Raumzeiten bis ins Unendliche rechnen From here to infinity on a single computer

Größe: px
Ab Seite anzeigen:

Download "Raumzeiten bis ins Unendliche rechnen From here to infinity on a single computer"

Transkript

1 Raumzeiten bis ins Unendliche rechnen From here to infinity on a single computer Rinne, Oliver Max-Planck-Institut für Gravitationsphysik, Potsdam-Golm Korrespondierender Autor oliver.rinne@aei.mpg.de Zusammenfassung Bei der numerischen Lösung der Einstein-Gleichungen stellt sich das Problem, wie man eine unendliche, asymptotisch flache Raumzeit mit endlichen Rechenkapazitäten behandelt. Hier wird eine Zerlegung der Raumzeit in hyperboloidale Flächen untersucht, die bis ins lichtartige Unendliche reichen. Nach der Kompaktifizierung treten in den Einstein-Gleichungen formal singuläre Terme auf, die dennoch explizit ausgewertet werden können. Mit dieser Methode konnten stabile numerische Zeitentwicklungen von Raumzeiten mit schwarzen Löchern und Gravitationswellen bzw. Materiefeldern erzielt werden. Summary When solving Einstein's equations numerically, one faces the problem of treating an infinite asymptotically flat spacetime with finite computing resources. Here a decomposition of spacetime into hyperboloidal surfaces approaching lightlike infinity is considered. Upon compactification the Einstein equations develop formally singular terms, which can nevertheless be evaluated explicitly. Based on this method, stable numerical evolutions of spacetimes containing black holes and gravitational waves or matter fields have been achieved. In den letzten Jahren konnten auf dem Gebiet der numerischen Relativitätstheorie große Fortschritte erzielt werden. Simulationen von verschmelzenden Schwarzen Löchern und anderen kompakten Objekten, jahrzehntelang ein ungelöstes Problem, sind inzwischen Routine. Doch bleiben etliche Fragen offen, die von einem verbesserten mathematischen Verständnis der Feldgleichungen und der globalen Eigenschaften ihrer Lösungen profitieren können. Im Folgenden wird ein Beispiel für eine solche Frage erläutert. Viele astrophysikalisch interessante Phänomene kann man in guter Näherung als isoliertes System betrachten, d. h. als eine asymptotisch (im Unendlichen) flache Raumzeit, die ein kompaktes Objekt enthält (z. B. einen Stern), das seinem eigenen Gravitationsfeld überlassen ist. Im Zentrum sind die Einstein'schen Feldgleichungen hochgradig nichtlinear und per Hand nur in Spezialfällen lösbar; hier ist man auf numerische Rechnungen angewiesen. Aber wie kann die gesamte, unendlich ausgedehnte Raumzeit mit endlichen Rechenkapazitäten behandelt werden? 2014 Max-Planck-Gesellschaft 1/7

2 A bb. 1: Penrose-Diagram m der flachen (Minkowski-) Raum zeit. Die Zeit verläuft in vertikaler, der Raum in horizontaler Richtung (nur eine Raum dim ension, der Radius, ist gezeigt). Eingetragen sind das räum liche Unendliche i 0, das zeitartige Unendliche i ± und das Null-Unendliche I ±, jeweils Zukunft (+) bzw. Vergangenheit (-) betreffend. Die graue Region soll eine Quelle von Gravitationsstrahlung (graue Pfeile) andeuten. Die horizontalen Linien zeigen eine Zerlegung der Raum zeit in raum artige Hyperflächen, die sich dem räum lichen Unendlichen annähern, aber an einem endlichen Abstand abgeschnitten werden (vertikale Linie). Max-Planck-Institut für Gravitationsphysik / Rinne Die allgemeine Relativitätstheorie kennt drei verschiedene Arten von unendlich : das räumlich Unendliche, das 2014 Max-Planck-Gesellschaft 2/7

3 zeitartige (Zukunft und Vergangenheit betreffende) Unendliche und das Null-Unendliche (dieser Unendlichkeit nähern sich Lichtstrahlen). Dies kann in einem sogenannten Penrose-Diagramm veranschaulicht werden, das den kausalen Zusammenhang von verschiedenen Punkten in der Raumzeit darstellt (Abb. 1). Zeitentwicklung mit künstlichem Rand Nach der Standard-Methode zerschneidet man die Raumzeit in raumartige Hyperflächen, die sich dem räumlichen Unendlichen nähern (siehe Abb. 1). Jede dieser Hyperflächen entspricht einer Momentaufnahme des Raums zu einem bestimmten Zeitpunkt. In der 3+1-Formulierung der Allgemeinen Relativitätstheorie (drei Raumrichtungen und eine Zeitrichtung) teilen sich die Einstein-Gleichungen auf: in Zwangsgleichungen, die auf den einzelnen Hyperflächen gelten, und in Entwicklungsgleichungen, die beschreiben, wie man von einer Hyperfläche zur nächsten kommt. Wie aus Abbildung 1 ersichtlich, verlässt die abgegebene Strahlung mit fortschreitender Zeit nie die raumartigen Hyperflächen, denn alle Flächen enden im räumlichen Unendlichen. Es ist daher keine gute Idee, die räumlichen Koordinaten auf den Hyperflächen zu kompaktifizieren, um das räumliche Unendliche auf einen endlichen Abstand abzubilden. Die Folge davon wäre, dass die Wellenlänge der auslaufenden Strahlung bezüglich der kompaktifizierten Koordinaten zunehmend kleiner wird und letztlich numerisch nicht mehr aufgelöst werden kann. In der Regel schneidet man daher die raumartigen Hyperflächen an einem bestimmten Abstand von der Quelle ab und löst die Gleichungen nur in dem so entstandenen Innenraum. Es müssen Randbedingungen gestellt werden, die auf dem so erzeugten künstlichen zeitartigen Rand gelten. Idealerweise sollten diese unter anderem garantieren, dass die Lösung auf dem abgeschnittenen Gebiet identisch mit der Lösung auf dem unbegrenzten Gebiet ist. Insbesondere möchte man erreichen, dass abgestrahlte Gravitationswellen die Grenzfläche ohne physikalisch unsinnige Reflexionen passieren. Leider kann Gravitationsstrahlung in der Allgemeinen Relativitätstheorie an einem endlichen Abstand nicht eindeutig definiert werden. Bestenfalls kann man kleine Abweichungen von einer gegebenen (z. B. der flachen) Hintergrund-Raumzeit betrachten, aber das ist nur eine Näherungslösung. Der einzige Ort, an dem Gravitationsstrahlung wohldefiniert ist, ist das Null-Unendliche. Ziel ist daher, diese Art des Unendlichen bei der Rechnung am Computer einzubeziehen. Damit würde man zwei Fliegen mit einer Klappe schlagen und sowohl die Probleme vermeiden, die durch einen künstlichen zeitartigen Rand verursacht werden, als auch die Gravitationsstrahlung eindeutig (unabhängig von den gewählten Koordinaten) auslesen können. Letzteres ist von großer Bedeutung für die Gravitationswellen-Datenanalyse. Eine Annäherung an das Null-Unendliche 2014 Max-Planck-Gesellschaft 3/7

4 A bb. 2: Gezeigt ist das gleiche Diagram m wie in Abbildung 1, allerdings diesm al m it einer hyperboloidalen Zerlegung der Raum zeit. Max-Planck-Institut für Gravitationsphysik / Rinne Eine Möglichkeit, das Null-Unendliche in die Rechnung mit einzubeziehen, besteht darin, die Raumzeit in raumartige Hyperflächen zu zerlegen, die sich anstelle dem räumlichen Unendlichen dem Null-Unendlichen annähern (Abb. 2). Hyperflächen dieses Typs bezeichnet man als hyperboloidal: Wenn eine solche Fläche in den Standard-Koordinaten der flachen (Minkowski-) Raumzeit dargestellt wird, sieht sie aus wie ein Hyperboloid (Abb. 3). In gekrümmten Raumzeiten kann man allgemeiner z. B. Flächen konstanter mittlerer Krümmung wählen. Betrachtet man erneut die auslaufende Strahlung (Abb. 2), so erkennt man, dass sie nun im Laufe der Zeit die hyperboloidalen Flächen verlässt und dass es somit keine Probleme mit der Auflösung gibt Max-Planck-Gesellschaft 4/7

5 Helmut Friedrich erzielte wichtige Fortschritte in der Behandlung der Einstein-Gleichungen auf solchen hyperboloidalen Zerlegungen der Raumzeit [1]. Er entwickelte eine Neuformulierung der Gleichungen, die im Null-Unendlichen völlig regulär ist und weitere reizvolle mathematische Eigenschaften hat. Eine Reihe von Autoren (Peter Hübner, Jörg Frauendiener, Sascha Husa und Mitarbeiter) verwendeten Varianten von Friedrichs System für numerische Simulationen [2]. Ein großer Teil dieser Arbeiten entstand in den späten 1990er Jahren am Albert-Einstein-Institut. Ein etwas anderer Ansatz wird vom Autor des vorliegenden Artikels zusammen mit Vincent Moncrief (Yale University) verfolgt: die direkte Rechnung mit den Einstein-Gleichungen in einer einfachen 3+1-Zerlegung auf Flächen konstanter mittlerer Krümmung. Die Motivation dafür ist, dass auf den umfangreichen Erfahrungen aufgebaut werden soll, die numerische Relativisten inzwischen mit ähnlichen Formulierungen der Einstein- Gleichungen gewonnen haben. Ähnlich wie in [1] wird eine konforme (winkelerhaltende) Transformation auf die Metrik der Raumzeit angewendet. Bezogen auf ein in geeigneter Weise kompaktifiziertes Koordinatensystem (wie im Penrose-Diagramm) ist die konforme Metrik überall endlich. Wird diese Form der Metrik jedoch direkt in die Einstein-Gleichungen eingesetzt, so entstehen Terme, die im Null-Unendlichen formal singulär sind. Glücklicherweise konnte gezeigt werden [3], dass diese Terme in den Entwicklungsgleichungen im Null-Unendlichen tatsächlich völlig regulär ausgewertet werden können, vorausgesetzt, die Zwangsgleichungen sind erfüllt. Aufbauend auf diesen analytischen Ergebnissen konnten stabile numerische Zeitentwicklungen für eine Reihe von Situationen erzielt werden, die im Folgenden beschrieben werden. A bb. 3: Eine hyperboloidale Fläche in der Minkowski- Raum zeit. Die Zeit verläuft in vertikaler, der Raum in horizontaler Richtung. Diese Fläche kann kom paktifiziert werden, indem m an sie auf die im unteren Teil der Abbildung gezeigte sogenannte Poincaré-Scheibe projiziert. Public dom ain, Wikim edia Com m ons Anwendungen auf Raumzeiten mit Schwarzen Löchern In [4] wurden Vakuumlösungen der Einstein-Gleichungen also ohne Materie untersucht. Um den Rechenaufwand zu reduzieren, wurde die Raumzeit als axialsymmetrisch angenommen. Die Anfangsdaten 2014 Max-Planck-Gesellschaft 5/7

6 bestehen aus einem Schwarzen Loch vom Schwarzschild-Typ (d. h. nicht rotierend) mit einer schwachen Gravitationswelle. Dieses System konnte für sehr lange Zeiten numerisch stabil simuliert und die abgegebene Gravitationsstrahlung im Null-Unendlichen ausgelesen werden. Ein Teil der Gravitationsstrahlung fällt dabei in das Schwarze Loch und regt es zu Schwingungen an. Es verhält sich dann im Wesentlichen wie ein gedämpfter harmonischer Oszillator und gibt Strahlung mit charaketristischen Frequenzen (Quasinormalmoden) ab. Für die hier betrachtete relativ schwache Gravitationsstrahlung stimmen die numerischen Ergebnisse gut mit der linearen Störungstheorie überein. In einer weiteren Arbeit [5] wurde Materie in die Formulierung mit einbezogen. Es konnte gezeigt werden, dass das analytische Ergebnis aus [3] hinsichtlich der Regularität der Gleichungen im Null-Unendlichen nicht beeinflusst wird, vorausgesetzt, der Energie-Impuls-Tensor der Materie erfüllt bestimmte Bedingungen. Diese Bedingung ist für die meisten strahlenden Materieformen erfüllt. Exemplarisch wurden ein masseloses Skalarfeld und die Yang-Mills-Theorie (eine nichtlineare Verallgemeinerung des Elektromagnetismus, die das Quark-Gluon-Plasma beschreibt) untersucht. Unter der Annahme von Kugelsymmetrie wurden numerische Entwicklungen der Einstein-Gleichungen mit verschiedenen Anfangsbedingungen durchgeführt. Dabei wurden sowohl Situationen betrachtet, bei denen die Materie im Laufe der Zeit zerfließt und dabei die flache Raumzeit zurücklässt, als auch solche, bei denen sie zu einem Schwarzen Loch zusammenstürzt. A bb. 4: Num erische Sim ulation der Einstein-Gleichungen m it einem kugelsym m etrischen m asselosen Skalarfeld, das zu einem Schwarzen Loch kollabiert. Dargestellt ist das Skalarfeld Φ als Funktion der Zeit t im Null-Unendlichen (durchgezogene Linie) und am Horizont des gerade entstandenen Schwarzen Lochs (gestrichelte Linie). Zu späten Zeiten erkennt m an das Abklingen nach einem Potenzgesetz (in dieser doppeltlogarithm ischen Darstellung eine Gerade). Max-Planck-Institut für Gravitationsphysik / Rinne Abbildung 4 zeigt beispielhaft die numerische Simulation eines kollabierenden Skalarfeldes. Zu späten Zeiten ist hier das Abklingen des Feldes deutlich erkennbar. Dabei fällt auf, dass das Feld bei einem endlichen Abstand (hier am Horizont des Schwarzen Lochs) schneller abklingt als im Null-Unendlichen. Mit der oben beschriebenen herkömmlichen Methode unter Einführung eines künstlichen zeitartigen Rands wäre dieser Unterschied nicht zu sehen. Ähnliche Ergebnisse wurden für Yang-Mills-Felder erzielt. Diese Materieform zeigt beim Gravitationskollaps eine außergewöhnlich reichhaltige Dynamik, die zurzeit weiter untersucht wird Max-Planck-Gesellschaft 6/7

7 Literaturhinweise [1] Friedrich, H. Cauchy problems for the conformal vacuum field equations in general relativity Communications in Mathematical Physics 91, (1983) [2] Husa, S. Numerical relativity with the conformal field equations Lecture Notes in Physics 617, (2003) [3] Moncrief, V.; Rinne, O. Regularity of the Einstein equations at future null infinity Classical and Quantum Gravity 26, (2009) [4] Rinne, O. An axisymmetric evolution code for the Einstein equations on hyperboloidal slices Classical and Quantum Gravity 27, (2010) [5] Rinne, O.; Moncrief, V. Hyperboloidal Einstein-matter evolution and tails for scalar and Yang-Mills fields Classical and Quantum Gravity 30, (2013) 2014 Max-Planck-Gesellschaft 7/7

Stabil oder nicht stabil? Eine Raumzeit auf dem Prüfstand Stable or not stable? A spacetime on the test bench

Stabil oder nicht stabil? Eine Raumzeit auf dem Prüfstand Stable or not stable? A spacetime on the test bench Stabil oder nicht stabil? Eine Raumzeit auf dem Stable or not stable? A spacetime on the test bench Maliborski, Maciej; Schell, Christian Max-Planck-Institut für Gravitationsphysik, Potsdam-Golm Korrespondierender

Mehr

Wie stabil sind Schwarze Löcher? How stable are Black Holes?

Wie stabil sind Schwarze Löcher? How stable are Black Holes? Wie stabil sind Schwarze Löcher? How stable are Black Holes? Andersson, Lars Max-Planck-Institut für Gravitationsphysik, Potsdam-Golm Korrespondierender Autor E-Mail: lars.andersson@aei.mpg.de Zusammenfassung

Mehr

Penrose-Diagramme. Seminararbeit - Gekrümmter Raum und gedehnte Zeit. Aris Stefanov aus Regensburg

Penrose-Diagramme. Seminararbeit - Gekrümmter Raum und gedehnte Zeit. Aris Stefanov aus Regensburg Penrose-Diagramme Seminararbeit - Gekrümmter Raum und gedehnte Zeit Aris Stefanov aus Regensburg unter Anleitung von Prof. em. Dr. Wolfgang Gebhardt und Prof. Dr. Gunnar Bali 18. November 2015 Inhaltsverzeichnis

Mehr

Holger Göbel. Gravitation und. Relativität. Eine Einführung in die Allgemeine Relativitätstheorie DE GRUYTER

Holger Göbel. Gravitation und. Relativität. Eine Einführung in die Allgemeine Relativitätstheorie DE GRUYTER Holger Göbel Gravitation und Relativität Eine Einführung in die Allgemeine Relativitätstheorie DE GRUYTER Vorwort V Liste der verwendeten Symbole XV 1 Newton'sche Mechanik 1 1.1 Die Grundgleichungen der

Mehr

Allgemeine Relativitätstheorie und Schwarze Löcher

Allgemeine Relativitätstheorie und Schwarze Löcher 1 Allgemeine Relativitätstheorie und Schwarze Löcher Christian Haderer 13.01.2010 2 KAPITEL 1 GRUNDLAGEN DER ALLGEMEINEN RELATIVITÄTSTHEORIE Die allgemeine Relativitätstheorie (kurz ART) ist immer noch

Mehr

Allgemeine Relativitätstheorie. Schwarzschildlösung und Anwendung

Allgemeine Relativitätstheorie. Schwarzschildlösung und Anwendung Allgemeine Relativitätstheorie Schwarzschildlösung und Anwendung Previously, on... Letztes Mal: Einsteingleichung und die Geodätengleichung Wir werden die Schwarzschild-Lösung der Einsteingleichung im

Mehr

Inhaltsverzeichnis. Vorwort. Liste der verw endeten Sym bole. 1 N ew ton sche Mechanik 1. 2 Spezielle R elativitätstheorie 15 CM CO ^

Inhaltsverzeichnis. Vorwort. Liste der verw endeten Sym bole. 1 N ew ton sche Mechanik 1. 2 Spezielle R elativitätstheorie 15 CM CO ^ Inhaltsverzeichnis Vorwort Liste der verw endeten Sym bole V X V 1 N ew ton sche Mechanik 1 1.1 Die Grundgleichungen der Newton schen Mechanik... 1 1.1.1 Gravitationspotential und K raft... 1 1.1.2 Bewegungsgleichung

Mehr

Allgemeine Relativitätstheorie

Allgemeine Relativitätstheorie Allgemeine Relativitätstheorie Eine Einführung in die Theorie des Gravitationsfeldes von Hans Stephani 4. Auflage Mit 54 Abbildungen / j.* i v, V r ' ''% Щ r \. ', Deutscher Verlag der Wissenschaften Berlin

Mehr

Allgemeine Relativitätstheorie mit dem Computer

Allgemeine Relativitätstheorie mit dem Computer Vorlesung 10 Allgemeine Relativitätstheorie mit dem Computer PC-Pool Raum 01.120 Johann Wolfgang Goethe Universität 20. Juni, 2016 Matthias Hanauske Frankfurt Institute for Advanced Studies Johann Wolfgang

Mehr

Modelle des Universums. Max Camenzind Akademie HD Januar 2015

Modelle des Universums. Max Camenzind Akademie HD Januar 2015 Modelle des Universums Max Camenzind Akademie HD Januar 2015 Unsere Themen Weltmodelle: Einsteins statisches Universum von 1917. das desitter Modell die Friedmann Modelle 1922/1924. das Lemaître Universum

Mehr

Allgemeine Relativitätstheorie

Allgemeine Relativitätstheorie Allgemeine Relativitätstheorie Eine anschauliche Einführung in die Grundlagen Wegelemente euklidischer Raum: Minkowski-Raum: y c t ds dy ds 2 =dx 2 dy 2 ds c d t ds 2 =c 2 dt 2 dx 2 dx x invariant bei

Mehr

Einführung in die Astronomie und Astrophysik II

Einführung in die Astronomie und Astrophysik II Einführung in die Astronomie und Astrophysik II Teil 8 Jochen Liske Hamburger Sternwarte jochen.liske@uni-hamburg.de Quiz: Wo und was in aller Welt ist das? Themen Sternentstehung Sternentwicklung Das

Mehr

Zusammenfassung. Summary

Zusammenfassung. Summary Vom Tod eines Sterns zur Geburt eines Schwarzen Lochs: numerische Lösungen für Einsteins Gleichungen From the death of a star to the birth of a black hole: numerical solutions of the Einstein equations

Mehr

Allgemeine Relativitätstheorie mit dem Computer

Allgemeine Relativitätstheorie mit dem Computer 5. und 6. Vorlesung Allgemeine Relativitätstheorie mit dem Computer PC-POOL RAUM 01.120 JOHANN WOLFGANG GOETHE UNIVERSITÄT 12. MAI, 2017 MATTHIAS HANAUSKE FRANKFURT INSTITUTE FOR ADVANCED STUDIES JOHANN

Mehr

Allgemeine Relativitätstheorie

Allgemeine Relativitätstheorie Allgemeine Relativitätstheorie Ein konzeptioneller Einblick Von Jan Kaprolat Gliederung Einleitung Übergang SRT -> ART Grundlegende Fragestellungen der ART Kurzer Einblick: Tensoralgebra Einsteinsche Feldgleichungen

Mehr

Raum, Zeit, Universum Die Rätsel des Beginns. Bild : pmmagazin

Raum, Zeit, Universum Die Rätsel des Beginns. Bild : pmmagazin Raum, Zeit, Universum Die Rätsel des Beginns Bild : pmmagazin Der Urknall Wie unser Universum aus fast Nichts entstand Inflationäres Universum Überall fast Nichts nur Fluktuationen Explosionsartige Expansion

Mehr

Kapitel 3. Minkowski-Raum. 3.1 Raumzeitlicher Abstand

Kapitel 3. Minkowski-Raum. 3.1 Raumzeitlicher Abstand Kapitel 3 Minkowski-Raum Die Galilei-Transformation lässt zeitliche Abstände und Längen unverändert. Als Länge wird dabei der räumliche Abstand zwischen zwei gleichzeitigen Ereignissen verstanden. Solche

Mehr

Gravitation und Krümmung der Raum-Zeit - Teil 1

Gravitation und Krümmung der Raum-Zeit - Teil 1 Gravitation und Krümmung der Raum-Zeit - Teil 1 Gauß hat gezeigt, daß es Möglichkeiten gibt, die Krümmung von Flächen durch inhärente Messungen auf der Fläche selbst zu bestimmen Gauß sches Krümmungsmaß

Mehr

Gravitation und Krümmung der Raum-Zeit - Teil 2

Gravitation und Krümmung der Raum-Zeit - Teil 2 Gravitation und Krümmung der Raum-Zeit - Teil 2 Einsteinsche Gravitationsfeldgleichungen Krümmung der Raumzeit = universelle Konstante x Energie- und Impulsdichte Die Raumzeit wirkt auf die Masse (Energie),

Mehr

Mathematisierung der Gravitation: Die Schwarzschildlösung der Einsteingleichungen als Grundmodell vieler Phänomene der Gravitation

Mathematisierung der Gravitation: Die Schwarzschildlösung der Einsteingleichungen als Grundmodell vieler Phänomene der Gravitation Gerhard Huisken Mathematisierung der Gravitation: Die Schwarzschildlösung der Einsteingleichungen als Grundmodell vieler Phänomene der Gravitation Als Beispiel für ein mathematisches Modell in der theoretischen

Mehr

4.2 Der Harmonische Oszillator

4.2 Der Harmonische Oszillator Dieter Suter - 208 - Physik B3, SS03 4.2 Der Harmonische Oszillator 4.2.1 Harmonische Schwingungen Die Zeitabhängigkeit einer allgemeinen Schwingung ist beliebig, abgesehen von der Periodizität. Die mathematische

Mehr

Wir werden folgende Feststellungen erläutern und begründen: 2. Gravitationskräfte sind äquivalent zu Trägheitskräften. 1 m s. z.t/ D. g t 2 (10.

Wir werden folgende Feststellungen erläutern und begründen: 2. Gravitationskräfte sind äquivalent zu Trägheitskräften. 1 m s. z.t/ D. g t 2 (10. 10 Äquivalenzprinzip Die physikalische Grundlage der Allgemeinen Relativitätstheorie (ART) ist das von Einstein postulierte Äquivalenzprinzip 1. Dieses Prinzip besagt, dass Gravitationskräfte äquivalent

Mehr

Quanten - Gravitation

Quanten - Gravitation Quanten - Gravitation Quantenmechanik und allgemeine Relativitätstheorie zwei Pfeiler im Gebäude der theoretischen Physik Passen sie zusammen? Oder brauchen wir ganz neue theoretische Konzepte? Quantenmechanik

Mehr

Allgemeine Relativitätstheorie mit dem Computer

Allgemeine Relativitätstheorie mit dem Computer Allgemeine Relativitätstheorie mit dem Computer PC-POOL RAUM 01.120 JOHANN WOLFGANG GOETHE UNIVERSITÄT 20. APRIL, 2018 2. Vorlesung MATTHIAS HANAUSKE FRANKFURT INSTITUTE FOR ADVANCED STUDIES JOHANN WOLFGANG

Mehr

Anfangsdaten für Schwarze Löcher auf hyperboloidalen Blättern. Dissertation

Anfangsdaten für Schwarze Löcher auf hyperboloidalen Blättern. Dissertation Anfangsdaten für Schwarze Löcher auf hyperboloidalen Blättern Dissertation zur Erlangung des akademischen Grades doctor rerum naturalium (Dr. rer. nat.) vorgelegt dem Rat der Physikalisch-Astronomischen

Mehr

2. Methode der Randelemente

2. Methode der Randelemente 2. Methode der Randelemente Bei allgemeinen Schall abstrahlenden Flächen lässt sich der Schalldruck an einem beliebigen Punkt im Raum aus einem Integral über auf der Fläche definierte Funktionen berechnen.

Mehr

(Anti-) de Sitter Metriken in Kosmologie und theoretischer Physik

(Anti-) de Sitter Metriken in Kosmologie und theoretischer Physik (Anti-) de Sitter Metriken in Kosmologie und theoretischer Physik Patrick Mangat Referat zur Vorlesung Kosmologie 16. November 2011 Idee und Eigenschaften der de Sitter Metrik Die Geburt der kosmologischen

Mehr

Über teleparallele Gravitationstheorien

Über teleparallele Gravitationstheorien Diplomkolloquium Über teleparallele Gravitationstheorien Uwe Münch 24. September 1997 Übersicht: Geometrische Größen Gravitation als Eichtheorie der Translationen: Teleparallelismus-Theorien Alternative

Mehr

Seminar: Quantenoptik und nichtlineare Optik Quantisierung des elektromagnetischen Strahlungsfeldes und die Dipolnäherung

Seminar: Quantenoptik und nichtlineare Optik Quantisierung des elektromagnetischen Strahlungsfeldes und die Dipolnäherung Seminar: Quantenoptik und nichtlineare Optik Quantisierung des elektromagnetischen Strahlungsfeldes und die Dipolnäherung 10. November 2010 Physik Institut für Angewandte Physik Jörg Hoppe 1 Inhalt Motivation

Mehr

Was ist Gravitation?

Was ist Gravitation? Was ist Gravitation? Über die Einheit fundamentaler Wechselwirkungen zur Natur schwarzer Löcher Hans Peter Nilles Physikalisches Institut, Universität Bonn Was ist Gravitation, UniClub Bonn, März. 2011

Mehr

Das Konzept der Raumzeit-Krümmung

Das Konzept der Raumzeit-Krümmung Das Konzept der Raumzeit-Krümmung Franz Embacher Fakultät für Physik der Universität Wien Vortrag auf der Jahrestagung der Wiener Arbeitsgemeinschaft für Astronomie Wien, 14. November 2015 Das Konzept

Mehr

5. Schwarze Löcher. Entweichproblem Reale Raumzeit Einfache Lösungen der Einstein-Gleichung

5. Schwarze Löcher. Entweichproblem Reale Raumzeit Einfache Lösungen der Einstein-Gleichung 5. Schwarze Löcher Entweichproblem Reale Raumzeit Einfache Lösungen der Einstein-Gleichung Schwarze Löcher unterschiedlicher Massen Schwarze Löcher thermodynamisch Wurmloch: Quantenphänomen in der Makrowelt?

Mehr

7.6. Prüfungsaufgaben zu Normalenformen

7.6. Prüfungsaufgaben zu Normalenformen 7.6. Prüfungsaufgaben zu Normalenformen Aufgabe () Gegeben sind die Gerade g: x a + r u mit r R und die Ebene E: ( x p ) n. a) Welche geometrische Bedeutung haben die Vektoren a und u bzw. p und n? Veranschaulichen

Mehr

Kaluza Klein Theorie. Forschungsseminar Quantenfeldtheorie Montag, Jens Langelage

Kaluza Klein Theorie. Forschungsseminar Quantenfeldtheorie Montag, Jens Langelage Kaluza Klein Theorie Forschungsseminar Quantenfeldtheorie Montag, 22.05.2006 Jens Langelage Inhalt 1.) Gravitation und Elektromagnetismus in höheren Dimensionen 2.) Kaluza Klein Miracle 1.) Elektromagnetismus

Mehr

Allgemeine Relativitätstheorie und Quantenphysik

Allgemeine Relativitätstheorie und Quantenphysik Allgemeine Relativitätstheorie und Quantenphysik Franz Embacher Fakultät für Physik der Universität Wien Vortrag am Bundes-Oberstufenrealgymnasium Wien 3, 26. April 2016 Vortrag an der Österreichischen

Mehr

Schwarze Löcher. Reinhard Meinel Friedrich-Schiller-Universität Jena

Schwarze Löcher. Reinhard Meinel Friedrich-Schiller-Universität Jena Schwarze Löcher Reinhard Meinel Friedrich-Schiller-Universität Jena 1. Einleitung 2. Die Schwarzschild-Lösung 3. Der Ereignishorizont 4. Radiale Null-Geodäten 5. Kollaps zum Schwarzen Loch 6. Rotierende

Mehr

Schwarze Löcher. Reinhard Meinel Friedrich-Schiller-Universität Jena

Schwarze Löcher. Reinhard Meinel Friedrich-Schiller-Universität Jena Schwarze Löcher Reinhard Meinel Friedrich-Schiller-Universität Jena 1. Einleitung 2. Die Schwarzschild-Lösung 3. Der Ereignishorizont 4. Radiale Null-Geodäten 5. Kollaps zum Schwarzen Loch 6. Rotierende

Mehr

Lösung der harmonischen Oszillator-Gleichung

Lösung der harmonischen Oszillator-Gleichung Lösung der harmonischen Oszillator-Gleichung Lucas Kunz 8. Dezember 016 Inhaltsverzeichnis 1 Physikalische Herleitung 1.1 Gravitation................................... 1. Reibung.....................................

Mehr

Schwarze Löcher in der Physik und Astrophysik

Schwarze Löcher in der Physik und Astrophysik Schwarze Löcher in der Physik und Astrophysik Ulrich Sperhake California Institute of Technology Kurs der Volkshochschule Henstedt-Ulzburg 5.Oktober 2009 1 Überblick Gravitation und Relativitätstheorie

Mehr

I. Das Weltbild der Gravitation vor Einstein Die Keplerschen Gesetze 25

I. Das Weltbild der Gravitation vor Einstein Die Keplerschen Gesetze 25 Inhaltsverzeichnis I. Das Weltbild der Gravitation vor Einstein 21 1. Die Keplerschen Gesetze 25 2. Fallgesetze 33 2.1. Bewegung in einer Dimension 33 2.1.1. Geschwindigkeit 34 2.1.2. Beschleunigung 42

Mehr

} Symmetrieachse von A und B.

} Symmetrieachse von A und B. 5 Symmetrieachsen Seite 1 von 6 5 Symmetrieachsen Gleicher Abstand von zwei Punkten Betrachtet man zwei fest vorgegebene Punkte A und B, drängt sich im Zusammenhang mit dem Abstandsbegriff eine Frage auf,

Mehr

Kausalität. Seminar zur Lorentz Geometrie. Jonas Haferkamp 9. Juni 2016

Kausalität. Seminar zur Lorentz Geometrie. Jonas Haferkamp 9. Juni 2016 Kausalität Seminar zur Lorentz Geometrie Jonas Haferkamp 9. Juni 2016 1 Einleitung Kausalität ist das Prinzip von Ursache und Wirkung. Um dieses Konzept zu formalisieren, ist offenbar ein sinnvoller Zeitbegriff

Mehr

Evolution in der Physik

Evolution in der Physik Evolution in der Physik Zwei Bedeutungen eines Begriffs Franz Embacher Fakultät für Physik Universität Wien Vortrag im Rahmen von University Meets Public, VHS Meidling, Wien. 20. 10. 2009 Inhalt Evolution

Mehr

Darstellungsformen von Funktionen

Darstellungsformen von Funktionen http://www.flickr.com/photos/ishida/1805420435/in/pool-streetlampsoftheworld Darstellungsformen von Funktionen 1 E X f (x) Y Abb. 1: Konzept einer Funktion f (x): Abbildung einer Menge auf die andere Die

Mehr

Hamilton-Systeme. J. Struckmeier

Hamilton-Systeme. J. Struckmeier Invarianten für zeitabhängige Hamilton-Systeme J. Struckmeier Vortrag im Rahmen des Winterseminars des Instituts für Angewandte Physik der Johann-Wolfgang-Goethe-Universität Frankfurt a.m. Hirschegg, 04.

Mehr

GW150914, schwache Stelle der Datenverarbeitung

GW150914, schwache Stelle der Datenverarbeitung GW150914, schwache Stelle der Datenverarbeitung Walter Orlov, September 2016 Abstract. The data processing, which was used for GW150914, has a weak spot. The relativistic simulation curve of the two merging

Mehr

Landau-Theorie. Seminar zur Theorie der Teilchen und Felder. Daniel Schröer

Landau-Theorie. Seminar zur Theorie der Teilchen und Felder. Daniel Schröer Landau-Theorie Seminar zur Theorie der Teilchen und Felder Daniel Schröer 1.Einleitung Um ein Problem der Statistischen Physik zu lösen, wird ein relevantes thermodynamisches Potential, wie beispielsweise

Mehr

Das Singularitätentheorem von Hawking Teil 2

Das Singularitätentheorem von Hawking Teil 2 Das Singularitätentheorem von Hawking Teil Jakob Hedicke 0.06.06 In diesem Vortrag werden wir den Beweis des Singularitätentheorems von Stephen Hawking vervollständigen. Im letzten Vortrag wurde bereits

Mehr

Nackte Singularitäten

Nackte Singularitäten Nackte Singularitäten Hausarbeit im Rahmen der Vorlesung Physik des Universums bei Prof. Dr. Harald Lesch Ludwig-Maximilians-Universität München Florian Zeller 15. Oktober 2010 1 Inhaltsverzeichnis 1.

Mehr

Wiederholung: Gravitation in der klassischen Physik

Wiederholung: Gravitation in der klassischen Physik Gravitation II Wiederholung: Gravitation in der klassischen Physik Eigenschaften: Intrinsische (ladungsartige) Eigenschaft der schweren Masse (Gravitationsladung) Es gibt nur positive Gravitationsladungen

Mehr

im Zyklus: Experimental Gravitation Burkhard Zink Theoretische Astrophysik Universität Tübingen

im Zyklus: Experimental Gravitation Burkhard Zink Theoretische Astrophysik Universität Tübingen im Zyklus: Experimental Gravitation Burkhard Zink Theoretische Astrophysik Universität Tübingen Verschmelzung von Neutronensternen Verschmelzung Schwarzer Löcher Neutronenstern-Oszillationen Gamma-ray

Mehr

PP Physikalisches Pendel

PP Physikalisches Pendel PP Physikalisches Pendel Blockpraktikum Frühjahr 2007 (Gruppe 2) 25. April 2007 Inhaltsverzeichnis 1 Einführung 2 2 Theoretische Grundlagen 2 2.1 Ungedämpftes physikalisches Pendel.......... 2 2.2 Dämpfung

Mehr

Schwarze Löcher. Sackgassen in der Raumzeit. Franz Embacher. Fakultät für Physik der Universität Wien

Schwarze Löcher. Sackgassen in der Raumzeit. Franz Embacher. Fakultät für Physik der Universität Wien Schwarze Löcher Sackgassen in der Raumzeit Franz Embacher Fakultät für Physik der Universität Wien Vortrag im Rahmen von physics:science@school 13/14 Wien, BG & GRG 3, Boerhaavegasse 15 18. Dezember 2013

Mehr

Exkurs: Schwarze Löcher (3)

Exkurs: Schwarze Löcher (3) Exkurs: Schwarze Löcher (3) Ein paar Theoreme zur Physik (klassischer) Schwarzer Löcher Erster Hauptsatz: Energieerhaltungssatz unter Berücksichtigung der relativistischen Energie-Masse-Äquivalenz. Zusätzlich

Mehr

Klausur zur T1 (Klassische Mechanik)

Klausur zur T1 (Klassische Mechanik) Klausur zur T1 (Klassische Mechanik) WS 2006/07 Bearbeitungsdauer: 120 Minuten Prof. Stefan Kehrein Name: Matrikelnummer: Gruppe: Diese Klausur besteht aus vier Aufgaben. In jeder Aufgabe sind 10 Punkte

Mehr

Allgemeine Relativitätstheorie

Allgemeine Relativitätstheorie Kontrollfragen Allgemeine Relativitätstheorie Stephan Mertens Wintersemester 2009 UE R ICKE UNI VERSITÄT MAG G N VO D O TT O EBURG 1 Einführung und Motivation 1. Warum kann das Newton sche Gravitationsgesetz

Mehr

Allgemeine Relativitätstheorie mit dem Computer. 1. Vorlesung

Allgemeine Relativitätstheorie mit dem Computer. 1. Vorlesung Allgemeine Relativitätstheorie mit dem Computer PC-POOL RAUM 01.120 JOHANN WOLFGANG GOETHE UNIVERSITÄT 21. APRIL, 2017 1. Vorlesung MATTHIAS HANAUSKE FRANKFURT INSTITUTE FOR ADVANCED STUDIES JOHANN WOLFGANG

Mehr

Relativistische Gleichgewichtsfiguren: Mathematische Modelle von

Relativistische Gleichgewichtsfiguren: Mathematische Modelle von Relativistische Gleichgewichtsfiguren: Mathematische Modelle von Relativistic Figures of Equilibrium: Mathematical Models of Rotating Fluid Bodies in Gravitational Theory Ansorg, Marcus Max-Planck-Institut

Mehr

Schwarze Löcher Staubsauger oder Stargate? Kai Zuber Inst. f. Kern- und Teilchenphysik TU Dresden

Schwarze Löcher Staubsauger oder Stargate? Kai Zuber Inst. f. Kern- und Teilchenphysik TU Dresden Schwarze Löcher Staubsauger oder Stargate? Kai Zuber Inst. f. Kern- und Teilchenphysik TU Dresden 6.12.2014 Das Leben des Albert E. - Relativitätstheorie Das Leben der Sterne Schwarze Löcher Wurmlöcher

Mehr

Schwarze Löcher Staubsauger oder Stargate? Kai Zuber Inst. f. Kern- und Teilchenphysik TU Dresden

Schwarze Löcher Staubsauger oder Stargate? Kai Zuber Inst. f. Kern- und Teilchenphysik TU Dresden Schwarze Löcher Staubsauger oder Stargate? Kai Zuber Inst. f. Kern- und Teilchenphysik TU Dresden 4.12.2010 Das Leben des Albert E. - Relativitätstheorie Das Leben der Sterne Schwarze Löcher Wurmlöcher

Mehr

I.2.3 Minkowski-Raum. ~r x 3 benutzt.

I.2.3 Minkowski-Raum. ~r x 3 benutzt. I.2 Lorentz-Transformationen 9 I.2.3 Minkowski-Raum Wegen der Absolutheit von Zeit und Raum in der klassischen Mechanik faktorisiert sich die zugehörige nicht-relativistische Raumzeit in das Produkt einer

Mehr

Robertson-Walker Metrik

Robertson-Walker Metrik 3. Eine Metrik für das Universum: Robertson-Walker Metrik Kosmologisches Prinzip: Die Welt ist homogen und isotrop, d.h. das Universum sieht (zu einem bestimmten Zeitpunkt) von allen Orten aus gleich aus!

Mehr

2.1 Das Ereignisintervall, die Eigenzeit

2.1 Das Ereignisintervall, die Eigenzeit Kapitel 2 Begriffe und Konzepte 2.1 Das Ereignisintervall, die Eigenzeit Wir wollen nun im Prinzip die Bewegung eines Körpers unter Einwirkung der Schwerkraft untersuchen und suchen deshalb in der Raumzeit

Mehr

Die Einsteinsche Feldgleichung

Die Einsteinsche Feldgleichung Die Einsteinsche Feldgleichung Volker Perlick ZARM, Univ. Bremen, Germany Eisenbahnfriedhof Uyuni, Bolivien Heraeus-Seminar 100 Jahre Allgemeine Relativitätstheorie Potsdam, 11 März 2015 Newton Einstein

Mehr

Mathematische Grundlagen der dynamischen Simulation

Mathematische Grundlagen der dynamischen Simulation Mathematische Grundlagen der dynamischen Simulation Dynamische Systeme sind Systeme, die sich verändern. Es geht dabei um eine zeitliche Entwicklung und wie immer in der Informatik betrachten wir dabei

Mehr

Probestudium der Physik 2011/12

Probestudium der Physik 2011/12 Probestudium der Physik 2011/12 Karsten Kruse 2. Mechanische Schwingungen und Wellen - Theoretische Betrachtungen 2.1 Der harmonische Oszillator Wir betrachten eine lineare Feder mit der Ruhelänge l 0.

Mehr

Der Urknall. Wie unser Universum aus fast Nichts entstand

Der Urknall. Wie unser Universum aus fast Nichts entstand Der Urknall Wie unser Universum aus fast Nichts entstand Die großen Fragen Woraus besteht das Universum? Wie sah das Universum am Anfang aus? Plasma! und vorher? Woraus haben sich Strukturen entwickelt?

Mehr

Gravitation und Krümmung der Raum-Zeit - Teil 3

Gravitation und Krümmung der Raum-Zeit - Teil 3 Gravitation und Krümmung der Raum-Zeit - Teil 3 Löcher die rotieren... Die Kerr-Lösung Schwarzschild-Black holes sind als Modelle für reale Schwarze Löcher unrealistisch, da sie statisch sind (d.h. keinen

Mehr

2 Die Newton sche Gravitationstheorie

2 Die Newton sche Gravitationstheorie 2 Die Newton sche Gravitationstheorie Von welchem Ausgangspunkt wollen wir Einsteins Gravitationstheorie kennenlernen? Wir rekapitulieren zu Beginn die Beschreibung der Gravitation nach Newton. Vektoren

Mehr

Fourier Reihe. Fourier Transformation. Ma 2 Lubov Vassilevskaya, SS 2008

Fourier Reihe. Fourier Transformation. Ma 2 Lubov Vassilevskaya, SS 2008 Fourier Reihe Fourier Transformation Entwicklung einer Funktion in eine Potenzreihe Eine beliebig oft differenzierbare Funktion f (x) kann in eine unendliche Reihe von Potenzfunktionen x n entwickelt werden

Mehr

Wir bauen eine Zeitmaschine

Wir bauen eine Zeitmaschine Zeitmaschinen Bis zum Anfang des 20. Jahrhunderts glaubten die Physiker, ein gutes Verständnis dafür zu haben, was Zeit ist: Sie verläuft kontinuierlich, in eine Richtung und ist absolut, also unabhängig

Mehr

Ferienkurs der Experimentalphysik II Teil IV Spezielle Relativitätstheorie

Ferienkurs der Experimentalphysik II Teil IV Spezielle Relativitätstheorie Ferienkurs der Experimentalphysik II Teil IV Spezielle Relativitätstheorie Michael Mittermair 29. August 2013 1 Inhaltsverzeichnis 1 Spezielle Relativitätstheorie 3 1.1 Warum heißt das so?.......................

Mehr

Wo ist eigentlich Gamma? - Die Mär vom Lorentzfaktor γ (Gemeinverständlich)

Wo ist eigentlich Gamma? - Die Mär vom Lorentzfaktor γ (Gemeinverständlich) Wo ist eigentlich Gamma? - Die Mär vom Lorentzfaktor γ (Gemeinverständlich) Gerd Termathe, Dipl.-Ing. gerd@termathe.net c Dezember 206 - Für Tobias - Abstract Es wird gezeigt, dass der Lorentzfaktor, Bestandteil

Mehr

Ein Maß für die Krümmung von Funktionsgraphen Helmut Umla 2015

Ein Maß für die Krümmung von Funktionsgraphen Helmut Umla 2015 Ein Maß für die Krümmung von Funktionsgraphen Helmut Umla 015 Halbkreise Der Kreis mit Mittelpunkt und Radius hat die Gleichung + (Satz des Pythagoras). Die Gleichung nach aufgelöst: ± Der untere Halbkreis

Mehr

Einsteins Erbe. Mathematische Einblicke in schwarze Löcher Von Markus Kunze

Einsteins Erbe. Mathematische Einblicke in schwarze Löcher Von Markus Kunze 108 Dieser Übersichtsartikel gibt Auskunft über schwarze Löcher in der Allgemeinen Relativitätstheorie und diskutiert ihre Eigenschaften aus mathematischer Sicht. Zu den behandelten Themen gehören Eindeutigkeitssätze

Mehr

Einführung in die Astronomie und Astrophysik II

Einführung in die Astronomie und Astrophysik II Einführung in die Astronomie und Astrophysik II Teil 11 Jochen Liske Hamburger Sternwarte jochen.liske@uni-hamburg.de Astronomische Nachricht der Woche Fast Radio Burst zum ersten (?) Mal lokalisiert:

Mehr

Raumzeit für Alle! Raum, Zeit, Raumzeit. Spezielle und Allgemeine Relativitätstheorie. mit einfachen mathematischen Hilfsmitteln nachvollziehen

Raumzeit für Alle! Raum, Zeit, Raumzeit. Spezielle und Allgemeine Relativitätstheorie. mit einfachen mathematischen Hilfsmitteln nachvollziehen Raumzeit für Alle! Raum, Zeit, Raumzeit Spezielle und Allgemeine Relativitätstheorie mit einfachen mathematischen Hilfsmitteln nachvollziehen P. Schneider, Herborn Mai 2015, Addendum Oktober 2017, Interne

Mehr

Herleitung der Formel für die Krümmung von Funktionsgraphen

Herleitung der Formel für die Krümmung von Funktionsgraphen Herleitung der Formel für die Krümmung von Funktionsgraphen mit Hilfe der Beispiele f(x) = x 2 und f(x) = x 4 Jens Weitendorf Kurzfassung des Inhalts: In dem Artikel wird in einer kurzen Einheit dargestellt,

Mehr

Probeklausur zur T1 (Klassische Mechanik)

Probeklausur zur T1 (Klassische Mechanik) Probeklausur zur T1 (Klassische Mechanik) WS 006/07 Bearbeitungsdauer: 10 Minuten Prof. Stefan Kehrein Name: Matrikelnummer: Gruppe: Diese Klausur besteht aus vier Aufgaben. In jeder Aufgabe sind 10 Punkte

Mehr

Allgemeine Relativitätstheorie, was ist das?

Allgemeine Relativitätstheorie, was ist das? , was ist das? 1905 stellte Albert Einstein die Spezielle Relativitätstheorie auf Beim Versuch die Gravitation im Rahmen der Speziellen Relativitätstheorie zu beschreiben stieß er allerdings schnell auf

Mehr

Poisson-Klammern. Betrachte zwei physikalische Grössen, die von den Koordinaten, Impulsen und Zeit abhängen: Def: "Poisson-Klammer von F und G":

Poisson-Klammern. Betrachte zwei physikalische Grössen, die von den Koordinaten, Impulsen und Zeit abhängen: Def: Poisson-Klammer von F und G: Poisson-Klammern Betrachte zwei physikalische Grössen, die von den Koordinaten, Impulsen und Zeit abhängen: Def: "Poisson-Klammer von F und G": Einfachste Beispiele: im Hamilton-Formalismus sind p, q,

Mehr

Jahrbuch 2003/2004 Baues, Hans-Joachim; Jibladze, Mamuka Abbildungen zwischen Sphären

Jahrbuch 2003/2004 Baues, Hans-Joachim; Jibladze, Mamuka Abbildungen zwischen Sphären Abbildungen zwischen Sphären Maps between spheres Baues, Hans-Joachim; Jibladze, Mamuka Max-Planck-Institut für Mathematik, Bonn Korrespondierender Autor E-Mail: baues@mpim-bonn.mpg.de Zusammenfassung

Mehr

Vektoren. Jörn Loviscach. Versionsstand: 11. April 2009, 23:42

Vektoren. Jörn Loviscach. Versionsstand: 11. April 2009, 23:42 Vektoren Jörn Loviscach Versionsstand:. April 29, 23:42 Rechnen mit Pfeilen Bei den komplexen Zahlen haben wir das Rechnen mit Pfeilen schon kennen gelernt. Addition und Subtraktion klappen in drei wie

Mehr

Proseminar: Kosmologie und Astroteilchen Wintersemester 2011/12 Tobias Behrendt. Kosmologisches Standardmodell

Proseminar: Kosmologie und Astroteilchen Wintersemester 2011/12 Tobias Behrendt. Kosmologisches Standardmodell Proseminar: Kosmologie und Astroteilchen Wintersemester 2011/12 Tobias Behrendt Kosmologisches Standardmodell Übersicht Einführung und kosmologisches Prinzip ART und Metriken Robertson-Walker-Metrik und

Mehr

Einleitung 2. 1 Koordinatensysteme 2. 2 Lineare Abbildungen 4. 3 Literaturverzeichnis 7

Einleitung 2. 1 Koordinatensysteme 2. 2 Lineare Abbildungen 4. 3 Literaturverzeichnis 7 Sonja Hunscha - Koordinatensysteme 1 Inhalt Einleitung 2 1 Koordinatensysteme 2 1.1 Kartesisches Koordinatensystem 2 1.2 Polarkoordinaten 3 1.3 Zusammenhang zwischen kartesischen und Polarkoordinaten 3

Mehr

Allgemeine Relativitätstheorie mit dem Computer

Allgemeine Relativitätstheorie mit dem Computer Allgemeine Relativitätstheorie mit dem Computer PC-POOL RAUM 01.120 JOHANN WOLFGANG GOETHE UNIVERSITÄT 18. MAI, 2017 6. Vorlesung MATTHIAS HANAUSKE FRANKFURT INSTITUTE FOR ADVANCED STUDIES JOHANN WOLFGANG

Mehr

Was sagen uns Schleifen über Quantengravitation?

Was sagen uns Schleifen über Quantengravitation? Was sagen uns Schleifen über Quantengravitation? für: Auf der Suche nach der Weltformel Tim Koslowski Perimeter Institute for Theoretical Physics Waterloo, Ontario Waldhof, 4. Juli 2010 Tim Koslowski (Perimeter

Mehr

Beleuchtungsmodelle und Shading

Beleuchtungsmodelle und Shading Beleuchtungsmodelle und Shading Andreas Spillner Computergrafik, WS 2018/2019 Ziel der Modellierung von Beleuchtung Baut auf dem Kapitel zu Licht und Farben auf. In die 3D-Szene werden Lichtquellen eingebracht.

Mehr

Entfernungsbestimmung im Kosmos 10

Entfernungsbestimmung im Kosmos 10 Entfernungsbestimmung im Kosmos 10 10.1 Folgerungen aus dem Hubble-Gesetz 10.2 Allgemeine Relativitätstheorie 10.3 Robertson-Walker - Metrik 10.4 Entfernungsdefinitionen 10.5 Dynamik der Expansion 10.6

Mehr

Lineare Gleichungssysteme mit zwei Variablen

Lineare Gleichungssysteme mit zwei Variablen Lineare Gleichungssysteme mit zwei Variablen Anna Heynkes 4.11.2005, Aachen Enthält eine Gleichung mehr als eine Variable, dann gibt es unendlich viele mögliche Lösungen und jede Lösung besteht aus so

Mehr

Simulationstechnik V

Simulationstechnik V Simulationstechnik V Vorlesung/Praktikum an der RWTH Aachen Numerische Simulation von Strömungsvorgängen B. Binninger Institut für Technische Verbrennung Templergraben 64 2. Teil 2-1 1) Welche Garantie

Mehr

Die allgemeine Relativitätstheorie

Die allgemeine Relativitätstheorie Die allgemeine Relativitätstheorie Manuel Hohmann Universität Hamburg 20. Juni 2006 Inhaltsverzeichnis 1 Was ist die ART? 3 2 Wie löst die ART alte Probleme? 9 3 Welche neuen Vorhersagen macht die ART?

Mehr

Kreistreue der Möbius-Transformationen

Kreistreue der Möbius-Transformationen Kreistreue der Möbiustransformationen Satz Möbius Transformationen sind kreistreu. Beweis Verwende eine geeignete Zerlegung für c 0: a az + b cz + d = c (cz + d) ad c + b cz + d = a c ad bc c cz + d. Wir

Mehr

Betrachte zwei physikalische Grössen, die von den Koordinaten, Impulsen und der Zeit abhängen:

Betrachte zwei physikalische Grössen, die von den Koordinaten, Impulsen und der Zeit abhängen: Poisson-Klammern Betrachte zwei physikalische Grössen, die von den Koordinaten, Impulsen und der Zeit abhängen: Def: "Poisson-Klammer von F und G": Einfachste Beispiele: im Hamilton-Formalismus sind p,

Mehr

WKB-Methode. Jan Kirschbaum

WKB-Methode. Jan Kirschbaum WKB-Methode Jan Kirschbaum Westfälische Wilhelms-Universität Münster Fachbereich Physik Seminar zur Theorie der Atome, Kerne und kondensierten Materie 1 Einleitung Die WKB-Methode, unabhängig und fast

Mehr

8 Reflexion und Brechung

8 Reflexion und Brechung Universität Leipzig, Fakultät für Physik und Geowissenschaften Vorlesung zur Experimentalphysik III Wintersemester 28/29 Prof. Dr. Josef A. Käs Vorlesungsmitschrift zur Vorlesung vom 2.11.28 8 Reflexion

Mehr

2.9 Gedämpfter Harmonischer Oszillator

2.9 Gedämpfter Harmonischer Oszillator 72 KAPITEL 2. DYNAMIK EINES MASSENPUNKTES 2.9 Gedämpfter Harmonischer Oszillator In diesem Abschnitt wollen wir die Bewegung eines Massenpunktes betrachten, der sich in einer Raumrichtung x in einer Harmonischen

Mehr

2. Mannigfaltigkeiten

2. Mannigfaltigkeiten 2. Mannigfaltigkeiten 2.1 Äquivalenzprinzip Newton: und Weak Equivalence Principle (WEP): andere Form des WEP: Beschleunigung = Gravitation Die Bewegung eines frei-fallenden Körpers sind identisch in einem

Mehr