Spezielle Relativitätstheorie (Einstein, 1905)

Größe: px
Ab Seite anzeigen:

Download "Spezielle Relativitätstheorie (Einstein, 1905)"

Transkript

1 Spezielle Relativitätstheorie (Einstein, 1905) A. Einstein, 1905, Annalen der Physik: "Zur Elektrodynamik bewegter Körper" Buch: N. David Mermin: "It's About Time: Understanding Einstein's Relativity", Princeton University Press, 2005 Lichtgeschwindigkeit (LG) 1) Erste Messversuche - Galilei 2) Erste erfolgreiche Schätzung - Romer (1676) Sonne Erde Jupiter Mond Jupiter-Mondfinsternis früher/später als erwaret, wenn Erde näher/weiter weg war: 3) Erste gute Messung: (Fizeau, 1880) Spiegel Rad 1 Rad 2 (leicht verdreht) 4) Heute: c m/s per Definition! Das ist eigentlich Definition des Meters: Abstand, den Licht in zurücklegt 5) Intuition: Fuß/Nanosekunde

2 Offensichtliche Frage: "relativ zu was" bewegt sich Licht mit km/s?? Mögliche Antwort 1 (MA1): "Relativ zu einem 'Licht-Medium' ('Lichtäther') absolut ruhend? Wäre analog zu Schallwellen durch Luft oder Wasser, wo Schallgeschwindigkeit relativ zu Medium unabhängig ist von Geschwindigkeit der Quelle. Aber: MA1 widerspricht Experiment (Michelson-Morley (1887) Sonne Lichtquelle Erwartet: (mit Strom Schwimmen ist schneller als gegen Strom Schwimmen) hypothetischer Ätherwind Erde Erde bewegt sich nach rechts durch d. Äther Gemessen: hypothetischer Ätherwind weht nach links relativ zur Erde Mögliche Antwort 2 (MA2): "Relativ zur Quelle" Wäre analog zu Kugel aus Flugzeug gefeuert: Geschw. Bob rel. zu Alice: Geschw. Kugel rel. zu Bob: Geschw. Kugel rel. zu Alice: Aber: MA2 widerspicht Experiment: Erwartet laut Galileo: Erde Gemessen: rotierendes Doppelsternsystem Ferner: MA2 widerspricht Maxwell's Elektrodynamik, die vorhersagt: Geschwindigkeit aller elektromagnetischer (EM) Strahlung ist genau c, unabhängig von Geschw. der Quelle!

3 Enter Einstein: er bemerkt: EM-Phänomene sehen in verschiedenen Inertialsystemen gleich aus! z.b. Leiterschlaufe Leiterschlaufe Magnet Magnet Elektromotorische Kraft in Leiterschlaufe ist dieselbe, unabhängig davon ob Leiterschlaufe ruht und Magnet bewegt wird oder umgekehrt. Einstein postuliert: 1) Relativitätsprinzip: (Alle) IS sind für Beschreibung (aller) physikalischen Gesetze äquivalent (somit ist "Einführung eines Lichtäthers oder absolut ruhenden Raumes" überflüssig) 2) Konstanz der Lichtgeschwindigkeit (LG): Die LG im Vakuum hat in allen IS den gleichen Wert c (unabhängig von deren Relativgeschw. zur Quelle) (2 folgt aus 1, da Maxwell-Theorie besagt: c ist unabhängig von Quelle) Fazit: Relativ zu was bewegt sich Licht mit c? Antwort: Egal! Relativ zu allen beliebigen IS! Explizit: Für t= t' = 0 sei also: Koordinaten des Ursprungs von Bob aus Sicht von Alice. Relativgeschwindigkeit von B rel. zu A Lichtblitz starte bei t = t' in, und erreicht etwas später Punkt P. Alice sagt: Bob sagt: Liefert Widerspruch zur Galilei-Transformation: (4) in (3) liefert nicht (2)!! (5.3) erscheint zunächst verblüffend, wenn wir annehmen, dass Apparate für Messung von Geschw. [oder, weil v=x/t, von Abständen (Messlatten) und Zeiten (Uhren)], für Alice und Bob 100% gleich funktionieren. Tun sie aber nicht! Grund:

4 Problem der Gleichzeitigkeit Zeitmessung ist Aussage über gleichzeitige Ereignisse: "Zug kommt um 7 Uhr" heisst: "Uhrzeiger zeigt auf 7" und "Zug kommt" sind gleichzeitige Ereignisse. Wie ist "gleichzeitig" definiert, wenn zwei Ereignisse räumlich getrennt sind?? Einstein's Definition (nutzt Konstanz der LG): Ereignisse wenn zwei Lichtstrahlen, und sind gleichzeitig, zur Zeit von und von ausgesandt, gleichzeitig im geometrischen Mittelpunkt ankommen. geometrischer Mittelpunkt Wir werden zeigen: Zwei Ereignisse, die für B' gleichzeitig erscheinen, erscheinen für A ungleichzeitig! (mit anderen Worten: Uhren von A und B' lassen sich nicht perfekt synchronisieren...) (Berühmtes) Beispiel: "Photonenpaar im Zug" (Mermin Notes, Part 5) Fall 1: Wagen von Bob steht im Bahnhof von Alice. Alle A-Uhren sind miteinander synchronisiert, Alle B'-Uhren sind miteinander synchronisiert. Von Wagenmitte werden gleichzeitig, zur Zeit zwei Photonen abgeschossen A und B' sehen dasselbe: Photonen kommen gleichzeitig hinten und vorne an, zur Zeit (laut A), (laut B'), und zünden zwei Knallerbsen. Die machen Flecken auf die Schiene, und schicken Photonen zurück, welche die Wagenmitte gleichzeitig erreichen, zur Zeit

5 Raum-Zeit (Minkowski) -Diagramme für Fall 1: Wagen B' steht im Bahnhof A Photon-Bahnkurven aus Sicht von O Photon-Bahnkurven aus Sicht von O' Rot: Photonbahnen (Steigung: gegenläufige Photobahnen machen einen Winkel von ) (auch "Lichtkegel" genannt) Blau: "Weltlinien" für eine Abfolge von Ereignissen (z.b. Bahnkurve von Hinterwand des Wagens) Lila: Gleichzeitige Ereignisse (synchronisierte Uhren haben denselben Zeigerstand) Fall 2: Wagen fährt durch Bahnhof mit Geschwindigkeit. sei Zeitpunkt, wenn Dann werden die zwei Photonen gleichzeitig abgeschossen. A sagt: L-Photon trifft hinten zur Zeit R-Photon trifft vorne zur Zeit B' sagt: weil LG = c in jedem IS, ist für mich Fall 1 = Fall 2 Photonen kommen gleichzeitig hinten und vorne an: Fazit: ["gleichzeitig" für B'] ["gleichzeitig" für A] Ferner: die Ankünfte der zwei Knallerbsenphotonen bei Wagenmitte passieren gleichzeitig zur Zeit (laut B') Weil diese Ereignisse am selben Ort stattfinden, sieht auch A sie gleichzeitig zur Zeit (laut A)

6 Raum-Zeit-Diagram aus Sicht von A: Wie groß ist die Zeitdifferenz Referenzpunkt für Wagenmitte: bei ist Wagengeschwindigkeit: Bahnkurve Wagenmitte: c (Zeit) Steigung: Abstand Bahnkurven Photonen: Rechtes Photon: Linkes Photon: Abstand zwischen Knallern: Zeit zwischen Knallern: Steigung der Linie E1-E2: wenn Raum-Zeit-Diagram aus Sicht von B': Wie groß ist die Zeitdifferenz Referenzpunkt für Wagenmitte laut A: bei ist Referenzpunkt für Wagenmitte laut A: bei ist Wie liegen x'- und t'-achsen im A-Diagramm? Linie mit x'=konst (laut B'): beschreibt Ereignise, die an demselben Ort im Wagen stattfinden. Beispiel: Bahnkurve der Wagenmitte, Alle Geraden mit x' = konst. sind zur ct'-achse sonst würden sich Geraden mit irgendwann kreuzen, im Widerspruch zu Linie mit ct'=konst (laut B'): beschreibt Ereignisse, die laut B' gleichzeitig stattfinden (ermittelt mittels gleichzeitig am geometrischen Mittelpunkt eintreffender Photonsignale, laut S. 7) Beispiel: Photonen kommen laut B' gleichzeitig vorne und hinten an! (entspricht der ct'-achse) Alle Geraden mit t' = konst. sind zu x'-achse: wo t' = 0

7 Allgemeine Regel (R1): Falls zwei Ereignisse E1 (Knall 1) und E2 (Knall 2) gleichzeitig sind in einem IS B' dann gilt in einem zweiten IS A, das sich (laut B') mit Geschwindigkeit in die Richtung von E2 nach E1 bewegt, dass E1 früher als E2 stattfindet, um die Zeitspanne wobei (hier D) der Abstand zwischen E1 und E2 in A ist. Vergleiche den Stand von A-synchronisierte Uhren an den Flecken und von B'-synchronisierten Uhren U1', U2' an der Hinter-und Vorderwagenwand: Wie erklärt sich B', dass A eine Differenz (laut B') gleichzeitig sind? misst für Ereignisse, die B' wird folgern: Uhr U1 "geht nach" (geht langsamer) relativ zu U2!! Allgemeine Regel (R2): Wenn 2 Uhren in ihrem Ruhesystem A synchronisiert und durch einen Abstand (hier = D ) getrennt sind, dann gilt aus Sicht eines IS B', in dem diese A-Uhren sich entlang ihrer Verbindungslinie mit Geschw. bewegen: Die vorne platzierte A-Uhr zeigt eine frühere Zeit an ("geht nach", "geht langsamer") relativ zur hinten platzierten A-Uhr, mit Allgemein ist A-Asynchronität, laut B, gegeben durch: (A-Asynchronität) Zahlenbeispiele: Laserforscher können Pulse mit Dauer femtosek attosek Sekunden auflösen.

8 Winkel in Raum-Zeit-Diagrammen Wir wissen bereits: Winkel zwischen Photonbahn und - x-achse: - ct-achse: - gegenläufiger Photobahn: - x'-achse: - ct'-achse: Photonenbahnen halbieren immer Winkel zwischen x'- und ct'-achse Folgen von Asynchronität: Beispiel Asynchrone Züge (Mermin Buch) - Ein weisser Zug von Alice (A) und ein grauer Zug von Bob (B) fahren mit gleicher Geschwindigkeit in gegenübergesetzte Richtungen durch Einstein (E)'s Bahnhof (siehe Skizze, Seite 17). - Am Mittelpunkt jedes Wagens befindet sich eine Uhr, und ein Schaffner mit Kamera. - Um Folgen von Asynchronität zu illustrieren, hat Einstein vorab die A-Uhren untereinander asynchron prepariert, um 2 Ticks pro Wagen, ebenso für die B-Uhren. - Dem A-Personal erzählt Einstein jedoch fälschlicherweise, ihre jeweiligen Uhren seien untereinander synchron; dasselbe erzählt er dem B-Personal. - Wenn sich ein A- und B-Wagen Fenster an Fenster gegenüber befinden, machen beide Schaffner ein Selfie-Foto, dass Wagennummern und Uhrzeigerstand beider Uhren zeigt. Jeder Schaffner in jedem Wagen kennt nur die von ihm gemachten Fotos. - Eine Serie von am Bahnsteig montierten Sicherheitskameras macht dieselben Fotos ebenfalls, sie werden dann zu einer Filmsequenz montiert. - Einstein am Bahnsteig analysiert Filmsequenz. Geschw. beider Züge laut E: [Die im Folgenden beschriebenen Beobachtung würden auch erfolgen, wenn beide Züge sehr schnell (nahe Lichtgeschwindigkeit), durch den Bahnhof fahren]

9 Folgen von Asynchronität: Beispiel Asynchrone Züge (Mermin Buch) Filmsequenz v. Bahnhofskamera Bahnsteig- Uhr zeigt: (Asynchronität): Zeitdilatation: Längenkontraktion: Asynchronität d. A-Wagen: Lichtgeschwindigkeit: Überlichtgeschwindigkeit: v > c liefert Uneinigkeit über Reihenfolge v. Fotos! Beobachtung 1: Einstein vergleicht zu gegebenem Zeitpunkt verschiedene Wagen desselben Zuges, und bemerkt eine Asynchronität: (Asynchronität) Beobachtung 2: A-Personal studiert mittels Selfie-Photos die "Bahnkurve" x(t) von B-Wagen Nr. 0, und misst so dessen Geschwindigkeit, laut A: Uhrenvergleich: Schrumpffaktor A-Personal glaubt, A-Uhren seien synchronisiert, und folgert: - entweder B-Uhren sind nicht-synchronisiert, - oder (falls sie es doch sind, wie B-Personal beteuert) B-Uhren laufen "Zeitdilatation": bewegte Uhren laufen langsamer! Übrigens: B-Personal folgert dasselbe für A-Uhren! (Situation ist völlig symmetrisch ) E weiss: Grund für Verwirrung: A- und B-Uhren sind beide asynchron!!

10 B-Personal studiert Selfie-Fotos an verschienen Orten zur festen B-Zeit :020 Beobachtung 3: B-Personal vergleicht Zeiten: folgert: A-Uhren sind asynchron! (A-Asynchronität) (2) ist ungleich (18.1) [von E gemessen], denn (wie E weiss): B-Uhren sind auch asynchron! Beobachtung 4: (Länge v. ( B-Personal vergleicht Längen: ) A-Wagen) = (Länge v. ( ) B-Wagen) (Lange eines A-Wagens) (Länge eines B -Wagens) (gleicher Schrumpffaktor wie in 18.3) B-Personal folgert: A-Längen sind im Vergleich zu B-Längen "Längenkontraktion": bewegte Maßstäbe schrumpfen! Übrigens: A-Personal folgert für B-Uhren! (Situation ist völlig ) E weiss: Grund für Verwirrung: A- und B-Uhren sind beide Asynchronität liefert effektive "Lichtgeschwindigkeit" (mittels allgemeiner Regel R1): hier: Zwei Fotos eines Objekts, dass sich mit c bewegt, aus Sicht von A und von B (!) [obwohl A und B sich relativ zueinander bewegen!!] Zwei Fotos eines Objekts, dass sich (für A und B) mit > c bewegt: Aber: A und B sind sich uneins über die Reihenfolge, in der die Fotos entstanden sind! Das illustriert eine allgemeine Tatsache: würde sich ein Objekt schneller als Licht bewegen, würden sich immer zwei IS finden, die sich uneins wären über die Reihenfolge von Ereignissen in der Geschichte (Bahnkurve) des Objekts. Unhaltbare Inkonsistenz!

11 Zusammenfassung: Spezielle Relativität I 1) Relativitätsprinzip: (Alle) IS sind für Beschreibung (aller) physikalischen Gesetze äquivalent 2) Konstanz der Lichtgeschwindigkeit (LG): Die LG im Vakuum hat in allen IS den gleichen Wert c Ereignisse und sind gleichzeitig, wenn zwei Lichtstrahlen, zur Zeit von und von ausgesandt, gleichzeitig im geometrischen Mittelpunkt ankommen. geometrischer Mittelpunkt In einem IS B seien zwei Ereignisse E1 und E2 gleichzeitig. Ein IS A bewege sich mit Geschwindigkeit in die Richtung von E2 nach E1; der Abstand dazwischen sei laut A. Dann findet, laut A, E1 früher als E2 statt, um 2 Uhren seien in ihrem Ruhesystem A synchronisiert, im Abstand voneinander. In IS B' bewegen sie sich entlang ihrer Verbindungslinie mit Geschw.. Dann geht die vorne platzierte A-Uhr nach relativ zur hinten platzierten, um Zeitdilatation: bewegte Uhren laufen langsamer! Längenkontraktion: bewegte Maßstäbe schrumpfen!

Spezielle Relativitätstheorie (Einstein, 1905)

Spezielle Relativitätstheorie (Einstein, 1905) Spezielle Relativitätstheorie (Einstein, 1905) A. Einstein, 1905, Annalen der Physik: "Zur Elektrodynamik bewegter Körper" http://www.physik.uni-augsburg.de/annalen/history/einstein-papers/1905_17_891-921.pdf

Mehr

Zusammenfassung: Lichtgeschwindigkeit m/s per Definition! Das ist eigentlich Definition des Meters:

Zusammenfassung: Lichtgeschwindigkeit m/s per Definition! Das ist eigentlich Definition des Meters: Zusammenfassung: Lichtgeschwindigkeit c 299.792.458 m/s per Definition! Das ist eigentlich Definition des Meters: Einsteins Postulate: 1) Relativitätsprinzip: (Alle) IS sind für Beschreibung (aller) physikalischen

Mehr

Lichtgeschwindigkeit (LG) 1) Erste Messversuche - Galilei 2) Erste erfolgreiche Schätzung - Romer (1676)

Lichtgeschwindigkeit (LG) 1) Erste Messversuche - Galilei 2) Erste erfolgreiche Schätzung - Romer (1676) A. Einstein, 1905, Annalen der Physik: "Zur Elektrodynamik bewegter Körper" Empfehlenswerte Notizen: David Mermin (Cornell University, USA): "Physics 209: Introductory Notes on Relativity" www.lassp.cornell.edu/~cew2/p209/p209_home.html

Mehr

Lorentz-Transformation

Lorentz-Transformation Lorentz-Transformation Aus Sicht von Alice fliegt Bob nach rechts. Aus Sicht von Bob fliegt Alice nach links. Für t = t' = 0 sei also x(0) = x'(0) = Lichtblitz starte bei t = t' = 0 in und erreiche etwas

Mehr

Spezielle Relativität

Spezielle Relativität Spezielle Relativität Gleichzeitigkeit und Bezugssysteme Thomas Schwarz 31. Mai 2007 Inhalt 1 Einführung 2 Raum und Zeit Bezugssysteme 3 Relativitätstheorie Beginn der Entwicklung Relativitätsprinzip Lichtausbreitung

Mehr

Spezielle Relativitätstheorie mit Zirkel, Lineal und GeoGebra

Spezielle Relativitätstheorie mit Zirkel, Lineal und GeoGebra Spezielle Relativitätstheorie mit Zirkel, Lineal und GeoGebra Karl-Heinz Lotze und Stefan Völker, Jena 21.07.15 Einsteins Postulate Einstein stellte die folgenden beiden Prinzipien an die Spitze seiner

Mehr

5.3.3 Die Lorentz-Transformationen

5.3.3 Die Lorentz-Transformationen 5.3. EINSTEINS SPEZIELLE RELATIVITÄTSTHEORIE 135 Wir kennen bereits die Transformationen zwischen Inertialsystemen der Potentiale der Elektrodynamik. So sind ϕ und A für eine gleichmäßig, geradlinig bewegte

Mehr

Lorentz-Transformation

Lorentz-Transformation Lorentz-Transformation Für t = t' = 0 sei also x(0) = x'(0) = 0 Lichtblitz starte bei t = t' = 0 in und erreiche etwas später Punkt P. A sagt: B' sagt: Gesucht: Beziehung zwischen Koordinaten von P laut

Mehr

Einsteins Relativitätstheorie

Einsteins Relativitätstheorie Dr. Michael Seniuch Astronomiefreunde 2000 Waghäusel e.v. Einsteins Relativitätstheorie 16. April 2010 Inhalt: I. Raum, Zeit und Geschwindigkeit im Alltag II. Die Spezielle Relativitätstheorie III. Die

Mehr

Spezielle Relativitätstheorie

Spezielle Relativitätstheorie Die SRT behandelt Ereignisse, die von einem Inertialsystem (IS) beobachtet werden und gemessen werden. Dabei handelt es sich um Bezugssyteme, in denen das erste Newton sche Axiom gilt. Die Erde ist strenggenommen

Mehr

Kapitel 2. Lorentz-Transformation

Kapitel 2. Lorentz-Transformation Kapitel 2 Lorentz-Transformation Die Galilei-Transformation aus Abschnitt 1.7 wurde durch eine Vielzahl von Experimenten erfolgreich überprüft und gehört zu den Grundlagen der klassischen Mechanik. Die

Mehr

2. Kinematik. Inhalt. 2. Kinematik

2. Kinematik. Inhalt. 2. Kinematik 2. Kinematik Inhalt 2. Kinematik 2.1 Arten der Bewegung 2.2 Mittlere Geschwindigkeit (1-dimensional) 2.3 Momentane Geschwindigkeit (1-dimensional) 2.4 Beschleunigung (1-dimensional) 2.5 Bahnkurve 2.6 Bewegung

Mehr

Allgemeine Relativitätstheorie: Systeme, die gegeneinander beschleunigt werden; Einfluss von Gravitationsfeldern.

Allgemeine Relativitätstheorie: Systeme, die gegeneinander beschleunigt werden; Einfluss von Gravitationsfeldern. II Spezielle Relativitätstheorie II.1 Einleitung Mechanik für v c (Lichtgeschwindigkeit: 3x10 8 m/s) Spezielle Relativitätstheorie: Raum und Zeit in Systemen, die sich gegeneinander mit konstanter Geschwindigkeit

Mehr

9. Spezielle Relativitätstheorie

9. Spezielle Relativitätstheorie 7. Relativistischer Impuls 9. Spezielle Relativitätstheorie (SRT) Inhalt 9. Spezielle Relativitätstheorie 9.1 Galilei-Transformation 9.2 Lorentz-Transformation 9.3 Transformation von Geschwindigkeiten

Mehr

Doku Spezielle Relativität

Doku Spezielle Relativität Doku Spezielle Relativität Äther-Diskussion um 1900 Newton Mechanik ist Galilei-invariant Maxwell EM ist jedoch Lorentz-invariant Michelson-Morley Experiment Albert Michelson & Edward Morley Drehbarer

Mehr

Einstieg Relativitätstheorie

Einstieg Relativitätstheorie Einstieg Relativitätstheorie Lies den Text auf S. 331/332 und bearbeite die Aufgaben 1-5. 10.12.2012 1.) Wann veröffentlichte Albert Einstein seine Arbeit zur Relativitätstheorie und wie hieß sie? Welche

Mehr

3 Bewegte Bezugssysteme

3 Bewegte Bezugssysteme 3 Bewegte Bezugssysteme 3.1 Inertialsysteme 3.2 Beschleunigte Bezugssysteme 3.2.1 Geradlinige Beschleunigung 3.2.2 Rotierende Bezugssysteme 3.3 Spezielle Relativitätstheorie Caren Hagner / PHYSIK 1 / Sommersemester

Mehr

Konsequenzen der Konstanz der Lichtgeschwindigkeit

Konsequenzen der Konstanz der Lichtgeschwindigkeit Konsequenzen der Konstanz der Lichtgeschwindigkeit Wir beginnen mit einer kurzen Zusammenfassung einiger Dinge, die am Ende des vorigen Semesters behandelt wurden. Neben dem Relativitätspostulat Die Gesetze

Mehr

Physik 1 für Ingenieure

Physik 1 für Ingenieure Physik 1 für Ingenieure Othmar Marti Experimentelle Physik Universität Ulm Othmar.Marti@Physik.Uni-Ulm.de Skript: http://wwwex.physik.uni-ulm.de/lehre/physing1 Übungsblätter und Lösungen: http://wwwex.physik.uni-ulm.de/lehre/physing1/ueb/ue#

Mehr

Experimentalphysik Modul PH-EP4 / PH-DP-EP4

Experimentalphysik Modul PH-EP4 / PH-DP-EP4 Universität Leipzig, Fakultät für Physik und Geowissenschaften 12 Relativitätstheorie Experimentalphysik Modul PH-EP4 / PH-DP-EP4 Script für Vorlesung 06. Juli 2009 Die Relativitätstheorie besteht aus

Mehr

Grundlagen der Physik 1 Lösung zu Übungsblatt 5

Grundlagen der Physik 1 Lösung zu Übungsblatt 5 Grundlagen der Physik Lösung zu Übungsblatt 5 Daniel Weiss 8. November 2009 Inhaltsverzeichnis Aufgabe - Aberation des Lichtes a) Winkelbeziehungen................................ b) Winkeldierenz für

Mehr

Grundideen der allgemeinen Relativitätstheorie

Grundideen der allgemeinen Relativitätstheorie Grundideen der allgemeinen Relativitätstheorie David Moch La Villa 2006 Inhalt Newtons Physik und ihr Versagen Einsteins Lösung von Raum und Zeit: Die spezielle Relativitätstheorie Minkowskis Vereinigung

Mehr

Inhaltsverzeichnis: Einleitung: 1. Experimentbeschreibung. 2. Ergebnisse. 3. Diskussion der Ergebnisse. 4. Zusammenfassung. 5. Literaturverzeichnis

Inhaltsverzeichnis: Einleitung: 1. Experimentbeschreibung. 2. Ergebnisse. 3. Diskussion der Ergebnisse. 4. Zusammenfassung. 5. Literaturverzeichnis Braun Josef Pesenlern 61 85456 Wartenberg Tel.: 0876/974 E-Mail: Braun-Wartenberg@t-online.de 3. Dezember 009 Widerlegung der Lorentztransformation bzw. des Lorentzfaktors aus dem Michelson-Morley-Versuch

Mehr

Klassische und Relativistische Mechanik

Klassische und Relativistische Mechanik Klassische und Relativistische Mechanik Othmar Marti 07. 12. 2007 Institut für Experimentelle Physik Physik, Wirtschaftsphysik und Lehramt Physik Seite 2 Physik Klassische und Relativistische Mechanik

Mehr

Geozentrisches und heliozentrisches Weltbild. Das 1. Gesetz von Kepler. Das 2. Gesetz von Kepler. Das 3. Gesetz von Kepler.

Geozentrisches und heliozentrisches Weltbild. Das 1. Gesetz von Kepler. Das 2. Gesetz von Kepler. Das 3. Gesetz von Kepler. Geozentrisches und heliozentrisches Weltbild Geozentrisches Weltbild: Vertreter Aristoteles, Ptolemäus, Kirche (im Mittelalter) Heliozentrisches Weltbild: Vertreter Aristarch von Samos, Kopernikus, Galilei

Mehr

Kapitel 3. Minkowski-Raum. 3.1 Raumzeitlicher Abstand

Kapitel 3. Minkowski-Raum. 3.1 Raumzeitlicher Abstand Kapitel 3 Minkowski-Raum Die Galilei-Transformation lässt zeitliche Abstände und Längen unverändert. Als Länge wird dabei der räumliche Abstand zwischen zwei gleichzeitigen Ereignissen verstanden. Solche

Mehr

Vorträge gehalten im Rahmen der L2 Vorlesung von Prof. R.A. Bertlmann Jänner Philipp Köhler

Vorträge gehalten im Rahmen der L2 Vorlesung von Prof. R.A. Bertlmann Jänner Philipp Köhler Vorträge gehalten im Rahmen der L2 Vorlesung von Prof. R.A. Bertlmann Jänner 2012 Philipp Köhler Übersicht Newton sche Mechanik und Galileitransformation Elektrodynamik Äther und das Michelson Morley Experiment

Mehr

Seminararbeit. Spezielle Relativitätstheorie

Seminararbeit. Spezielle Relativitätstheorie Seminararbeit Spezielle Relativitätstheorie Karl-Franzens-Universität Graz vorgelegt von Philipp Selinger 1011077 eingereicht bei Prof.Dr. Karin Baur Graz, Jänner 2015 Inhaltsverzeichnis Inhaltsverzeichnis

Mehr

Über drei Ecken zu Einstein

Über drei Ecken zu Einstein Raumzeit, Weltlinien, Lichtkegel Über drei Ecken zu Einstein Norbert Dragon Hannover 6. Februar 2015 Relativitätsprinzip Gleichzeitig und Gleichortig Dopplereffekt, Schiedsrichter Satz des Minkowski (Pythagoras)

Mehr

2. Kinematik. Inhalt. 2. Kinematik

2. Kinematik. Inhalt. 2. Kinematik 2. Kinematik Inhalt 2. Kinematik 2.1 Arten der Bewegung 2.2 Mittlere Geschwindigkeit (1-dimensional) 2.3 Momentane Geschwindigkeit (1-dimensional) 2.4 Beschleunigung (1-dimensional) 2.5 Bahnkurve 2.6 Bewegung

Mehr

mentor Abiturhilfe: Physik Oberstufe Weidl

mentor Abiturhilfe: Physik Oberstufe Weidl mentor Abiturhilfen mentor Abiturhilfe: Physik Oberstufe Relativitätstheorie, Quanten-, Atom- und Kernphysik von Erhard Weidl 1. Auflage mentor Abiturhilfe: Physik Oberstufe Weidl schnell und portofrei

Mehr

Eigenschaften der Schwerkraft

Eigenschaften der Schwerkraft Gravitation Teil 1 Eigenschaften der Schwerkraft Bewirkt die gegenseitige Anziehung von Massen Ist prinzipiell nicht abschirmbar Ist im Vergleich zu den anderen Naturkräften extrem schwach: F E F G 10

Mehr

Ferienkurs der Experimentalphysik II Teil IV Spezielle Relativitätstheorie

Ferienkurs der Experimentalphysik II Teil IV Spezielle Relativitätstheorie Ferienkurs der Experimentalphysik II Teil IV Spezielle Relativitätstheorie Michael Mittermair 29. August 2013 1 Inhaltsverzeichnis 1 Spezielle Relativitätstheorie 3 1.1 Warum heißt das so?.......................

Mehr

2. Kinematik. Inhalt. 2. Kinematik

2. Kinematik. Inhalt. 2. Kinematik 2. Kinematik Inhalt 2. Kinematik 2.1 Grundsätzliche Bewegungsarten 2.2 Modell Punktmasse 2.3 Mittlere Geschwindigkeit (1-dimensional) 2.4 Momentane Geschwindigkeit (1-dimensional) 2.5 Beschleunigung (1-dimensional)

Mehr

Übungen zur Theoretischen Physik 1 Lösungen zu Blatt 12. Präsenzübungen

Übungen zur Theoretischen Physik 1 Lösungen zu Blatt 12. Präsenzübungen Prof. C. Greiner, Dr. H. van Hees Wintersemester 2012/201 Übungen zur Theoretischen Physik 1 Lösungen zu Blatt 12 (P0) Das Garagen-Paradoxon Präsenzübungen Es kann selbstverständlich mit der Beschreibung

Mehr

Vorlesungsskript Integrierter Kurs III - spezielle Relativitätstheorie. Marcel Indlekofer, Thomas Lauermann, Vincent Peikert und Raphael Straub

Vorlesungsskript Integrierter Kurs III - spezielle Relativitätstheorie. Marcel Indlekofer, Thomas Lauermann, Vincent Peikert und Raphael Straub Vorlesungsskript Integrierter Kurs III - spezielle Relativitätstheorie Marcel Indlekofer, Thomas Lauermann, Vincent Peikert und Raphael Straub 6. Dezember 2004 2 Inhaltsverzeichnis 2 spezielle Relativitätstheorie

Mehr

1 Einleitung: Die Lichtgeschwindigkeit

1 Einleitung: Die Lichtgeschwindigkeit 1 Einleitung: Die Lichtgeschwindigkeit In der zweiten Hälfte des 19. Jahrhunderts wurde die elektromagnetische Natur des Lichts erkannt (J. C. Maxwell, ca. 1870). Wir wollen die Argumentation kurz skizzieren.

Mehr

I.2.3 Minkowski-Raum. ~r x 3 benutzt.

I.2.3 Minkowski-Raum. ~r x 3 benutzt. I.2 Lorentz-Transformationen 9 I.2.3 Minkowski-Raum Wegen der Absolutheit von Zeit und Raum in der klassischen Mechanik faktorisiert sich die zugehörige nicht-relativistische Raumzeit in das Produkt einer

Mehr

Unterrichtsmaterialien in digitaler und in gedruckter Form. Auszug aus: Lernwerkstatt: Die spezielle Relativitätstheorie

Unterrichtsmaterialien in digitaler und in gedruckter Form. Auszug aus: Lernwerkstatt: Die spezielle Relativitätstheorie Unterrichtsmaterialien in digitaler und in gedruckter Form Auszug aus: Lernwerkstatt: Die spezielle Relativitätstheorie Das komplette Material finden Sie hier: School-Scout.de SCHOOL-SCOUT Die spezielle

Mehr

Was ist Trägheit und Gravitation wirklich! Thermal-Time-Theorie

Was ist Trägheit und Gravitation wirklich! Thermal-Time-Theorie Was ist Trägheit und Gravitation wirklich! Thermal-Time-Theorie Hypothese Nach der Thermal-Time-Theorie (ttt) ist die Gravitation keine Kraft zwischen zwei Massen, sondern eine Beschleunigung bzw. Kraft,

Mehr

PN 1 Einführung in die Experimentalphysik für Chemiker und Biologen

PN 1 Einführung in die Experimentalphysik für Chemiker und Biologen PN 1 Einführung in die Experimentalphysik für Chemiker und Biologen 12.1.2007 Paul Koza, Nadja Regner, Thorben Cordes, Peter Gilch Lehrstuhl für BioMolekulare Optik Department für Physik Ludwig-Maximilians-Universität

Mehr

13. Relativitätstheorie

13. Relativitätstheorie Inhalt 13. Relativitätstheorie 13.1 Addition von Geschwindigkeiten 13.2 Zeitdilatation 13.33 Längenkontraktion kti 13.4 Relativistischer Impuls 13.5 Relativistische Energie 13.6 Allgemeine Relativitätstheorie

Mehr

12. Spezielle Relativitätstheorie

12. Spezielle Relativitätstheorie Inhalt 12. Spezielle Relativitätstheorie 12.1 Lorentz-Transformation 12.2 Transformation von Geschwindigkeiten 12.3 Zeitdilatation 12.4 Längenkontraktion kti 12.5 Relativistischer Impuls 12.6 Relativistische

Mehr

Grundlegende Aspekte der speziellen Relativitätstheorie

Grundlegende Aspekte der speziellen Relativitätstheorie Grundlegende Aspekte der speziellen Relativitätstheorie Theoretische Physik Universität Ulm 89069 Ulm Kolloquium für Physiklehrende Universität Ulm, 10. Feb. 2009 Inhalt Einleitung Lorentz-Transformation

Mehr

7.4 Einige Konsequenzen aus der Lorentz Transformation

7.4 Einige Konsequenzen aus der Lorentz Transformation 7.4. EINIGE KONSEQUENZEN AUS DER LORENTZ TRANSFORMATION 265 7.4 Einige Konsequenzen aus der Lorentz Transformation Um zu sehen welche Konsequenzen sich aus der Lorentz Transformation und damit ja eigentlich

Mehr

Perspektiven 10. Vorlesung, Perspektiven in Zeit und Raumzeit

Perspektiven 10. Vorlesung, Perspektiven in Zeit und Raumzeit 1 Perspektiven 10. Vorlesung, 13.6. Perspektiven in Zeit und Raumzeit Gliederung 1. Einleitung 2. Perspektiven in die Zeit 3. Perspektiven in der Raumzeit 3.1 Relativität der Bewegung 3.2 (SR-)Bezugssysteme

Mehr

Die Lichtgeschwindigkeit im Vakuum

Die Lichtgeschwindigkeit im Vakuum Die Lichtgeschwindigkeit im Vakuum Versuch: Experimentelle Bestimmung der Lichtgeschwindigkeit c s = 2 t t s 4 s = 15 km t 10 s 1 Erste Bestimmung der Lichtgeschwindigkeit nach Olaf Römer 1676 Die schon

Mehr

Experimentalphysik E1

Experimentalphysik E1 Experimentalphysik E1 16. Nov. Spezielle Relativitätstheorie Alle Informationen zur Vorlesung unter : http://www.physik.lmu.de/lehre/vorlesungen/index.html Newtonsche Mechanik ist invariant unter Gallilei-

Mehr

Aber gerade in diesem Punkt ist Newton besonders konsequent.

Aber gerade in diesem Punkt ist Newton besonders konsequent. 2.1.Lorentz-Transformationen Aus Einstein, Mein Weltbild 1.) Trotzdem man allenthalben das Streben Newtons bemerkt, sein Gedankensystem als durch die Erfahrung notwendig bedingt hinzustellen und möglichst

Mehr

beschrieben wird. B' sei ein IS das derjenigen Weltlinie folgt, die P und Q in gleichförmiger Bewegung verbindet. Aus Sicht von A folgt B' Bahn mit

beschrieben wird. B' sei ein IS das derjenigen Weltlinie folgt, die P und Q in gleichförmiger Bewegung verbindet. Aus Sicht von A folgt B' Bahn mit Minkowski-Wegelement und Eigenzeit Invariantes Wegelement entlang einer Bahnkurve einesteilchens im IS A: immer "Instantan mitlaufendes" Inertialsystem B' sei so gewählt, dass es zum Zeitpunkt t dieselbe

Mehr

Wiederholung: Gravitation in der klassischen Physik

Wiederholung: Gravitation in der klassischen Physik Gravitation II Wiederholung: Gravitation in der klassischen Physik Eigenschaften: Intrinsische (ladungsartige) Eigenschaft der schweren Masse (Gravitationsladung) Es gibt nur positive Gravitationsladungen

Mehr

Spezielle Relativitätstheorie

Spezielle Relativitätstheorie Spezielle Relativitätstheorie die wunderbare Welt des vierdimensionalen Raum-Zeit-Kontinuums Seminar des Physikalischen Vereins Frankfurt am Main 2012 Rainer Göhring W. Wien: Über der Eingangspforte zur

Mehr

Probestudium Sommersemester 2010, Theoriekurs

Probestudium Sommersemester 2010, Theoriekurs Probestudium Sommersemester 2010, Theoriekurs 2 Vorlesungen zur Einführung in die spezielle Relativitätstheorie H. W. Diehl Fakultät für Physik, U. Duisburg-Essen 26. Juni und 3. Juli 2010 Einführung Physik:

Mehr

Ferienkurs Elektrodynamik WS11/12 - Elektrodynamik und spezielle Relativitätstheorie

Ferienkurs Elektrodynamik WS11/12 - Elektrodynamik und spezielle Relativitätstheorie Ferienkurs Elektrodynamik WS11/1 - Elektrodynamik und spezielle Relativitätstheorie Isabell Groß, Martin Ibrügger, Markus Krottenmüller. März 01 TU München Inhaltsverzeichnis 1 Minkowski-Raum und Lorentz-Transformation

Mehr

Riemann Geometrie. Basis für die allgemeine Relativitätstheorie. Huber Stefan Rathgeb Christian Walkner Stefan

Riemann Geometrie. Basis für die allgemeine Relativitätstheorie. Huber Stefan Rathgeb Christian Walkner Stefan Basis für die allgemeine Huber Stefan Rathgeb Christian Walkner Stefan Universität Salzburg Angewandte Informatik 10. Jänner 2005 Inhalt 1 2 Euklidische Geometrie Nichteuklidische Geometrie Krümmung und

Mehr

Klassische Experimentalphysik I (Mechanik) (WS 16/17)

Klassische Experimentalphysik I (Mechanik) (WS 16/17) Klassische Experimentalphysik I (Mechanik) (WS 16/17) http://ekpwww.physik.uni-karlsruhe.de/~rwolf/teaching/ws16-17-mechanik.html Übungsblatt 10 Lösungen Name des Übungsgruppenleiters und Gruppenbuchstabe:

Mehr

Vorlesung 7+8+9: Roter Faden: Heute: Spezielle Relativitätstheorie. Versuche: Messung der Lichtgeschwindigkeit, Film

Vorlesung 7+8+9: Roter Faden: Heute: Spezielle Relativitätstheorie. Versuche: Messung der Lichtgeschwindigkeit, Film Vorlesung 7+8+9: Roter Faden: Heute: Spezielle Relativitätstheorie Versuche: Messung der Lichtgeschwindigkeit, Film Ausgewählte Kapitel der Physik, SS 06, Prof. W. de Boer 1 Transformationen zwischen Inertialsystemen,

Mehr

Relativitätstheorie. in elementarer Darstellung mit Aufgaben und Lösungen. Prof. Dr. rer. nat. habil. H. Melcher. Vierte, neubearbeitete Auflage

Relativitätstheorie. in elementarer Darstellung mit Aufgaben und Lösungen. Prof. Dr. rer. nat. habil. H. Melcher. Vierte, neubearbeitete Auflage Relativitätstheorie in elementarer Darstellung mit Aufgaben und Lösungen Prof. Dr. rer. nat. habil. H. Melcher Vierte, neubearbeitete Auflage VEB Deutscher Verlag der Wissenschaften Berlin 1974 Inhaltsverzeichnis

Mehr

8 Spezielle Relativitätstheorie

8 Spezielle Relativitätstheorie 8 Spezielle Relativitätstheorie Im Jahr 1905 veröffentlichte Albert Einstein seine berühmte spezielle Relativitätstheorie, in der er die Kenntnisse über die Struktur von Raum und Zeit revolutionierte.

Mehr

Experimentalphysik E1

Experimentalphysik E1 Eperimentalphysik E1 Spezielle Relativitätstheorie Relativisitische Impuls-Energie Beziehung Schwerpunktssysteme Alle Informationen zur Vorlesung unter : http://www.physik.lmu.de/lehre/vorlesungen/inde.html

Mehr

Einsteins Relativitätstheorie. Ein Versuch der Veranschaulichung von Prof. Dr. Gerd Ganteför Fachbereich Physik Universität Konstanz

Einsteins Relativitätstheorie. Ein Versuch der Veranschaulichung von Prof. Dr. Gerd Ganteför Fachbereich Physik Universität Konstanz Einsteins Relativitätstheorie Ein Versuch der Veranschaulichung von Prof. Dr. Gerd Ganteför Fachbereich Physik Universität Konstanz 1879-1955 Albert Einstein mit 21 Diplom ETH mit 23 Patentamt Bern mit

Mehr

Albert Einstein. Leben und Werk

Albert Einstein. Leben und Werk Albert Einstein Leben und Werk Kindheit und Jugend Am 14.03.1879 wird Albert Einstein in Ulm (Donau) geboren. In München, wo seine Eltern eine Elektrotechnische Fabrik besitzen, geht er zur Schule. Als

Mehr

24 Minkowskis vierdimensionale Raumzeit

24 Minkowskis vierdimensionale Raumzeit 24 Minkowskis vierdimensionale Raumzeit Der deutsche Mathematiker Hermann Minkowski (1864 1909) erkannte, daß sich die von Albert Einstein 1905 entwickelte spezielle Relativitätstheorie am elegantesten

Mehr

Mrd. Figure 2: b. Annäherungsgeschwindigkeit bei 250 GeV Es ist zu erwarten, dass die beiden Teilchen, die sich jeweils fast mit Lichtgeschwindigkeit aufeinander zu bewegen eine Relativgeschwindigkeit

Mehr

Sind Längen immer gleich lang?

Sind Längen immer gleich lang? Posten 4 Sind Längen immer gleich lang? Sozialform Bearbeitungszeit Voraussetzung Einzel- oder Partnerarbeit 40 Minuten Posten 1 Einsteins Postulate Posten 3 Ist Zeit relati? 4.1 Einleitung In diesem Werkstattposten

Mehr

beschrieben wird. B' sei ein IS das derjenigen Weltlinie folgt, die P und Q in gleichförmiger Bewegung verbindet. Aus Sicht von A folgt B' Bahn mit

beschrieben wird. B' sei ein IS das derjenigen Weltlinie folgt, die P und Q in gleichförmiger Bewegung verbindet. Aus Sicht von A folgt B' Bahn mit Minkowski-Wegelement und Eigenzeit Invariantes Wegelement entlang einer Bahnkurve einesteilchens im IS A: immer "Instantan mitlaufendes" Inertialsystem B' sei so gewählt, dass es zum Zeitpunkt t dieselbe

Mehr

Ferienkurs der Experimentalphysik II Musterlösung Übung 4

Ferienkurs der Experimentalphysik II Musterlösung Übung 4 Ferienkurs der Experimentalphysik II Musterlösung Übung 4 Michael Mittermair 9. August 013 1 Aufgabe 1 Ein Elektron hat die Ruhemasse m 0 = 9, 11 10 31 kg. a) Berechnen Sie die Ruheenergie in Elektronenvolt

Mehr

IX Relativistische Mechanik

IX Relativistische Mechanik IX Relativistische Mechanik 34 Relativitätsprinzip Die bisher behandelte Newtonsche Mechanik gilt nur für Geschwindigkeiten, die klein gegenüber der Lichtgeschwindigkeit sind. Im Teil IX stellen wir die

Mehr

Spezielle Relativitätstheorie. Die ersten Gedankenexperimente: Zeit-Dilatation und Lorentz-Kontraktion. Einsteins Gedanken-Experiment

Spezielle Relativitätstheorie. Die ersten Gedankenexperimente: Zeit-Dilatation und Lorentz-Kontraktion. Einsteins Gedanken-Experiment Spezielle Relativitätstheorie Die ersten Gedankenexperimente: Zeit-Dilatation und Lorentz-Kontraktion Vorlesung von Prof. Dr. Cornelis ( Kees ) Dullemond in Zusammenarbeit mit Elena Kozlikin, Benjamin

Mehr

Warum ist die RAUMZEIT gekrümmt? Was ist eigentlich Gravitation?

Warum ist die RAUMZEIT gekrümmt? Was ist eigentlich Gravitation? Warum ist die RAUMZEIT gekrümmt? Was ist eigentlich Gravitation? Was ist RAUMZEIT? z t 3 dimensionaler Raum y + Zeitachse x = 4 dimensionale RAUMZEIT Was ist RAUMZEIT? Zeitachse = t c http://www.ws5.com/spacetime

Mehr

8. Einstein, das Myon und die Zeitdilatation

8. Einstein, das Myon und die Zeitdilatation 8. Einstein, das Myon und die Zeitdilatation 8.1 Die Lorentztransformation bei invariantem c Einsteins 'spezielle Relativitätstheorie' von 1905 führte zu (mindestens) drei spektakulären Folgerungen: 1.

Mehr

Über drei Ecken zu Einstein

Über drei Ecken zu Einstein aumzeit, Weltlinien, Lichtkegel Über drei Ecken zu Einstein Norbert Dragon Hannover 8. Februar 2019 elativitätsprinzip Gleichzeitig und Gleichortig Dopplereffekt, Schiedsrichter Satz des Minkowski (Pythagoras)

Mehr

1. Aristoteles (384 bis 322 v. Chr.)

1. Aristoteles (384 bis 322 v. Chr.) Unterrichtsinhalte zu den philosophischen Aspekten der Relativiätstheorie 1. Aristoteles (384 bis 322 v. Chr.) Aristoteles' Physik, Buch IV, Kapitel 4 und 5 sowie Kapitel 11 bis 14 Aristoteles Postulate

Mehr

Spezielle Relativitätstheorie. Alon J. Böttcher

Spezielle Relativitätstheorie. Alon J. Böttcher Spezielle Relativitätstheorie Alon J. Böttcher Hausarbeit an der Lernwerft Club of Rome Schule Kiel Klasse 12 Schuljahr 2012/2013 Inhaltsverzeichnis 1 Vorwort 2 2 Transformationen 3 2.1 Der Beobachter..........................

Mehr

Wir bauen eine Zeitmaschine

Wir bauen eine Zeitmaschine Zeitmaschinen Bis zum Anfang des 20. Jahrhunderts glaubten die Physiker, ein gutes Verständnis dafür zu haben, was Zeit ist: Sie verläuft kontinuierlich, in eine Richtung und ist absolut, also unabhängig

Mehr

A E t. Teil 1 25/ Klassische Theoretische Physik Lehramt (220 LA), WS 2014/15. Thomas Tauris AIfA Bonn Uni. / MPIfR

A E t. Teil 1 25/ Klassische Theoretische Physik Lehramt (220 LA), WS 2014/15. Thomas Tauris AIfA Bonn Uni. / MPIfR F F A E t Teil 1 5/11-014 T Klassische Theoretische Physik Lehramt (0 LA), WS 014/15 Thomas Tauris AIfA Bonn Uni. / MPIfR Kapitel 6+7 + Anhang C Weiterführende Literatur: - Introduction to Special Relatiity

Mehr

Dieses Buch enthält eine kurze Einführung in die relativistische

Dieses Buch enthält eine kurze Einführung in die relativistische Vorwort Dieses Buch enthält eine kurze Einführung in die relativistische Mechanik. Dabei stehen die Bewegungsgleichungen für ein Masseteilchen im Mittelpunkt. Es richtet sich an Studenten, die bereits

Mehr

4. Veranstaltung. 16. November 2012

4. Veranstaltung. 16. November 2012 4. Veranstaltung 16. November 2012 Heute Wiederholung Beschreibung von Bewegung Ursache von Bewegung Prinzip von Elektromotor und Generator Motor Generator Elektrischer Strom Elektrischer Strom Magnetkraft

Mehr

Galilei-Transformation

Galilei-Transformation Galilei-Transformation Zur Erinnerung: Newtons Bwgl. gelten nur in Inertialsystemen (IS). In IS sind Bewegungsgleichungen besonders einfach (es gibt keine Scheinkräfte) Frage: Bessere Formulierung: Wie

Mehr

Grundlagen der Physik 1 Mechanik und spezielle Relativität

Grundlagen der Physik 1 Mechanik und spezielle Relativität Grundlagen der Physik 1 Mechanik und spezielle Relativität 13. 01. 2006 Othmar Marti othmar.marti@uni-ulm.de Experimentelle Physik Universität Ulm (c) Ulm University p. 1/21 Relativistische Beschleunigung

Mehr

Das Konzept der Raumzeit-Krümmung

Das Konzept der Raumzeit-Krümmung Das Konzept der Raumzeit-Krümmung Franz Embacher Fakultät für Physik der Universität Wien Vortrag auf der Jahrestagung der Wiener Arbeitsgemeinschaft für Astronomie Wien, 14. November 2015 Das Konzept

Mehr

Spezielle Relativitätstheorie SRT

Spezielle Relativitätstheorie SRT Spezielle Relativitätstheorie SRT Zeitdilatation & Längenkontraktion Mit seiner Relativitätstheorie brachte Einstein das Gefüge der klassischen Physik durcheinander und schuf einen völlig neuen Blick auf

Mehr

Die Bellschen Ungleichungen: Teleportation und Überlichtgeschwindigkeit

Die Bellschen Ungleichungen: Teleportation und Überlichtgeschwindigkeit Die Bellschen Ungleichungen: Teleportation und Überlichtgeschwindigkeit Peter A. Henning Institute for Computers in Education Karlsruhe University of Applied Sciences Wo ist der Mond? Realismus bedeutet:

Mehr

2. Kinematik. 2.1 Modell Punktmasse

2. Kinematik. 2.1 Modell Punktmasse 2. Kinematik 2.1 Modell Punktmasse 2.22 Mittlere Geschwindigkeit (1-dimensional) 2.3 Momentane Geschwindigkeit (1-dimensional) 2.4 Beschleunigung (1-dimensional) 2.5 Bahnkurve 2.6 Bewegung in 3 Dimensionen

Mehr

Relativität und Realität

Relativität und Realität Max Drömmer Relativität und Realität Zur Physik und Philosophie der allgemeinen und der speziellen Relativitätstheorie mentis PADERBORN Inhaltsverzeichnis Vorwort... 15 Einleitung... 17 Kapitel 1 Allgemeine

Mehr

Die Spezielle Relativitätstheorie

Die Spezielle Relativitätstheorie 2 Die Spezielle Relativitätstheorie Mithilfe des berühmten Michelson-Morley-Experiments wurde entdeckt, dass die Geschwindigkeit des Lichts in allen Inertialsystemen den gleichen Wert hat. 1 Einstein war

Mehr

DIE GEBURT EINES NEUEN WELTBILDES

DIE GEBURT EINES NEUEN WELTBILDES Medienbegleitheft zur DVD 14213 DIE GEBURT EINES NEUEN WELTBILDES 100 Jahre Einsteins Relativitätstheorie Medienbegleitheft zur DVD 14213 20 Minuten, Produktionsjahr 2015 Inhaltsverzeichnis Voraussetzungen

Mehr

RAUM UND ZEIT RAUMZEIT RAUMKRÜMMUNG DURCH GRAVITATION GRAVITATIONSWELLEN

RAUM UND ZEIT RAUMZEIT RAUMKRÜMMUNG DURCH GRAVITATION GRAVITATIONSWELLEN RAUM UND ZEIT RAUMZEIT RAUMKRÜMMUNG DURCH GRAVITATION GRAVITATIONSWELLEN Andreas Neyer AK Naturwissenscha2 und Theologie Villigst, 09.04.2016 RAUM UND ZEIT Newton postulierte den absoluten Raum und die

Mehr

WARUM FINDET MEIN SMARTPHONE OHNE EINSTEIN SEINEN WEG NICHT?

WARUM FINDET MEIN SMARTPHONE OHNE EINSTEIN SEINEN WEG NICHT? WARUM FINDET MEIN SMARTPHONE OHNE EINSTEIN SEINEN WEG NICHT? Jürgen R. Reuter, DESY Science Café, DESY 28.11.2012 ALLTAG: (GPS-)NAVIGATION MIT IPHONE Smartphone enthält GPS- Empfänger Positionsbestimmung

Mehr

Raum, Zeit, Universum Die Rätsel des Beginns. Bild : pmmagazin

Raum, Zeit, Universum Die Rätsel des Beginns. Bild : pmmagazin Raum, Zeit, Universum Die Rätsel des Beginns Bild : pmmagazin Der Urknall Wie unser Universum aus fast Nichts entstand Inflationäres Universum Überall fast Nichts nur Fluktuationen Explosionsartige Expansion

Mehr

8. Elemente der relativistischen Mechanik

8. Elemente der relativistischen Mechanik 8. Elemente der relativistischen Mechanik 8.1 Spezielle Relativitätstheorie 1905 (SRT) Voraussetzungen: Konstanz der Lichtgeschwindigkeit gleiche Physik in allen Inertialsystemen Folgerungen: Längenkontraktion

Mehr

Kapitel 1 Die Spezielle Relativitätstheorie leicht gemacht

Kapitel 1 Die Spezielle Relativitätstheorie leicht gemacht Kapitel 1 Die Spezielle Relativitätstheorie leicht gemacht 1.1 Vorbemerkung Albert Einstein hat die Spezielle Relativitätstheorie (SRT) in den ersten Jahren des 20. Jahrhunderts erarbeitet. Mit dieser

Mehr

Die Relativitätstheorie als Lösung des Fresnelschen Paradoxons

Die Relativitätstheorie als Lösung des Fresnelschen Paradoxons Sitzungsberichte der Leibniz-Sozietät 78/79(2005), 63 67 Dierck-E. Liebscher Die Relativitätstheorie als Lösung des Fresnelschen Paradoxons Es wird daran erinnert, dass der Michelson-Versuch erst nach

Mehr

Spezielle Relativitätstheorie

Spezielle Relativitätstheorie Spezielle Relativitätstheorie Proseminar: Kosmologie und Teilchenphysik von Evangelos Nagel Physik vor dem 20. Jhd. Newton (Principia Mathematica): Der absolute Raum bleibt vermöge seiner Natur und ohne

Mehr

2. Kinematik. Inhalt. 2. Kinematik

2. Kinematik. Inhalt. 2. Kinematik 2. Kinematik Inhalt 2. Kinematik 2.1 Modell Punktmasse 2.2 Mittlere Geschwindigkeit (1-dimensional) 2.3 Momentane Geschwindigkeit (1-dimensional) 2.4 Beschleunigung (1-dimensional) 2.5 Bahnkurve 2.6 Bewegung

Mehr

2 Mechanik des Massenpunktes

2 Mechanik des Massenpunktes 2 Mechanik des Massenpunktes Wir beginnen deshalb in Kapitel 2 mit der Beschreibung der Bewegung von Massenpunkten, kommen dann in Kapitel 4 zum starren Körper und schließlich in Kapitel 5 zur Mechanik

Mehr

Relativitätspostulate

Relativitätspostulate Relativitätspostulate Wolfgang Lange 23. April 2011 1 Einleitung Die Einsteinsche spezielle Relativitätstheorie (Lorentz-Einstein-Transformation) gründet sich auf den folgenden drei Postulaten. 1. Newtonsche

Mehr

Einstein-Wellen-Mobil

Einstein-Wellen-Mobil Relativistische Fahrradfahrt Bebachten Sie die Szenerie beim Anfahren und Beschleunigen. Bewegen Sie sich tatsächlich zunächst rückwärts? Wie können Sie das feststellen? Wie kommt der beobachtete Effekt

Mehr

Einblicke in die spezielle Relativitätstheorie

Einblicke in die spezielle Relativitätstheorie Einblicke in die spezielle Relativitätstheorie M. Jakob Gymnasium Pegnitz 3. April 2015 Inhaltsverzeichnis 1 Grundaussagen der speziellen Relativitätstheorie 1.1 Notwendigkeit 1.2 Annahmen 1.3 Ergebnisse

Mehr