Kurven und Bogenlänge

Größe: px
Ab Seite anzeigen:

Download "Kurven und Bogenlänge"

Transkript

1 Kpitel 3 Kurven und Bogenlänge 3.1 Motivtion Der Begriff der Kurve in der Ebene oder im Rum spielt in den Nturwissenschften, insbesondere der Physik, Technik (Robotik) und der Informtik (Computergrphik) eine trgende Rolle. Neben der Berechnung von Flächen und Volumin ist die Definition / Ermittlung der Länge von Kurven eine weitere wichtige Anwendung der Integrlrechnung. 3. Definition: (Prmetrisierte Kurve) Eine (prmetrisierte) Kurve im R n ist eine Abbildung c : [, b] R n t (x 1 (t),..., x n (t)) T : x 1 (t). x n (t) deren Komponentenfunktionen x 1,..., x n : [, b] R stetig sind. c heißt differenzierbr (stetig differenzierbr, C 1 -Kurve), wenn lle x i differenzierbr (stetig differenzierbr) sind. Mn definiert, ċ(t) : ( dx1 dt (t),..., dx ) T n dt (t). Ds Bild c([, b]) heißt Spur von c. Bewegung eines Punktes im Rum, c(t) ls Ort des Punktes zur Zeit t. 37

2 3.3 Beispiele () Ellipse mit Huptchsen und b: x(t) cos t y(t) b sin t Aus cos t + sin t 1 folgt die Spurgleichung x + y b 1. (b) (c) Zykloide Kurve eines Rndpunktes eines Kreises, der uf einer Gerden brollt. x(t) t sin(t) y(t) 1 cos(t) ( ) ( ) x(t) t Überlgerung des Mittelpunktsbewegung ( ) ( y(t) ) 1 x(t) sin(t) und einer Kreisbewegung im Uhrzeigensinn. y(t) cos(t) Schrubenlinie c(t) (r cos t, r sin t, h t) T, t R. Überlgerung einer Kreisbewegung mit Rdius r in der x y Ebene und einer lineren Bewegung in z-richtung. 3.4 Definition: (Prmeterwechsel, Umprmetrisierung) Ist c : [, b] R n eine Kurve und h : [α, β] [, b] eine stetige, bijektive und monoton wchsende Abbildung, so ht die neue Kurve c(τ) : c(h(τ)), τ [, b] die selbe Spur und den selben Durchlufsinn von c. Mn nennt t h(τ) einen Prmeterwechsel (oder Umprmetrisierung). Kurven, die durch einen Prmeterwechsel useinnder hervorgehen, werden ls gleich ngesehen. Ist c stetig differenzierbr, so werden nur stetig differenzierbre Funktionen h : [α, β] [, b] mit h (τ) > ls Prmeterwechsel zugelssen (C 1 -Prmeterwechsel). 38

3 3.5 Bemerkung: Verschiedene Kurvenprmetrisierungen können zur selben Spur führen: c 1 (t) : (cos t, sin t), t [, π] und c (t) : (cos t, sin t), t [, π] hben den Einheitskreis ls Spur, unterscheiden sich ber im Durchlufsinn. Bogenlänge einer Kurve wichtige Anwendung der Integrlrechnung uf Kurven. Motivierendes Beispiel: (Kreisumfng) Approximiere Kreis durch einbeschriebene regelmäßige n -Ecke (n ). Ihre Umfänge S n wchsen monoton in n und sind z.b. durch den Umfng eines umbeschriebenen Qudrts nch oben beschränkt. Somit existiert sup(s n ). n Es definiert den Kreisumfng. Allgemein: 39

4 Approximiere die Kurve c(t) durch einen Polygonzug. Für eine Zerlegung Z { t < t 1 <... < t m b} von [, b] ist seine Länge gegeben durch L(Z) Dbei bezeichnet (x 1,..., x n ) T : n (x 1,..., x n ) T. c(t i+1 ) c(t i ). x i die euklidische Norm eines Vektors 3.6 Definition: (Länge, Rektifizierbrkeit einer Kurve) Es bezeichne Z[, b] die Menge ller Zerlegungen von Z[, b]. Ist die Menge {L(Z) Z Z[, b]} nch oben beschränkt, so heißt die Kurve c rektifizierbr, und heißt die Länge der Kurve c. L(c) : sup{l(z) Z Z[, b]} 3.7 Stz: Jede C 1 -Kurve c : [, b] R n ist rektifizierbr, und es gilt Beweis: Für eine Zerlegung Z gilt: L(c) : b ċ(t) dt. L(Z) c(t i+1 ) c(t i ) n (x k (t i+1 ) x k (t i )) Def. der euklid. Norm k1 n (ẋ k (τ ki )) (t i+1 t i ) Mittelwertstz k1 4

5 mit τ ki [t i, t i+1 ]. Für die zu Z gehörende Rechtecksumme R(Z) von R(Z) b n (ẋ k (t i )) (t i+1 t i ) k1 ċ(t) dt gilt: Zur Abschätzung von L(Z) R(Z) verwenden wir die gleichmäßige Stetigkeit der ẋ k (t) uf dem Kompktum [, b]: ɛ > δ > : t t < δ ẋ k ( t) ẋ k (t) < ɛ, k 1,..., n. Gilt nun für gegebenes ɛ >, dss die Feinheit Z der Zerlegung Z < δ erfüllt, so folgt dmit L(Z) R(Z) n (ẋ k (τ ki )) n (ẋ k (t i )) (t i+1 t i ) k1 k1 Ungl. n (ẋ k (τ ki )) n (ẋ k (t i )) k1 k1 (t i+1 t i ) n (ẋ k (τ ki ) ẋ k (t i )) (t i+1 t i ) ( ) ( ) k1 denn mn zeigt für die eukl. Norm: b b ) n (t i+1 t i ) k1 ɛ }{{} n ɛ n ɛ(b ) für ɛ. 3.8 Beispiel: ( x(t) Kreisumfng: c(t) y(t) ) ( r cos t r sin t ), t [, π] L(c) ċ(t) ċ(t) L(c) π ċ(t) dt ( ) ( ) ẋ(t) r sin t ẏ(t) r cos t r sin t + r cos t r (sin t + cos t) r π r dt πr. stimmt 41

6 Wrum ist die Kurvenlänge wichtig? 3.9 Lemm: (Prmetrisierungsinvrinz) Die Länge einer C 1 -Kurve ist prmetrisierungsinvrint. Beweis: Mit einem C 1 -Prmeterwechsel h : [α, β] [, b] gilt ufgrund der Substitutionsregel β L(c h) α ċ(h(τ)) h (τ) }{{} dτ (Kettenregel) τβ τα tb t L(c). > ċ(h(τ)) h (τ) dt }{{} d t ċ(t) dt (Substitutionsregel) 3.1 Definition: (Bogenlängenfunktion) Es sei c : [, b] R n eine C 1 -Kurve. Die Funktion s(t) : heißt Bogenlängenfunktion von c. t ċ(τ) dτ t [, b] Bedeutung: Reprmetrisiert mn eine Kurve mit ihrer Bogenlänge (Bogenlängenprmetrisierung), so vereinfchen sich viele Formeln Definition: (Tngentilvektor, Tngenteneinheitsvektor) Es sei c : [, b] R n eine C 1 -Kurve. Dnn nennt mn ċ(t) (ẋ 1 (t),..., ẋ n (t)) T uch Tngentilvektor (Geschwindigkeitsvektor) der Kurve c n der Stelle t. Für ċ(t) heißt T c (t) : ċ(t) ċ(t) der Tngenteneinheitsvektor. 4

7 Bemerkung: Bei Bogenlängenprmetrisierung (!) ist ċ(t) 1, d.h. T c (s) : ċ(s) ist bereits Tngenteneinheitsvektor. Aus 1 ċ(s) (ẋ 1 (s)) + (ẋ (s)) (ẋ n (s)) folgt durch Differentition nch der Bogenlänge s: ẋ 1 ẍ 1 + ẋ ẍ ẋ n ẍ n ẋ 1. ẋ n, ẍ 1. ẍ n (Hierbei beschreibt, ds Sklrprodukt in R n.) Somit steht bei Bogenlängenprmetrisierung der Beschleunigungsvektor c(s) ( ) ẍ(s) senkrecht uf dem Geschwindigkeitsvektor ċ(s). ÿ(s) Mn bezeichnet N(s) : c(t) c(t) ls Huptnormlenvektor von c, und κ(s) : c(t) ls Krümmung von c. 3.1 Beispiel: Krümmung eines Kreises mit Rdius r 43

8 Kreis in Bogenlängenprmetrisierung: x(s) m 1 + r cos s r y(s) m + r sin s r ẋ(s) sin s r ẏ(s) cos s r ẍ(s) 1 r cos s r ÿ(s) 1 r sin s r κ ẍ + ÿ 1 r cos s r + 1 r sin s r 1 r Bemerkung: Allgemein gilt: Die Krümmung gibt den reziproken Rdius des Kreises n, der sich n der Stelle t n die Kurve c(t) nschmiegt (Schmiegkreis, uch Krümmungskreis). Der Schmiegkreis besitzt dieselbe Tngente und dieselbe Krümmung wie die Kurve Die Sektorfläche Ziel: Bestimmung des Flächeninhlts, der den Fhrstrhl von nch c(t) für t [, b] überstreicht. Methode: pproximiere Dreiecksflächen 44

9 Zerlegung Z {t < t 1 <... < t n b} Mn knn zeigen (z.b. us dem Schulunterricht beknnt): ( ) xi Die Fläche des durch die Eckpunkte, c(t i ), c(t y i+1 ) i festgelegten Dreiecks beträgt Die Gesmtfläche beträgt dher 1 x iy i+1 x i+1 y i A(Z) 1 n 1 (x i y i+1 x i+1 y i ) ( xi+1 y i+1 ) geeignete Orientierung der Dreiecke vorusgesetzt (so dss Beträge entfllen können). Deswegen wird im Folgenden ein orientierter Flächeninhlt eingeführt Definition: (Orientierter Flächeninhlt) Der Fhrstrhl n die Kurve c : [, b] R überstreicht den orientierten Flächeninhlt F (c), wenn es zu jedem ɛ > ein δ > gibt, so dss für jede Zerlegung Z von [, b] mit Z δ gilt A(Z) F (c) ɛ Stz: (Sektorformel von LEIBNIZ) Sei c : [, b] R eine stetig differenzierbre Kurve. Dnn überstreicht der Ortsvektor c(t) im Zeitintervll t [, b] die Fläche Beweis: F (c) 1 b (xẏ yẋ) dt 45

10 Ähnlich zum Beweis von Stz 3.7 uf Seite 4 Nch dem Mittelwertstz der Differentilrechnung gibt es in (t i, t i+1 ) stellen τ i und τ i mit x i+1 x i ẋ(τ i )(t i+1 t i ) y i+1 y i ẏ(τ i )(t i+1 t i ). } ( ) Somit gilt für die Summen der Dreiecksflächen A(Z) 1 n 1 (x i y i+1 x i+1 y i ) 1 n 1 x i y i+1 x i y i + x i y i x i+1 y i }{{}}{{} x i(y i+1 y i) y i(x i+1 x i) ( ) n 1 (x i ẏ( τ i ) y i ẋ(τ i )) (t i+1 t i ) Wir vergleichen A(Z) mit der Riemnn-Summe R(Z) 1 n 1 (x i ẏ i y i ẋ i )(t i+1 t i ). Sei ɛ > gegeben und δ > so gewählt, dss gilt: (i) Für jede Zerlegung Z mit Z δ ist R(Z) 1 b xẏ yẋ dt ɛ (ii) Für lle Pre t, s [, b] mit t s δ ist } ẋ(t) ẋ(s) ɛ Stetigkeit von ẋ, ẏ ẏ(t) ẏ(s) ɛ Es sei Z Zerlegung von [, b] mit Z δ. Ferner sei M obere Schrnke für x(t) und y(t) uf [, b]. Dnn gilt: A(Z) R(Z) M n 1 ( ẏ( τ i ẏ i ) + ẋ(τ i ) ẋ i ) (t i+1 t i ) n 1 ɛm (t i+1 t i ) ɛm(b ). Zusmmen mit (i) ergibt sich A(Z) 1 b (xẏ yẋ) dt A(Z) R(Z) + R(Z) 1 b ɛ(m(b ) + 1) für ɛ 46 (xẏ yẋ) dt

11 Nch Def uf Seite 45 folgt hierus die Behuptung Beispiele () Der Fhrstrhl n den orientierten Kreisbogen x r cos t überstreicht die orientierte Fläche 1 φ (xẏ yẋ) dt 1 y r sin t t [, φ] φ Für φ π ergibt sich die Kreisfläche πr. r cos t r cos t + r sin t r sin t dt r φ. (b) Der Fhrstrhl n den Zykloidenbogen x t sin t überstreicht die (orientierte) Fläche 1 π y 1 cos t t [, π] ((t sin t) sin t (1 cos t) ) dt π (Negtiv, wegen mthemtisch negtiven Drehsinn) t sin t sin t 1 + cos t cos t dt [ t cos t]π + 1 π 3 cos t dt [ t cos t + 3 sin t t]π 3π. 47

12 48

10.2 Kurven und Bogenlänge

10.2 Kurven und Bogenlänge 10.2 Kurven und Bogenlänge Definition: Sei c = (c 1,..., c n ) : [, b] R n eine stetige Funktion. Dnn wird c ls Kurve im R n bezeichnet; c() heißt Anfngspunkt, c(b) heißt Endpunkt von c. c heißt geschlossene

Mehr

Parameterabhängige uneigentliche Integrale.

Parameterabhängige uneigentliche Integrale. Kpitel 9: Integrtion Prmeterbhängige uneigentliche Integrle. F(x) := Beispiel: Die Gmm-Funktion: Γ(x) := Definition: Ds uneigentliche Integrl für x I. e t t x 1 dt. für x I heißt gleichmäßig konvergent,

Mehr

Lokale Extrema von Funktionen mehrerer Variabler

Lokale Extrema von Funktionen mehrerer Variabler Kapitel 11 Lokale Extrema von Funktionen mehrerer Variabler Bemerkung 11.1 Motivation. Bei skalarwertigen Funktionen einer Variablen gibt es notwendige und hinreichende Bedingungen für das Vorliegen von

Mehr

12 Parametrisierte Kurven

12 Parametrisierte Kurven Vorlesung SS 9 Anlysis Prof. Dr. Siegfried Echterhoff 1 Prmetrisierte Kurven In diesem Abschnitt wollen wir intensiver um die Geometrie von prmetrisierten Kurven (Wegen im R n befssen. Zur Erinnerung wiederholen

Mehr

Mathematik II. Vorlesung 41. Satz Es sei f :[a,b] R n, t f(t), eine differenzierbare Kurve. Dann gibt es ein c [a,b] mit

Mathematik II. Vorlesung 41. Satz Es sei f :[a,b] R n, t f(t), eine differenzierbare Kurve. Dann gibt es ein c [a,b] mit Prof. Dr. H. Brenner Osnbrück SS 1 Mthemtik II Vorlesung 41 Die Mittelwertbschätzung für differenzierbre Kurven Stz 41.1. Es sei f :[,b] R n, t f(t), eine differenzierbre Kurve. Dnn gibt es ein c [,b]

Mehr

9.6 Parameterabhängige Integrale

9.6 Parameterabhängige Integrale Kpitel 9: Integrtion 9.6 Prmeterbhängige Integrle Beispiel: Die Gmm-Funktion Γ(x) := f(x, t)dt = e t t x 1 dt. Zunächst: Prmeterbhängige eigentliche Integrle. Sei f : I [, b] R, I R, so dss f für festes

Mehr

3 Integration. viele Teilintervalle. Z (oder Z [a, b]) sei die Menge aller Zerlegungen von [a, b].

3 Integration. viele Teilintervalle. Z (oder Z [a, b]) sei die Menge aller Zerlegungen von [a, b]. Krlsruhe Institute of Technology 3 Integrtion (3.1) ) Z = {x,...,x n } mit = x < x 1 < < x n = b heißt eine Zerlegung von [,b] in endlich viele Teilintervlle. Z (oder Z [, b]) sei die Menge ller Zerlegungen

Mehr

π 2 r 2 r 2 sin 2 (t)r cos(t) dt π 2 cos2 (t) cos(t) dt = r 2 π dt = cos(x) sin(x) u v = cos(x) sin(x) + = cos(x) sin(x) + x

π 2 r 2 r 2 sin 2 (t)r cos(t) dt π 2 cos2 (t) cos(t) dt = r 2 π dt = cos(x) sin(x) u v = cos(x) sin(x) + = cos(x) sin(x) + x Wir substituieren x x(t) r sin(t), t [ π, π ]. Dnn ist x (t) r cos(t), lso r x dx π π r π r r sin (t)r cos(t) dt π cos (t) cos(t) dt r π π cos (t) dt Wir integrieren cos mittels prtieller Integrtion: Sei

Mehr

1.1 Der n-dimensionale Euklidische Raum. Die Struktur, die man so bekommt, werden wir allgemeiner beschreiben.

1.1 Der n-dimensionale Euklidische Raum. Die Struktur, die man so bekommt, werden wir allgemeiner beschreiben. A Anlysis, Woche Kurven I A. Der n-dimensionle Euklidische Rum A3 Drunter versteht mn für eine Zhl n N + R n := {x, x,..., x n ; mit x i R für lle i {,..., n}}. Ebenso gibt es uch C n := {z, z,..., z n

Mehr

6. Integration 6.1 Das Riemann-Integral

6. Integration 6.1 Das Riemann-Integral 6. Integrtion 6. Ds Riemnn-Integrl 6. Integrtion 6. Ds Riemnn-Integrl Mthemtik für Chemiker 6. Integrtion 6. Ds Riemnn-Integrl Flächenberechnung: Problemstellung und Lösungsidee Sei f : [, b] [0, ) eine

Mehr

Lösungsskizzen zur Präsenzübung 06

Lösungsskizzen zur Präsenzübung 06 Lösungsskizzen zur Präsenzübung 06 Mirko Getzin Universität Bielefeld Fkultät für Mthemtik 23. Mi 2014 Keine Gewähr uf vollständige Richtigkeit und Präzision ller (mthemtischen) Aussgen. Ds Dokument ht

Mehr

38 Das Riemann-Integral vektorwertiger Funktionen über [a, b]

38 Das Riemann-Integral vektorwertiger Funktionen über [a, b] 38 Ds Riemnn-Integrl vektorwertiger Funktionen über [, b] 38.2 Riemnn-Integrierbrkeit von Wegen 38.4 Ds Riemnn-Integrl ist eine linere Abbildung von R([, b], V ) in V 38.9 Integrlbschätzung 38.10 Huptstz

Mehr

1.2 Kurven. Definition Äquivalente Formulierungen der Differenzierbarkeit

1.2 Kurven. Definition Äquivalente Formulierungen der Differenzierbarkeit 1 1. Kurven Wir betrchten jetzt vektorwertige Funktionen von einer Veränderlichen. Eine Abbildung f = (f 1,..., f m ) : I R m heißt differenzierbr in t I, flls lle Komponentenfunktionen f 1,..., f m in

Mehr

Resultat: Hauptsatz der Differential- und Integralrechnung

Resultat: Hauptsatz der Differential- und Integralrechnung 17 Der Huptstz der Differentil- und Integrlrechnung Lernziele: Konzept: Stmmfunktion Resultt: Huptstz der Differentil- und Integrlrechnung Methoden: prtielle Integrtion, Substitutionsregel Kompetenzen:

Mehr

Stammfunktionen, Hauptsätze, unbestimmtes Integral

Stammfunktionen, Hauptsätze, unbestimmtes Integral Stmmfunktionen, Huptsätze, unbestimmtes Integrl Sei I ein Intervll, f beschränkt uf I und R-integrierbr für jedes [, b] I, und I. Dnn heißt die Funktion F mit D(F ) = I und F () = f(t)dt Integrl von f

Mehr

$Id: kurven.tex,v /12/03 19:13:57 hk Exp hk $ K ds = F (γ(t)) γ Summation des Vektorfeldes F in Bewegungsrichtung der Kurve γ

$Id: kurven.tex,v /12/03 19:13:57 hk Exp hk $ K ds = F (γ(t)) γ Summation des Vektorfeldes F in Bewegungsrichtung der Kurve γ Mthemtik für Ingenieure III, WS 9/1 Mittwoch.1 $Id: kurven.tex,v 1. 9/1/3 19:13:57 hk Exp hk $ 3 Kurven 3.3 Kurvenintegrle zweiter Art Wir htten ds vektorielle Kurvenintegrl ls K ds F ((t Summtion des

Mehr

Karlsruher Institut für Technologie (KIT) SS 2013 Institut für Analysis Prof. Dr. Tobias Lamm Dr. Patrick Breuning

Karlsruher Institut für Technologie (KIT) SS 2013 Institut für Analysis Prof. Dr. Tobias Lamm Dr. Patrick Breuning Krlsruher Institut für Technologie KIT SS 3 Institut für Anlysis 943 Prof Dr Tobis Lmm Dr Ptrick Breuning Höhere Mthemtik II für die Fchrichtung Physik 3 Übungsbltt Aufgbe Sei K ein Kreis im R vom Rdius

Mehr

Anwendungen der Integralrechnung

Anwendungen der Integralrechnung Anwendungen der Integrlrechnung 8. Flächeninhlt und Flächenschwerpunkt............... 4 8. Kurvenlänge............................. 7 8. Rottionskörper........................... 9 8.3 Whrscheinlichkeitsverteilungen

Mehr

Satz 6.5 (Mittelwertsatz der Integralrechnung) Sei f : [a, b] R stetig. Dann gibt es ein ξ [a, b], so dass. b a. f dx = (b a)f(ξ) f dx (b a)m.

Satz 6.5 (Mittelwertsatz der Integralrechnung) Sei f : [a, b] R stetig. Dann gibt es ein ξ [a, b], so dass. b a. f dx = (b a)f(ξ) f dx (b a)m. Stz 6.5 (Mittelwertstz der Integrlrechnung) Sei f : [, b] R stetig. Dnn gibt es ein ξ [, b], so dss 9:08.06.2015 gilt. f dx = (b )f(ξ) Lemm 6.6 Sei f : [, b] R stetig und m f(x) M für lle x [, b]. Dnn

Mehr

Prof. Dr. Siegfried Echterhoff.. 1 HAUPTSATZ DER INTEGRAL UND DIFFERENTIALRECHNUNG

Prof. Dr. Siegfried Echterhoff.. 1 HAUPTSATZ DER INTEGRAL UND DIFFERENTIALRECHNUNG Vorlesung SS 29 Anlysis 2 HAUPTSATZ DER INTEGRAL UND DIFFERENTIALRECHNUNG Teil : Fortsetzung des Studiums von Funktionen in einer reellen Vriblen (Integrtion und Tylorreihen). Huptstz der Integrl und Differentilrechnung

Mehr

7 Bewegung von Punkten

7 Bewegung von Punkten 81 7 Bewegung von Punkten 7.1 Übersicht Bewegung von Punkten Differenzierbrkeit. Wo liegt die Ableitung Tylorreihe, Vektordreieck Physiklische Bezeichnungen Abstnd zu einer Kurve Geschwindigkeit Bogenlänge

Mehr

nennt man eine Zerlegung (Partition, Unterteilung) des Intervalls [a, b]. Die Feinheit der Zerlegung ist dabei

nennt man eine Zerlegung (Partition, Unterteilung) des Intervalls [a, b]. Die Feinheit der Zerlegung ist dabei Kpitel 8: Integrtion Erläuterung uf Folie 8.1 Ds bestimmte Integrl Sei f : [, b] R eine beschränkte Funktion uf einem (zunächst) kompkten Intervll [, b]. Definition: 1) Eine Menge der Form Z = { = x 0

Mehr

1 Metrische Räume. Sei X eine nichtleere Menge. Definition 1.1. Eine Abbildung: d : X X R heißt Metrik auf X, falls für alle x, y, z X gilt

1 Metrische Räume. Sei X eine nichtleere Menge. Definition 1.1. Eine Abbildung: d : X X R heißt Metrik auf X, falls für alle x, y, z X gilt Metrische Räume Sei X eine nichtleere Menge. Definition.. Eine Abbildung: d : X X R heißt Metrik uf X, flls für lle x, y, z X gilt (i) d(x, y) 0, (ii) d(x, y) = d(y, x), (iii) d(x, y) d(x, z) + d(z, y)

Mehr

KAPITEL 18 UND 19 H. KOCH. Kapitel 18. x>a. x<y

KAPITEL 18 UND 19 H. KOCH. Kapitel 18. x>a. x<y KAPITEL 18 UND 19 H. KOCH 1. VORLESUNG VOM 08.01.2018 Kpitel 18 Definition 1 (Zerlegungen, Treppenfunktionen, Regelfunktionen) Sei < b. 1. Eine Zerlegung τ von [, b] besteht us einer Zhl N N und (N + 1)

Mehr

Musterlösung der 1. Klausur zur Vorlesung

Musterlösung der 1. Klausur zur Vorlesung Prof. Dr. M. Röger Dipl.-Mth. C. Zwilling Fkultät für Mthemtik TU Dortmund Musterlösung der. Klusur zur Vorlesung Anlysis I (24.02.206) Wintersemester 205/6 Aufgbe. Sei R mit sin() 0. Der Beweis erfolgt

Mehr

Kapitel 9 Integralrechnung

Kapitel 9 Integralrechnung Kpitel 9 Integrlrechnung Kpitel 9 Integrlrechnung Mthemtischer Vorkurs TU Dortmund Seite 1 / 18 Kpitel 9 Integrlrechnung Definition 9.1 (Stmmfunktion) Es seien f, F : I R Funktionen. F heißt Stmmfunktion

Mehr

Lösungsvorschläge zum 9. Übungsblatt.

Lösungsvorschläge zum 9. Übungsblatt. Übung zur Anlysis II SS 1 Lösungsvorschläge zum 9. Übungsbltt. Aufgbe 33 () A : {(x, y) R : x [ 1, 1] und y oder x und y [ 1, 1]}. (b) A : {(x, y) R : x < y < 1 + x }. (c) A : {(x, y) R : x < y < 1 + x

Mehr

Thema 11 Vektorwertige Funktionen, Kurven

Thema 11 Vektorwertige Funktionen, Kurven Them 11 Vektorwertige Funktionen, Kurven Definition 1 Eine Kurve in R n ist eine stetige Abbildung uf einem Intervll I mit Werten in R n. Wir verwenden den Buchstben c für Kurven und schreiben c = (c 1,...,c

Mehr

Inhaltsverzeichnis Integralrechnung f

Inhaltsverzeichnis Integralrechnung f Inhltsverzeichnis 4 Integrlrechnung für f : D(f R R 4. Bestimmtes und unbestimmtes Integrl........ 4.. Ds bestimmte Integrl............. 4..2 Ds unbestimmte Integrl, Stmmfunktion.. 3 4.2 Integrtionsregeln....................

Mehr

11. DER HAUPTSATZ DER DIFFERENTIAL- UND INTEGRALRECHNUNG

11. DER HAUPTSATZ DER DIFFERENTIAL- UND INTEGRALRECHNUNG 91 Dieses Skript ist ein Auszug mit Lücken us Einführung in die mthemtische Behndlung der Nturwissenschften I von Hns Heiner Storrer, Birkhäuser Skripten. Als StudentIn sollten Sie ds Buch uch kufen und

Mehr

Rückblick auf die letzte Vorlesung

Rückblick auf die letzte Vorlesung Rückblick uf die letzte Vorlesung 1. Ljpunov-Funktion 2. Rndwertprobleme 3. Lösbrkeit und Eindeutigkeit Ausblick uf die heutige Vorlesung 1. Vritionsrechnung 2. Brchistochrone 3. Euler-Lgrnge Gleichung

Mehr

Höhere Mathematik II für die Fachrichtung Informatik. Lösungsvorschläge zum 8. Übungsblatt

Höhere Mathematik II für die Fachrichtung Informatik. Lösungsvorschläge zum 8. Übungsblatt KARLSRUHER INSTITUT FÜR TECHNOLOGIE INSTITUT FÜR ANALYSIS Dr. Christoph Schmoeger Heiko Hoffmnn SS Höhere Mthemtik II für die Fchrichtung Informtik Lösungsvorschläge zum 8. Übungsbltt Aufgbe 9 erechnen

Mehr

D-MAVT/D-MATL Analysis I HS 2017 Dr. Andreas Steiger. Lösung - Serie 10. dt. Welche der folgenden Aussagen ist richtig? t3 + 2

D-MAVT/D-MATL Analysis I HS 2017 Dr. Andreas Steiger. Lösung - Serie 10. dt. Welche der folgenden Aussagen ist richtig? t3 + 2 D-MAVT/D-MATL Anlysis I HS 7 Dr. Andres Steiger Lösung - Serie.. Sei f(x) : () f() . x (c) f( ) . Die Funktion g : t t + ist, dss ds Integrl b dt. Welche der folgenden Aussgen

Mehr

4 Kurven im R n. Sei I R ein beliebiges Intervall (offen, halboffen, abgeschlossen, beschränkt oder unbeschränkt), das mindestens einen Punkt enthält.

4 Kurven im R n. Sei I R ein beliebiges Intervall (offen, halboffen, abgeschlossen, beschränkt oder unbeschränkt), das mindestens einen Punkt enthält. 4 Kurven im R n Sei I R ein beliebiges Intervall (offen, halboffen, abgeschlossen, beschränkt oder unbeschränkt), das mindestens einen Punkt enthält. Definition 4.1. (a) Unter einer Kurve im R n versteht

Mehr

9 Integralrechnung. 9.1 Das Riemann-Integral: Sei [a, b] ein beschränktes abgeschlossenes Intervall und f : [a, b] R eine beschränkte Funktion.

9 Integralrechnung. 9.1 Das Riemann-Integral: Sei [a, b] ein beschränktes abgeschlossenes Intervall und f : [a, b] R eine beschränkte Funktion. 9 ntegrlrechnung 9. Ds Riemnn-ntegrl: Sei [, b] ein beschränktes bgeschlossenes ntervll und f : [, b] R eine beschränkte Funktion. Problem: Bestimme Flächeninhlt A zwischen Grphen von f und x-achse. Betrchte

Mehr

Mathematischer Vorkurs NAT-ING1

Mathematischer Vorkurs NAT-ING1 Mthemtischer Vorkurs NAT-ING1 (02.09. 20.09.2013) Dr. Robert Strehl WS 2013-2014 Mthemtischer Vorkurs TU Dortmund Seite 1 / 20 Mthemtischer Vorkurs TU Dortmund Seite 2 / 20 Definition 9.1 (Stmmfunktion)

Mehr

Tutorium zur Vorlesung Differential und Integralrechnung II Bearbeitungsvorschlag

Tutorium zur Vorlesung Differential und Integralrechnung II Bearbeitungsvorschlag MAHEMAISCHES INSIU DER UNIVERSIÄ MÜNCHEN Dr. E. Schörner SS 206 Bltt 2 06.07.206 utorium zur Vorlesung Differentil und Integrlrechnung II Berbeitungsvorschlg 45. ) Für die beiden Rechtecke R = [ 3, 3]

Mehr

9.3 Der Hauptsatz und Anwendungen

9.3 Der Hauptsatz und Anwendungen 9.3 Der Huptstz und Anwendungen Definition: Seien Funktionen F, f : [, b] R Funktionen mit F (x) = f(x), x b. Dnn heißt F(x) Stmmfunktion von f(x). Bemerkung: Ist F(x) eine Stmmfunktion von f(x), so sind

Mehr

Integration. Kapitel 8: Integration Informationen zur Vorlesung: wengenroth/ J. Wengenroth () 17.

Integration. Kapitel 8: Integration Informationen zur Vorlesung:  wengenroth/ J. Wengenroth () 17. Integrtion Kpitel 8: Integrtion Informtionen zur Vorlesung: http://www.mthemtik.uni-trier.de/ wengenroth/ J. Wengenroth () 17. Juli 2009 1 / 22 8.1 Motivtion Kpitel 8: Integrtion 8.1 Motivtion Ist die

Mehr

Kapitel 8 Anwendungen der Di erentialrechnung

Kapitel 8 Anwendungen der Di erentialrechnung Kpitel 8 Anwendungen der Di erentilrechnung Kpitel 8 Anwendungen der Di erentilrechnung Mthemtischer Vorkurs TU Dortmund Seite 99 / 235 Kpitel 8 Anwendungen der Di erentilrechnung Stz 8.1 (Mittelwertstz

Mehr

f(x + iy) = u(x, y) + iv(x, y), f(z)dz := Re [f(γ(t)) γ(t)] dt + i

f(x + iy) = u(x, y) + iv(x, y), f(z)dz := Re [f(γ(t)) γ(t)] dt + i Funktionentheorie Komplexe Kurvenintegrle Themen des Tutoriums m 24.6.25: Jede komplexe Funktion f : D C knn mn drstellen ls f(x + iy) = u(x, y) + iv(x, y), wobei u und v reellwertige Funktionen uf R 2

Mehr

Crashkurs - Integration

Crashkurs - Integration Crshkurs - Integrtion emerkung. Wir setzen hier elementre Kenntnisse des Differenzierens sowie der Produktregel, Quotientenregel und Kettenregel vorus (diese werden später in der VO noch usführlich erklärt).

Mehr

Unbestimmtes Integral, Mittelwertsätze

Unbestimmtes Integral, Mittelwertsätze Unbestimmtes Integrl, Mittelwertsätze Ist f R-integrierbr, dnn knn f(x)dx einfch bestimmt werden, wenn eine Stmmfunktion F (x) von f existiert und beknnt ist. Wir wissen, dss dnn uch F (x) = F (x) + C

Mehr

Mathematik-Tutorium: Handwerkszeug und Kochrezepte für Maschinenbauer

Mathematik-Tutorium: Handwerkszeug und Kochrezepte für Maschinenbauer Vektorrechnung Differentilrechnung Integrlrechnung Mthemtik-Tutorium: Hndwerkszeug und Kochrezepte für Mschinenbuer Johnnes Wiedersich 7. Dezember 007 http://www.e13.physik.tu-muenchen.de/wiedersich/ Vektorrechnung

Mehr

10 Das Riemannsche Integral

10 Das Riemannsche Integral 10 Ds Riemnnsche Integrl 50 10 Ds Riemnnsche Integrl Ziel dieses Prgrphen ist es, den Inhlt einer Fläche, die vom Grphen einer Funktion berndet wird, exkt zu definieren. f(b) f() = t 0 t1 t2 t3 t4 t5 t

Mehr

Lineare Abbildung des Einheitskreises

Lineare Abbildung des Einheitskreises Linere Abbildung des Einheitskreises Peter Stender 27.06.2017 Peter Stender Linere Abbildung des Einheitskreises 27.06.2017 1 / 14 Mtrix und Dynmik m Kreis Fälle, bei denen B nicht uf der berechneten Prbel

Mehr

Zum Satz von Taylor. Klaus-R. Loeffler. 2 Der Satz von Taylor 2

Zum Satz von Taylor. Klaus-R. Loeffler. 2 Der Satz von Taylor 2 Zum Stz von Tylor Klus-R. Loeffler Inhltsverzeichnis 1 Der verllgemeinerte Stz von Rolle 1 2 Der Stz von Tylor 2 3 Folgerungen, Anwendungen und Gegenbeispiele 4 3.1 Jede gnzrtionle Funktion ist ihr eigenes

Mehr

5 Ellipsen, Parabeln und Hyperbeln

5 Ellipsen, Parabeln und Hyperbeln 5 Ellipsen, Prbeln und Hperbeln Ellipsen: Seien b > reelle Zhlen und E = E,b := { + b = } Eine Qudrik Q R heißt Ellipse, wenn es reelle Zhlen b > gibt, so dss q E,b. Die Kurven E,b heißen Ellipsen in metrischer

Mehr

kann man das Riemannsche Unter- bzw. Oberintegral auch wie folgt definieren: xk+1 x k

kann man das Riemannsche Unter- bzw. Oberintegral auch wie folgt definieren: xk+1 x k Integrlrechnung Definition 1 (Treppenfunktion, Zerlegung eines Intervlls): Sei [, b] R ein Intervll. Eine Funktion g : [, b] R heißt Treppenfunktion, flls es eine Zerlegung := { =: 0 < 1

Mehr

VI. Das Riemann-Stieltjes Integral.

VI. Das Riemann-Stieltjes Integral. VI. Ds Riemnn-Stieltjes Integrl. Es stellt sich herus, dss der hier entwickelte Integrlbegriff strk von der Ordnungsstruktur von R bhängt. Definition. Sei [, b] ein Intervll in R. Unter einer Prtition

Mehr

Riemann-integrierbare Funktionen

Riemann-integrierbare Funktionen Kpitel VI Riemnn-integrierbre Funktionen 26 Ds Riemnn-Integrl ls Grenzwert von Zwischensummen 27 Der Huptstz der Differentil- und Integrlrechnung nebst Folgerungen 28 Äquivlente Definitionen des Riemnn-

Mehr

Präsenz-Aufgaben = i. (a) i 15 = i 14 i = (i 2 ) 7 i = ( 1) 7 i = i i 15 = 0 + ( 1)i, i (i i) = i 1 = i i 15 = 0 + 1i,

Präsenz-Aufgaben = i. (a) i 15 = i 14 i = (i 2 ) 7 i = ( 1) 7 i = i i 15 = 0 + ( 1)i, i (i i) = i 1 = i i 15 = 0 + 1i, Präsenz-Aufgben 1. 1. Schreiben Sie z in der Form z α + βi mit α,β R. Aus der Vorlesung ist beknnt: i i i 1, i 1 1 i i i i i 1 i. () i 15 i 1 i (i ) 7 i ( 1) 7 i i i 15 + ( 1)i, (b) i 15 1 i 15 () 1 i

Mehr

Höhere Mathematik für die Fachrichtung Physik

Höhere Mathematik für die Fachrichtung Physik Krlsruher Institut für Technologie Institut für Anlysis Dr. Christoph Schmoeger Dipl.-Mth. Sebstin Schwrz Höhere Mthemtik für die Fchrichtung Physik Lösungsvorschläge zum. Übungsbltt Aufgbe 6 (Übung) )

Mehr

Zusatzunterlagen zur Vorlesung Analysis II Sommersemester 2014

Zusatzunterlagen zur Vorlesung Analysis II Sommersemester 2014 UNIVERSITÄT DES SAARLANDES FACHRICHTUNG 6.1 MATHEMATIK Prof. Dr. Jörg Eschmeier M. Sc. Sebstin Lngendörfer e Integrlrechnung Zustzunterlgen zur Vorlesung Anlysis II Sommersemester 2014 Dieses Bltt enthält

Mehr

Vorlesung Mathematik für Ingenieure I (Wintersemester 2007/08)

Vorlesung Mathematik für Ingenieure I (Wintersemester 2007/08) 1 Vorlesung Mthemtik für Ingenieure I (Wintersemester 2007/08) Kpitel 6: Integrlrechnung R R Volker Kibel Otto-von-Guericke Universität Mgdeburg (Version vom 21. Dezember 2007) Stetige oder monotone Funktionen

Mehr

komplizierteren Funktionen versucht man, die Fläche durch mehrere Rechtecke anzunähern.

komplizierteren Funktionen versucht man, die Fläche durch mehrere Rechtecke anzunähern. Mthemtik für Nturwissenschftler I 4. 4 Integrlrechnung 4. Integrierbrkeit Die Grundidee der Integrlrechnung ist die Berechnung der Fläche zwischen dem Grphen einer Funktion und der x-achse. Recht einfch

Mehr

Einführung in die Integralrechnung

Einführung in die Integralrechnung Einführung in die Integrlrechnung Vorbereitung für ds Probestudium n der LMU München 3. bis 7. September von W. Frks und O. Forster Integrle ls Flächeninhlte. Motivtion Flächeninhlte von Rechtecken sind

Mehr

10.5 Vektorfelder. Beispiele. . x. 2. Sei F(x,y) =. y 2. Jedes Gradientenfeld ist ein Vektorfeld, aber nicht jedes Vektorfeld ist ein Gradientenfeld.

10.5 Vektorfelder. Beispiele. . x. 2. Sei F(x,y) =. y 2. Jedes Gradientenfeld ist ein Vektorfeld, aber nicht jedes Vektorfeld ist ein Gradientenfeld. 28.5 Vektorfelder Wir hben gesehen, dss der Grdient einer Funktion z = f(x,y : D R jedem Punkt (x,y D einen Vektor, nämlich f(x,y R 2, zuordnet. Eine solche Zuordnung nennt mn Vektorfeld. Ds Vektorfeld

Mehr

Kapitel 7. Integralrechnung für Funktionen einer Variablen

Kapitel 7. Integralrechnung für Funktionen einer Variablen Kpitel 7. Integrlrechnung für Funktionen einer Vriblen In diesem Kpitel sei stets D R, und I R ein Intervll. 7. Ds unbestimmte Integrl (Stmmfunktion) Es sei f : I R eine Funktion. Eine differenzierbre

Mehr

Münchner Volkshochschule. Themen

Münchner Volkshochschule. Themen Themen Logik und Mengenlehre Zhlensysteme und Arithmetik Gleichungen und Ungleichungen Lin. Gleichungssysteme und spez. Anwendungen Geometrie und Trigonometrie Vektoren in der Ebene und Punktemengen Funktionen

Mehr

(1 ξ) f (k) (ξ) + k! z x n+1. (n + 1)! 2 f (n + 1)!

(1 ξ) f (k) (ξ) + k! z x n+1. (n + 1)! 2 f (n + 1)! 0.. Lösung der Aufgbe. Wir schreiben f = sup{ f : [0, ]}. Für ξ ]0, [ und n N gibt es nch dem Stz von Tlor ein c ]ξ, [ so, dss: f = fξ + n ξ k f k ξ + k! k= Aus der Ttsche, dss f k 0 für lle k N ist, folgt

Mehr

6 Totale Differenzierbarkeit

6 Totale Differenzierbarkeit 6 Totle Differenzierbrkeit Sei U R offen. Eine Funktion f : U R ist differenzierbr in einem Punkt x U (Stz 14.6 in [EAI] genu dnn, wenn sie liner pproximierbr ist in x in dem Sinne, dss eine Zhl c R und

Mehr

TECHNISCHE UNIVERSITÄT MÜNCHEN

TECHNISCHE UNIVERSITÄT MÜNCHEN Prof. r. H. Spohn r. M. Prähofer Zentrlübung TECHNISCHE UNIVERSITÄT MÜNCHEN Zentrum Mthemtik 14. Stetigkeit der Umkehrfunktion Mthemtik für Physiker 3 (Anlysis ) http://www-m5.m.tum.de/allgemeines/ma903

Mehr

Parametrisierungsinvarianz von Kurvenintegralen.

Parametrisierungsinvarianz von Kurvenintegralen. Prmetrisierungsinvrinz von Kurvenintegrlen. Stz: Ds Kurvenintegrl ist unbhängig von der Prmetrisierung der betrhteten Kurve. Beweis: Für einen Prmeterwehsel h : [α, β] [, b] einer Kurve gilt β d f x) ds

Mehr

Kurven. injektiv, dann heißt K eine Jordan-Kurve.

Kurven. injektiv, dann heißt K eine Jordan-Kurve. Kurven Der Begriff der Kurve, zunächst etwa im R 2 oder R 3, kann auf zwei Arten gebildet werden. Der geometrische Zugang definiert eine Kurve als den geometrischen Ort von Punkten in der Ebene bzw. im

Mehr

Lösungsvorschlag zu den Präsenzaufgaben der 13. Übung

Lösungsvorschlag zu den Präsenzaufgaben der 13. Übung FAKULTÄT FÜR MATHEMATIK Prof. Dr. Ptrizio Neff Christin Thiel 07.07.04 Lösungsvorschlg zu den Präsenzufgben der 3. Übung Präsenzufgbe : Wir hben die Determinnte bisher ls Kriterium zur Invertierbrkeit

Mehr

Tutorium zur Vorlesung Grundlagen der Mathematik II Bearbeitungsvorschlag

Tutorium zur Vorlesung Grundlagen der Mathematik II Bearbeitungsvorschlag MATHEMATISCHES INSTITUT DER UNIVERSITÄT MÜNCHEN Dr. E. Schörner SS 017 Bltt 8 0.06.017 Tutorium zur Vorlesung Grundlgen der Mthemtik II Berbeitungsvorschlg 9. Zu betrchten ist ein gleichseitiges Dreieck

Mehr

5.5. Integralrechnung

5.5. Integralrechnung .. Integrlrechnung... Berechnung von Integrlen mit der Streifenmethode Definition: Gegeen seien, R mit < und eine uf [; ] stetige Funktion f. Der orientierte Inhlt der Fläche, die durch die -Achse, ds

Mehr

Kurvenintegrale. (Eine reguläre Kurve besitzt also in jedem Punkt einen nicht verschwindenden Tangentenvektor.)

Kurvenintegrale. (Eine reguläre Kurve besitzt also in jedem Punkt einen nicht verschwindenden Tangentenvektor.) Kurvenintegrle Definition: (Kurve) Eine stetige Abbildung : [, b] R n heißt ein Weg im R n. Ds Bild C := ([, b]) heißt Kurve im R n. Die Punkte () bzw. (b) heißen Anfngsbzw. Endpunkt der Kurve. heißt geshlossener

Mehr

4.4 Partielle Integration

4.4 Partielle Integration Mthemtik für Nturwissenschftler I 4.4 4.4 Prtielle Integrtion Zwei Integrtionsregeln kennen wir bereits: Stz 4.. und Stz 4..8. Stz 4.. sgt, dss mit zwei Funktionen uch deren Summe oder Differenz integrierbr

Mehr

Mathematik II: Übungsblatt 01: Lösungen

Mathematik II: Übungsblatt 01: Lösungen N.Mahnke Mathematik II: Übungsblatt 01: Lösungen Verständnisfragen: 1. Was versteht man unter einer parametrisierten ebenen Kurve? Eine parametrisierte ebene Kurve ist eine auf dem offenen Intervall ]t

Mehr

Mathematik III - Blatt 3

Mathematik III - Blatt 3 Mthemtik III - Bltt 3 Christopher Bronner, Frnk Essenberger FU Berlin 7.November 6 Aufgbe Die Länge der Kurve, deren Bhn die Lösung der Gleichung ist, lutet x 3 + y 3 3 L( γ ds π γ γ(t dt. Abbildung :

Mehr

K. Eppler, Inst. f. Num. Mathematik Übungsaufgaben. 8. Übung SS 17: Woche vom

K. Eppler, Inst. f. Num. Mathematik Übungsaufgaben. 8. Übung SS 17: Woche vom Übungsaufgaben 8. Übung SS 17: Woche vom 22.5. - 26. 5. 2017 Heft Ü 2: 24.15.f; 25.11.b, f; 26.1.a, b, c; + 1 Zusatzaufgabe zur Reduktion bei DGLn Krümmungsvektor, Krümmung im R 3 (R n ) Def. 5.17: Der

Mehr

Höhere Mathematik I für die Fachrichtung Elektrotechnik und Informationstechnik Lösungsvorschläge zum 9. Übungsblatt

Höhere Mathematik I für die Fachrichtung Elektrotechnik und Informationstechnik Lösungsvorschläge zum 9. Übungsblatt Krlsruhe Institut für Technologie (KIT) Institut für Anlysis Priv.-Doz. Dr. P. C. Kunstmnn Dr. S. Wuglter WS 13/14 Aufgbe 1 Höhere Mthemtik I für die Fchrichtung Elektrotechnik und Informtionstechnik Lösungsvorschläge

Mehr

Uneigentliche Riemann-Integrale

Uneigentliche Riemann-Integrale Uneigentliche iemnn-integrle Zweck dieses Abschnitts ist es, die Vorussetzungen zu lockern, die wir n die Funktion f : [, b] bei der Einführung des iemnn-integrls gestellt hben. Diese Vorussetzungen wren:

Mehr

5.1 Charakterisierung relativ kompakter und kompakter

5.1 Charakterisierung relativ kompakter und kompakter Kpitel 5 Kompkte Mengen 5.1 Chrkterisierung reltiv kompkter und kompkter Mengen X sei im weiteren ein Bnchrum. Definition 5.1. Eine Menge K X heißt kompkt, wenn us jeder offenen Überdeckung von K eine

Mehr

Infinitesimalrechnung, Mengenlehre und logische Verknüpfungen

Infinitesimalrechnung, Mengenlehre und logische Verknüpfungen Vorlesung 16 Infinitesimlrechnung, Mengenlehre und logische Verknüpfungen 16.1 Huptstz der Differentil- und Integrlrechnung Wir verknüpfen nun Differentil- mit Integrlrechnung. Definition 16.1.1. Eine

Mehr

Flächeninhalt unter dem Graphen. Ist nun die Kraft nicht mehr stückweise konstant, so wird man intuitiv immer noch den

Flächeninhalt unter dem Graphen. Ist nun die Kraft nicht mehr stückweise konstant, so wird man intuitiv immer noch den 19 REGELFUNKTIONEN 107 Kpitel 7: Integrtion Notwendigkeit des Integrlbegriffes und Hinweise zu seiner Präzisierung liegen uf der Hnd. Betrchten wir etw den physiklischen Begriff der Arbeit, die im einfchsten

Mehr

Geodäten. Mathias Michaelis. 28. Januar 2004

Geodäten. Mathias Michaelis. 28. Januar 2004 Geodäten Mthis Michelis 28. Jnur 2004 1 Vektorfelder Definition 1.1 Sei S 3 eine reguläre Fläche. Ein Vektorfeld uf S ist eine Abbildung v : S 3 so, dss v(p) T n S für lle p S. Ein Vektorfeld ordnet lso

Mehr

Notizen zur Vorlesung Analysis 3

Notizen zur Vorlesung Analysis 3 Notizen zur Vorlesung Anlysis 3 Henrik chumcher TUHH, 26. Jnur 207 2 Integrtion über Oberflächen 2. Oberflächenintegrl einer Funktion Definition 2.37 (Metrische Fundmentlform) ei R 2 ein reguläres Gebiet

Mehr

INGENIEURMATHEMATIK. 11. Differentialgeometrie. Sommersemester Prof. Dr. Gunar Matthies

INGENIEURMATHEMATIK. 11. Differentialgeometrie. Sommersemester Prof. Dr. Gunar Matthies Mathematik und Naturwissenschaften Fachrichtung Mathematik, Institut für Numerische Mathematik INGENIEURMATHEMATIK 11. Differentialgeometrie Prof. Dr. Gunar Matthies Sommersemester 2016 G. Matthies Ingenieurmathematik

Mehr

Kapitel III Funktionen in mehreren Veränderlichen

Kapitel III Funktionen in mehreren Veränderlichen Kpitel III Funktionen in mehreren Veränderlichen Einleitung: Geometrische Interprettionen A: Funktionen f : IR IR f : M IR, M IR Grph: gegebene Kurve. {( x f(x } : x M IR 2 : explizit Legt mn ndere Koordinten

Mehr

Kapitel IV Euklidische Vektorräume. γ b

Kapitel IV Euklidische Vektorräume. γ b Kpitel IV Euklidische Vektorräume 1 Elementrgeometrie in der Eene Sei E die Zeicheneene In der Schule lernt mn: (11) Stz des Pythgors: Sei E ein Dreieck mit den Seiten, und c, und sei γ der c gegenüerliegende

Mehr

6.4 Uneigentliche Integrale

6.4 Uneigentliche Integrale 6.4 Uneigentliche Integrle 3 Beispiele : d + + d ( + ) t + d t t d t ( t + t + t ) + t + t t ln ( + t) + c + ln ( + + ) + c + t rctn + c 6.4 Uneigentliche Integrle bisher : beschränkte Funktionen uf endlichen

Mehr

Anwendungen der Differential-und Integralrechnung

Anwendungen der Differential-und Integralrechnung 6 Kpitel 7 Anwendungen der Differentil-und Integrlrechnung 7. Ebene Kurven Definition. Ist ( I R ein Intervll, so bezeichnen wir ls prmetrisierte Kurve ein x(t Pr α(t = stetig differenzierbrer Funktionen,

Mehr

Vektoren. Definition. Der Betrag eines Vektors. Spezielle Vektoren

Vektoren. Definition. Der Betrag eines Vektors. Spezielle Vektoren Vektoren In nderen Bereichen der Nturwissenschften treten Größen uf, die nicht nur durch eine Zhlenngbe drgestellt werden können, wie Krft, die Geschwindigkeit. Zur vollständigen Beschreibung z.b. der

Mehr

41 Normierte Räume über dem Körper der komplexen Zahlen

41 Normierte Räume über dem Körper der komplexen Zahlen 41 Normierte Räume über dem Körper der komplexen Zhlen 411 Rechenregeln für komplexe pseudonormierte Räume 412 Stetigkeits-, Differenzierbrkeits- und Integrierbrkeitskriterien für Abbildungen in einen

Mehr

SBP Mathe Grundkurs 2. Differentialquotient. Namen und Schreibweisen für Differentialquotienten. Ableitung von f(x) = c.

SBP Mathe Grundkurs 2. Differentialquotient. Namen und Schreibweisen für Differentialquotienten. Ableitung von f(x) = c. SBP Mthe Grundkurs 2 # 0 by Clifford Wolf # 0 Antwort Diese Lernkrten sind sorgfältig erstellt worden, erheben ber weder Anspruch uf Richtigkeit noch uf Vollständigkeit. Ds Lernen mit Lernkrten funktioniert

Mehr

Analysis I. Partielle Integration. f (t)g(t)dt =

Analysis I. Partielle Integration. f (t)g(t)dt = Prof. Dr. H. Brenner Osnbrück WS 3/4 Anlysis I Vorlesung 5 Wir besprechen nun die wesentlichen Rechenregeln, mit denen mn Stmmfunktionen finden bzw. bestimmte Integrle berechnen knn. Sie beruhen uf Ableitungsregeln.

Mehr

Zu Aufgabe 1: Widerlegen Sie die folgenden falschen Behauptungen durch Angabe eines möglichst einfachen Gegenbeispiels:

Zu Aufgabe 1: Widerlegen Sie die folgenden falschen Behauptungen durch Angabe eines möglichst einfachen Gegenbeispiels: Westfälische Wilhelms-Universität Münster Mthemtisches Institut pl. Prof. Dr. Lutz Hille Dr. Krin Hlupczok Übungen zur Vorlesung Elementre Geometrie Sommersemester 1 Musterlösung zu Bltt 1 vom 5. Juli

Mehr

Mathematik II. Partielle Integration. f (t)g(t)dt =

Mathematik II. Partielle Integration. f (t)g(t)dt = Prof. Dr. H. Brenner Osnbrück SS 1 Mthemtik II Vorlesung 33 Wir besprechen nun die wesentlichen Rechenregeln, mit denen mn Stmmfunktionen finden bzw. bestimmte Integrle berechnen knn. Sie beruhen uf Ableitungsregeln.

Mehr

Lineare Probleme und schwache

Lineare Probleme und schwache Vritionsrechnung Kpitel 7 Linere Probleme und schwche Lösungen 7.1 Qudrtische Funktionle Der einfchste Typ von Funktionlen, die ein Minimum hben können, sind die qudrtischen Funktionle. Sei ein Gebiet

Mehr

9 Längen- Flächen- und Volumenmessung

9 Längen- Flächen- und Volumenmessung 9 Längen- Flächen- und Volumenmessung A Länge einer Kurve B Flächenmessung C Volumenerechnung 56 A. Länge einer Kurve ERKLÄRUNG 9.1. (Länge einer Kurve in Funktionsdrstellung.) Es sei f eine uf dem Intervll

Mehr

Übung Analysis in einer Variable für LAK, SS 2010

Übung Analysis in einer Variable für LAK, SS 2010 Übung Anlysis in einer Vrible für LAK, SS Christoph B ) Es sei I R ein offenes Intervll, ξ I und f,...,f n : I R seien lle in ξ differenzierbr. Beweisen Sie: Dnn ist uch f f n : I R in ξ differenzierbr

Mehr

VII. Folgen und Reihen von Funktionen (Vertauschung von Grenzprozessen)

VII. Folgen und Reihen von Funktionen (Vertauschung von Grenzprozessen) VII. Folgen und Reihen von Funktionen (Vertuschung von Grenzprozessen) Definition. Sei {f n } eine Folge von Funktionen, die uf einer Menge E definiert sind. Die Folgen der Funktionswerte {f n (x)} seien

Mehr

Infinitesimalrechnung

Infinitesimalrechnung Vorlesung 17 Infinitesimlrechnung 17.1 Huptstz der Differentil- und Integrlrechnung Wir verknüpfen nun Differentil- mit Integrlrechnung. Definition 17.1.1. Eine differenzierbre Funktion F : I R heißt Stmmfunktion

Mehr

6.6 Integrationsregeln

6.6 Integrationsregeln 50 KAPITEL 6. DAS RIEMANN-INTEGRAL Beispiel 6.5.4 (Differenzierbreit und gleichmäßige Konvergenz) Die Funtionenfolge {f n (x)} n N definiert durch f n (x) = n sin(nx) onvergiert uf jedem Intervll gleichmäßig

Mehr

16. Integration über Flächen. Der Gaußsche Integralsatz

16. Integration über Flächen. Der Gaußsche Integralsatz 41 16. Integrtion über Flächen. Der Gußsche Integrlstz Der Gußsche Stz in der Ebene. 16.1. Orientierter Rnd von Normlbereichen. Es sei [, b] ein Intervll, und f 1 und f 2 seien stückweise stetig di erenzierbre

Mehr

8 Längenberechnungen Winkelberechnungen - Skalarprodukt

8 Längenberechnungen Winkelberechnungen - Skalarprodukt 8 Längenberechnungen Winkelberechnungen - Sklrprodukt 8 Längenberechnungen Winkelberechnungen - Sklrprodukt Wir wissen, wie mn zwei Vektoren und b ddiert b b. Mn knn zwei Vektoren ber uch miteinnder multiplizieren!

Mehr