Propädeutikum Mathematik

Größe: px
Ab Seite anzeigen:

Download "Propädeutikum Mathematik"

Transkript

1 Propädeutikum Mathematik Wintersemester 2016/2017 Prof. Dr. Dieter Leitmann Abteilung WI WiSe 2016/17 Seite 1

2 Literaturhinweise Cramer, E., Neslehova, J.: Vorkurs Mathematik, Springer, 2004 Piehler, Sippel, Pfeiffer: Mathematik zum Studieneinstieg, Springer, 1995 Schäfer, W. et. Al.: Mathematikvorkurs, Teubner, Wiesbaden, 2002 Kemnitz, A.: Mathematik zum Studienbeginn, Vieweg, Wiesbaden, 2001 van de Craats, J. / Bosch, R.: Grundwissen Mathematik, Springer, 2009 WiSe 2016/17 Seite 2

3 Literaturhinweise Ein großer Teil der Übungsaufgaben ist dem Buch von Karl Bosch: Brückenkurs Mathematik, Oldenbourg Verlag München entnommen. Dieses Buch deckt auch inhaltlich weitgehend (aber nicht vollständig!) den im Propädeutikum behandelten Stoff ab. Hilfen findet man auch im Internet, z.b. unter Hier gibt es auch Links zu weiteren Internetseiten. WiSe 2016/17 Seite 3

4 Inhalt 1. Mengen 2. Zahlbereiche 3. Rechenregeln für reelle Zahlen 4. Bruchrechnen 5. Summen und Produkte 6. Binomische Formeln 7. Potenzen und Wurzeln WiSe 2016/17 Seite 4

5 Inhalt 8. Logarithmen 9. Gleichungen mit einer Unbekannten 10. Prozentrechnung, Dreisatz 11. Ungleichungen mit einer Unbekannten 12. Gleichungssysteme 13. Grundlagen der ebenen Geometrie 14. Trigonometrische Funktionen WiSe 2016/17 Seite 5

6 1. Mengen Eine Menge ist eine Zusammenfassung von bestimmten unterscheidbaren Objekten zu einem Ganzen. Ein Objekt gehört entweder zu einer Menge oder nicht. Für jedes Objekt x gilt entweder x A oder x A. Die Objekte einer Menge heißen Elemente dieser Menge. Falls x Element der Menge A ist schreibt man: x A Falls x nicht Element von A ist schreibt man: x A WiSe 2016/17 Seite 6

7 Zur Darstellung einer Menge A gibt es folgende Möglichkeiten: 1. Beschreibung der Elemente von A durch Angabe der charakterisierenden Eigenschaften A = {x x ist eine Grundfarbe } 2. Aufzählung der Elemente von A A = { rot, gelb, blau } 3. Zeichnen eines Mengendiagramms von A A blau rot gelb Grundmenge: Menge aller zulässigen Objekte (Universum) leere Menge: Menge, die kein Element enthält Schreibweisen für die leere Menge: oder { } WiSe 2016/17 Seite 7

8 Zwei Mengen A und B sind gleich, in Zeichen A = B, wenn sie die gleichen Elemente besitzen. Eine Menge A heißt Teilmenge der Menge B, wenn jedes Element von A auch Element von B ist. Schreibweise: A B Mengenoperatoren: Schnittmenge, Vereinigungsmenge B A A B = { x x A und x B } A B A B = { x x A oder x B } A B Hierbei wird oder im nichtausschließenden Sinn verwendet, d.h. zu A B gehören auch diejenigen Elemente, die sowohl Element von A als auch Element von B sind. WiSe 2016/17 Seite 8

9 2. Zahlbereiche Menge der natürlichen Zahlen N N = { 1, 2, 3,... } Menge der ganzen Zahlen Z Z = {..., -3, -2, -1, 0, 1, 2, 3,... } Menge der rationalen Zahlen (Bruchzahlen) Q Q = { x Z, y Z, y 0 } (x: Zähler, y: Nenner) (Menge der periodischen Dezimalbrüche) Menge der reellen Zahlen R (Menge der unendlichen Dezimalbrüche) (Punkte auf der Zahlengeraden) (Q und irrationale Zahlen) Beispiele für irrationale Zahlen: =2,718 ;=3,14 ; 2 ; 3 Für die Zahlbereiche gilt: N Z Q R WiSe 2016/17 Seite 9

10 3. Rechenregeln für reelle Zahlen Für die Addition + und die Multiplikation von reellen Zahlen a, b, c gelten die Regeln: a + b = b + a; ab = ba; Kommutativgesetze (a + b) + c = a + (b + c); (ab)c = a(bc); Assoziativgesetze a + 0 = 0 + a = a; 0 ist neutrales Element der Addition 1 a = a 1 = a; 1 ist neutrales Element der Multiplikation a + (-a) = a - a = 0; -a ist inverses Element der Addition a (1/a) = 1, falls a 0; 1/a ist inverses El. der Multiplikation a(b + c) = ab + ac; (a+b)c = ac + bc; Distributivgesetze WiSe 2016/17 Seite 10

11 3. Rechenregeln für reelle Zahlen (Fortsetzung) a 0 = 0 a = 0 a b = 0 gilt genau dann, wenn a = 0 oder b = 0. Terme sind sinnvolle Ausdrücke bestehend aus Konstanten (Zahlen), Variablen, Rechenoperationen und Klammern. Die Reihenfolge der Auswertung (Berechnung) eines Terms wird durch Klammersetzung bzw. Vorrangregeln verschiedener Rechenoperatoren bestimmt, z.b. Punktrechnung geht vor Strichrechnung WiSe 2016/17 Seite 11

12 Teiler und Vielfache Seien a und b natürliche Zahlen. Falls es eine natürliche Zahl q mit b = q a gibt, nennt man a Teiler von b. Man sagt auch a teilt b ohne Rest. Die Zahl b wird dann Vielfaches von a genannt. Die Menge aller Vielfachen einer natürlichen Zahl a kann man formal so beschreiben: V a = { b N b = q a, wobei q N} Die Menge aller Teiler einer natürlichen Zahl b ist T b = { a N a teilt b ohne Rest} WiSe 2016/17 Seite 12

13 Teiler und Vielfache (Fortsetzung) Seien a und b natürliche Zahlen. Der größte gemeinsame Teiler von a und b, kurz ggt(a, b), ist die größte natürliche Zahl, die sowohl Teiler von a als auch Teiler von b ist. ggt(a, b) = Maximum(T a T b ) Gilt ggt(a, b) = 1, so heißen a und b teilerfremd. Das kleinste gemeinsame Vielfache von a und b, kurz kgv(a, b), ist die kleinste natürliche Zahl, die sowohl Vielfaches von a als auch Vielfaches von b ist. kgv(a, b) = Minimum(V a V b ) = ggt(, ) WiSe 2016/17 Seite 13

14 4. Bruchrechnen Erweitern und Kürzen von Zähler und Nenner eines Bruches mit der gleichen Zahl c 0 ändert den Wert des Bruches nicht: = =: : Zwei Brüche a/b und c/d sind gleich, wenn ad = bc gilt. Um zwei Brüche zu addieren, müssen die Nenner der Brüche gleich sein: + =+ Das gilt auch für die Subtraktion zweier Brüche. WiSe 2016/17 Seite 14

15 Um zwei Brüche zu multiplizieren, rechnet man Zähler mal Zähler und Nenner mal Nenner :! =! Dividieren durch einen Bruch bedeutet multiplizieren mit dem Kehrwert des Bruches: Darstellung als Doppelbruch: :! =! =!! = :! =! =! WiSe 2016/17 Seite 15

16 5. Summen, Produkte, Binomialkoeffizienten Falls viele Summanden addiert werden, verwendet man oft folgende Schreibweise mit dem griechischen Buchstaben Sigma als sogenanntem Summenzeichen: $ " # = & + &'( + &') + + $*) + $*( + $ #%& Analog verwendet man für das Produkt mehrerer Faktoren das Produktzeichen: $ + # = & &'( &') $*) $*( $ #%& WiSe 2016/17 Seite 16

17 Für eine natürliche Zahl n wird n! (sprich: n Fakultät) definiert als das Produkt der ersten n natürlichen Zahlen: n! = (n-1) n Zusätzlich wird definiert 0! = 1. Für zwei natürliche Zahlen n und k mit k n wird der Binomialkoeffizient $ # (sprich: n über k) definiert als: $ # = $! #! $ #! =$ $ ( $ )... ($ #+() #! WiSe 2016/17 Seite 17

18 Kombinatorische Bedeutung: n! gibt die Anzahl der Möglichkeiten an, eine Menge von n Objekten in verschiedenen Reihenfolgen darzustellen. $ # gibt die Anzahl der Möglichkeiten an, aus einer Menge von n Objekten k Objekte ohne Berücksichtigung der Reihenfolge auszuwählen, d. h. aus einer n-elementigen Menge k-elementige Teilmengen zu bilden. WiSe 2016/17 Seite 18

19 6. Binomische Formeln (+) ) = ) + ) + ) ( ) ) = ) ) + ) (+)( ) = ) ) Allgemeiner Binomischer Lehrsatz für reelle Zahlen a und b und natürliche Zahl n: $ (+) $ =" $ # $*# # #%0 WiSe 2016/17 Seite 19

20 7. Potenzen und Wurzeln Für n IN und a IR ist a n die n-te Potenz der Zahl a, d.h. das n-fache Produkt der Zahl a mit sich selbst, also $ =. a heißt Basis und n Exponent. Es gelten die Potenzgesetze: $ & = $'& ( $ ) & = $ & $ $ = ( ) $ WiSe 2016/17 Seite 20

21 Für a 0und n IN definiert man 0 = ( und *$ = ( $. Damit gelten die Potenzgesetze auch für beliebige ganzzahlige Exponenten und außerdem gilt $ &=$*& $ Für > 0 ist, d. h. die n-te Wurzel aus, diejenige positive reelle Zahl, deren n-te Potenz gleich ist. Das ist somit die positive Lösung der Gleichung 6 $ =. $ & = $'& ( $ ) & = $ & $ $ = ( ) $ WiSe 2016/17 Seite 21

22 Weitere Definitionen: $= ( $ ; & $ $= & ; *& $ = ( & $ = ( $ & Damit gelten die Potenzgesetze $ & = $'& $ &=$*& ( $ ) & = $ & $ $ = ( ) $ auch für beliebige rationale Exponenten, wenn a > 0 ist und dann auch für alle reellen Exponenten. WiSe 2016/17 Seite 22

23 8. Logarithmen Für 7,8 R mit 7 1 und 8 > 0 heißt die Lösung der Gleichung 6 = der Logarithmus von 8 zur Basis 7, geschrieben: 6 = ;<= log a b ist diejenige Zahl, mit der man a potenzieren muss, um b zu erhalten. Rechenregeln: ;<= (6 >) = ;<= 6 + ;<= > Umformungsregel: ;<= (6/>) = ;<= 6 ;<= > ;<= (6 ) = ;<= 6 ;<= ( = 0; ;<= = ( ;<= 6 = ;<= 6 ;<= WiSe 2016/17 Seite 23

24 9. Gleichungen mit einer Unbekannten Für eine lineare Gleichung der Form 6 = gilt 1. Fall: falls 7 0, = 8/7 die einzige Lösung 2. Fall: falls 7=0 und 8 0, gibt es keine Lösung 3. Fall: falls 7=0 und 8=0, ist R Lösung. Bemerkung: Oft müssen gegebene Gleichungen erst durch so genannte Äquivalenzumformungen in diese Form gebracht werden. WiSe 2016/17 Seite 24

25 Eine quadratische Gleichung der Form 6 ) +A6+B=0 hat, falls A ) CB> 0 ist, die Lösungen 6 ( = A ) + A ) ) D ; 6 ) = A ) A ) ) D Falls A ) CB=0, gibt es die eindeutige Lösung A/). Falls A ) CB<0, hat die quadratische Gleichung keine Lösung in der Grundmenge der reellen Zahlen. Faktorisierung von quadratischen Termen 6 ) +A6+B : Sind x 1 und x 2 die Lösungen der quadratischen Gleichung 6 ) +A6+B=0, so gilt 6 ) +A6+B= (6 6 ( )(6 6 ) ) WiSe 2016/17 Seite 25

26 Eine normiertes Polynom n-ten Grades der Form A 6 =6 $ + $*( 6 $*( + + ( 6+ 0 hat höchstens n Nullstellen. Für n > 4 gibt es keine allgemeine Lösungsverfahren. In Spezialfällen können Ausklammern, Substitution oder Polynomdivision hilfreich sein. Ist x 0 eine Nullstelle des Polynoms p(x), so ist A(6)= B(6), wobei q(x) ein normiertes Polynom vom Grade n-1 ist. WiSe 2016/17 Seite 26

27 10. Dreisatz und Prozentrechnung Einfacher Dreisatz: Zwei Größen A und B stehen in konstantem Verhältnis zueinander (sind proportional, je mehr von A, umso mehr von B ). Hat man a Einheiten von A und b Einheiten von B gegeben und sucht die Anzahl x Einheiten von A, die in demselben Verhältnis zu d Einheiten von B stehen, so gilt: D. h. der Quotient der Größen ist konstant. Umgekehrter Dreisatz: Zwei Größen A und B stehen in umgekehrt proportionalem Verhältnis zueinander ( je mehr von A, umso weniger von B ). Hat man a Einheiten von A und b Einheiten von B gegeben und sucht die Anzahl x Einheiten von A, die zu d Einheiten von B gehören, so gilt: D. h. das Produkt der Größen ist konstant. 6! = 6!= WiSe 2016/17 Seite 27

28 Prozent bedeutet von Hundert, d.h. p % sind p Hundertstel, also p/100. Hat man einen prozentualen Anteil p gegeben und sucht die zugehörige absolute Zahl, so multipliziert man die absolute Größe der Grundgesamtheit (den Grundwert) mit p/100 (entspricht dem einfachen Dreisatz). Zinssätze werden üblicherweise in Prozent angegeben. Bei der sogenannten Verzinsung mit Zinseszins lautet der fundamentale Zusammenhang zwischen Anfangskapital K 0, jährlichem Zinssatz F= A, Anlagezeitraum n in Jahren und (00 Endkapital K n : G $ =G 0 (+ A (00 $ =G 0 (+H $ WiSe 2016/17 Seite 28

29 11. Ungleichungen mit einer Unbekannten Für zwei beliebige reelle Zahlen a und b gilt genau eine der drei Beziehungen a < b a = b a ist kleiner als b, falls a auf dem Zahlenstrahl links von b liegt a a ist gleich b, falls a und b denselben Punkt auf dem Zahlenstrahl darstellen b a = b a > b a ist größer als b, falls a auf dem Zahlenstrahl rechts von b liegt. b a WiSe 2016/17 Seite 29

30 Lineare Ungleichungen mit einer Unbekannten löst man analog linearen Gleichungen durch Äquivalenzumformungen, wobei zu beachten ist, das bei Multiplikation bzw. Division der Ungleichung mit einer negativen Zahl das Ungleichheitszeichen umgekehrt wird. WiSe 2016/17 Seite 30

31 Zur Lösung quadratischer Ungleichungen kann man folgendermaßen vorgehen: 1. Schritt: Ungleichung in Normalform x 2 + px + q > 0 (bzw. < 0) bringen 2. Schritt: Faktorisierung in (x x 1 )(x x 2 ) > 0 (bzw. < 0) (siehe Kapitel 9) 3. Schritt: Ermittlung der Lösungsmenge durch Fallunterscheidung Im 3. Schritt verwendet man: Ein Produkt ist genau dann > 0, wenn beide Faktoren > 0 sind oder wenn beide Faktoren < 0 sind, bzw. ein Produkt ist genau dann < 0, wenn ein Faktor > 0 ist und ein Faktor < 0 ist. WiSe 2016/17 Seite 31

32 12. Gleichungssysteme Lineare Gleichungssysteme mit zwei Unbekannten kann man mit der Einsetzungsmethode (Substitutionsmethode) oder mit der Additionsmethode lösen. Die Einsetzungsmethode lässt sich folgendermaßen skizzieren: WiSe 2016/17 Seite 32

33 1. Auflösen einer der beiden Gleichungen nach einer Variablen. 2. Einsetzen des für diese Variable erhaltenen Ausdrucks in die andere Gleichung. 3. Auflösung dieser Gleichung nach der (verbliebenen) Variablen. 4. Einsetzen dieser Variablen in 1. Falls in 3. ein Widerspruch entsteht, hat das System keine Lösung. Falls in 3. eine Identität entsteht hat das System unendlich viele Lösungen, die durch die Gleichung in 1. beschrieben werden können. WiSe 2016/17 Seite 33

34 13. Grundlagen der ebenen Geometrie Jeder Punkt P in der Ebene lässt sich durch ein Paar (x P y P ) reeller Zahlen beschreiben, wobei x P die x-koordinate von P ist und y P die y-koordinate von P. Die Punktmenge einer Geraden g in der Ebene lässt sich durch eine lineare Gleichung y = mx + n beschreiben, g = { (x y) x IR, y IR, y = mx + n}. Hierbei ist m die Steigung von g und n der Schnittpunkt von g mit der y-achse des Koordinatensystems. &=I$(J)= > 6 => ( > 0 6 ( 6 0 $=> ( & 6 ( Zwei Geraden g und h mit den Steigungen m 1 bzw. m 2 sind parallel, falls m 1 = m 2. Die Geraden stehen senkrecht zueinander, falls & ( & ) = (. Die Schnittpunkte der Geraden bestimmt man durch Lösen des linearen Gleichungssystems (der Geradengleichungen). $ >=& 6+ $ WiSe 2016/17 Seite 34

35 C O A α β Drei Punkte A, B und C, die nicht auf einer gemeinsamen Geraden liegen, bilden ein Dreieck. Die den Punkten gegenüberliegenden Seiten (und ihre Längen) werden mit a, b und c bezeichnet, die Winkel mit α, β, γ. Für die Summe der Winkel im Dreieck gilt α + β + γ = (L0 <. Für die Seitenlängen gelten die Dreiecksungleichungen < + ; < + ; < +. Ist h c die zur Seite c gehörige Höhe des Dreiecks, so gilt für den Flächeninhalt F des Dreiecks: M = ( ) N. (Entsprechende Formeln gelten für die Seiten a und b). B WiSe 2016/17 Seite 35

36 C Gegenkathete zu β Ankathete zu α γ =P0 Gegenkathete zu α Ankathete zu β h c A α Hypotenuse β B Sind a und b die Katheten eines rechtwinkligen Dreiecks mit Hypotenuse c (also γ = 90 o ), so gilt der Satz des Pythagoras: ) + ) = ). WiSe 2016/17 Seite 36

37 Ein Viereck mit vier rechten Winkeln heißt Rechteck. Gegenüberliegende Seiten sind gleichlang und parallel. Sind a und b die Seitenlängen des Rechtecks, so berechnet sich sein Flächeninhalt F nach der Formel Für den Umfang U gilt M =. R = ) + ). Ein Rechteck mit vier gleichen Seitenlängen heißt Quadrat. WiSe 2016/17 Seite 37

38 d M r Die Menge aller Punkte der Ebene, die zu einem Punkt M den gleichen Abstand r haben, bilden einen Kreis. Der Punkt M ist dann der Mittelpunkt des Kreises, der Abstand r ist der Radius des Kreises. Der doppelte Radius d heißt Durchmesser des Kreises. Für den Flächeninhalt F und den Umfang U eines Kreises mit Radius r gelten folgende Formeln: M = S T ) R = )S T WiSe 2016/17 Seite 38

39 14. Trigonometrische Funktionen Im rechtwinkligen Dreiecken mit γ = 90 o gilt: Gegenkathete zu β Ankathete zu α b C γ =P0 Gegenkathete zu α Ankathete zu β a A α h c Hypotenuse c β B UFV J = =WX=X$#INXIX Y>A<INX$Z[X \][ J = = ^$#INXIX Y>A<INX$Z[X _`V J = =WX=X$#INXIX ^$#INXIX Winkelmessungen lassen sich im Kreis in Grad (eine volle Umdrehung entspricht 360 o ) oder in Bogenmaß (eine volle Umdrehung entspricht dem Kreisumfang 2πr) durchführen. Ein Winkel α entspricht der r α b Kreisbogenlänge =)ST J ab0 WiSe 2016/17 Seite 39

40 Der Einheitskreis hat Radius r = 1 und Mittelpunkt im Nullpunkt des Koordinatensystems. [H$ I <[ I Ein Kreisbogen der Länge t definiert einen Punkt auf dem Einheitskreis, dessen Koordinaten mit cos t und sin t definiert werden. Dies erweitert die Definition der trigonometrischen Funktionen sinus und cosinus im rechtwinkligen Dreieck auf beliebige reelle Zahlen t. WiSe 2016/17 Seite 40

41 Gemäß Definition sind diese Funktionen periodisch mit Periode 2π, d.h. es gilt: [H$ (6+)π) = [H$ 6 und <[ (6 + )π) = <[ 6 für alle reellen Zahlen x. Aus dem Satz des Pythagoras ergibt sich direkt die Gleichung [H$ ) 6 +<[ ) 6 = ( für alle reellen Zahlen x. Weitere nützliche Beziehungen zwischen den trigonometrischen Funktionen sind _`V6= [H$ 6 <[ 6 und <[ 6=[H$ 6+ S ) WiSe 2016/17 Seite 41

Propädeutikum Mathematik

Propädeutikum Mathematik Propädeutikum Mathematik Sommersemester 2016 Carsten Krupp BBA Seite 1 Literaturhinweise Cramer, E., Neslehova, J.: Vorkurs Mathematik, Springer, 2004 Piehler, Sippel, Pfeiffer: Mathematik zum Studieneinstieg,

Mehr

Propädeutikum Mathematik

Propädeutikum Mathematik Propädeutikum Mathematik Wintersemester 2016 / 2017 Carsten Krupp BBA und IBS Vorkurs Mathematik - Wintersemester 2016 / 2017 Seite 1 Literaturhinweise Cramer, E., Neslehova, J.: Vorkurs Mathematik, Springer,

Mehr

Propädeutikum Mathematik

Propädeutikum Mathematik Propädeutikum Mathematik Wintersemester 2017/2018 Carsten Krupp Betriebswirtschaftslehre (BBA) und International Business Studies (IBS)) Vorkurs Mathematik - Wintersemester 2017/2018 Seite 1 Literaturhinweise

Mehr

Propädeutikum Mathematik

Propädeutikum Mathematik Wintersemester 2015/16 Prof. Dr. Friedrich Fels Abteilung WI Seite 1 Literaturhinweise Cramer, E., Neslehova, J.: Vorkurs Mathematik, Springer, 2004 Piehler, Sippel, Pfeiffer: Mathematik zum Studieneinstieg,

Mehr

Propädeutikum Mathematik

Propädeutikum Mathematik Propädeutikum Mathematik Wintersemester 2018/2019 Carsten Krupp BBA und IBS Termine: Freitag, 14.09.18 von 9.00-18.00 Uhr Raum 1H.0.01 (Neubau - R100) Montag, 17.09.18 von 9.00 18.00 Uhr Raum 1H.0.01 (Neubau

Mehr

Propädeutikum Mathematik

Propädeutikum Mathematik Propädeutikum Mathematik Wintersemester 2018/2019 Einladung Prof. Dr. Dieter Leitmann Abteilung Wirtschaftsinformatik WiSe 2018/19 Seite 1 Literaturhinweise Cramer, E., Neslehova, J.: Vorkurs Mathematik,

Mehr

Propädeutikum Mathematik

Propädeutikum Mathematik Propädeutikum Mathematik Sommersemester 2018 Carsten Krupp BBA und IBS Termine: Freitag, 23.02.18 von 9.00-18.00 Uhr Raum 1H.0.01 (Neubau - R100) Montag, 26.02.18 von 9.00 18.00 Uhr Raum 1H.0.01 (Neubau

Mehr

Propädeutikum Mathematik

Propädeutikum Mathematik Propädeutikum Mathematik Sommersemester 2019 Einladung Prof. Dr. Dieter Leitmann Abteilung Wirtschaftsinformatik SoSe 2019 Seite 1 Literaturhinweise Cramer, E., Neslehova, J.: Vorkurs Mathematik, Springer,

Mehr

Mathematik. für das Ingenieurstudium. 1 Grundlagen. Jürgen Koch Martin Stämpfle.

Mathematik. für das Ingenieurstudium. 1 Grundlagen. Jürgen Koch Martin Stämpfle. 1 Grundlagen www.mathematik-fuer-ingenieure.de 2010 und, Esslingen Dieses Werk ist urheberrechtlich geschützt. Alle Rechte, auch die der Übersetzung, des Nachdruckes und der Vervielfältigung des Werkes,

Mehr

Definitions- und Formelübersicht Mathematik

Definitions- und Formelübersicht Mathematik Definitions- Formelübersicht Mathematik Definitions- Formelübersicht Mathematik Mengen Intervalle Eine Menge ist eine Zusammenfassung von wohlunterschiedenen Elementen zu einem Ganzen. Dabei muss entscheidbar

Mehr

Stichwortverzeichnis. Symbole. Stichwortverzeichnis

Stichwortverzeichnis. Symbole. Stichwortverzeichnis Stichwortverzeichnis Stichwortverzeichnis Symbole ( ) (Runde Klammern) 32, 66 (Betragszeichen) 32 (Multiplikations-Zeichen) 31 + (Plus-Zeichen) 31, 69 - (Minus-Zeichen) 31, 69 < (Kleiner-als-Zeichen) 33,

Mehr

Zahlen und elementares Rechnen

Zahlen und elementares Rechnen und elementares Rechnen Christian Serpé Universität Münster 7. September 2011 Christian Serpé (Universität Münster) und elementares Rechnen 7. September 2011 1 / 51 Gliederung 1 2 Elementares Rechnen 3

Mehr

Brückenkurs Mathematik

Brückenkurs Mathematik Brückenkurs Mathematik Eine Einführung mit Beispielen und Übungsaufgaben von Prof. Dr. Karl Bosch 14., korrigierte Auflage Oldenbourg Verlag München Inhaltsverzeichnis 1 Grundlagen der Mengenlehre 1 1.1

Mehr

Brückenkurs Mathematik

Brückenkurs Mathematik Brückenkurs Mathematik Von Dr. Karl Bosch Professor für angewandte Mathematik und Statistik an der Universität Stuttgart-Hohenheim 10., verbesserte Auflage R. Oldenbourg Verlag München Wien Inhaltsverzeichnis

Mehr

Kapitel 1 Mengen. Kapitel 1 Mengen. Mathematischer Vorkurs TU Dortmund Seite 1 / 25

Kapitel 1 Mengen. Kapitel 1 Mengen. Mathematischer Vorkurs TU Dortmund Seite 1 / 25 Kapitel 1 Mengen Kapitel 1 Mengen Mathematischer Vorkurs TU Dortmund Seite 1 / 25 Kapitel 1 Mengen Definition 1.1 (Menge) Unter einer Menge verstehen wir eine Zusammenfassung von Objekten zu einem Ganzen.

Mehr

Grundwissen 9. Klasse 9/1. Grundwissen 9. Klasse 9/2

Grundwissen 9. Klasse 9/1. Grundwissen 9. Klasse 9/2 Grundwissen 9. Klasse 9/. Quadratwurzel Definition: a ist diejenige positive Zahl, deren Quadrat a ergibt: a =a z.b. 5=5 Bezeichnung: Die Zahl a unter der Wurzel heißt Radikand. Radikandenbedingung: a

Mehr

Mathematikvorkurs. Fachbereich I. Sommersemester Elizaveta Buch

Mathematikvorkurs. Fachbereich I. Sommersemester Elizaveta Buch Mathematikvorkurs Fachbereich I Sommersemester 2017 Elizaveta Buch Themenüberblick Montag Grundrechenarten und -regeln Bruchrechnen Binomische Formeln Dienstag Potenzen, Wurzeln und Logarithmus Summen-

Mehr

Grundlagen Mathematik 7. Jahrgangsstufe

Grundlagen Mathematik 7. Jahrgangsstufe ALGEBRA 1. Grundlagen Grundlagen Mathematik 7. Jahrgangsstufe Menge der ganzen Zahlen Z = {..., -3, -2, -1, 0, 1, 2, 3,... } Menge der rationalen Zahlen Q = { z z Z und n N } (Menge aller n positiven und

Mehr

Wirtschaftsmathematik: Mathematische Grundlagen

Wirtschaftsmathematik: Mathematische Grundlagen Wirtschaftsmathematik: Mathematische Grundlagen 1. Zahlen 2. Potenzen und Wurzeln 3. Rechenregeln und Vereinfachungen 4. Ungleichungen 5. Intervalle 6. Beträge 7. Lösen von Gleichungen 8. Logarithmen 9.

Mehr

Vorkurs Mathematik Dozent: Dipl.-Math. Karsten Runge.

Vorkurs Mathematik Dozent: Dipl.-Math. Karsten Runge. Vorkurs Mathematik 17.08.-28.08.15 Dozent: Dipl.-Math. Karsten Runge E-mail: karsten.runge@hs-bochum.de www.hs-bochum.de\imt > Mathematik-Vorkurs > Mathematik-Werkstatt Die Mathematik-Werkstatt bietet

Mehr

Fachbereich I Management, Controlling, Health Care. Mathematikvorkurs. Wintersemester 2017/2018. Elizaveta Buch

Fachbereich I Management, Controlling, Health Care. Mathematikvorkurs. Wintersemester 2017/2018. Elizaveta Buch Fachbereich I Management, Controlling, Health Care Mathematikvorkurs Wintersemester 2017/2018 Elizaveta Buch Themenüberblick Montag Grundrechenarten und -regeln Bruchrechnen Prozentrechnung Dienstag Binomische

Mehr

Übungsblatt 1 zum Propädeutikum

Übungsblatt 1 zum Propädeutikum Übungsblatt 1 zum Propädeutikum 1. Gegeben seien die Mengen A = {,, 6, 7}, B = {,, 6} und C = {,,, 1}. Bilden Sie die Mengen A B, A C, (A B) C, (A C) B und geben Sie diese in aufzählender Form an.. Geben

Mehr

Brückenkurs Mathematik. Mittwoch Freitag

Brückenkurs Mathematik. Mittwoch Freitag Brückenkurs Mathematik Mittwoch 5.10. - Freitag 14.10.2016 Vorlesung 4 Dreiecke, Vektoren, Matrizen, lineare Gleichungssysteme Kai Rothe Technische Universität Hamburg-Harburg Montag 10.10.2016 0 Brückenkurs

Mehr

Übungsblatt 1 zum Propädeutikum

Übungsblatt 1 zum Propädeutikum Übungsblatt 1 zum Propädeutikum 1. Gegeben seien die Mengen A = {,, 6, 7}, B = {,, 6} und C = {,,, 1}. Bilden Sie die Mengen A B, A C, (A B) C, (A C) B und geben Sie diese in aufzählender Form an.. Geben

Mehr

Mathematik. Subtraktion (Minuend Subtrahend = Differenz) Division (Dividend / Divisor = Quotient)

Mathematik. Subtraktion (Minuend Subtrahend = Differenz) Division (Dividend / Divisor = Quotient) Inhalt: Mathematik 2.2003 2003 by Reto Da Forno Termumformungen - Operationsstufen Seite 1 - Gesetze Seite 1 - Addition + Subtraktion Seite 2 - Potenzen Seite 2 - Polynomdivision Seite 3 - Ausklammern

Mehr

Reelle Zahlen, Termumformungen, Gleichungen und Ungleichungen

Reelle Zahlen, Termumformungen, Gleichungen und Ungleichungen 2. Vorlesung im Brückenkurs Mathematik 2018 Reelle Zahlen, Termumformungen, Gleichungen und Ungleichungen Dr. Markus Herrich Markus Herrich Reelle Zahlen, Gleichungen und Ungleichungen 1 Die Menge der

Mehr

Zahlen 25 = = 0.08

Zahlen 25 = = 0.08 2. Zahlen Uns bisher bekannte Zahlenbereiche: N Z Q R ( C). }{{} später Schreibweisen von rationalen/reellen Zahlen als unendliche Dezimalbrüche = Dezimalentwicklungen. Beispiel (Rationale Zahlen) 1 10

Mehr

Mathematischer Vorkurs MATH

Mathematischer Vorkurs MATH Mathematischer Vorkurs MATH (01.09.2014 19.09.2014) AOR Dr. Andreas Langer WS 2014-2015 Mathematischer Vorkurs TU Dortmund Seite 1 / 254 Kapitel 1 Mengen Kapitel 1 Mengen Mathematischer Vorkurs TU Dortmund

Mehr

Inhaltsverzeichnis. Vorwort. I Zahlen 5. II Algebra 29

Inhaltsverzeichnis. Vorwort. I Zahlen 5. II Algebra 29 Inhaltsverzeichnis Vorwort I Zahlen 5 1. Rechnen mit ganzen Zahlen 6 Addition, Subtraktion und Multiplikation 7 Division mit Rest 7 Teiler und Primzahlen 9 Der ggt und das kgv 11 2. Rechnen mit Brüchen

Mehr

1. die ganzen Zahlen, denn 7= 1. a ist diejenige nicht negative Zahl, die quadriert a ergibt: 16 = 4; 0 = = 36 = 25 = e) Grundwissen 9.

1. die ganzen Zahlen, denn 7= 1. a ist diejenige nicht negative Zahl, die quadriert a ergibt: 16 = 4; 0 = = 36 = 25 = e) Grundwissen 9. Grundwissen 9. Klasse Quadratwurzel a ist diejenige nicht negative Zahl, die quadriert a ergibt: ( a ) a Die Zahl a unter der Wurzel heißt Radikand. Es gibt keine Quadratwurzel aus einer negativen Zahl.

Mehr

Brüche, Polynome, Terme

Brüche, Polynome, Terme KAPITEL 1 Brüche, Polynome, Terme 1.1 Zahlen............................. 1 1. Lineare Gleichung....................... 3 1.3 Quadratische Gleichung................... 6 1.4 Polynomdivision........................

Mehr

Umgekehrter Dreisatz Der umgekehrte Dreisatz ist ein Rechenverfahren, das man bei umgekehrt proportionalen Zuordnungen anwenden kann.

Umgekehrter Dreisatz Der umgekehrte Dreisatz ist ein Rechenverfahren, das man bei umgekehrt proportionalen Zuordnungen anwenden kann. Dreisatz Der Dreisatz ist ein Rechenverfahren, das man bei proportionalen Zuordnungen anwenden kann. 3 Tafeln Schokolade wiegen 5 g. Wie viel Gramm wiegen 5 Tafeln? 1. Satz: 3 Tafeln wiegen 5 g.. Satz:

Mehr

Inhaltsverzeichnis. Vorwort 1. I Zahlen 5. II Algebra 29

Inhaltsverzeichnis. Vorwort 1. I Zahlen 5. II Algebra 29 Inhaltsverzeichnis Vorwort 1 I Zahlen 5 1. Rechnen mit ganzen Zahlen 6 Addition, Subtraktion und Multiplikation............. 7 Division mit Rest........................... 7 Teiler und Primzahlen........................

Mehr

gebrochene Zahl gekürzt mit 9 sind erweitert mit 8 sind

gebrochene Zahl gekürzt mit 9 sind erweitert mit 8 sind Vorbereitungsaufgaben Mathematik. Bruchrechnung.. Grundlagen: gebrochene Zahl gemeiner Bruch Zähler Nenner Dezimalbruch Ganze, Zehntel Hundertstel Tausendstel Kürzen: Zähler und Nenner durch dieselbe Zahl

Mehr

Propädeutikum Mathematik

Propädeutikum Mathematik Propädeutikum Mathematik Sommersemester 2019 Prof. Dr. Dieter Leitmann Abteilung Wirtschaftsinformatik SoSe 2019 Seite 1 Propädeutikum Mathematik für Wirtschaftsinformatiker (BIS) Beispiele SoSe 2019 Seite

Mehr

@ GN GRUNDWISSEN MATHEMATIK. Inhalt... Seite

@ GN GRUNDWISSEN MATHEMATIK. Inhalt... Seite Inhaltverzeichnis Inhalt... Seite Klasse 5: 1 Zahlen... 1 1.1 Zahlenmengen... 1 1.2 Dezimalsystem... 1 1.3 Römische Zahlen... 1 1.4 Runden... 1 1.5 Termarten... 1 1.6 Rechengesetze... 2 1.7 Rechnen mit

Mehr

Eine Menge ist die Zusammenfassung von bestimmten unterschiedenen Objekten zu einem Ganzen.

Eine Menge ist die Zusammenfassung von bestimmten unterschiedenen Objekten zu einem Ganzen. 1. Grundlagen Damit wir uns im Gebiet der Zahlen orientieren können, müssen wir uns einer gemeinsam festgelegten Sprache bedienen. In diesem ersten Kapitel erhalten Sie einen kurzen Abriss über die gängigsten

Mehr

Brückenkurs Mathematik. Mittwoch Freitag

Brückenkurs Mathematik. Mittwoch Freitag Brückenkurs Mathematik Mittwoch 5.10. - Freitag 14.10.2016 Vorlesung 1 Elementare Algebra Kai Rothe Technische Universität Hamburg-Harburg Mittwoch 5.10.2016 Tagesablauf 9:00-10:30 Vorlesung Audimax I

Mehr

1 Rechnen. Addition rationaler Zahlen gleicher Vorzeichen Summand + Summand = Summe

1 Rechnen. Addition rationaler Zahlen gleicher Vorzeichen Summand + Summand = Summe Rationale Zahlen Die ganzen Zahlen zusammen mit allen positiven und negativen Bruchzahlen heißen rationale Zahlen. Die Menge der rationalen Zahlen wird mit Q bezeichnet. Je weiter links eine Zahl auf dem

Mehr

01. Zahlen und Ungleichungen

01. Zahlen und Ungleichungen 01. Zahlen und Ungleichungen Die natürlichen Zahlen bilden die grundlegendste Zahlenmenge, die durch das einfache Zählen 1, 2, 3,... entsteht. N := {1, 2, 3, 4,...} (bzw. N 0 := {0, 1, 2, 3, 4,...}) Dabei

Mehr

Curriculum Mathematik

Curriculum Mathematik Klasse 5 Natürliche Zahlen Rechnen mit natürlichen Zahlen: Kopfrechnen, Überschlag, Runden, schriftliches Rechnen, Rechengesetze, Vorrangregeln, Terme berechnen Zahlenstrahl und Maßstäbe Darstellung von

Mehr

Inhaltsverzeichnis Mathematik

Inhaltsverzeichnis Mathematik 1. Mengenlehre 1.1 Begriff der Menge 1.2 Beziehungen zwischen Mengen 1.3 Verknüpfungen von Mengen (Mengenoperationen) 1.4 Übungen 1.5 Übungen (alte BM-Prüfungen) 1.6 Zahlenmengen 1.7 Grundmenge (Bezugsmenge)

Mehr

Corinne Schenka Vorkurs Mathematik WiSe 2012/13. Die kleineren Zahlbereiche sind jeweils Teilmengen von größeren Zahlbereichen:

Corinne Schenka Vorkurs Mathematik WiSe 2012/13. Die kleineren Zahlbereiche sind jeweils Teilmengen von größeren Zahlbereichen: 2. Zahlbereiche Besonderheiten und Rechengesetze Die kleineren Zahlbereiche sind jeweils Teilmengen von größeren Zahlbereichen: 2.1. Die natürlichen Zahlen * + besitzt abzählbar unendlich viele Elemente

Mehr

Inhaltsverzeichnis INHALTSVERZEICHNIS

Inhaltsverzeichnis INHALTSVERZEICHNIS INHALTSVERZEICHNIS Einleitung: Zur Verwendung dieses Buches 12 Kapitel 1 Primzahlen, ggt, kgv, Dreisatz Test 1 Aufgaben 1 20 15 Lösungen und Erklärungen zum Test 1 17 E1 Vielfache, Teiler, Primfaktorzerlegung

Mehr

Zahlen und elementares Rechnen (Teil 1)

Zahlen und elementares Rechnen (Teil 1) und elementares Rechnen (Teil 1) Dr. Christian Serpé Universität Münster 6. September 2010 Dr. Christian Serpé (Universität Münster) und elementares Rechnen (Teil 1) 6. September 2010 1 / 40 Gliederung

Mehr

1. Funktionen. 1.3 Steigung von Funktionsgraphen

1. Funktionen. 1.3 Steigung von Funktionsgraphen Klasse 8 Algebra.3 Steigung von Funktionsgraphen. Funktionen y Ist jedem Element einer Menge A genau ein E- lement einer Menge B zugeordnet, so nennt man die Zuordnung eindeutig. 3 5 6 8 Dies ist eine

Mehr

Curriculum Mathematik

Curriculum Mathematik Klasse 5 Natürliche Zahlen Rechnen mit natürlichen Zahlen: Kopfrechnen, Überschlag, Runden, schriftliches Rechnen, Rechengesetze, Vorrangregeln, Terme berechnen Zahlenstrahl und Maßstäbe Darstellung von

Mehr

Rationale, irrationale und reelle Zahlen. 4-E Vorkurs, Mathematik

Rationale, irrationale und reelle Zahlen. 4-E Vorkurs, Mathematik Rationale, irrationale und reelle Zahlen 4-E Vorkurs, Mathematik Rationale Zahlen Der Grund für die Einführung der rationalen Zahlen ist der, dass wir mit ihnen auch Gleichungen der Form q x = p lösen

Mehr

1.Weiterentwicklung der Zahlvorstellung 1.1Die natürlichen Zahlen Mengenschreibweise: N = {1,2,3,...} N 0 = {0,1,2,3,...}

1.Weiterentwicklung der Zahlvorstellung 1.1Die natürlichen Zahlen Mengenschreibweise: N = {1,2,3,...} N 0 = {0,1,2,3,...} 1 Grundwissen Mathematik 5.Klasse Gymnasium SOB 1.Weiterentwicklung der Zahlvorstellung 1.1Die natürlichen Zahlen Mengenschreibweise: N = {1,2,3,...} N 0 = {0,1,2,3,...} Darstellung am Zahlenstrahl: Darstellung

Mehr

Reelle Zahlen, Gleichungen und Ungleichungen

Reelle Zahlen, Gleichungen und Ungleichungen 9 2. Vorlesung Reelle Zahlen, Gleichungen und Ungleichungen 4 Zahlenmengen und der Körper der reellen Zahlen 4.1 Zahlenmengen * Die Menge der natürlichen Zahlen N = {0,1,2,3,...}. * Die Menge der ganzen

Mehr

Ignaz-Taschner-Gymnasium Dachau Grundwissen Mathematik 8 (G8)

Ignaz-Taschner-Gymnasium Dachau Grundwissen Mathematik 8 (G8) Grundwissen M8 1. Funktionale Zusammenhänge Proportionalität a) Direkte Proportionalität Wird dem Doppelten, Dreifachen,, k-fachen einer Größe x das Doppelte, Dreifache,, k-fache einer Größe y zugeordnet,

Mehr

Dynamische Systeme und Zeitreihenanalyse // Komplexe Zahlen 3 p.2/29

Dynamische Systeme und Zeitreihenanalyse // Komplexe Zahlen 3 p.2/29 Dynamische Systeme und Zeitreihenanalyse Komplexe Zahlen Kapitel 3 Statistik und Mathematik WU Wien Michael Hauser Dynamische Systeme und Zeitreihenanalyse // Komplexe Zahlen 3 p.0/29 Motivation Für die

Mehr

MATHEMATIK Grundkurs 11m3 2010

MATHEMATIK Grundkurs 11m3 2010 MATHEMATIK Grundkurs 11m3 2010 Städtisches Gymnasium Leichlingen Zusammenfassende Informationen zum Unterricht ab 29. Oktober 2010 Für jede Doppelstunde ein Kapitel 2 Kapitel 1 Doppelstunde 29.10.2010

Mehr

Vorkurs Mathematik 1

Vorkurs Mathematik 1 Vorkurs Mathematik 1 Einführung in die mathematische Notation Konstanten i komplexe Einheit i 2 + 1 = 0 e Eulersche Zahl Kreiszahl 2 Einführung in die mathematische Notation Bezeichner Primzahlen, Zähler

Mehr

Wirtschafts- und Finanzmathematik

Wirtschafts- und Finanzmathematik Prof. Dr. Stefan Etschberger HSA Wirtschafts- und Finanzmathematik für Betriebswirtschaft und International Management Wintersemester 2016/17 Organisation Termine, Personen, Räume Gliederung 1 Grundlegende

Mehr

2015, MNZ. Jürgen Schmidt. 2.Tag. Vorkurs. Mathematik WS 2015/16

2015, MNZ. Jürgen Schmidt. 2.Tag. Vorkurs. Mathematik WS 2015/16 Vorkurs Mathematik WS 2015/16 2.Tag Arten von Gleichungen Lineare Gleichungen (und Funktionen) 0 = ax + b (oft als Funktion: y = mx + n) a,b R Parameter m Anstieg, n Achsenabschnitt Quadratische Gleichungen

Mehr

Grundwissen Mathematik Klasse 8. Beispiel: m= 2,50 1 = 5,00. Gleichung: y=2,50 x. Beispiel: c=1,5 160=2,5 96=3 80=6 40=240.

Grundwissen Mathematik Klasse 8. Beispiel: m= 2,50 1 = 5,00. Gleichung: y=2,50 x. Beispiel: c=1,5 160=2,5 96=3 80=6 40=240. I. Funktionen 1. Direkt proportionale Zuordnungen Grundwissen Mathematik Klasse x und y sind direkt proportional, wenn zum n fachen Wert für x der n fache Wert für y gehört, die Wertepaare quotientengleich

Mehr

Die Kanten der Grundfläche mit je 7 cm sind die Katheten a und b des rechtwinkligen Dreiecks, die Hypotenuse c ist die gesuchte Bodendiagonale c.

Die Kanten der Grundfläche mit je 7 cm sind die Katheten a und b des rechtwinkligen Dreiecks, die Hypotenuse c ist die gesuchte Bodendiagonale c. Aufgabe 1 Schritt 1: Ansatz und Skizze Bei einem Würfel, bei dem ja alle Kantenlängen gleich sind, kannst du mit einer Raumdiagonale, einer senkrechten Kante und einer Decken oder Bodendiagonalen ein rechtwinkliges

Mehr

1 Die Strahlensätze 2. 2 Winkel 3. 3 Rechtwinklige Dreiecke 3. 4 Kreise 6. 5 Trigonometrische Funktionen 8. 6 Kurven in Parameterdarstellung 10

1 Die Strahlensätze 2. 2 Winkel 3. 3 Rechtwinklige Dreiecke 3. 4 Kreise 6. 5 Trigonometrische Funktionen 8. 6 Kurven in Parameterdarstellung 10 Universität Basel Wirtschaftswissenschaftliches Zentrum Abteilung Quantitative Methoden Mathematischer Vorkurs Dr. Thomas Zehrt Geometrie Inhaltsverzeichnis 1 Die Strahlensätze 2 2 Winkel 3 3 Rechtwinklige

Mehr

Brückenkurs Mathematik zum Sommersemester 2015

Brückenkurs Mathematik zum Sommersemester 2015 HOCHSCHULE HANNOVER UNIVERSITY OF APPLIED SCIENCES AND ARTS Dipl.-Math. Xenia Bogomolec Brückenkurs Mathematik zum Sommersemester 2015 Übungsblatt 1 (Grundlagen) Aufgabe 1. Multiplizieren Sie folgende

Mehr

I Rechengesetze und Rechenarten

I Rechengesetze und Rechenarten Propädeutikum 2018 17. September 2018 Primfaktoren I Natürliche und ganze Zahlen Primfaktorzerlegung Klammerausdrücke Primfaktorzerlegung Jede natürliche (und auch ganze) Zahl n N kann in ein Produkt von

Mehr

FH Gießen-Friedberg, Sommersemester 2010 Skript 9 Diskrete Mathematik (Informatik) 30. April 2010 Prof. Dr. Hans-Rudolf Metz.

FH Gießen-Friedberg, Sommersemester 2010 Skript 9 Diskrete Mathematik (Informatik) 30. April 2010 Prof. Dr. Hans-Rudolf Metz. FH Gießen-Friedberg, Sommersemester 010 Skript 9 Diskrete Mathematik (Informatik) 30. April 010 Prof. Dr. Hans-Rudolf Metz Funktionen Einige elementare Funktionen und ihre Eigenschaften Eine Funktion f

Mehr

Propädeutikum Mathematik

Propädeutikum Mathematik Propädeutikum Mathematik Wintersemester 2018/19 Prof. Dr. Dieter Leitmann Abteilung Wirtschaftsinformatik WiSe 2018/19 Seite 1 Propädeutikum Mathematik für Wirtschaftsinformatiker (BIS) Beispiele WiSe

Mehr

Quadratwurzeln. Reelle Zahlen

Quadratwurzeln. Reelle Zahlen M 9. Quadratwurzeln ist diejenige nicht negative Zahl, die quadriert ergibt: Die Zahl unter der Wurzel heißt Radikand: = Quadratwurzeln sind nur für positive Zahlen definiert: 0 25 = 5; 8 = 9; 0,25 = =

Mehr

Kapitel 3. Kapitel 3 Gleichungen

Kapitel 3. Kapitel 3 Gleichungen Gleichungen Inhalt 3.1 3.1 Terme, Gleichungen, Lösungen x 2 2 + y 2 2 3.2 3.2 Verfahren zur zur Lösung von von Gleichungen 3x 3x + 5 = 14 14 3.3 3.3 Gleichungssysteme Seite 2 3.1 Terme, Gleichungen, Lösungen

Mehr

Wirtschafts- und Finanzmathematik

Wirtschafts- und Finanzmathematik Wirtschafts- und Finanzmathematik für Betriebswirtschaft und International Management Wintersemester 2017/18 04.10.2017 Einführung, R, Grundlagen 1 11.10.2017 Grundlagen, Aussagen 2 18.10.2017 Aussagen

Mehr

Brückenkurs Mathematik für Studierende der Chemie

Brückenkurs Mathematik für Studierende der Chemie Brückenkurs Mathematik für Studierende der Chemie PD Dr Dirk Andrae (nach Vorlagen von Dr Werner Gans vom WS 2015/2016) Institut für Chemie und Biochemie Freie Universität Berlin 20 September 2016 1 Teil:

Mehr

1. Vereinfache wie im Beispiel: 3. Vereinfache wie im Beispiel: 4. Schreibe ohne Wurzel wie im Beispiel:

1. Vereinfache wie im Beispiel: 3. Vereinfache wie im Beispiel: 4. Schreibe ohne Wurzel wie im Beispiel: 1. Zahlenmengen Wissensgrundlage Aufgabenbeispiele Gib die jeweils kleinstmögliche Zahlenmenge an, welche die Zahl enthält? R Q Q oder All diejenigen Zahlen, die sich nicht mehr durch Brüche darstellen

Mehr

Grundwissen. 5. Jahrgangsstufe. Mathematik

Grundwissen. 5. Jahrgangsstufe. Mathematik Grundwissen 5. Jahrgangsstufe Mathematik Grundwissen Mathematik 5. Jahrgangsstufe Seite 1 1 Natürliche Zahlen 1.1 Große Zahlen und Zehnerpotenzen eine Million = 1 000 000 = 10 6 eine Milliarde = 1 000

Mehr

Quadratwurzeln. ist diejenige nicht negative Zahl, die quadriert ergibt: Die Zahl unter der Wurzel heißt Radikand:

Quadratwurzeln. ist diejenige nicht negative Zahl, die quadriert ergibt: Die Zahl unter der Wurzel heißt Radikand: M 9.1 Quadratwurzeln ist diejenige nicht negative Zahl, die quadriert ergibt: Die Zahl unter der Wurzel heißt Radikand: Quadratwurzeln sind nur für positive Zahlen definiert: 0 25 5; 81 9; 0,25 0,5; 0,0081

Mehr

Klasse Mathematische Inhalte Kompetenzen Zeitvorgaben 5 1. Zahlen und Größen

Klasse Mathematische Inhalte Kompetenzen Zeitvorgaben 5 1. Zahlen und Größen auf der Basis des Kernlehrplans für das Fach an Lehrwerk: Lambacher Schweizer, für Gymnasien 5 1. Zahlen und Größen Darstellen - Strichlisten- Säulendiagramme - Große Zahlen - Größen messen und schätzen

Mehr

Mathematik 1 für Chemische Technologie 2. Zahlenmenge, Aufbau des Zahlensystems 2.1 Natürliche Zahlen N Die natürlichen Zahlen bilden eine Menge: N =

Mathematik 1 für Chemische Technologie 2. Zahlenmenge, Aufbau des Zahlensystems 2.1 Natürliche Zahlen N Die natürlichen Zahlen bilden eine Menge: N = 2. Zahlenmenge, Aufbau des Zahlensystems 2.1 Natürliche Zahlen N Die natürlichen Zahlen bilden eine Menge: N = {1, 2, 3, 4,... }. N ist abgeschlossen bezüglich der Addition und Multiplikation: a, b N mit

Mehr

Grundlagen für die Mittelstufe 7 1. SYMBOLE UND ZEICHEN DIE NATÜRLICHEN ZAHLEN N...19

Grundlagen für die Mittelstufe 7 1. SYMBOLE UND ZEICHEN DIE NATÜRLICHEN ZAHLEN N...19 Grundlagen für die Mittelstufe 7 Inhaltsverzeichnis 1. SYMBOLE UND ZEICHEN...17 2. DIE NATÜRLICHEN ZAHLEN N...19 2.1. Ziffernsysteme...19 2.1.1. Dekadisches Zehnersystem...19 2.1.1.1. Darstellung am Zahlenstrahl...20

Mehr

Mathematik für die Berufsfachschule II

Mathematik für die Berufsfachschule II Didaktische Jahresplanung: Schnittpunkt Mathematik für die Berufsfachschule II Passgenau zum Lehrplan 2019 Schule: Lehrkraft: Klasse : Schuljahr: Bildungsplan für die Berufsfachschule in Rheinland-Pfalz;

Mehr

Terme und Gleichungen

Terme und Gleichungen Terme und Gleichungen Rainer Hauser November 00 Terme. Rekursive Definition der Terme Welche Objekte Terme genannt werden, wird rekursiv definiert. Die rekursive Definition legt zuerst als Basis fest,

Mehr

Münchner Volkshochschule. Planung. Tag 02

Münchner Volkshochschule. Planung. Tag 02 Planung Tag 02 Prof.Dr. Nils Mahnke Mathematischer Vorkurs Folie: 45 Mengenlehre VII Mengenoperationen: 1) Vereinigungsmenge: A B { x x A x B} 2) Schnittmenge: A 3) Differenzmenge: B { x x A x B} A \ B

Mehr

Formelsammlung. Tipp: Formelsammlung in der Größe DIN A5 verwenden. Also in der Mitte durchschneiden. erstellt von Manfred Präsoll

Formelsammlung. Tipp: Formelsammlung in der Größe DIN A5 verwenden. Also in der Mitte durchschneiden. erstellt von Manfred Präsoll Formelsammlung erstellt von Manfred Präsoll Tipp: Formelsammlung in der Größe DIN A5 verwenden. Also in der Mitte durchschneiden. 01 1 Flächen Parallelogramm Quadrat u = 4 a A = a² u = (a+b) oder u = a

Mehr

Grundlagen der Mathematik von Ansgar Schiffler - Seite 1 von 7 -

Grundlagen der Mathematik von Ansgar Schiffler - Seite 1 von 7 - - Seite von 7 -. Wie lautet die allgemeine Geradengleichung? (Mit Erklärung). Ein Telefontarif kostet 5 Grundgebühr und pro Stunde 8 cent. Wie lautet allgemein die Gleichung für solch einen Tarif? (Mit

Mehr

Rechnen mit Brüchen PRÜFUNG 10. Ohne Formelsammlung! Name: Klasse: Datum: Punkte: Note: Klassenschnitt/ Maximalnote : Ausgabe: 15.

Rechnen mit Brüchen PRÜFUNG 10. Ohne Formelsammlung! Name: Klasse: Datum: Punkte: Note: Klassenschnitt/ Maximalnote : Ausgabe: 15. MATHEMATIK PRÜFUNGSVORBEREITUNG Rechnen mit Brüchen Name: Klasse: Datum: PRÜFUNG 0 : Note: Ausgabe:. September 0 Klassenschnitt/ Maximalnote : Selbsteinschätzung: / (freiwillig) Für alle Berechnungsaufgaben

Mehr

Direkte Proportionalität

Direkte Proportionalität M 8.1 Direkte Proportionalität Zwei einander zugeordnete Größen x und y sind (direkt) proportional, wenn zum n-fachen Wert von x der n-fache Wert von y gehört. der Quotient y = q für alle Wertepaare gleich

Mehr

Quadratwurzeln. ist diejenige nicht negative Zahl, die quadriert. unter der Wurzel heißt Radikand:

Quadratwurzeln. ist diejenige nicht negative Zahl, die quadriert. unter der Wurzel heißt Radikand: M 9.1 Quadratwurzeln ist diejenige nicht negative Zahl, die quadriert ergibt: Die Zahl unter der Wurzel heißt Radikand: Quadratwurzeln sind nur für positive Zahlen definiert: ; ; ; ; M 9.2 Reelle Zahlen

Mehr

Mathematik I für Studierende der Informatik und Wirtschaftsinformatik (Diskrete Mathematik) im Wintersemester 2015/16

Mathematik I für Studierende der Informatik und Wirtschaftsinformatik (Diskrete Mathematik) im Wintersemester 2015/16 Mathematik I für Studierende der Informatik und Wirtschaftsinformatik (Diskrete Mathematik) im Wintersemester 2015/16 21. Januar 2016 Definition 8.1 Eine Menge R zusammen mit zwei binären Operationen

Mehr

Rechnen mit Quadratwurzeln

Rechnen mit Quadratwurzeln 9. Grundwissen Mathematik Algebra Klasse 9 Rechnen mit Quadratwurzeln Die Quadratwurzel aus a ist diejenige nichtnegative Zahl aus R, deren Quadrat wieder a ergibt. a nennt man Radikand. Man schreibt dafür

Mehr

GRUNDKURS MATHEMATIK. Zahlenmengen. Natürliche Zahlen. Ganze Zahlen. Gebrochene Zahlen { } Rationale Zahlen { } Irrationale Zahlen { } Reelle Zahlen

GRUNDKURS MATHEMATIK. Zahlenmengen. Natürliche Zahlen. Ganze Zahlen. Gebrochene Zahlen { } Rationale Zahlen { } Irrationale Zahlen { } Reelle Zahlen GRUNDKURS MATHEMATIK Zahlenmengen Natürliche Zahlen Ganze Zahlen : 0, 1, 2, 3, Gebrochene Zahlen { } : 0, -1, 1, - Rationale Zahlen { } : 0,,, - Irrationale Zahlen { } : 0, -, Reelle Zahlen Addition und

Mehr

Brückenkurs Mathematik für Studierende der Chemie

Brückenkurs Mathematik für Studierende der Chemie Brückenkurs Mathematik für Studierende der Chemie PD Dr Dirk Andrae (nach Vorlagen von Dr Werner Gans vom WS 015/016) Institut für Chemie und Biochemie Freie Universität Berlin 14 Februar 019 1 Teil: Zahlenmengen,

Mehr

Vorkurs Mathematik WiSe 2017/18

Vorkurs Mathematik WiSe 2017/18 Vorkurs Mathematik WiSe 2017/18 S. Bernstein, S. Dempe, M. Helm Fakultät für Mathematik und Informatik Die Vorlesungen und Tutorien des Vorkurses wurden als Teil des Brückenkurses I teilweise durch das

Mehr

Vorkurs: Mathematik für Informatiker

Vorkurs: Mathematik für Informatiker Vorkurs: Mathematik für Informatiker Teil 1 Wintersemester 2016/17 Steven Köhler mathe@stevenkoehler.de mathe.stevenkoehler.de 2 c 2016 Steven Köhler Wintersemester 2016/17 Inhaltsverzeichnis Teil 1 Mengen

Mehr

Mathematik I für Studierende der Informatik und Wirtschaftsinformatik (Diskrete Mathematik) im Wintersemester 2017/18

Mathematik I für Studierende der Informatik und Wirtschaftsinformatik (Diskrete Mathematik) im Wintersemester 2017/18 Mathematik I für Studierende der Informatik und Wirtschaftsinformatik (Diskrete Mathematik) im Wintersemester 2017/18 9. November 2017 1/34 Beispiel 3.6 Wir können die rationalen Zahlen wie folgt konstruieren:

Mehr

Vorkurs: Mathematik für Informatiker

Vorkurs: Mathematik für Informatiker Vorkurs: Mathematik für Informatiker Teil 1 Wintersemester 2016/17 Steven Köhler mathe@stevenkoehler.de mathe.stevenkoehler.de 2 c 2016 Steven Köhler Wintersemester 2016/17 Inhaltsverzeichnis Teil 1 Mengen

Mehr

Quadratwurzeln. ist diejenige nicht negative Zahl, die quadriert. unter der Wurzel heißt Radikand:

Quadratwurzeln. ist diejenige nicht negative Zahl, die quadriert. unter der Wurzel heißt Radikand: M 9.1 Quadratwurzeln ist diejenige nicht negative Zahl, die quadriert ergibt: Die Zahl unter der Wurzel heißt Radikand: Quadratwurzeln sind nur für positive Zahlen definiert: ; ; ; ; M 9.2 Reelle Zahlen

Mehr

Brückenkurs Mathematik

Brückenkurs Mathematik Brückenkurs Mathematik 6.10. - 17.10. Vorlesung 3 Geometrie Doris Bohnet Universität Hamburg - Department Mathematik Mi 8.10.2008 1 Geometrie des Dreiecks 2 Vektoren Länge eines Vektors Skalarprodukt Kreuzprodukt

Mehr

I. Reelle Zahlen GRUNDWISSEN MATHEMATIK - 9. KLASSE

I. Reelle Zahlen GRUNDWISSEN MATHEMATIK - 9. KLASSE I. Reelle Zahlen 1. Die Menge der rationalen Zahlen und die Menge der irrationalen Zahlen bilden zusammen die Menge der reellen Zahlen. Nenne Beispiele für rationale und irrationale Zahlen.. Aus negativen

Mehr

Minimalziele Mathematik

Minimalziele Mathematik Jahrgang 5 o Kopfrechnen, Kleines Einmaleins o Runden und Überschlagrechnen o Schriftliche Grundrechenarten in den Natürlichen Zahlen (ganzzahliger Divisor, ganzzahliger Faktor) o Umwandeln von Größen

Mehr