WS 2008/ PDDr.S.Mertens. Theoretische Physik I Mechanik J. Unterhinninghofen, M. Hummel Blatt 3

Save this PDF as:
 WORD  PNG  TXT  JPG

Größe: px
Ab Seite anzeigen:

Download "WS 2008/ PDDr.S.Mertens. Theoretische Physik I Mechanik J. Unterhinninghofen, M. Hummel Blatt 3"

Transkript

1 PDDr.S.Mertens Theoretische Phsik I Mechanik J. Unterhinninghofen, M. Hummel Blatt 3 WS 2008/ Bewegung im rotierenden Sstem. Ein Massenpunkt ist unächst starr mit einer gegen (4Pkt.) den Uhreigersinn mit ω rotierenden Kreisscheibe(Radius R) verbunden. Zur Zeit t = 0 befindetersichimpunkt = 0, = RineinemraumfestenKoordinatensstem;die Verbindung ur Kreisscheibe wird nun gelöst. (a) Bestimmen Sie die Bahnkurve r(t) des Massenpunkts im raumfesten Koordinatensstem Σ. (b) BestimmenSiedieBahnkurve r (t)desmassenpunktsimmitrotierendenkoordinatensstem Σ undskiierensiesie. Lösung: R ω (a) Im raumfesten Sstem Σ ist die Bewegung geradlinig(keine wirkenden Kräfte!). Esgiltalso r(t) = r 0 + v 0 t (1) mit r 0 = r(t =0)und v 0 = v(t =0) = r(t =0).Mit r(t =0) =R e,und v(t =0) =Rω e = Rω e (2) ist die Bahnkurve in Σ beschrieben(vgl. Abbildung für die Koordinaten). (b)immitrotierendensstem Σ istdiebewegungnichtmehrgeradlinig,hierwirken ja Trägheitskräfte. Es ist m r = 2m ω r m ω ( ω r) (3) (keine äußeren Kräfte, Winkelgeschwindigkeit der Rotation ist eitlich konstant). Die Lösung kann hier ohne direkte Lösung der Differentialgleichung angegeben werden: also (t) =(t)cos(ωt) +(t)sin(ωt), (t) = (t)sin(ωt) +(t)cos(ωt),(4) (t) = Rωtcos(ωt) +Rωsin(ωt), (t) =Rωtsin(ωt) +Rcos(ωt). (5) Seite1von6

2 2. Zugbrücke im Gleichgewicht. Bestimmen Sie für die abgebildete ZugbrückenkonstruktiondieKraft,mitderamPunktBgeogenwerdenmuss,umdieBrückeimGleichgewicht (4Pkt.) uhalten.impunktawirkediekraft G e aufdiebrücke. Β F B a L Α G Lösung: Es ist FA = G e, r A =Lcos e +Lsin e, r B =asin e acos e, (6) und FB = F B e istgesucht.nachdemd AlembertschenPrinipgiltimGleichgewicht d.h. Fν δ r ν =0, (7) ν 0 = FA δ r A + FB δ r B = ( GLcos +F B acos, (8) alsomussf B =GL/asein diegleichgewichtsbedingungist,wiemanesnatürlich auch haben will, unabhängig vom Aufklappwinkel. Β F B Α G Seite2von6

3 3. Perle auf rotierendem Draht.Auf einem parabelförmige gebogenen Draht, der mit der konstanten Winkelgeschwindigkeit ω um die -Achse rotiert, gleite eine Perle. Die Schwerkraft wirkt in negativer -Richtung. m ωt r (a) (b) (c) Wie lauten die Zwangsbedingungen und die d Alembert-Gleichung? Stellen Sie mit Hilfe des d Alembertschen Prinip s die Bewegungsgleichung auf. Lösen Sie die Bewegungsgleichung Für welchen Wert ω wirkt die Summe aus Gravitations- und Zentrifugalkraft senkrecht um Draht? (1Pkt.) (1Pkt.) (1Pkt.) (insgesamt 3 Pkt.) Lösung: (a) In Zlinderkoordinaten lauten die Koordinaten des Massenpunktes rcos ϕ = rsin ϕ. m ωt r DaaufderParabeldieHöhederPerlealleinvonrabhängt,liefertunsdiesdie Seite3von6

4 Zwangsbedingung: = αr 2 (9) Die d Alembertgleichung lautet: m( r g) δr =0 Die Transformationsgleichung: liefert: (,,) = (rcos(ϕt),rsin(ϕt), αr 2 ) (δ, δ, δ) = δr(cos(ϕt), sin(ϕt), 2αr) ẍ = rcos ωt 2ṙsinωt rω 2 cosωt ÿ = rsin ωt +2ṙcosωt rω 2 sinωt =2a ( ṙ 2 +r r ) ( (1 +4a 2 r 2 ) r +4a 2 rṙ 2 + (2ag ω 2 )r ) δr =0 (b) Wenn die Summe aus Gravitations- und Zentrifugalkraft senkrecht auf dem Draht steht, heißt das, dass der Massenpunkt in diesem Punkt nicht beschleunigt wird ( r = 0),fallsersichindiesemPunktbefindetundṙ = 0gilt.Damiterhalten wir sofort aus der Bewegungsgleichung als Bedingung dafür die triviale Lösung r(t) 0oder ω 2 2ag = ω = ± 2ga. Fürr =0istdieresultierendeKraftimmersenkrechtumDraht,dahiernurdie Gravitationwirkt.DieGleichungfür ωistfürjedenwertvonridentisch.dasbedeutet, dass der Massenpunkt für diese Winkelgeschwindigkeit auf jedem Punkt der Parabel nicht beschleunigt wird, falls er sich nicht entlang des Drahtes bewegt. (c) Um die Differentialgleichung u lösen, multipliieren wir sie mit ṙ, woraus sich 0 = }{{} ṙ r +4a 2 r 2 ṙ r +ṙrṙ 2 }{{} }{{} rṙ (ω 2 2ga) 1 d 2dt (ṙ 2 ) 1 d 2 dt (r2 ṙ 2 1 d ) 2dt r 2 = d ( (1 +4a 2 r 2 )ṙ 2 (ω 2 2ag)r 2) dt ergibt.dadieableitungnullist,istdiefunktioneinekonstante,diewirhiermit c beeichnen wollen. Durch Trennung der Variablen erhalten wir 1 +4a dt =dr 2 r 2 c + (ω 2 2ag)r 2. Integrieren beider Seiten liefert sofort r(t) t t 0 = dr 1 +4a 2 r 2 r 0 c + (ω 2 2ag)r 2. Seite4von6

5 4. Senkrechter Wurf mit Corioliskraft. Ein Körper der Masse m befinde sich an einem Ort (2Pkt.) der geographischen Breite ϕ. Das Gravitationsfeld der Erde kann als homogen angesehen werden. Die Erde rotiere mit der Winkelgeschwindigkeit ω. Das Sstem, in dem der Erdmittelpunkt ruht, sei ein Inertialsstem und Reibung sei vernachlässigbar. DerKörperwerdevomBodenmitderGeschwindigkeitv 0 senkrechtnachobengeschossen. Wie weit vom Abschusspunkt entfernt landet er? In welche Richtung ist er abgelenkt worden? Erläutern Sie warum. Hinweis:VernachlässigenSiebeiderRechnungTerme ω 2. (insgesamt2pkt.) Lösung: Das Laborsstem auf der Erde ist ein beschleunigtes Beugssstem mit dem Koordinaten,,.DerKoordinatenursprungdiesesSstemsbewegtsichaufgrund dererdrotationindiezeichenebenhinein.diesseiauchdierichtungder -Achse. Die Winkelgeschwindigkeit ergibt sich auf der Erdoberfläche u ωcos ϕ ω = 0. ωsin ϕ Hierbei ist ϕ die geographische Breite. Nahe der Erdoberfläche betrachten wir die Zentrifugalkraft nicht gesondert, sondern betrachten m g als Summe aus Gravitation und Zentrifugalkraft. In Komponenten lautet die Bewegungsgleichung damit ẍ 2ωẏ sin ϕ ÿ = 2ω(ż cos ϕ +ẋ sin ϕ) 2ωẏ cos ϕ g ω DielineareBeschleunigungskraft m ω r könnenwirandieserstellevernachlässigen, da für die Dauer des Vorganges die Erdrotation naheu konstant ist. Zuerst integrierenwirẍ undÿ underhalten und ẋ =2ωsin(ϕ) +c 1 ẏ = 2(ωsin(ϕ) + ωcos(ϕ) ) +c 2. IndiesemFalllautendieAnfangsbedingungenfürt =0 = = =0,ẋ =ẏ =0 undż =v 0.DamitergibtsichalsLösungderBewegungsgleichungfür (t) (t) = g 2 t2 +v 0 t. Seite5von6

6 Unter Beachtung der Anfangsbedingungen erhalten wir und ÿ (t) =2ωgtcos(ϕ) 2ωv 0 cos(ϕ). (t) = 1 3 ωgt3 cos(ϕ) ωv 0 t 2 cos(ϕ). DieZeit,anderderKörperwiederdenBodenerreicht,ergibtsichaus (t 0 ) =0und lautett 0 = 2v 0 g.darausergibtsicheineabweichungvon (t 0 ) = 4 3 ωcos(ϕ)v3 0 g 2. DieGleichungfürẍ istinunserernäherungerneutidentischnull.wirsehen,dassdie Abweichung in diesem Fall in westliche Richtung erfolgt. Grund dafür ist die anfängliche Ablenkung des Körpers in westliche Richtung. Bei der Aufwärtsbewegung ist dies nicht weiter verwunderlich. Am höchsten Punkt der Bahn hat der Körper also eine Geschwindigkeit in westlicher Richtung. Die Corioliskraft stoppt im weiten Teil der Flugbahn diese Bewegung wieder, kann aber die Abweichung nicht kompensieren. Wiemanleichtverifiierenkann,istẏ (t 0 ) =0.DasheißtderKörperhatwährendder gesamten Flugphase eine Geschwindigkeitskomponente in westlicher Richtung. Dies führt ur Abweichung in diese Richtung. Auf diesem Übungsblatt sind maimal 13 Punkte u erreichen, Abgabe erfolgt am Seite6von6

Blatt 03.1: Scheinkräfte

Blatt 03.1: Scheinkräfte Fakultät für Physik T1: Klassische Mechanik, SoSe 2016 Dozent: Jan von Delft Übungen: Benedikt Bruognolo, Sebastian Huber, Katharina Stadler, Lukas Weidinger http://www.physik.uni-muenchen.de/lehre/vorlesungen/sose_16/t1_theor_mechanik/

Mehr

Theoretische Physik I: Lösungen Blatt Michael Czopnik

Theoretische Physik I: Lösungen Blatt Michael Czopnik Theoretische Physik I: Lösungen Blatt 2 15.10.2012 Michael Czopnik Aufgabe 1: Scheinkräfte Nutze Zylinderkoordinaten: x = r cos ϕ y = r sin ϕ z = z Zweimaliges differenzieren ergibt: ẍ = r cos ϕ 2ṙ ϕ sin

Mehr

Theoretische Mechanik

Theoretische Mechanik Prof. Dr. R. Ketzmerick/Dr. R. Schumann Technische Universität Dresden Institut für Theoretische Physik Sommersemester 2008 Theoretische Mechanik 9. Übung 9.1 d alembertsches Prinzip: Flaschenzug Wir betrachten

Mehr

Theoretische Physik I Mechanik Blatt 1

Theoretische Physik I Mechanik Blatt 1 PD Dr. S. Mertens S. Falkner, S. Mingramm Theoretische Physik I Mechanik Blatt 1 WS 27/28 8. 1. 27 1. Parabelbahn. Ein Punkt bewege sich auf der Kurve, die durch die Gleichung y 2 = 4ax + 4a 2 a > beschrieben

Mehr

Blatt 10. Hamilton-Formalismus- Lösungsvorschlag

Blatt 10. Hamilton-Formalismus- Lösungsvorschlag Fakultät für Physik der LMU München Lehrstuhl für Kosmologie, Prof. Dr. V. Mukhanov Übungen zu Klassischer Mechanik T) im SoSe 20 Blatt 0. Hamilton-Formalismus- Lösungsvorschlag Aufgabe 0.. Hamilton-Formalismus

Mehr

2. Lagrange-Gleichungen

2. Lagrange-Gleichungen 2. Lagrange-Gleichungen Mit dem Prinzip der virtuellen Leistung lassen sich die Bewegungsgleichungen für komplexe Systeme einfach aufstellen. Aus dem Prinzip der virtuellen Leistung lassen sich die Lagrange-Gleichungen

Mehr

Ferienkurs Theoretische Mechanik Lösungen Hamilton

Ferienkurs Theoretische Mechanik Lösungen Hamilton Ferienkurs Theoretische Mechanik Lösungen Hamilton Max Knötig August 10, 2008 1 Hamiltonfunktion, Energie und Zeitabhängigkeit 1.1 Perle auf rotierendem Draht Ein Teilchen sei auf einem halbkreisförmig

Mehr

Übungen zur Vorlesung PN1 Lösung zu Blatt 5

Übungen zur Vorlesung PN1 Lösung zu Blatt 5 Aufgabe 1: Geostationärer Satellit Übungen zur Vorlesung PN1 Lösung zu Blatt 5 Ein geostationärer Satellit zeichnet sich dadurch aus, dass er eine Umlaufdauer von einem Tag besitzt und sich folglich seine

Mehr

Name: Gruppe: Matrikel-Nummer:

Name: Gruppe: Matrikel-Nummer: Theoretische Physik 1 (Theoretische Mechanik) SS08, Studienziel Bachelor (170 12/13/14) Dozent: J. von Delft Übungen: B. Kubala Nachklausur zur Vorlesung T1: Theoretische Mechanik, SoSe 2008 (1. Oktober

Mehr

Aufgabe zur Corioliskraft 1. Hier ist es dringend angeraten als erstes eine aussagekräftige Skizze zu machen:

Aufgabe zur Corioliskraft 1. Hier ist es dringend angeraten als erstes eine aussagekräftige Skizze zu machen: Aufgabe zur Corioliskraft 1 Aufgabe: Ein Luftgewehr sei mit dem Lot exakt senkrecht nach oben ausgerichtet. Nach dem Abschuss verlässt die Kugel den Lauf mit 60 ms 1 Wo landet das Geschoss, wenn der Abschuss

Mehr

Name: Gruppe: Matrikel-Nummer:

Name: Gruppe: Matrikel-Nummer: Theoretische Physik 1 (Theoretische Mechanik) SS08, Studienziel Bachelor (170 1/13/14) Dozent: J. von Delft Übungen: B. Kubala Klausur zur Vorlesung T1: Theoretische Mechanik, SoSe 008 (3. Juli 007) Bearbeitungszeit:

Mehr

2. Räumliche Bewegung

2. Räumliche Bewegung 2. Räumliche Bewegung Wenn die Bahn des Massenpunkts nicht bekannt ist, reicht die Angabe einer Koordinate nicht aus, um seinen Ort im Raum zu bestimmen. Es muss ein Ortsvektor angegeben werden. Prof.

Mehr

2. Räumliche Bewegung

2. Räumliche Bewegung 2. Räumliche Bewegung Prof. Dr. Wandinger 1. Kinematik des Punktes TM 3 1.2-1 2. Räumliche Bewegung Wenn die Bahn des Punkts nicht bekannt ist, reicht die Angabe einer Koordinate nicht aus, um seinen Ort

Mehr

Übungen Theoretische Physik I (Mechanik) Blatt 8 (Austeilung am: , Abgabe am )

Übungen Theoretische Physik I (Mechanik) Blatt 8 (Austeilung am: , Abgabe am ) Übungen Theoretische Physik I (Mechanik) Blatt 8 (Austeilung am: 14.09.11, Abgabe am 1.09.11) Hinweis: Kommentare zu den Aufgaben sollen die Lösungen illustrieren und ein besseres Verständnis ermöglichen.

Mehr

Wie fällt ein Körper, wenn die Wirkung der Corioliskraft berücksichtigt wird?

Wie fällt ein Körper, wenn die Wirkung der Corioliskraft berücksichtigt wird? Wie fällt ein Körper, wenn die Wirkung der Corioliskraft berücksichtigt wird? Beim freien Fall eines Körpers auf die Erde, muss man bedenken, dass unsere Erde ein rotierendes System ist. Um die Kräfte,

Mehr

Kinematik des Massenpunktes

Kinematik des Massenpunktes Technische Mechanik II Kinematik des Massenpunktes Prof. Dr.-Ing. Ulrike Zwiers, M.Sc. Fachbereich Mechatronik und Maschinenbau Hochschule Bochum WS 2009/2010 Übersicht 1. Kinematik des Massenpunktes Eindimensionale

Mehr

TECHNISCHE MECHANIK III (DYNAMIK)

TECHNISCHE MECHANIK III (DYNAMIK) Klausur im Fach TECHNISCHE MECHANIK III (DYNAMIK) WS 2014 / 2015 Matrikelnummer: Vorname: Nachname: Ergebnis Klausur Aufgabe: 1 2 3 4 Summe Punkte: 15 7 23 15 60 Davon erreicht Bearbeitungszeit: Hilfsmittel:

Mehr

Theoretische Physik I: Weihnachtszettel Michael Czopnik

Theoretische Physik I: Weihnachtszettel Michael Czopnik Theoretische Physik I: Weihnachtszettel 21.12.2012 Michael Czopnik Aufgabe 1: Rudolph und der Weihnachtsmann Der Weihnachtsmann (Masse M) und sein Rentier Rudolph (Masse m) sind durch ein Seil mit konstanter

Mehr

3. Erhaltungsgrößen und die Newton schen Axiome

3. Erhaltungsgrößen und die Newton schen Axiome Übungen zur T1: Theoretische Mechanik, SoSe13 Prof. Dr. Dieter Lüst Theresienstr. 37, Zi. 45 Dr. James Gray James.Gray@physik.uni-muenchen.de 3. Erhaltungsgrößen und die Newton schen Axiome Übung 3.1:

Mehr

Kinematik des starren Körpers

Kinematik des starren Körpers Technische Mechanik II Kinematik des starren Körpers Prof. Dr.-Ing. Ulrike Zwiers, M.Sc. Fachbereich Mechatronik und Maschinenbau Hochschule Bochum WS 2009/2010 Übersicht 1. Kinematik des Massenpunktes

Mehr

Theoretische Physik: Mechanik

Theoretische Physik: Mechanik Ferienkurs Theoretische Physik: Mechanik Blatt 4 - Lösung Technische Universität München 1 Fakultät für Physik 1 Zwei Kugeln und der Satz von Steiner Nehmen Sie zwei Kugeln mit identischem Radius R und

Mehr

Betrachtet man einen starren Körper so stellt man insgesamt sechs Freiheitsgrade der Bewegung

Betrachtet man einen starren Körper so stellt man insgesamt sechs Freiheitsgrade der Bewegung Die Mechanik besteht aus drei Teilgebieten: Kinetik: Bewegungsvorgänge (Translation, Rotation) Statik: Zusammensetzung und Gleichgewicht von Kräften Dynamik: Kräfte als Ursache von Bewegungen Die Mechanik

Mehr

M1 Maxwellsches Rad. 1. Grundlagen

M1 Maxwellsches Rad. 1. Grundlagen M1 Maxwellsches Rad Stoffgebiet: Translations- und Rotationsbewegung, Massenträgheitsmoment, physikalisches Pendel. Versuchsziel: Es ist das Massenträgheitsmoment eines Maxwellschen Rades auf zwei Arten

Mehr

Gleichförmige Kreisbewegung, Bezugssystem, Scheinkräfte

Gleichförmige Kreisbewegung, Bezugssystem, Scheinkräfte Aufgaben 4 Translations-Mechanik Gleichförmige Kreisbewegung, Bezugssystem, Scheinkräfte Lernziele - die Grössen zur Beschreibung einer Kreisbewegung und deren Zusammenhänge kennen. - die Frequenz, Winkelgeschwindigkeit,

Mehr

3. Kreisbewegung. Punkte auf einem Rad Zahnräder, Getriebe Drehkran Turbinen, Hubschrauberrotor

3. Kreisbewegung. Punkte auf einem Rad Zahnräder, Getriebe Drehkran Turbinen, Hubschrauberrotor 3. Kreisbewegung Ein wichtiger technischer Sonderfall ist die Bewegung auf einer Kreisbahn. Dabei hat der Massenpunkt zu jedem Zeitpunkt den gleichen Abstand vom Kreismittelpunkt. Beispiele: Punkte auf

Mehr

Klassische Mechanik - Ferienkurs; Lösungem. Sommersemester 2011, Prof. Metzler

Klassische Mechanik - Ferienkurs; Lösungem. Sommersemester 2011, Prof. Metzler Klassische Mechanik - Ferienkurs; Lösunge Soerseester 2011, Prof. Metzler 1 Inhaltsverzeichnis 1 Quickies 3 2 Lagrange Gleichung 1. Art 3 2.1 Perle auf Schraubenlinie..................................

Mehr

8.1 Gleichförmige Kreisbewegung 8.2 Drehung ausgedehnter Körper 8.3 Beziehung: Translation - Drehung 8.4 Vektornatur des Drehwinkels

8.1 Gleichförmige Kreisbewegung 8.2 Drehung ausgedehnter Körper 8.3 Beziehung: Translation - Drehung 8.4 Vektornatur des Drehwinkels 8. Drehbewegungen 8.1 Gleichförmige Kreisbewegung 8.2 Drehung ausgedehnter Körper 8.3 Beziehung: Translation - Drehung 8.4 Vektornatur des Drehwinkels 85 8.5 Kinetische Energie der Rotation ti 8.6 Berechnung

Mehr

6 Dynamik der Atmosphäre

6 Dynamik der Atmosphäre 6 Dynamik der Atmosphäre Man braucht wirklich nicht viel darüber zu reden, es ist den meisten Menschen heute ohnehin klar, dass die Mathematik wie ein Dämon in alle Anwendungen unseres Lebens gefahren

Mehr

Aufgabe Max.Pkt. Punkte Visum 1 Visum Total 60

Aufgabe Max.Pkt. Punkte Visum 1 Visum Total 60 D-MATH/D-PHYS Prof. W. Fetscher Studienjahr HS07 - FS08 ETH Zürich Testklausur, Frühjahr 2008, Physik I+II Füllen Sie als erstes den untenstehenden Kopf mit Name und Legi-Nummer aus. Beachten Sie: Nicht

Mehr

Ergänzende Materialien zum Seminar Theoretische Mechanik WS 2005/06

Ergänzende Materialien zum Seminar Theoretische Mechanik WS 2005/06 Ergänzende Materialien zum Seminar Theoretische Mechanik WS 2005/06 Dörte Hansen 4. Dezember 2005 1 Lagrangepunkte oder: Das restringierte 3-Körper-Problem der Himmelsmechanik 1.1 Motivation Die Trojaner

Mehr

1. Kinematik. Untersucht wird die Bewegung eines Punktes P in Bezug auf zwei Bezugssysteme: Bezugssystem Oxyz ist ruhend:

1. Kinematik. Untersucht wird die Bewegung eines Punktes P in Bezug auf zwei Bezugssysteme: Bezugssystem Oxyz ist ruhend: Untersucht wird die ewegung eines Punktes P in ezug auf zwei ezugssysteme: ezugssystem Oxyz ist ruhend: Ursprung O Einheitsvektoren e x, e y, e z Koordinaten x, y, z ezugssystem ξηζ bewegt sich: Ursprung

Mehr

Kinetik des starren Körpers

Kinetik des starren Körpers Technische Mechanik II Kinetik des starren Körpers Prof. Dr.-Ing. Ulrike Zwiers, M.Sc. Fachbereich Mechatronik und Maschinenbau Hochschule Bochum WS 2009/2010 Übersicht 1. Kinematik des Massenpunktes 2.

Mehr

Rechenübungen zur Physik 1 im WS 2011/2012

Rechenübungen zur Physik 1 im WS 2011/2012 Rechenübungen zur Physik 1 im WS 2011/2012 1. Klausur Fr 16.12.2011 12.00-15.00 Uhr N5/N7 Name, Vorname: Geburtstag: Ihre Identifizierungs-Nr. ID1= 250 Hinweise: Studentenausweis: Hilfsmittel: Lösungen:

Mehr

Theoretische Physik: Mechanik

Theoretische Physik: Mechanik Ferienkurs Theoretische Physik: Mechanik Sommer 2016 Vorlesung 1 (mit freundlicher Genehmigung von Verena Walbrecht) Technische Universität München 1 Fakultät für Physik Inhaltsverzeichnis 1 Mathematische

Mehr

Der Trägheitstensor J

Der Trägheitstensor J Der Trägheitstensor J Stellen wir uns einen Kreisel vor, der um eine beliebige Achse dreht. Gilt die Beziehung L = J ω in jedem Bezugssystem? Dazu betrachten wir nochmals die Bewegung eines starren Körpers.

Mehr

Zentrifugalkraft beim Karussell

Zentrifugalkraft beim Karussell Seil, Länge L m Also: Zentrifugalkraft beim Karussell tan( α) y = α r F Z r G ω r = x r r ' KS : mitrotierendes Koordinatensystem m G r α 2 m ω g r ' F r Z F r gesamt 2 ω sin( α) L = g Fragestellung: Um

Mehr

2.6 Mechanik in bewegten Bezugsystemen

2.6 Mechanik in bewegten Bezugsystemen - 66-2.6 Mechanik in bewegten Bezugsystemen 2.6.1 Galilei'sche Relativität Die Beschreibung einer Bewegung hängt ab vom verwendeten Bezugssystem: Wenn jemand in einem Eisenbahnwagen einen Ball aufwirft

Mehr

1. Kinematik. 1.1 Lage 1.2 Geschwindigkeit. Starrkörperdynamik Prof. Dr. Wandinger. 2. Der starre Körper

1. Kinematik. 1.1 Lage 1.2 Geschwindigkeit. Starrkörperdynamik Prof. Dr. Wandinger. 2. Der starre Körper 1. Kinematik 1.1 Lage 1.2 Geschwindigkeit 2.1-1 Aus den Eigenschaften des starren Körpers folgt: Wird an einem beliebigen Punkt B des starren Körpers ein kartesisches Koordinatensystem Bξηζ aufgetragen,

Mehr

1. Eindimensionale Bewegung

1. Eindimensionale Bewegung 1. Eindimensionale Bewegung Die Gesamtheit aller Orte, die ein Punkt während seiner Bewegung einnimmt, wird als Bahnkurve oder Bahn bezeichnet. Bei einer eindimensionalen Bewegung bewegt sich der Punkt

Mehr

Theoretische Physik I Mechanik Probeklausur - Lösungshinweise

Theoretische Physik I Mechanik Probeklausur - Lösungshinweise Prof. H. Monien St. Kräer R. Sanchez SS2014 Theoretische Physik I Mechanik Probeklausur - Lösungshinweise Hinweise: Diese Lösung/Lösungshinweise erhebt keinen Anspruch auf Richtigkeit oder Vollständigkeit,

Mehr

2.1 Kinematik 2.2 Momentensatz 2.3 Arbeit und Energie. 2. Kreisbewegung. Prof. Dr. Wandinger 3. Kinematik und Kinetik TM 3.2-1

2.1 Kinematik 2.2 Momentensatz 2.3 Arbeit und Energie. 2. Kreisbewegung. Prof. Dr. Wandinger 3. Kinematik und Kinetik TM 3.2-1 2.1 inematik 2.2 Momentensatz 2.3 Arbeit und Energie 2. reisbewegung Prof. Dr. Wandinger 3. inematik und inetik TM 3.2-1 2.1 inematik Bahngeschwindigkeit und Winkelgeschwindigkeit: Für den auf einer reisbahn

Mehr

Modell der Punktmasse

Modell der Punktmasse Kinematik Die Kinematik (kinema, griech., Bewegung) ist die Lehre von der Bewegung von Punkten und Körpern im Raum, beschrieben durch die Größen Weg (Änderung der Ortskoordinate) s, Geschwindigkeit v und

Mehr

Klausur Technische Mechanik C

Klausur Technische Mechanik C Klausur Technische Mechanik C 1/2/14 Matrikel: Studiengang: Hinweise: - Die Prüfungszeit beträgt zwei Stunden - Erlaubte Hilfsmittel sind: Formelsammlungen, Deckblätter der Übungsaufgaben und Taschenrechner

Mehr

9. Übungsblatt zur VL Einführung in die Klassische Mechanik und Wärmelehre Modul P1a, 1. FS BPh 8. Dezember 2009

9. Übungsblatt zur VL Einführung in die Klassische Mechanik und Wärmelehre Modul P1a, 1. FS BPh 8. Dezember 2009 9. Übungsblatt zur VL Einführung in die Klassische Mechanik und Wärmelehre Modul P1a, 1. FS BPh 8. Dezember 009 Aufgabe 9.1: Doppelfeder Eine Kugel wird im Schwerefeld der Erde zwischen zwei Federn mit

Mehr

Klassische Theoretische Physik II (Theorie B) Sommersemester 2016

Klassische Theoretische Physik II (Theorie B) Sommersemester 2016 Karlsruher Institut für Technologie Institut für Theorie der Kondensierten Materie Klassische Theoretische Physik II (Theorie B) Sommersemester 2016 Prof. Dr. Alexander Mirlin Musterlösung: Blatt 12. PD

Mehr

Theoretische Mechanik

Theoretische Mechanik Theoretische Mechanik Übungen R. Kirschner, ITP, Univ. Leipzig 1-1 1. Betrachten Sie ein System aus 4 Massenpunkten, ( r i,m i ),i = 1,2,3,4, das sich in trivialer geradlinig-gleichförmiger Bewegung befindet.

Mehr

= 0 (dynamisches Gleichgewicht).

= 0 (dynamisches Gleichgewicht). Drehbewegung (M6) Ziel des Versuches Der Versuch besteht aus zwei Teilen. Im ersten Teil ist der Zusammenhang zu überprüfen, der zur Zentripetalkraft führt, im zweiten Teil lernen Sie die Wirkung der Corioliskraft,

Mehr

Übung zu Mechanik 3 Seite 48

Übung zu Mechanik 3 Seite 48 Übung zu Mechanik 3 Seite 48 Aufgabe 81 Vor einer um das Maß f zusammengedrückten und verriegelten Feder mit der Federkonstanten c liegt ein Massenpunkt der Masse m. a) Welchen Wert muß f mindestens haben,

Mehr

Physikalische Anwendungen Kinematik

Physikalische Anwendungen Kinematik Physikalische Anwendungen Kinematik Zum Mathematik-Lehrbuch Notwendig und zunächst hinreichend (Shaker Verlag, Aachen) gibt es mehrere PDF-Dokumente mit ergänzenden Beispielen und Aufgaben, die die Anwendung

Mehr

Bestimmen Sie die Rayleigh sche Dissipationsfunktion, stellen Sie die Lagrange-Funktion. dv v = 3πrηv 2. (1) z + D (3)

Bestimmen Sie die Rayleigh sche Dissipationsfunktion, stellen Sie die Lagrange-Funktion. dv v = 3πrηv 2. (1) z + D (3) PDDr.S.Mertens Theoretische Physik I Mechanik J. Unterhinninghofen, M. Huel Blatt 4 WS 2008/2009 4.11.2008 1. TeilcheninHonig.EineKugelitMasseundRadiusrfälltineineGefäß,dasit 4Pkt.) Honig gefüllt ist und

Mehr

Kapitel 2. Lagrangesche Mechanik. 2.1 Einleitung/Motivation

Kapitel 2. Lagrangesche Mechanik. 2.1 Einleitung/Motivation Kapitel Lagrangesche Mechanik Hier entwickeln wir eine elegante und einfache Betrachtungsweise der Newtontheorie, die eine Verallgemeinerung für quantenmechanische und relativistische Systeme ermöglicht..1

Mehr

Experimentalphysik für Naturwissenschaftler 1 Universität Erlangen Nürnberg WS 2008/09 Klausur ( )

Experimentalphysik für Naturwissenschaftler 1 Universität Erlangen Nürnberg WS 2008/09 Klausur ( ) Nur vom Korrektor auszufüllen 1 2 3 4 5 6 7 8 9 1 Note Experimentalphysik für Naturwissenschaftler 1 Universität Erlangen Nürnberg WS 28/9 Klausur (6.2.29 Name: Studiengang: In die Wertung der Klausur

Mehr

Kinetik. Schwerpunktsatz (Impulssatz) F 2. F i (1) F 3 S F 4 F 1. r S. F ix. F ir. F iy. F iz. m z S = i. Technische Mechanik III FS 1

Kinetik. Schwerpunktsatz (Impulssatz) F 2. F i (1) F 3 S F 4 F 1. r S. F ix. F ir. F iy. F iz. m z S = i. Technische Mechanik III FS 1 und Eperimentelle Mechanik FS 1 Kinetik Bisher wurde nur die Kinematik von Bewegungen untersucht (d.h. Weg, Geschwindigkeit und Beschleunigung). Es sollen nun Kräfte (später auch Momente) mit diesen kinematischen

Mehr

7.3 Lorentz Transformation

7.3 Lorentz Transformation 26 KAPITEL 7. SPEZIELLE RELATIVITÄTSTHEORIE 7.3 Lorent Transformation In diesem Abschnitt sollen die Transformationen im 4-dimensionalen Minkowski Raum betrachtet werden. Dabei wollen wir uns auf solche

Mehr

Physik III im Studiengang Elektrotechnik

Physik III im Studiengang Elektrotechnik Physik III im Studiengang Elektrotechnik - Schwingungen und Wellen - Prof. Dr. Ulrich Hahn SS 28 Mechanik elastische Wellen Schwingung von Bauteilen Wasserwellen Akustik Elektrodynamik Schwingkreise elektromagnetische

Mehr

1.2 Kinematik des Massepunktes

1.2 Kinematik des Massepunktes 1.2 Kinematik des Massepunktes Die Kinematik ist die Lehre der Bewegungen, wobei die Ursache der Bewegung nicht untersucht wird (Die Ursachen von Bewegungen werden im Kapitel 1.3 im Rahmen der Dynamik

Mehr

1 Kreuzprodukte und ɛ-tensor

1 Kreuzprodukte und ɛ-tensor Institut für Theoretische Physik WS 2002/2003 Übungen zur Theoretischen Physik I (Mechanik) Blatt 0 Dr. Heribert Weigert (Raum 4.1.15, Tel. 943-2014) 1 Kreuzprodukte und ɛ-tensor Der total antisymmetrische

Mehr

1. Eindimensionale Bewegung

1. Eindimensionale Bewegung 1. Eindimensionale Bewegung Die Gesamtheit aller Orte, die ein Massenpunkt während seiner Bewegung einnimmt, wird als Bahnkurve oder Bahn bezeichnet. Bei einer eindimensionalen Bewegung ist die Bahn vorgegeben:

Mehr

2 Kinematik eines Massenpunkts in 2D und 3D

2 Kinematik eines Massenpunkts in 2D und 3D 2 Kinematik eines Massenpunkts in 2D und 3D Wir wollen die räumliche Bewegung eines Massenpunkts (Fliege im Zimmer, geworfener Stein, Planet im Sonnensystem, Stern in einem dichten Sternhaufen, etc.) mathematisch

Mehr

Aufgabe 1: Elektro-mechanischer Oszillator

Aufgabe 1: Elektro-mechanischer Oszillator 37. Internationale Physik-Olympiade Singapur 6 Lösungen zur zweiten Runde R. Reindl Aufgabe : Elektro-mechanischer Oszillator Formeln zum Plattenkondensator mit der Plattenfläche S, dem Plattenabstand

Mehr

Formelsammlung. Lagrange-Gleichungen: q k. Zur Koordinate q k konjugierter Impuls: p k = L. Hamilton-Funktion: p k. Hamiltonsche Gleichungen: q k = H

Formelsammlung. Lagrange-Gleichungen: q k. Zur Koordinate q k konjugierter Impuls: p k = L. Hamilton-Funktion: p k. Hamiltonsche Gleichungen: q k = H Formelsammlung Lagrange-Gleichungen: ( ) d L dt q k L q k = 0 mit k = 1,..., n. (1) Zur Koordinate q k konjugierter Impuls: p k = L q k. (2) Hamilton-Funktion: n H(q 1,..., q n, p 1,..., p n, t) = p k

Mehr

Lösung 12 Klassische Theoretische Physik I WS 15/16

Lösung 12 Klassische Theoretische Physik I WS 15/16 Karlsruher Institut für Technologie Institut für theoretische Festkörperphysik www.tfp.kit.edu ösung 1 Klassische Theoretische Physik I WS 1/16 Prof. Dr. G. Schön + Punkte Sebastian Zanker, Daniel Mendler

Mehr

Praktikumssemesterarbeit für Numerik Aufgabe 1 HU-Berlin, Sommersemester 2005

Praktikumssemesterarbeit für Numerik Aufgabe 1 HU-Berlin, Sommersemester 2005 Praktikumssemesterarbeit für Numerik Aufgabe HU-Berlin, Sommersemester 2005 Mario Krell Volker Grabsch 24. Juli 2005 Inhaltsverzeichnis Herleitung aus der Physik. Voraussetzungen und Annahmen Allgemein

Mehr

Übung zu Mechanik 3 Seite 36

Übung zu Mechanik 3 Seite 36 Übung zu Mechanik 3 Seite 36 Aufgabe 61 Ein Faden, an dem eine Masse m C hängt, wird über eine Rolle mit der Masse m B geführt und auf eine Scheibe A (Masse m A, Radius R A ) gewickelt. Diese Scheibe rollt

Mehr

Vektorrechnung in der Physik und Drehbewegungen

Vektorrechnung in der Physik und Drehbewegungen Vektorrechnung in der Physik und Drehbewegungen 26. November 2008 Vektoren Vektoren sind bestimmt durch a) Betrag und b) Richtung Beispiel Darstellung in 3 Dimensionen: x k = y z Vektor in kartesischen

Mehr

Andreas Brenneis; Rebecca Saive; Felicitas Thorne. Mechanik 28./

Andreas Brenneis; Rebecca Saive; Felicitas Thorne. Mechanik 28./ TU München Experimentalphysik 1 DVP Vorbereitungskurs Andreas Brenneis; Rebecca Saive; Felicitas Thorne Mechanik 28./29.07.2008 Inhaltsverzeichnis 1 Kinematik 2 1.1 Ort, Geschwindigkeit, Beschleunigung....................

Mehr

2 Lagrange sche Bewegungsgleichungen

2 Lagrange sche Bewegungsgleichungen 2 Lagrange sche Bewegungsgleichungen Ausgearbeitet von Christine Cronjäger, Klaus Grambach und Ulrike Wacker 2.1 Zwangsbedingungen: Zwangsbedingungen schränken die 3 Freiheitsgrade des Teilchens ein. Unterwirft

Mehr

5.4. KINETISCHE ENERGIE EINES STARREN KÖRPERS 203. Abbildung 5.12: Koordinaten zur Berechnung der kinetischen Energie (siehe Diskussion im Text)

5.4. KINETISCHE ENERGIE EINES STARREN KÖRPERS 203. Abbildung 5.12: Koordinaten zur Berechnung der kinetischen Energie (siehe Diskussion im Text) 5.4. KINETISCHE ENERGIE EINES STARREN KÖRPERS 03 ρ α r α R Abbildung 5.1: Koordinaten zur Berechnung der kinetischen Energie (siehe Diskussion im Text) 5.4 Kinetische Energie eines Starren Körpers In diesem

Mehr

KG-Oberkurs 2011 Vorlesungen: Grundlagen der Kinematik und Dynamik

KG-Oberkurs 2011 Vorlesungen: Grundlagen der Kinematik und Dynamik KG-Oberkurs 011 Vorlesungen: Grundlagen der Kinematik und Dynamik Dr.-Ing. Ulrich Simon 1 Allgemeines Biomechanik Biologie Mechanik Ziel der Vorlesung: Mechanische Grundlagen in anschaulicher Form aufzufrischen.

Mehr

PP Physikalisches Pendel

PP Physikalisches Pendel PP Physikalisches Pendel Blockpraktikum Frühjahr 2007 (Gruppe 2) 25. April 2007 Inhaltsverzeichnis 1 Einführung 2 2 Theoretische Grundlagen 2 2.1 Ungedämpftes physikalisches Pendel.......... 2 2.2 Dämpfung

Mehr

4.4 Versuche zu Scheinkräften

4.4 Versuche zu Scheinkräften 4.4. VERSUCHE ZU SCHEINKRÄFTEN 169 4.4 Versuche zu Scheinkräften Im diesem Abschnitt stellen wir einige Experimente vor, die die verschiedenen Scheinkräfte im rotierenden Bezugssystemen vorstellen. Am

Mehr

Rotation. Versuch: Inhaltsverzeichnis. Fachrichtung Physik. Erstellt: U. Escher A. Schwab Aktualisiert: am 29. 03. 2010. Physikalisches Grundpraktikum

Rotation. Versuch: Inhaltsverzeichnis. Fachrichtung Physik. Erstellt: U. Escher A. Schwab Aktualisiert: am 29. 03. 2010. Physikalisches Grundpraktikum Fachrichtung Physik Physikalisches Grundpraktikum Versuch: RO Erstellt: U. Escher A. Schwab Aktualisiert: am 29. 03. 2010 Rotation Inhaltsverzeichnis 1 Aufgabenstellung 2 2 Allgemeine Grundlagen 2 2.1

Mehr

Allgemeine Bewegungsgleichung

Allgemeine Bewegungsgleichung Freier Fall Allgemeine Bewegungsgleichung (gleichmäßig beschleunigte Bewegung) s 0, v 0 Ableitung nach t 15 Freier Fall Sprung vom 5-Meter Turm s 0 = 0; v 0 = 0 (Aufprallgeschwindigkeit: v = -10m/s) Weg-Zeit

Mehr

Lagrange sche Bewegungsgleichungen

Lagrange sche Bewegungsgleichungen Kapitel 2 Lagrange sche Bewegungsgleichungen Ausgearbeitet von Christine Cronjäger, Klaus Grambach und Ulrike Wacker 2.1 Zwangsbedingungen: Zwangsbedingungen schränken die 3 Freiheitsgrade des Teilchens

Mehr

Aufgaben zur Wechselspannung

Aufgaben zur Wechselspannung Aufgaben zur Wechselspannung Aufgabe 1) Ein 30 cm langer Stab rotiert um eine horizontale, senkrecht zum Stab verlaufende Achse, wobei er in 10 s 2,5 Umdrehungen ausführt. Von der Seite scheint paralleles

Mehr

Kinematik des Massenpunktes

Kinematik des Massenpunktes Kinematik des Massenpunktes Kinematik: Beschreibt die Bewegung von Körpern, ohne die zugrunde liegenden Kräfte zu berücksichtigen. Bezugssysteme Trajektorien Zeit Raum Bezugssysteme Koordinatensystem,

Mehr

Flüsse, Fixpunkte, Stabilität

Flüsse, Fixpunkte, Stabilität 1 Flüsse, Fixpunkte, Stabilität Proseminar: Theoretische Physik Yannic Borchard 7. Mai 2014 2 Motivation Die hier entwickelten Formalismen erlauben es, Aussagen über das Verhalten von Lösungen gewöhnlicher

Mehr

Mechanische Struktur. Digitalrechner (Steuerung, Regelung und Datenverarbeitung) Leistungsteil. Stellgrößen. Rückmeldungen (Lage, Bewegungszustand)

Mechanische Struktur. Digitalrechner (Steuerung, Regelung und Datenverarbeitung) Leistungsteil. Stellgrößen. Rückmeldungen (Lage, Bewegungszustand) l. Kinematik in der Mechatronik Ein tpisches mechatronisches Sstem nimmt Signale auf, verarbeitet sie und gibt Signale aus, die es in Kräfte und Bewegungen umsett. Mechanische Struktur Leistungsteil phsikalische

Mehr

2. Übungsblatt zur Mathematik III für MB/MPE, LaB/WFM, VI, WI/MB

2. Übungsblatt zur Mathematik III für MB/MPE, LaB/WFM, VI, WI/MB Fachbereich Mathematik Prof. Dr. J. Lang Dipl.-Math. C. Schönberger Dipl.-Math. L. Kamenski WS 007/08 6.Oktober 007. Übungsblatt zur Mathematik III für MB/MPE, LaB/WFM, VI, WI/MB Gruppenübung Aufgabe G4

Mehr

Dann gilt r = r + r r. (1)

Dann gilt r = r + r r. (1) Bei der Diskussion der Newtonschen Prinzipien wurde betont, dass diese nur in einem Inertialsystem gültig sind. Nach dem 1. Newtonschen Prinzip ist das ein solches Koordinatensystem, in dem ein isolierter,

Mehr

2. Momentanpol. Für die Geschwindigkeit eines beliebigen Punktes P eines starren Körpers gilt: y A ), v Py. =v Ay

2. Momentanpol. Für die Geschwindigkeit eines beliebigen Punktes P eines starren Körpers gilt: y A ), v Py. =v Ay ufgabenstellung: Für die Geschwindigkeit eines beliebigen Punktes P eines starren Körpers gilt: Gesucht ist der Punkt П, dessen momentane Geschwindigkeit null ist. Lösung: v Px =x ( y P y ), v Py =y +

Mehr

9. Vorlesung Wintersemester

9. Vorlesung Wintersemester 9. Vorlesung Wintersemester 1 Die Phase der angeregten Schwingung Wertebereich: bei der oben abgeleiteten Formel tan φ = β ω ω ω0. (1) ist noch zu sehen, in welchem Bereich der Winkel liegt. Aus der ursprünglichen

Mehr

Lösung zu Übungsblatt 4

Lösung zu Übungsblatt 4 Technische Universität München Fakultät für Physik Ferienkurs Theoretische Physik 1 Lösung zu Übungsblatt 4 Starrer Körper, Hamilton-Formalismus 1. Ring mit Kugel (*) Ein Ring, auf dem eine Kugel angebracht

Mehr

B.2. Lösungsskizzen der Übungsaufgaben zum Kapitel 2

B.2. Lösungsskizzen der Übungsaufgaben zum Kapitel 2 B. sskizzen B.. sskizzen der Übungsaufgaben zum Kapitel Aufgabe 13 (Karusell) Ein Mann steht neben einem Karussell. Beschreiben sie seine Bewegung in einem im Karussell verankerten Bezugssystem, das sich

Mehr

Aus der Schwingungsdauer eines physikalischen Pendels.

Aus der Schwingungsdauer eines physikalischen Pendels. 2.4 Trägheitsmoment aus Winkelbeschleunigung 69 2.4. Trägheitsmoment aus Winkelbeschleunigung Ziel Bestimmung des Trägheitsmomentes eines Rades nach zwei Methoden: Aus der Winkelbeschleunigung, die es

Mehr

Fourier- und Laplace- Transformation

Fourier- und Laplace- Transformation Übungsaufgaben zur Vorlesung Mathematik für Ingenieure Fourier- und Lalace- Transformation Teil : Lalace-Transformation Prof. Dr.-Ing. Norbert Hötner (nach einer Vorlage von Prof. Dr.-Ing. Torsten Benkner)

Mehr

Mathematik-Tutorium für Maschinenbauer II: Differentialgleichungen und Vektorfelder

Mathematik-Tutorium für Maschinenbauer II: Differentialgleichungen und Vektorfelder DGL Schwingung Physikalische Felder Mathematik-Tutorium für Maschinenbauer II: Differentialgleichungen und Vektorfelder Johannes Wiedersich 23. April 2008 http://www.e13.physik.tu-muenchen.de/wiedersich/

Mehr

Dierentialgleichungen 2. Ordnung

Dierentialgleichungen 2. Ordnung Dierentialgleichungen 2. Ordnung haben die allgemeine Form x = F (x, x, t. Wir beschränken uns hier auf zwei Spezialfälle, in denen sich eine Lösung analytisch bestimmen lässt: 1. reduzible Dierentialgleichungen:

Mehr

Differentialgleichungen

Differentialgleichungen Kapitel Differentialgleichungen Josef Leydold Mathematik für VW WS 05/6 Differentialgleichungen / Ein einfaches Modell (Domar) Im Domar Wachstumsmodell treffen wir die folgenden Annahmen: () Erhöhung der

Mehr

1.2 Schwingungen von gekoppelten Pendeln

1.2 Schwingungen von gekoppelten Pendeln 0 1. Schwingungen von gekoppelten Pendeln Aufgaben In diesem Experiment werden die Schwingungen von zwei Pendeln untersucht, die durch eine Feder miteinander gekoppelt sind. Für verschiedene Kopplungsstärken

Mehr

Übungen: Kraftwirkung in magnetischen Feldern

Übungen: Kraftwirkung in magnetischen Feldern Übungen: Kraftwirkung in magnetischen Feldern Aufgabe 1: Zwei metallische Leiter werden durch einen runden, beweglichen Kohlestift verbunden. Welche Beobachtung macht ein(e) Schüler(in), wenn der Stromkreis

Mehr

Physik 1 für Ingenieure

Physik 1 für Ingenieure Physik 1 für Ingenieure Othmar Marti Experimentelle Physik Universität Ulm Othmar.Marti@Physik.Uni-Ulm.de Skript: http://wwwex.physik.uni-ulm.de/lehre/physing1 Übungsblätter und Lösungen: http://wwwex.physik.uni-ulm.de/lehre/physing1/ueb/ue#

Mehr

3.2 Das physikalische Pendel (Körperpendel)

3.2 Das physikalische Pendel (Körperpendel) 18 3 Pendelschwingungen 32 Das physikalische Pendel (Körperpendel) Ein starrer Körper (Masse m, Schwerpunkt S, Massenträgheitsmoment J 0 ) ist um eine horizontale Achse durch 0 frei drehbar gelagert (Bild

Mehr

Laplace-Transformation

Laplace-Transformation Laplace-Transformation Gegeben: Funktion mit beschränktem Wachstum: x(t) Ke ct t [, ) Definition: Laplace-Transformation: X(s) = e st x(t) dt = L{x(t)} s C Re(s) >c Definition: Inverse Laplace-Transformation:

Mehr

Rechenübungen zur Physik 1 im WS 2011/2012

Rechenübungen zur Physik 1 im WS 2011/2012 Rechenübungen zur Physik 1 im WS 011/01. Klausur Fr. März 01 9.00-1.00 Uhr N/N6 Name, Vorname: Geburtstag: Ihre Identifizierungs-Nr. ID= 99 Hinweise: Studentenausweis: Hilfsmittel: Lösungen: Zusatzblätter:

Mehr

Physik I Übung 6 - Lösungshinweise

Physik I Übung 6 - Lösungshinweise Physik I Übung 6 - Lösungshinweise Moritz Kütt WS 2011/12 Stefan Reutter Stand: 13.01.2011 Franz Fujara Aufgabe 1 Pyramidenabbau in Darmstadtia Zu einer Zeit, in der die südhessische Rheinebene noch völlig

Mehr

2.2 Arbeit und Energie. Aufgaben

2.2 Arbeit und Energie. Aufgaben 2.2 Arbeit und Energie Aufgaben Aufgabe 1: Auf eine Katapult befindet sich eine Kugel der Masse, die durch eine Feder beschleunigt wird. Die Feder ist a Anfang u die Strecke s 0 zusaengedrückt. Für die

Mehr

a) Stellen Sie den Drallsatz für die Wirbelstrombremse auf. b) Bestimmen Sie ω(t) für den Fall, dass ω(t = 0)=ω 0 ist.

a) Stellen Sie den Drallsatz für die Wirbelstrombremse auf. b) Bestimmen Sie ω(t) für den Fall, dass ω(t = 0)=ω 0 ist. und Experimentelle Mechani Technische Mechani III aer, ee ZÜ 8. Aufgabe 8. B ω Bei einer Wirbelstrombremse wird das chwungrad Masse m, adius r durch einen Bremsmagnet B verzögert. Das hierbei wirende Bremsmoment

Mehr

Klassische Theoretische Physik I WS 2013/2014

Klassische Theoretische Physik I WS 2013/2014 Karlsruher Institut für Technologie www.tkm.kit.edu/lehre/ Klassische Theoretische Physik I WS 13/14 Prof. Dr. J. Schmalian Blatt 9, 1 Bonuspunkte Dr. P. P. Orth Abgabe und Besprechung 1.1.14 1. Kollision

Mehr

1 Mechanik starrer Körper

1 Mechanik starrer Körper 1 Mechanik starrer Körper 1.1 Einführung Bisher war die Mechanik auf Massepunkte beschränkt. Nun gehen wir den Schritt zu starren Körpern. Ein starrer Körper ist ein System aus Massepunkten, welche nicht

Mehr