearen Algebra II Abgabe: Bs Mttwoch, 14.06.2006, 11:00 Uhr n de Brefkästen vor der

Mehr

Sei T( x ) die Tangente an den Graphen der Funktion f(x) im Punkt ( x 0, f(x 0 ) ) : T( x ) = f(x 0 ) + f (x 0 ) ( x - x 0 ).

Sei T( x ) die Tangente an den Graphen der Funktion f(x) im Punkt ( x 0, f(x 0 ) ) : T( x ) = f(x 0 ) + f (x 0 ) ( x - x 0 ). Taylorentwcklung (Approxmaton durch Polynome). Problemstellung Se T( x ) de Tangente an den Graphen der Funkton f(x) m Punkt ( x 0, f(x 0 ) ) : T( x ) = f(x 0 ) + f (x 0 ) ( x - x 0 ). Dann kann man de

Mehr

AVWL I (Mikro) - Prof. Dr. M. Schnitzer - Klausur am Abschlussklausur

AVWL I (Mikro) - Prof. Dr. M. Schnitzer - Klausur am Abschlussklausur VWL I (Mkro) - Prof. Dr. M. Schntzer - Klausur am 16. 02 2004 bschlussklausur Btte bearbeten Se zwe der dre folgenden ufgaben nach freer Wahl. Sollten Se alle dre ufgaben bearbeten, machen Se btte kenntlch,

Mehr

IV. Oligopolmärkte: Cournot-, Bertrand-, Stackelbergwettbewerb

IV. Oligopolmärkte: Cournot-, Bertrand-, Stackelbergwettbewerb IV. Olgopolärkte: Cournot-, ertrand-, Stackelbergwettbewerb IV.1. Cournot-(Mengen)wettbewerb (Cournot [1838]) n 2 Anbeter stehen auf ene Markt t nverser Nachfragekurve P(x) n Wettbewerb. Se entscheden

Mehr

Bedingte Entropie. Bedingte Entropie. Bedingte Entropie. Kapitel 4: Bedingte Entropie I(X;Y) H(X Y) H(Y) H(X) H(XY)

Bedingte Entropie. Bedingte Entropie. Bedingte Entropie. Kapitel 4: Bedingte Entropie I(X;Y) H(X Y) H(Y) H(X) H(XY) Bedngte Entrope Kaptel : Bedngte Entrope Das vorherge Theorem kann durch mehrfache Anwendung drekt verallgemenert werden H (... H ( = Ebenso kann de bedngt Entrope defnert werden Defnton: De bedngte Entrope

Mehr

Wir betrachten in diesem Abschnitt Matrixspiele in der Maximierungsform, also endliche 2 Personen Nullsummenspiele der Gestalt

Wir betrachten in diesem Abschnitt Matrixspiele in der Maximierungsform, also endliche 2 Personen Nullsummenspiele der Gestalt Kaptel 3 Zwe Personen Spele 3.1 Matrxspele 3.2 Matrxspele n gemschten Strategen 3.3 B Matrxspele und quadratsche Programme 3.4 B Matrxspele und lneare Komplementartätsprobleme 3.1 Matrxspele Wr betrachten

Mehr

18. Dynamisches Programmieren

18. Dynamisches Programmieren 8. Dynamsches Programmeren Dynamsche Programmerung we gerge Algorthmen ene Algorthmenmethode, um Optmerungsprobleme zu lösen. We Dvde&Conquer berechnet Dynamsche Programmerung Lösung enes Problems aus

Mehr

Multilineare Algebra und ihre Anwendungen. Nr. 6: Normalformen. Verfasser: Yee Song Ko Adrian Jenni Rebecca Huber Damian Hodel

Multilineare Algebra und ihre Anwendungen. Nr. 6: Normalformen. Verfasser: Yee Song Ko Adrian Jenni Rebecca Huber Damian Hodel ultlneare Algebra und hre Anwendungen Nr. : Normalformen Verfasser: Yee Song Ko Adran Jenn Rebecca Huber Daman Hodel 9.5.7 - - ultlneare Algebra und hre Anwendungen Jordan sche Normalform Allgemene heore

Mehr

Asymptotische Stochastik (SS 2010) Übungsblatt 1 P X. 0, n.

Asymptotische Stochastik (SS 2010) Übungsblatt 1 P X. 0, n. Insttut für Stochastk PD. Dr. Deter Kadelka Danel Gentner Asymptotsche Stochastk (SS 2) Übungsblatt Aufgabe (Arten von Konvergenz reeller Zufallsvarablen und deren Zusammenhänge) Es seen X,, n N reelle

Mehr

Methoden der innerbetrieblichen Leistungsverrechnung

Methoden der innerbetrieblichen Leistungsverrechnung Methoden der nnerbetreblchen Lestungsverrechnung In der nnerbetreblchen Lestungsverrechnung werden de Gemenosten der Hlfsostenstellen auf de Hauptostenstellen übertragen. Grundlage dafür snd de von den

Mehr

Spiele und Codes. Rafael Mechtel

Spiele und Codes. Rafael Mechtel Spele und Codes Rafael Mechtel Koderungstheore Worum es geht Über enen Kanal werden Informatonen Übertragen. De Informatonen werden dabe n Worte über enem Alphabet Q übertragen, d.h. als Tupel w = (w,,

Mehr

Informatik II. Minimalpolynome und Implikanten. Minimalpolynome. Minimalpolynome. Rainer Schrader. 27. Oktober Was bisher geschah: Definition

Informatik II. Minimalpolynome und Implikanten. Minimalpolynome. Minimalpolynome. Rainer Schrader. 27. Oktober Was bisher geschah: Definition Informatk II Raner Schrader und Implkanten Zentrum für Angewandte Informatk Köln 27. Oktober 2005 1 / 28 2 / 28 Was bsher geschah: jede Boolesche Funkton kann durch enfache Grundfunktonen dargestellt werden

Mehr

42020 KE Investitionsanreize - Gefangenendilemma

42020 KE Investitionsanreize - Gefangenendilemma Bespel: Investtonsanrez (Gefangenendlemma: Opportunstsches Verhalten lohnt sch ncht, de beste Lösung für bede Seten st wenn bede Seten sch bewegen) Ausgangspunkt: 1. Zuleferer und Abnehmer snd über enen

Mehr

6. Nicht-kooperative Oligopolmodelle Cournot-Modell Stackelberg-Modell Kollusionsmodell (Kartell) 6.4.

6. Nicht-kooperative Oligopolmodelle Cournot-Modell Stackelberg-Modell Kollusionsmodell (Kartell) 6.4. 6. Ncht-kooperatve Olgopolodelle 6.. Cournot-Modell 6.2. Stackelberg-Modell 6.3. Kollusonsodell (Kartell) 6.4. dynasche Spele 6.5. Bertrand-Modell generelle Modellannahen gegebene Anzahl von Fren (n der

Mehr

Definition des linearen Korrelationskoeffizienten

Definition des linearen Korrelationskoeffizienten Defnton des lnearen Korrelatonskoeffzenten r xy x y y r x xy y 1 x x y y x Der Korrelatonskoeffzent st en Indkator dafür, we gut de Punkte (X,Y) zu ener Geraden passen. Sen Wert legt zwschen -1 und +1.

Mehr

Der Satz von COOK (1971)

Der Satz von COOK (1971) Der Satz von COOK (1971) Voraussetzung: Das Konzept der -Band-Turng-Maschne (TM) 1.) Notatonen: Ene momentane Beschrebung (mb) ener Konfguraton ener TM st en -Tupel ( α1, α2,..., α ) mt α = xqy, falls

Mehr

Die Jordansche Normalform

Die Jordansche Normalform De Jordansche Normalform Danel Hug 29. Aprl 211 KIT Unverstät des Landes Baden-Württemberg und natonales Forschungszentrum n der Helmholtz-Gemenschaft www.kt.edu 1 Zerlegung n Haupträume 2 Fazt und nächstes

Mehr

e dt (Gaußsches Fehlerintegral)

e dt (Gaußsches Fehlerintegral) Das Gaußsche Fehlerntegral Φ Ac 5-8 Das Gaußsche Fehlerntegral Φ st denert als das Integral über der Standard-Normalvertelung j( ) = -,5 n den Grenzen bs, also F,5 t ( ) = - e dt (Gaußsches Fehlerntegral)

Mehr

19 Oligopoltheorie. Der Gewinn eines Unternehmens hängt von den Entscheidungen der anderen Unternehmen ab.

19 Oligopoltheorie. Der Gewinn eines Unternehmens hängt von den Entscheidungen der anderen Unternehmen ab. 9 Olgooltheore Der Gewnn enes Unternehens hängt von den Entschedungen der anderen Unternehen ab. De otale Entschedung enes Unternehens hängt von sener Erwartung über de Entschedungen der anderen Unternehen

Mehr

Übungsklausur zur Vorlesung Wahrscheinlichkeit und Regression Lösungen. Übungsklausur Wahrscheinlichkeit und Regression Die Lösungen

Übungsklausur zur Vorlesung Wahrscheinlichkeit und Regression Lösungen. Übungsklausur Wahrscheinlichkeit und Regression Die Lösungen Übungsklausur Wahrschenlchket und Regresson De Lösungen. Welche der folgenden Aussagen treffen auf en Zufallsexperment zu? a) En Zufallsexperment st en emprsches Phänomen, das n stochastschen Modellen

Mehr

3. Lineare Algebra (Teil 2)

3. Lineare Algebra (Teil 2) Mathematk I und II für Ingeneure (FB 8) Verson /704004 Lneare Algebra (Tel ) Parameterdarstellung ener Geraden Im folgenden betrachten wr Geraden m eukldschen Raum n, wobe uns hauptsächlch de Fälle n bzw

Mehr

Z Z, kurz { } Zählt die Reihenfolge der Buchstaben (ja/nein) Daraus ergeben sich wiederum vier Möglichkeiten, Wörter der Länge k zu bilden.

Z Z, kurz { } Zählt die Reihenfolge der Buchstaben (ja/nein) Daraus ergeben sich wiederum vier Möglichkeiten, Wörter der Länge k zu bilden. Kombnator. Problemstellung Ausgangspunt be ombnatorschen Fragestellungen st mmer ene endlche Menge M, aus deren Elementen man endlche Zusammenstellungen von Elementen aus M bldet. Formal gesprochen bedeutet

Mehr

5 Gemischte Verallgemeinerte Lineare Modelle

5 Gemischte Verallgemeinerte Lineare Modelle 5 Gemschte Verallgemenerte Lneare Modelle Wr betrachten zunächst enge allgemene Aussagen für Gemschte Verallgemenerte Lneare Modelle. Se y der beobachtbare Zufallsvektor und u der Vektor der ncht-beobachtbaren

Mehr

Gauss sche Fehlerrrechnung

Gauss sche Fehlerrrechnung Gauss sche Fehlerrrechnung T. Ihn 24. Oktober 206 Inhaltsverzechns Modell und Lkelhood 2 Alle Standardabwechungen σ snd bekannt, bzw. de Kovaranzmatrx der Daten st bekannt: Mnmeren der χ 2 -Funkton. 6

Mehr

Streuungs-, Schiefe und Wölbungsmaße

Streuungs-, Schiefe und Wölbungsmaße aptel IV Streuungs-, Schefe und Wölbungsmaße B... Lagemaße von äufgketsvertelungen geben allen weng Auskunft über ene äufgketsvertelung. Se beschreben zwar en Zentrum deser Vertelung, geben aber kenen

Mehr

1 BWL 4 Tutorium V vom 15.05.02

1 BWL 4 Tutorium V vom 15.05.02 1 BWL 4 Tutorum V vom 15.05.02 1.1 Der Tlgungsfaktor Der Tlgungsfaktor st der Kehrwert des Endwertfaktors (EWF). EW F (n; ) = (1 + )n 1 T F (n; ) = 1 BWL 4 TUTORIUM V VOM 15.05.02 (1 ) n 1 Mt dem Tlgungsfaktor(TF)

Mehr

Erwartungswert, Varianz, Standardabweichung

Erwartungswert, Varianz, Standardabweichung RS 24.2.2005 Erwartungswert_Varanz_.mcd 4) Erwartungswert Erwartungswert, Varanz, Standardabwechung Be jedem Glücksspel nteresseren den Speler vor allem de Gewnnchancen. 1. Bespel: Setzen auf 1. Dutzend

Mehr

Die Transzendenz der Eulerschen Zahl e

Die Transzendenz der Eulerschen Zahl e De Transzendenz der Eulerschen Zahl e nach Jean-Paul Delahaye Der n [1, Seten 21-22] skzzerte Bewes der Transzendenz der Eulerschen Zahl e wrd m folgenden ausgeführt. En alternatver Bewes, der auf Ideen

Mehr

wird auch Spannweite bzw. Variationsbreite genannt ist definiert als die Differenz zwischen dem größten und kleinsten Messwert einer Verteilung:

wird auch Spannweite bzw. Variationsbreite genannt ist definiert als die Differenz zwischen dem größten und kleinsten Messwert einer Verteilung: Streuungswerte: 1) Range (R) ab metrschem Messnveau ) Quartlabstand (QA) und mttlere Quartlabstand (MQA) ab metrschem Messnveau 3) Durchschnttlche Abwechung (AD) ab metrschem Messnveau 4) Varanz (s ) ab

Mehr

Rückblick Regression II: Anpassung an Polynome

Rückblick Regression II: Anpassung an Polynome Rückblck Regresson II: Anpassung an Polynome T. Keßlng: Auswertung von Messungen und Fehlerrechnung - Fehlerrechnung und Korrelaton 0.06.08 Vorlesung 0- Temperaturmessung mt Thermospannung Wr erhalten

Mehr

6. Modelle mit binären abhängigen Variablen

6. Modelle mit binären abhängigen Variablen 6. Modelle mt bnären abhänggen Varablen 6.1 Lneare Wahrschenlchketsmodelle Qualtatve Varablen: Bnäre Varablen: Dese Varablen haben genau zwe möglche Kategoren und nehmen deshalb genau zwe Werte an, nämlch

Mehr

Lehrstuhl für Empirische Wirtschaftsforschung und Ökonometrie Dr. Roland Füss Statistik II: Schließende Statistik SS 2007

Lehrstuhl für Empirische Wirtschaftsforschung und Ökonometrie Dr. Roland Füss Statistik II: Schließende Statistik SS 2007 Lehrstuhl für Emprsche Wrtschaftsforschung und Ökonometre Dr Roland Füss Statstk II: Schleßende Statstk SS 007 5 Mehrdmensonale Zufallsvarablen Be velen Problemstellungen st ene solerte Betrachtung enzelnen

Mehr

Fallstudie 1 Diskrete Verteilungen Abgabe: Aufgabentext und Lösungen schriftlich bis zum

Fallstudie 1 Diskrete Verteilungen Abgabe: Aufgabentext und Lösungen schriftlich bis zum Abgabe: Aufgabentext und Lösungen schrftlch bs zum 15. 6. 2012 I. Thema: Zehen mt und ohne Zurücklegen Lesen Se sch zunächst folgenden Text durch! Wr haben bsher Stchprobenzehungen aus Grundgesamtheten

Mehr

Kapitel V. Parameter der Verteilungen

Kapitel V. Parameter der Verteilungen Kaptel V Parameter der Vertelungen D. 5.. (Erwartungswert) Als Erwartungswert ener Zufallsvarablen X bezechnet man: E( X ) : Dabe se vorausgesetzt: = = + p falls X dskret f d falls X stetg und = + p

Mehr

Zufallsvariable, Wahrscheinlichkeitsverteilungen und Erwartungswert

Zufallsvariable, Wahrscheinlichkeitsverteilungen und Erwartungswert R. Brnkmann http://brnkmann-du.de Sete..8 Zufallsvarable, Wahrschenlchketsvertelungen und Erwartungswert Enführungsbespel: Zwe Würfel (en blauer und en grüner) werden 4 mal zusammen geworfen. De Häufgketen

Mehr

Spieltheoretische Grundlagen

Spieltheoretische Grundlagen Vortrag : Speltheoretsche Grundlagen Gegenstand der Speltheore: Entschedungsstuatonen, n denen das Ergebns von den Entschedungen mehrerer, nteragerender Wrtschaftssubjekten abhängg st. Strategsche Interakton

Mehr

Hefte zur Logistik Prof. Dr. Siegfried Jetzke. Heft 1 Begriffsdefinitionen

Hefte zur Logistik Prof. Dr. Siegfried Jetzke. Heft 1 Begriffsdefinitionen Hefte zur Logstk Prof. Dr. Segfred Jetzke Heft 1 Begrffsdefntonen Jun 2010 Deses Heft st urheberrechtlch geschützt. Wenn Se de Quelle angeben, können Se gerne deses Heft wetergeben, Tele koperen oder aus

Mehr

1.1 Das Prinzip von No Arbitrage

1.1 Das Prinzip von No Arbitrage Fnanzmärkte H 2006 Tr V Dang Unverstät Mannhem. Das Prnzp von No Arbtrage..A..B..C..D..E..F..G..H Das Framework Bespele Das Fundamental Theorem of Fnance Interpretaton des Theorems und Zustandsprese No

Mehr

Eine kurze Einführung in die Dichtefunktionaltheorie (DFT)

Eine kurze Einführung in die Dichtefunktionaltheorie (DFT) Ene kurze Enführung n de Dchtefunktonaltheore (DFT) Mchael Martns Lteratur: W. Koch, M.C. Holthausen A Chemst s Gude to Densty Functonal Theory Wley-VCH 2001 Dchtefunktonaltheore p.1 Enletung Im Falle

Mehr

Zwei Sätze von Joseph Wolstenholme. Johann Cigler

Zwei Sätze von Joseph Wolstenholme. Johann Cigler Zwe Sätze von Joseh Wolstenholme Johann Cgler Vor enger Zet sandte mr Herr P., en hlosohsch gebldeter älterer Mann, enge Bemerkungen zu enem Resultat von Joseh Wolstenholme, das er folgendermaßen formulerte:

Mehr

AUFGABEN ZUR INFORMATIONSTHEORIE

AUFGABEN ZUR INFORMATIONSTHEORIE AUFGABEN ZUR INFORMATIONSTHEORIE Aufgabe Wr betrachten das folgende Zufallsexperment: Ene fare Münze wrd so lange geworfen, bs erstmals Kopf erschent. De Zufallsvarable X bezechne de Anzahl der dazu notwendgen

Mehr

Übung zu Erwartungswert und Standardabweichung

Übung zu Erwartungswert und Standardabweichung Aufgabe Übung zu Erwartungswert und Standardabwechung In ener Lottere gewnnen 5 % der Lose 5, 0 % der Lose 0 und 5 % der Lose. En Los kostet 2,50. a)berechnen Se den Erwartungswert für den Gewnn! b)der

Mehr

Analysis I. Vorlesung 17. Logarithmen. R R, x exp x,

Analysis I. Vorlesung 17. Logarithmen. R R, x exp x, Prof. Dr. H. Brenner Osnabrück WS 2013/2014 Analyss I Vorlesung 17 Logarthmen Satz 17.1. De reelle Exponentalfunkton R R, x exp x, st stetg und stftet ene Bjekton zwschen R und R +. Bewes. De Stetgket

Mehr

Dynamisches Programmieren

Dynamisches Programmieren Marco Thomas - IOI 99 -. Treffen n Bonn - Dynamsches Programmeren - Unverstät Potsdam - 8.02.999 Dynamsches Programmeren 957 R. Bellmann: Dynamc Programmng für math. Optmerungsprobleme Methode für Probleme,.

Mehr

Einführung in die Wahrscheinlichkeitsrechnung. Wahrscheinlichkeitsrechnung. Übersicht. Wahrscheinlichkeitsrechnung. bedinge Wahrscheinlichkeit

Einführung in die Wahrscheinlichkeitsrechnung. Wahrscheinlichkeitsrechnung. Übersicht. Wahrscheinlichkeitsrechnung. bedinge Wahrscheinlichkeit Enführung n de bednge Wahrschenlchket Laplace-Wahrschenlchket p 0.56??? Zufallsexperment Randwahrschenlchket Überscht Was st Wahrschenlchket? Rechenregeln Der Multplkatonssatz Axomatsche Herletung Unabhänggket

Mehr

Für jeden reinen, ideal kristallisierten Stoff ist die Entropie am absoluten Nullpunkt gleich

Für jeden reinen, ideal kristallisierten Stoff ist die Entropie am absoluten Nullpunkt gleich Drtter Hauptsatz der Thermodynamk Rückblck auf vorherge Vorlesung Methoden zur Erzeugung tefer Temperaturen: - umgekehrt laufende WKM (Wärmepumpe) - Joule-Thomson Effekt bs 4 K - Verdampfen von flüssgem

Mehr

Die Annäherung der Binomialverteilung durch die Normalverteilung am Beispiel eines Modells der Schadenversicherung

Die Annäherung der Binomialverteilung durch die Normalverteilung am Beispiel eines Modells der Schadenversicherung am Bespel enes Modells der chadenverscherung Für das Modell ener chadenverscherung se gegeben: s w s. n 4 chaden enes Verscherungsnehmers, wenn der chadenfall entrtt Wahrschenlchket dafür, dass der chadenfall

Mehr

Verteilungen eindimensionaler diskreter Zufallsvariablen

Verteilungen eindimensionaler diskreter Zufallsvariablen Vertelungen endmensonaler dskreter Zufallsvarablen Enführung Dskrete Vertelungen Dskrete Glechvertelung Bernoull-Vertelung Bnomalvertelung Bblografe: Prof. Dr. Kück Unverstät Rostock Statstk, Vorlesungsskrpt,

Mehr

9 Komplexe Zahlen ( ) ( ) 9.1 Ziele. 9.2 Warum braucht man komplexe Zahlen? 9.3 Darstellung von komplexen Zahlen. r 2. j 2. j 1.

9 Komplexe Zahlen ( ) ( ) 9.1 Ziele. 9.2 Warum braucht man komplexe Zahlen? 9.3 Darstellung von komplexen Zahlen. r 2. j 2. j 1. Mathematk I / Komplexe Zahlen 9 Komplexe Zahlen 9. Zele Am Ende deses Kaptels hast Du ene Grundvorstellung was komplexe Zahlen snd. Du kannst se grafsch darstellen und enfache Berechnungen durchführen.

Mehr

Das Krümelmonsterproblem

Das Krümelmonsterproblem Projekttage Mathematk 008 Das Krümelmonsterproblem Gruppe 6: Prof Dr Wrth Telnehmer: Judth Albert, Stefan Blank, Stefan Ehrlch, Jürgen Feser, Zofa Fleszar, Klan Hohm, Danny Powroznk, Anton Specht Betreuer:

Mehr

Lösungen der Aufgaben zu Kapitel 2

Lösungen der Aufgaben zu Kapitel 2 Lösungen der Aufgaben zu Kaptel Abschntt 1 Aufgabe 1 Wr benutzen de Potenzrechenregeln, um ene Potenz von mt geradem Eponenten n oder mt ungeradem Eponenten n + 1 we folgt darzustellen: n n und n+1 n n

Mehr

9 Komplexe Zahlen ( ) ( ) 9.1 Ziele. 9.2 Warum braucht man komplexe Zahlen? 9.3 Darstellung von komplexen Zahlen. r 2. j 2. j 1.

9 Komplexe Zahlen ( ) ( ) 9.1 Ziele. 9.2 Warum braucht man komplexe Zahlen? 9.3 Darstellung von komplexen Zahlen. r 2. j 2. j 1. Mathematk I / Komplexe Zahlen 9 Komplexe Zahlen 9. Zele Am Ende deses Kaptels hast Du ene Grundvorstellung was komplexe Zahlen snd. Du kannst se grafsch darstellen und enfache Berechnungen durchführen.

Mehr

16. Vorlesung Sommersemester

16. Vorlesung Sommersemester 16. Vorlesung Sommersemester 1 Das Egenwertproblem In allgemener Form hat das Egenwertproblem de Form A x = λ x, (1) wobe A ene n n-matrx, x en n-dmensonaler Vektor und λ der Egenwert st (n Englsch: egenvector,

Mehr

Wer tauscht gewinnt nicht

Wer tauscht gewinnt nicht Wer tauscht gewnnt ncht GERD RIEHL, RSINGHUSEN Zusammenfassung: usgehend von Smulatonen wrd das Paradoxon der zwe Umschläge, das Löwe (3) unter dem Ttel Wer tauscht gewnnt behandelt hat, genauer analysert.

Mehr

Invariantentheorie. Vorlesung 3. Lineare Operationen

Invariantentheorie. Vorlesung 3. Lineare Operationen Prof. Dr. H. Brenner Osnabrück WS 2012/2013 Invarantentheore Vorlesung 3 Lneare Operatonen Ene Operaton ener Gruppe G auf ener (geometrschen) Menge M st das gleche we en Gruppenhomomorphsmus der Gruppe

Mehr

Lineare Optimierung Dualität

Lineare Optimierung Dualität Kaptel Lneare Optmerung Dualtät D.. : (Dualtät ) Folgende Aufgaben der lnearen Optmerung heßen symmetrsch dual zuenander: und { z = c x Ax b x } max, 0 { Z b A c } mn =, 0. Folgende Aufgaben der lnearen

Mehr

Seminar Analysis und Geometrie Professor Dr. Martin Schmidt - Markus Knopf - Jörg Zentgraf. - Fixpunktsatz von Schauder -

Seminar Analysis und Geometrie Professor Dr. Martin Schmidt - Markus Knopf - Jörg Zentgraf. - Fixpunktsatz von Schauder - Unverstät Mannhem Fakultät für Mathematk und Informatk Lehrstuhl für Mathematk III Semnar Analyss und Geometre Professor Dr. Martn Schmdt - Markus Knopf - Jörg Zentgraf - Fxpunktsatz von Schauder - Ncole

Mehr

Näherungsverfahren. Wiederhole den Algorithmusbegriff. Erläutere die Begriffe: Klasse der NP-Probleme. Probleme. Probleme. Approximative Algorithmen

Näherungsverfahren. Wiederhole den Algorithmusbegriff. Erläutere die Begriffe: Klasse der NP-Probleme. Probleme. Probleme. Approximative Algorithmen Näherungsverfahren Wederhole den Algorthmusbegrff. Erläutere de Begrffe: Klasse der P-ProblemeP Probleme Klasse der NP-Probleme Probleme Approxmatve Algorthmen Stochastsche Algorthmen ALGORITHMEN Def.:

Mehr

1 Definition und Grundbegriffe

1 Definition und Grundbegriffe 1 Defnton und Grundbegrffe Defnton: Ene Glechung n der ene unbekannte Funkton y y und deren Abletungen bs zur n-ten Ordnung auftreten heßt gewöhnlche Dfferentalglechung n-ter Ordnung Möglche Formen snd:

Mehr

NSt. Der Wert für: x= +1 liegt, erkennbar an dem zugehörigen Funktionswert, der gesuchten Nullstelle näher.

NSt. Der Wert für: x= +1 liegt, erkennbar an dem zugehörigen Funktionswert, der gesuchten Nullstelle näher. PV - Hausaugabe Nr. 7.. Berechnen Se eakt und verglechen Se de Werte ür de Nullstelle, de mttels dem Verahren von Newton, der Regula als und ener Mttelung zu erhalten snd von der! Funkton: ( ) Lösungs

Mehr

Auswertung univariater Datenmengen - deskriptiv

Auswertung univariater Datenmengen - deskriptiv Auswertung unvarater Datenmengen - desrptv Bblografe Prof. Dr. Küc; Statst, Vorlesungssrpt Abschntt 6.. Bleymüller/Gehlert/Gülcher; Statst für Wrtschaftswssenschaftler Verlag Vahlen Bleymüller/Gehlert;

Mehr

Proseminar Spieltheorie SS 2006 Ausarbeitung zum Vortrag Allgemeine Zwei-Personenspiele am Vortragender: Florian Leiner

Proseminar Spieltheorie SS 2006 Ausarbeitung zum Vortrag Allgemeine Zwei-Personenspiele am Vortragender: Florian Leiner Prosemnar Speltheore SS 2006 Ausarbetung zum Vortrag Allgemene Zwe-Personenspele am 06.07.2006 Vortragender: Floran Lener Der Vortrag basert auf dem entsprechenden Kaptel wo-person general-sum games aus

Mehr

Diskrete Mathematik 1 WS 2008/09

Diskrete Mathematik 1 WS 2008/09 Ruhr-Unverstät Bochum Lehrstuhl für Kryptologe und IT-Scherhet Prof. Dr. Alexander May M. Rtzenhofen, M. Mansour Al Sawad, A. Meurer Lösungsblatt zur Vorlesung Dskrete Mathematk 1 WS 2008/09 Blatt 7 /

Mehr

8. MARKOVKETTEN 127. Abbildung 8.1: Reduzible und periodische Markovkette. p ji IIP[X n 1 = j] = [(IIP[X n 1 = j]) j E P ] i. j=0

8. MARKOVKETTEN 127. Abbildung 8.1: Reduzible und periodische Markovkette. p ji IIP[X n 1 = j] = [(IIP[X n 1 = j]) j E P ] i. j=0 8. MARKOVKETTEN 17 8. Marovetten Abbldung 8.1: Reduzble und perodsche Marovette 8.1. Homogene Marovetten n dsreter Zet En Prozess {X n : n IIN} hesst homogene Marovette (n dsreter Zet) mt (abzählbarem)

Mehr

11 Charaktere endlicher Gruppen

11 Charaktere endlicher Gruppen $Id: chaakte.tex,v.4 2009/07/3 4:38:36 hk Exp $ Chaaktee endlche Guppen W hatten gesehen, dass w fü enge Guppen G allen mt Hlfe des Satz 3 de Anzahl und de Dmensonen de eduzblen Dastellungen beechnen können.

Mehr

4.5 Lemma Das folgende Problem Par{ 1, 0, 1}max p ist NP-vollständig:

4.5 Lemma Das folgende Problem Par{ 1, 0, 1}max p ist NP-vollständig: 4.5 Lemma Das folgende Problem Par, 0, }max st NP-vollständg: Inut: d, m N mt m d, α N und x,...,x m, 0, } d l.u.. Frage: Exsteren κ,...,κ m, }, sodass m κ x α? Bemerkung: Beachte, dass wegen Satz 4.2

Mehr

Wer tauscht gewinnt nicht

Wer tauscht gewinnt nicht Wer tauscht gewnnt ncht GERD RIEHL, RSINGHUSEN Zusammenfassung: usgehend von Smulatonen wrd das Paradoxon der zwe Umschläge, das Löwe (3) unter dem Ttel Wer tauscht gewnnt behandelt hat, genauer analysert.

Mehr

18. Vorlesung Sommersemester

18. Vorlesung Sommersemester 8. Vorlesung Sommersemester Der Drehmpuls des starren Körpers Der Drehmpuls des starren Körpers st etwas komplzerter. Wenn weder de Wnkelgeschwndgket um de feste Rotatonsachse st, so wrd mt Hlfe des doppelten

Mehr

Übungsblatt 4 - Lösung

Übungsblatt 4 - Lösung Formle Sprchen und Automten Üungsltt 4 - Lösung 26. M 2013 1 Whr oder flsch? Begründe kurz dene Antwort! 1. In enem determnstschen endlchen Automten gt es für jedes Wort w Σ mxml enen kzepterenden Pfd.

Mehr

Numerische Methoden II

Numerische Methoden II umersche Methoden II Tm Hoffmann 23. Januar 27 umersche Bespele umersche Methoden zur Approxmaton von Dervatpresen: - Trnomsche Gttermethode - Implzte Fnte Dfferenzen - Explzte Fnte Dfferenzen - Crank-colson

Mehr

Wechselstrom. Dr. F. Raemy Wechselspannung und Wechselstrom können stets wie folgt dargestellt werden : U t. cos (! t + " I ) = 0 $ " I

Wechselstrom. Dr. F. Raemy Wechselspannung und Wechselstrom können stets wie folgt dargestellt werden : U t. cos (! t +  I ) = 0 $  I Wechselstrom Dr. F. Raemy Wechselspannung und Wechselstrom können stets we folgt dargestellt werden : U t = U 0 cos (! t + " U ) ; I ( t) = I 0 cos (! t + " I ) Wderstand m Wechselstromkres Phasenverschebung:!"

Mehr

Induktive Strombegrenzung für AC-gespeiste SGTC mit netzsynchroner rotierender Funkenstrecke

Induktive Strombegrenzung für AC-gespeiste SGTC mit netzsynchroner rotierender Funkenstrecke Induktve Strombegrenung für AC-gespeste SGTC mt netsynchroner roterender Funkenstrecke Es wrd von ener SGTC ausgegangen, welche mt ener 5 H-netfrequen-synchron roterenden prmären Funkenstrecke ausgestattet

Mehr

12 LK Ph / Gr Elektrische Leistung im Wechselstromkreis 1/5 31.01.2007. ω Additionstheorem: 2 sin 2 2

12 LK Ph / Gr Elektrische Leistung im Wechselstromkreis 1/5 31.01.2007. ω Additionstheorem: 2 sin 2 2 1 K Ph / Gr Elektrsche estng m Wechselstromkres 1/5 3101007 estng m Wechselstromkres a) Ohmscher Wderstand = ˆ ( ω ) ( t) = sn ( ω t) t sn t ˆ ˆ P t = t t = sn ω t Momentane estng 1 cos ( t) ˆ ω = Addtonstheorem:

Mehr

Hauptprüfung Abiturprüfung 2014 (ohne CAS) Baden-Württemberg

Hauptprüfung Abiturprüfung 2014 (ohne CAS) Baden-Württemberg Hauptprüfung Abturprüfung 2014 (ohne CAS) Baden-Württemberg Lneare Optmerung Hlfsmttel: GTR, Formelsammlung beruflche Gymnasen (AG, BTG, EG, SG, TG, WG) Alexander Schwarz www.mathe-aufgaben.com Oktober

Mehr

3.3 Lineare Abbildungen und Matrizen

3.3 Lineare Abbildungen und Matrizen 33 LINEARE ABBILDUNGEN UND MATRIZEN 87 33 Lneare Abbldungen und Matrzen Wr wollen jetzt de numersche Behandlung lnearer Abbldungen zwschen Vektorräumen beschreben be der vorgegebene Basen de Hauptrolle

Mehr

Gruppe. Lineare Block-Codes

Gruppe. Lineare Block-Codes Thema: Lneare Block-Codes Lneare Block-Codes Zele Mt desen rechnerschen und expermentellen Übungen wrd de prnzpelle Vorgehenswese zur Kanalcoderung mt lnearen Block-Codes erarbetet. De konkrete Anwendung

Mehr