Lösungsvorschläge zum 14. Übungsblatt.

Größe: px
Ab Seite anzeigen:

Download "Lösungsvorschläge zum 14. Übungsblatt."

Transkript

1 Übung zur Analysis III WS / Lösungsvorschläge zum 4. Übungsblatt. Aufgabe 54 Sei a R\{}. Ziel ist die Berechnung des Reihenwertes k a + k. Definiere dazu f : [ π, π] R, x coshax. Wir entwickeln f in eine reelle Fourierreihe: Da f eine gerade Funktion ist, gilt für die reellen Fourierkoeffizienten b k für alle k N, und a k π Damit folgt π coshax coskx dx für alle k N. a π π coshax dx aπ sinhaπ, und für alle k N gilt a k π a sinhax coskx π + k π sinhax sinkx dx a sinhaπ k coskπ + π a a a coshax sinkx π k a k also a k k a k a a k, π + k k a a a a k a + k a π sinhaπ k a + k. Damit ergibt sich die reelle Fourierreihe von f als a sinhaπ + aπ π sinhaπ k a + k cosk. k coshax coskx dx Da f stetig differenzierbar ist und f π cosh aπ coshaπ fπ, konvergiert diese Reihe nach Vorlesung gleichmäßig gegen f, also insbesondere auch punktweise, und es folgt coshaπ fπ aπ sinhaπ+a π sinhaπ k k a a coskπ + k π sinhaπ a + k Indem wir diese Identität nach dem gewünschten Reihenwert auflösen, erhalten wir k a + k π coshaπ a sinhaπ a π a e aπ + e aπ e aπ e aπ a. a + k. Aufgabe 55 a Wir berechnen die Fouriertransformierte von f : R R, x xe x. Definitionsgemäß gilt für alle ξ R: fξ fxe ixξ dx xe x e ixξ dx + xe x e ixξ dx.

2 Übung zur Analysis III WS / Allgemein gilt xe αx dx xeαx α also erhält man für R > und alle ξ R e αx xeαx dx α α eαx α für alle α C\{}, R xe x e ixξ dx R xe x+iξ dx Re R+iξ + iξ e R+iξ + iξ [ xe x+iξ + iξ e x+iξ + iξ + iξ ] xr x R + iξ, wobei wir verwenden, daß e R+iξ e R für alle R > ist. Für das zweite Integral ergibt sich mit der Substitution x y und dem soeben berechneten Ergebnis xe x iξ dx und damit folgt insgesamt fξ für alle ξ R. + iξ iξ ye y iξ dy iξ, iξ + iξ + ξ 4iξ + ξ Aufgabe 55 b Wir berechnen die Fouriertransformierte von f : R R, x max{, x }. Bei dieser Funktion gilt f fξ also insgesamt [ e ixξ iξ x e ixξ dx ] x x x dx, und für alle ξ R\{} gilt [ xe ixξ + e ixξ iξ ξ e ixξ + xe ixξ dx ] x [ xe ixξ x iξ e ixξ ξ xe ixξ dx ] x e iξ iξ eiξ iξ + ξ eiξ iξ + eiξ ξ e iξ iξ + e iξ ξ + ξ eiξ e iξ + ξ fξ 4 sin ξ/ ξ. cos ξ ξ, x Aufgabe 55 c Wir berechnen die Fouriertransformierte von { cosx falls π f : R R, x x π, sonst.

3 Übung zur Analysis III WS / Da allgemein e ixξ cosxξ i sinxξ für alle x, ξ R ist, erhalten wir fξ π/ π/ π/ π/ π/ cosx cosxξ i sinxξ dx cosx cosxξ dx i gerade Funktion cosx cosxξ dx. π/ Für ξ {, } folgt damit zunächst fξ cosx sinxξ π/ ungerade Funktion π/ dx cos x dx π. Sei nun ξ R\{, }. Nach den Additionstheoremen gilt allgemein cosa ± b cosa cosb ± sina sinb, also cosa cosb cosa + b + cosa b für alle a, b R, und damit folgt in diesem Fall fξ π/ cosx + xξ + cosx xξ dx [ sinx + xξ + ξ sin π + π ξ + ξ + sin π π ξ ξ cos π ξ + ξ + + cos π ξ ξ ] sinx xξ xπ/ ξ x cos π ξ ξ. Aufgabe 56 Voraussetzung. Seien f, g S, und sei A d eine orthogonale Matrix und r >. Behauptung. Für h : C, x frax gilt ebenfalls h S. Es gilt f g S. Beweis. Wir zeigen zunächst, daß h schnell fallend ist, dafür reicht es zu zeigen, daß für jedes N N gilt: sup x N hx < +. x Sei N N, dann gilt x N hx x N frax A orthogonal Ax N frax r rax N frax r sup y y N fy < +, da f S ist, also ist in der Tat h schnell fallend. Nun ist noch zu zeigen, daß auch alle partiellen Ableitungen von h schnell fallend sind. Sei zunächst j {,..., d}, dann gilt nach der Kettenregel j hx r gradfrax Ae j d r Ae j, e k k f rax :c k k für alle x. Da f S ist, sind auch die partiellen Ableitungen f k k f schnell fallend, und indem wir den ersten Teil auf die Funktionen c k f k anstelle von f anwenden, folgt, daß auch x c k f k rax schnell fallend ist. Damit ist schließlich auch j h schnell fallend als endlich Summe f k : 3

4 Übung zur Analysis III WS / von schnell fallenden Funktionen. Die Aussage, daß für beliebige Multiindizes β N d die partielle Ableitung β h schnell fallend ist, läßt sich in gleicher Art und Weise mit Induktion über β beweisen, was wir an dieser Stelle nicht im Detail ausführen wollen. Alternativ kann man geeignete konkrete Darstellungen der höheren Ableitungen von h nutzen - dies wird jedoch eher technisch und ist für den Beweis auch nicht notwendig, da wir nicht die genau Gestalt der Ableitungen kennen müssen. Sei zunächst β N n. Wegen f, g, β f S L L folgt mit den bekannten Eigenschaften der Faltung, daß f g C ist, und es gilt β f g β f g, also β f g β f g β f g. Es reicht daher zu zeigen, daß x + x N f gx für alle N N beschränkt ist, denn hieraus folgt, daß f g schneller als jedes Polynom fällt, und für die Ableitungen β f g β f g folgt dies entsprechend, wenn man f durch β f ersetzt. Sei also N N. Wir stellen zunächst fest, daß allgemein für alle x, y gilt + x + x y + y + x y + y + x y + y + x y y + x y + y. Wegen f, g S findet man zu jedem k N eine Konstante C k > so, daß für alle z gilt + z k fz C k, und + z k gz C k. Damit folgt mit und der Hölderschen Ungleichung + x R N fx ygy dy Ck + x N + x y k + y k dy d R d Ck + x y N k + y N k dy R d Hölder / / Ck + x y N k dy + y N k dy R d / / Ck + y N k dy + y N k dy Ck + y N k dy. Da die Funktion y + y α genau dann auf integrierbar ist, wenn α < d ist vgl.. Übung, wählen wir k N so groß, daß N k < d ist, also k > N + d. Dann folgt + x N f gx Ck + y N k dy : c N <, also ist auch sup x + x N f gx c N <, was zu zeigen war. Aufgabe 57 Voraussetzung. Es sei A a jk d j,k Rd d so, daß es eine symmetrische Matrix Q d gibt mit detq und A Q. Für jedes t > definiere k t : R, x 4πt d/ deta / exp A x x. 4t 4

5 Übung zur Analysis III WS / Anmerkung: Die Voraussetzung an A ist äquivalent dazu, daß A positiv definit ist, also für alle ξ \{} gilt Aξ, ξ d j,k a jk ξ j ξ k >. Man kann in diesem Fall Q : A / wählen, vgl. Lineare Algebra. Behauptung. a Es gilt k t ξ e taξ ξ für alle ξ. b k t t> ist eine Dirac-Familie, das heißt, für jede Nullfolge t n n N, N ist k tn n N eine Dirac-Folge. Beweis. a Wir betrachten zunächst den Fall A I d, t /. In diesem Fall ist ψx : k / x π d/ exp x x π d/ exp d j x j d exp x j π :φx j für alle x, und hieraus folgt mit dam Satz von Fubini dies sollte in der Vorlesung vorgerechnet worden sein, daher hier ohne Zwischenschritte ψξ d φξ j j d j e ξ j / exp ξ für alle ξ. Wir betrachten nun den allgemeinen Fall. Sei t > fest. Für alle x gilt zunächst A x x Q x, x Q x, Q x Q x, da mit Q auch Q symmetrisch ist. Außerdem gilt deta detq detq >, also auch deta detq detq, und damit k t x detq π d/ t d/ j exp t / Q x für alle x. Sei ξ fest. Wir führen die Substitution y t / Q x, dy detq dx durch und t d/ erhalten kt ξ π d/ π d/ exp t / Q x e ix ξ detq t d/ dx exp y e i tqy ξ dy ψ tqξ exp exp t Qξ, Qξ exp t Q ξ, ξ exp taξ ξ. b Für alle t > gilt k t und k t x dx k t a. tqξ 3 5

6 Übung zur Analysis III WS / Es ist daher nur noch zu zeigen, daß für jedes δ > gilt: k t x dx für t. 4 B,δ Sei dazu δ >. Wir nehmen wieder die Transformation y t / Q x, dy detq dx t d/ wie in Teil a vor. k t x dx B,δ π d/ exp t / Q x detq x <δ t d/ dx π d/ exp y dy ψy dy. Für jedes r > und y R gilt tqy <δ y < r Qy Q y < r Q, δ Qy <t / δ mit r t : t / Q folgt daher B, r t {y Qy < t / δ} für alle t >. Wegen r t für t folgt mit dem Satz von Lebesgue k t x dx ψy dy χ B,rtyψy dy ψy dy ψ B,δ Qy <t / δ für t, und damit ist 4 bewiesen. 6

Lösungsvorschlag zur Übungsklausur zur Analysis I

Lösungsvorschlag zur Übungsklausur zur Analysis I Prof. Dr. H. Garcke, Dr. H. Farshbaf-Shaker, D. Depner WS 8/9 NWF I - Mathematik 9..9 Universität Regensburg Lösungsvorschlag zur Übungsklausur zur Analysis I Frage 1 Vervollständigen Sie die folgenden

Mehr

Analysis für Informatiker und Statistiker Nachklausur

Analysis für Informatiker und Statistiker Nachklausur Prof. Dr. Peter Otte Wintersemester 213/14 Tom Bachmann, Sebastian Gottwald 14.3.214 Analysis für Informatiker und Statistiker Nachklausur Lösungsvorschlag Name:.......................................................

Mehr

Mathematik 2 (Master Sicherheitstechnik)

Mathematik 2 (Master Sicherheitstechnik) Priv.-Doz. Dr. J. Ruppenthal Wuppertal, 4.6.8 Mathematik Master Sicherheitstechnik) Übungsblatt 8 Aufgabe 5. Konvergenz von Fourierreihen) Der Sinus Hyperbolicus ist die Funktion sinhx) = e x e x). Es

Mehr

Analysis für Informatiker und Statistiker Modulprüfung

Analysis für Informatiker und Statistiker Modulprüfung Prof. Dr. Peter Otte Wintersemester 2013/14 Tom Bachmann, Sebastian Gottwald 18.02.2014 Analysis für Informatiker und Statistiker Modulprüfung Lösungsvorschlag Name:.......................................................

Mehr

Klausur - Analysis 1

Klausur - Analysis 1 Prof. Dr. László Széelyhidi Analysis I, WS 22 Klausur - Analysis Lösungen Aufgabe. i Punt Definieren Sie, wann x n eine Cauchyfolge ist. Lösung : x n heisst Cauchyfolge wenn es zu jedem ε > ein N N gibt,

Mehr

Übungsklausur Höhere Mathematik I für die Fachrichtung Physik

Übungsklausur Höhere Mathematik I für die Fachrichtung Physik Karlsruher Institut für Technologie (KIT) Institut für Analysis Prof. Dr. Tobias Lamm Dr. Patrick Breuning WS /3 6..3 Übungsklausur Höhere Mathematik I für die Fachrichtung Physik Aufgabe ((3++5) Punkte)

Mehr

Klausur Höhere Mathematik I für die Fachrichtung Physik

Klausur Höhere Mathematik I für die Fachrichtung Physik Karlsruher Institut für Technologie (KIT Institut für Analysis Prof. Dr. Tobias Lamm Dr. Patrick Breuning WS /3 4.3.3 Klausur Höhere Mathematik I für die Fachrichtung Physik Aufgabe ((4+3+3 Punkte a Welche

Mehr

UNIVERSITÄT KARLSRUHE Institut für Analysis HDoz. Dr. P. C. Kunstmann Dipl.-Math. M. Uhl. Sommersemester 2009

UNIVERSITÄT KARLSRUHE Institut für Analysis HDoz. Dr. P. C. Kunstmann Dipl.-Math. M. Uhl. Sommersemester 2009 UNIVERSITÄT KARLSRUHE Institut für Analysis HDoz Dr P C Kunstmann Dipl-Math M Uhl Sommersemester 009 Höhere Mathematik II für die Fachrichtungen Elektroingenieurwesen, Physik und Geodäsie inklusive Komplexe

Mehr

e x e x x e x + e x (falls die Grenzwerte existieren), e x e x 1 e 2x = lim x 1

e x e x x e x + e x (falls die Grenzwerte existieren), e x e x 1 e 2x = lim x 1 Aufgabe a Hier kann man die Regel von de l Hospital zweimal anwenden (jeweils und die Ableitung des Nenners ist für hinreichend große x ungleich. Dies führt auf e x e x e x + e x e x + e x e x e x e x

Mehr

Aufgaben zur Analysis I aus dem Wiederholungskurs

Aufgaben zur Analysis I aus dem Wiederholungskurs Prof. Dr. H. Garcke, Dr. H. Farshbaf-Shaker, D. Depner WS 8/9 Hilfskräfte: A. Weiß, W. Thumann 6.3.29 NWF I - Mathematik Universität Regensburg Aufgaben zur Analysis I aus dem Wiederholungskurs Die folgenden

Mehr

exp(z) := k=0 sin(z) := k=0 cos(z) := k=0

exp(z) := k=0 sin(z) := k=0 cos(z) := k=0 Die komplexen Zahlen und komplexe Exponentialfunktion In diesem Vortrag sollen die komplexen Zahlen eingeführt werden, und wichtige Eigenschaften wiederholt und bewiesen werden. Wir definieren die komplexen

Mehr

Höhere Mathematik II. Variante A

Höhere Mathematik II. Variante A Lehrstuhl II für Mathematik Prof Dr E Triesch Höhere Mathematik II SoSe 5 Variante A Zugelassene Hilfsmittel: Als Hilfsmittel zugelassen sind zehn handbeschriebene DinA4-Blätter (Vorder- und Rückseite

Mehr

Konversatorium zu Lineare Algebra und Analysis Analysis - Übungsbeispiele

Konversatorium zu Lineare Algebra und Analysis Analysis - Übungsbeispiele Univ.-Prof. Dr. Radu Ioan Boţ, Axel Böhm Konversatorium zu Lineare Algebra und Analysis Analysis - Übungsbeispiele SS18 A1. Sei f : [, + ) R so, dass und dass ein M existiert mit Zeigen Sie, dass f(s +

Mehr

Apl. Prof. Dr. N. Knarr Höhere Mathematik III Musterlösung , 120min

Apl. Prof. Dr. N. Knarr Höhere Mathematik III Musterlösung , 120min Aufgabe (9 Punkte) Es sei die Fläche S R 3 gegeben durch S : { } (x, y, z) R 3 : 4z x + y 4, z. (a) ( Punkte) Geben Sie eine Parametrisierung für S an. (b) (4 Punkte) Berechnen Sie den Flächeninhalt von

Mehr

Lösungsvorschläge für das 5. Übungsblatt

Lösungsvorschläge für das 5. Übungsblatt Lösungsvorschläge für das 5. Übungsblatt Aufgabe 6 a) Sei = [0, ], f(x) := [e x ] für x. Hierbei ist [y] := maxk Z k y} für y. Behauptung: f ist messbar und es ist f(x) dx = 2 log 2. falls x [0, log 2),

Mehr

Die Fourier-Transformierte

Die Fourier-Transformierte Die Fourier-Transformierte Proseminar Analysis Sommersemester 008 Natalia Dück 6.06.08 Inhaltsverzeichnis Einleitung/Fourier-Transformierte. Definition..................................... Beispiele......................................3

Mehr

Karteikarten, Analysis 2, Sätze und Definitionen nach der Vorlesung von PD Hanke

Karteikarten, Analysis 2, Sätze und Definitionen nach der Vorlesung von PD Hanke Karteikarten, Analysis 2, Sätze und en nach der Vorlesung von PD Hanke Felix Müller, felix.b.mueller@physik.lmu.de Diese Karteikärtchen sollten alle en und Sätze der Vorlesung Analysis 2 bei Herrn PD Hanke

Mehr

Höhere Mathematik I für die Fachrichtung Informatik. Lösungsvorschläge zum 10. Übungsblatt. < 0 für alle t > 1. tan(x) tan(0) x 0

Höhere Mathematik I für die Fachrichtung Informatik. Lösungsvorschläge zum 10. Übungsblatt. < 0 für alle t > 1. tan(x) tan(0) x 0 KARLSRUHER INSTITUT FÜR TECHNOLOGIE INSTITUT FÜR ANALYSIS Dr. Christoph Schmoeger Heiko Hoffmann WS 03/4 Höhere Mathematik I für die Fachrichtung Informatik Lösungsvorschläge zum 0. Übungsblatt Aufgabe

Mehr

Klausurenkurs zum Staatsexamen (WS 2015/16): Differential und Integralrechnung 3

Klausurenkurs zum Staatsexamen (WS 2015/16): Differential und Integralrechnung 3 Dr. Erwin Schörner Klausurenkurs zum Staatsexamen (WS 25/6): Differential und Integralrechnung 3 3. (Herbst 2, Thema 3, Aufgabe 2) Gegeben ist für m R die Funktion f m : ], 2π[ R; f m (x) = Folgende Tatsachen

Mehr

Modellfall. Orthogonalität trigonometrischer Funktionen. Anwendungen: f : (0, L) R gegeben.

Modellfall. Orthogonalität trigonometrischer Funktionen. Anwendungen: f : (0, L) R gegeben. Modellfall Anwendungen: Fragen: Digitalisierung / digitale Darstellung von Funktionen, insbesondere für Ton- und Bilddaten Digitale Frequenzfilter Datenkompression: Abspeichern der unteren Frequenzen Lösung

Mehr

Lösungsvorschlag zur Nachklausur zur Analysis

Lösungsvorschlag zur Nachklausur zur Analysis Prof Dr H Garcke, D Depner SS 09 NWF I - Mathematik 080009 Universität Regensburg Lösungsvorschlag zur Nachklausur zur Analysis Aufgabe Untersuchen Sie folgende Reihen auf Konvergenz und berechnen Sie

Mehr

Teil III. Fourieranalysis

Teil III. Fourieranalysis Teil III Fourieranalysis 3 / 3 Fourierreihen Ziel: Zerlegung einer gegebenen Funktion in Schwingungen Konkret: f : (, L) R gegebene Funktion Gesucht: Darstellung der Form ( f (x) = a + a n cos ( n L x)

Mehr

Konvergenz im quadratischen Mittel und die Parsevelsche Gleichung

Konvergenz im quadratischen Mittel und die Parsevelsche Gleichung Konvergenz im quadratischen Mittel und die Parsevelsche Gleichung Skript zum Vortrag im Proseminar Analysis bei Dr. Gerhard Mülich Christian Maaß 6.Mai 8 Im letzten Vortrag haben wir gesehen, dass das

Mehr

Staatsexamen Herbst 2017 Differential- und Integralrechnung, Thema I

Staatsexamen Herbst 2017 Differential- und Integralrechnung, Thema I Staatsexamen Herbst 17 Differential- und Integralrechnung, Thema I 1. a) Die Aussage ist wahr! Sei s R der Reihenwert der Reihe k=1 Da a n = s n s n 1 für n, ist also b) Die Aussage ist falsch! a k, also

Mehr

Vorlesung Analysis I WS 07/08

Vorlesung Analysis I WS 07/08 Vorlesung Analysis I WS 07/08 Erich Ossa Vorläufige Version 07/12/04 Ausdruck 8. Januar 2008 Inhaltsverzeichnis 1 Grundlagen 1 1.1 Elementare Logik.................................. 1 1.1.A Aussagenlogik................................

Mehr

Institut für Analysis WiSe 2018/2019 Prof. Dr. Dirk Hundertmark Dr. Markus Lange. Analysis 1. Aufgabenzettel 14

Institut für Analysis WiSe 2018/2019 Prof. Dr. Dirk Hundertmark Dr. Markus Lange. Analysis 1. Aufgabenzettel 14 Institut für Analysis WiSe 2018/2019 Prof. Dr. Dirk Hundertmark 03.02.2019 Dr. Markus Lange Analysis 1 Aufgabenzettel 14 Dieser Zettel wird in der letzten Übung des Semesters am 08.02.2019 besprochen Aufgabe

Mehr

17 Die Fourier-Transformation

17 Die Fourier-Transformation 7 Die Fourier-Transformation 7. Motivation. Für eine l -periodische Funktion f L loc (R) ist die Funktion y f(ly) -periodisch und hat eine Fourier-Entwicklung f(ly) c k e iky. Mit x = ly ergibt sich daraus

Mehr

Die komplexen Zahlen und Skalarprodukte Kurze Wiederholung des Körpers der komplexen Zahlen C.

Die komplexen Zahlen und Skalarprodukte Kurze Wiederholung des Körpers der komplexen Zahlen C. Die omplexen Zahlen und Salarprodute Kurze Wiederholung des Körpers der omplexen Zahlen C. Erinnerung an die Definition von exp, sin, cos als Potenzreihen C C Herleitung der Euler Formel Definition eines

Mehr

Übungen zu Analysis, SS 2015

Übungen zu Analysis, SS 2015 Übungen zu Analysis, SS 215 Ulisse Stefanelli 15. Juni 215 1 Wiederholung 1. Untersuchen Sie das Verhalten der folgenden Folgen a n = n 2 cosh(1/n), b n = ln(ln(n))/n, c n = (2 n n 2 )/n!, 2. Stellen Sie

Mehr

Lösungen zur Klausur zur Analysis 1, WiSe 2016/17

Lösungen zur Klausur zur Analysis 1, WiSe 2016/17 BERGISCHE UNIVERSITÄT WUPPERTAL..7 Fakultät 4 - Mathematik und Naturwissenschaften Prof. N. V. Shcherbina Dr. T. P. Pawlaschyk www.kana.uni-wuppertal.de Lösungen zur Klausur zur Analysis, WiSe 6/7 Klausureinsicht:

Mehr

Nachklausur Analysis 2

Nachklausur Analysis 2 Nachklausur Analysis 2. a) Wie ist der Grenzwert einer Folge in einem metrischen Raum definiert? Antwort: Se (a n ) n N eine Folge in dem metrischen Raum (M, d). Diese Folge besitzt den Grenzwert g M,

Mehr

Höhere Mathematik I für die Fachrichtungen Elektroingenieurwesen, Physik und Geodäsie Lösungsvorschläge zum 7. Übungsblatt

Höhere Mathematik I für die Fachrichtungen Elektroingenieurwesen, Physik und Geodäsie Lösungsvorschläge zum 7. Übungsblatt UNIVERSITÄT KARLSRUHE Institut für Analysis HDoz. Dr. P. C. Kunstmann Dipl.-Math. M. Uhl WS 008/09 Höhere Mathematik I für die Fachrichtungen Elektroingenieurwesen, Physik und Geodäsie Lösungsvorschläge

Mehr

f(x ϱz) f(x) p dx dz Im letzten Integral geht der Integrand punktweise gegen Null mit ϱ 0 nach Lemma 11.1(ii). Außerdem gilt die Abschätzung

f(x ϱz) f(x) p dx dz Im letzten Integral geht der Integrand punktweise gegen Null mit ϱ 0 nach Lemma 11.1(ii). Außerdem gilt die Abschätzung 11 Faltung und Fouriertransformation 109 Beweis: Durch Substitution sieht man η ϱ L 1 = η L 1, daher gilt f η ϱ L p ( ) und f η ϱ L p f L p η L 1 nach Satz 11.. Weiter folgt mit der Substitution y = ϱz

Mehr

Thema 5 Differentiation

Thema 5 Differentiation Thema 5 Differentiation Definition 1 Sei f : D R. Dann ist f im Punkt x 0 differenzierbar, falls f(x) f(x 0 ) x x 0 x x 0 auf der Menge D \ {x 0 } existiert. Der Limes ist dann die Ableitung von f im Punkt

Mehr

Klausur zur Analysis I WS 01/02

Klausur zur Analysis I WS 01/02 Klausur zur Analysis I WS 0/0 Prof. Dr. E. Kuwert. Februar 00 Aufgabe (4 Punkte) Berechnen Sie unter a) und b) jeweils die Ableitung von f für x (0, ): a) f(x) = e sin x b) f(x) = x α log x a) f (x) =

Mehr

Musterlösung Klausur zu Analysis II. Verständnisteil

Musterlösung Klausur zu Analysis II. Verständnisteil Technische Universität Berlin SS 009 Institut für Mathematik 060009 Prof Dr R Schneider Fritz Krüger Sebastian Holtz Musterlösung Klausur zu Analysis II Verständnisteil (a) Wie lauten die Voraussetzungen

Mehr

VIII. Fourier - Reihen

VIII. Fourier - Reihen VIII. Fourier - Reihen Dieses Kapitel enthält eine kurze Einführung in die mathematische Beschreibung von Schwingungen. Übersicht über den Inhalt von Kapitel VIII: 5. Der Satz von Fejér 53. Die Parsevalsche

Mehr

Mathematik II für Studierende der Informatik (Analysis und lineare Algebra) im Sommersemester 2018

Mathematik II für Studierende der Informatik (Analysis und lineare Algebra) im Sommersemester 2018 (Analysis und lineare Algebra) im Sommersemester 2018 2. Juli 2018 1/1 Wir geben einige wesentliche Sätze über bestimmte Integrale an, deren Beweise man in den Standardlehrbüchern der Analysis findet.

Mehr

SPEZIELLE KAPITEL DER MATHEMATIK TEIL 1

SPEZIELLE KAPITEL DER MATHEMATIK TEIL 1 Mathematik und Naturwissenschaften Fachrichtung Mathematik, Institut für Numerische Mathematik SPEZIELLE KAPITEL DER MATHEMATIK TEIL 1 13. Fourier-Reihen Prof. Dr. Gunar Matthies Wintersemester 216/17

Mehr

Übungsaufgaben zu den mathematischen Grundlagen von KM

Übungsaufgaben zu den mathematischen Grundlagen von KM TUM, Institut für Informatik WS 2003/2004 Prof Dr Thomas Huckle Andreas Krahnke, MSc Dipl-Inf Markus Pögl Übungsaufgaben zu den mathematischen Grundlagen von KM 1 Bestimmen Sie die Darstellung von 1 4

Mehr

Übungen Analysis I WS 03/04

Übungen Analysis I WS 03/04 Blatt Abgabe: Mittwoch, 29.0.03 Aufgabe : Beweisen Sie, daß für jede natürliche Zahl n gilt: n ( ) n (x + y) n = x i y n i, i (b) n ν 2 = ν= i=0 n(n + )(2n + ), 6 (c) 2 3n ist durch 7 teilbar. Aufgabe

Mehr

Apl. Prof. Dr. N. Knarr Höhere Mathematik III Musterlösung , 120min

Apl. Prof. Dr. N. Knarr Höhere Mathematik III Musterlösung , 120min Aufgabe 1 8 Punkte Es seien eine Kurve K R mit Parametrisierung C : [ π, π] R und ein Vektorfeld g : R R gegeben durch cos t 4y Ct :, gx, y : sin t 1 05 K 05 05 1 15 05 a 3 Punkte Berechnen Sie die Zirkulation

Mehr

cos(kx) sin(nx)dx =?

cos(kx) sin(nx)dx =? 3.5 Fourierreihen 3.5.1 Vorbemerkungen cos(kx) sin(nx)dx =? cos gerade Funktion x cos(kx) gerade Funktion sin ungerade Funktion x sin(nx) ungerade Funktion x cos(kx) sin(nx) ungerade Funktion Weil [, π]

Mehr

Ferienkurs der TU München- - Analysis 2 Fourierreihen und Taylorreihen. Marcus Jung, Jonas J. Funke

Ferienkurs der TU München- - Analysis 2 Fourierreihen und Taylorreihen. Marcus Jung, Jonas J. Funke Ferienkurs der U München- - Analysis Fourierreihen und aylorreihen Lösung Marcus Jung, Jonas J. Funke 3.8. FOURIERREIHEN Fourierreihen Aufgabe. Sei f : R R stetig und periodisch mit Fourierkoeffizienten

Mehr

Karlsruher Institut für Technologie (KIT) SS 2013 Institut für Analysis Prof. Dr. Tobias Lamm Dr. Patrick Breuning

Karlsruher Institut für Technologie (KIT) SS 2013 Institut für Analysis Prof. Dr. Tobias Lamm Dr. Patrick Breuning Karlsruher Institut für Technologie KIT SS 203 Institut für Analysis 504203 Prof Dr Tobias Lamm Dr Patrick Breuning Aufgabe Höhere Mathematik II für die Fachrichtung Physik Übungsblatt Bestimmen Sie die

Mehr

2 k k 1 k(k + 1) = 2n+1. n = 0 = k(k + 1) = 2n+1 n n. = 2 n+1 n + 2 (n + 1)(n + 2) + n. (n + 1)(n + 2)

2 k k 1 k(k + 1) = 2n+1. n = 0 = k(k + 1) = 2n+1 n n. = 2 n+1 n + 2 (n + 1)(n + 2) + n. (n + 1)(n + 2) Prof. Hesse Höhere Mathematik I und II Musterlösung 7. 0. 0, 80min Aufgabe (3 Punkte) Zeigen Sie mit vollständiger Induktion: Für alle n N gilt n k= k k k(k + ) = n+ n +. Induktionsanfang: k= Induktionsschluss

Mehr

Lösungen der Übungsaufgaben von Kapitel 3

Lösungen der Übungsaufgaben von Kapitel 3 Analysis I Ein Lernbuch für den sanften Wechsel von der Schule zur Uni 1 Lösungen der Übungsaufgaben von Kapitel 3 zu 3.1 3.1.1 Bestimmen Sie den Abschluss, den offenen Kern und den Rand folgender Teilmengen

Mehr

Brückenkurs Rechentechniken

Brückenkurs Rechentechniken Brückenkurs Rechentechniken Dr. Jörg Horst Technische Universität Dortmund Fakultät für Mathematik SS 2014 1 Vollständige Induktion Vollständige Induktion 2 Funktionenfolgen Punktweise Konvergenz Gleichmäßige

Mehr

Faltung und Gute Kerne. 1 Faltung

Faltung und Gute Kerne. 1 Faltung Vortrag zum Proseminar zur Analysis, 9.07.200 Lars Grötschel, Elisa Friebel Im ersten Abschnitt Faltung definieren und beschäftigen wir uns mit der Faltung, die die grundliegende Operation des zweiten

Mehr

Klausur Analysis für Informatiker Musterlösung

Klausur Analysis für Informatiker Musterlösung Prof. Dr. Torsten Wedhorn WS 9/ Dr. Ralf Kasprowitz Elena Fink Klausur Analysis für Informatiker Musterlösung 9.2.2 Name, Vorname Studienfach Matrikelnummer Semester Übungsgruppe Zugelassene Hilfsmittel:

Mehr

Analysis I. Guofang Wang , Universität Freiburg

Analysis I. Guofang Wang , Universität Freiburg Universität Freiburg 10.1.2017, 11.1.2017 Definition 1.1 (Ableitung) Die Funktion f : I R n hat in x 0 I die Ableitung a R n (Notation: f (x 0 ) = a), falls gilt: f(x) f(x 0 ) lim = a. (1.1) x x 0 x x

Mehr

Klausurenkurs zum Staatsexamen (WS 2016/17): Differential und Integralrechnung 3

Klausurenkurs zum Staatsexamen (WS 2016/17): Differential und Integralrechnung 3 Dr. Erwin Schörner Klausurenkurs zum Staatsexamen (WS 206/7): Differential und Integralrechnung 3 3. (Herbst 20, Thema 3, Aufgabe 2) Gegeben ist für m R die Funktion f m : ], 2π[ R; f m (x) = Folgende

Mehr

Mathematik II für Studierende der Informatik. Wirtschaftsinformatik (Analysis und lineare Algebra) im Sommersemester 2016

Mathematik II für Studierende der Informatik. Wirtschaftsinformatik (Analysis und lineare Algebra) im Sommersemester 2016 und Wirtschaftsinformatik (Analysis und lineare Algebra) im Sommersemester 2016 5. Juni 2016 Definition 5.21 Ist a R, a > 0 und a 1, so bezeichnet man die Umkehrfunktion der Exponentialfunktion x a x als

Mehr

Aufgabe 1. Multiple Choice (4 Punkte). Kreuzen Sie die richtige(n) Antwort(en) an.

Aufgabe 1. Multiple Choice (4 Punkte). Kreuzen Sie die richtige(n) Antwort(en) an. Analysis I, WiSe 2013/14, 04.02.2014 (Iske), Version A 1 Aufgabe 1. Multiple Choice (4 Punkte). Kreuzen Sie die richtige(n) Antwort(en) an. a) Welche der folgenden Aussagen über Folgen sind sinnvoll und

Mehr

Kapitel 30. Aufgaben. Verständnisfragen. Aufgabe 30.1 Gegeben ist die Funktion. 0 <x π 2 π 2 <x π. x, π. f(x)=

Kapitel 30. Aufgaben. Verständnisfragen. Aufgabe 30.1 Gegeben ist die Funktion. 0 <x π 2 π 2 <x π. x, π. f(x)= Kapitel 3 Aufgaben Verständnisfragen Aufgabe 3.1 Gegeben ist die Funktion { fx= x,,

Mehr

Analysis II. Aufgaben zum Stoff der Analysis I und II Lösungsvorschlag

Analysis II. Aufgaben zum Stoff der Analysis I und II Lösungsvorschlag Prof Dr H Garcke, D Depner SS 9 NWF I - Mathematik 1979 Universität Regensburg Aufgabe 1 Analysis II Aufgaben zum Stoff der Analysis I und II Lösungsvorschlag i Erinnern Sie sich an die Konvergenzkriterien

Mehr

Aufgabensammlung zur Analysis 1

Aufgabensammlung zur Analysis 1 Analysis 1 18.12.2017 Prof. Dr. H. Koch Dr. F. Gmeineder Abgabe: Keine Abgabe. Aufgabensammlung zur Analysis 1 Anmerkungen: Das vorliegende Blatt enthält eine Auswahl von Aufgaben, die auf Klausuren zur

Mehr

Übungen zum Ferienkurs Analysis II

Übungen zum Ferienkurs Analysis II Übungen zum Ferienkurs Analysis II Implizite Funktionen und Differentialgleichungen 4.1 Umkehrbarkeit Man betrachte die durch g(s, t) = (e s cos(t), e s sin(t)) gegebene Funktion g : R 2 R 2. Zeigen Sie,

Mehr

Schwartz-Raum (Teil 1)

Schwartz-Raum (Teil 1) Schwartz-Raum (Teil 1) Federico Remonda, Robin Krom 10. Januar 2008 Zusammenfassung Der Schwartz-Raum ist ein Funktionenraum, der besondere Regularitätseigenschaften besitzt, die uns bei der Fouriertransformation

Mehr

(y ) 2 0 bis t, so erhalten wir 1 y (t) (t t 0). L sen wir diese Ungleichung nun nach y (t) auf, so folgt

(y ) 2 0 bis t, so erhalten wir 1 y (t) (t t 0). L sen wir diese Ungleichung nun nach y (t) auf, so folgt 0.. Lösung der Aufgabe. Wir nehmen an, es existiere eine nicht-triviale globale L sung y. Dann lesen wir direkt von der Gleichung ab, dass y 0 gilt auf ganz R, das heisst, die Funktion ist konvex. Da wir

Mehr

1. Aufgabe 8 Punkte. f (x) = (x 2 + 1) e x2. Es gilt. f (x) = 2xe x2 + ( x ) e x2 ( 2x) = 2x 3 e x2.

1. Aufgabe 8 Punkte. f (x) = (x 2 + 1) e x2. Es gilt. f (x) = 2xe x2 + ( x ) e x2 ( 2x) = 2x 3 e x2. 1. Aufgabe 8 Punkte Geben Sie die Bereiche, auf denen die Funktion f : R R mit f (x) = (x + 1) e x monoton wachsend oder fallend ist, an, und untersuchen Sie die Funktion auf lokale und globale Extrema.

Mehr

Übungen zu Einführung in die Analysis

Übungen zu Einführung in die Analysis Übungen zu Einführung in die Analysis (Nach einer Zusammengestellung von Günther Hörmann) Sommersemester 2011 Vor den folgenden Aufgaben werden in den ersten Wochen der Übungen noch jene zur Einführung

Mehr

D-CHAB Grundlagen der Mathematik I (Analysis B) FS 2016 Theo Bühler

D-CHAB Grundlagen der Mathematik I (Analysis B) FS 2016 Theo Bühler D-CHAB Grundlagen der Mathematik I Analysis B) FS 6 Theo Bühler Lösung. Finde eine Stammfunktion von a) f : R R, fx) := x cosx 5 ) sinx 5 ) ) = 5 cosx 5 )x, also die Stammfunktion von fx) durch F x) :=

Mehr

Lösung zu den Übungsaufgaben zur Lebesgueschen Integrationstheorie. Tobias Ried

Lösung zu den Übungsaufgaben zur Lebesgueschen Integrationstheorie. Tobias Ried Lösung zu den Übungsaufgaben zur Lebesgueschen Integrationstheorie Tobias Ried. März 2 2 Aufgabe (Messbarkeit der Komposition zweier Abbildungen). Seien (X, A), (Y, B) und (Z, C) Messräume und f : (X,

Mehr

Konvergenz im quadratischen Mittel und Parsevalsche Gleichung

Konvergenz im quadratischen Mittel und Parsevalsche Gleichung Konvergenz im quadratischen Mittel und Parsevalsche Gleichung Skript zum Vortrag im Proseminar Analysis bei Prof Dr Picard, gehalten von Helena Malinowski In vorhergehenden Vorträgen und dazugehörigen

Mehr

g(x) := (x 2 + 2x + 4) sin(x) für z 1 := 1 + 3i und z 2 := 1 + i. Geben Sie das Ergebnis jeweils

g(x) := (x 2 + 2x + 4) sin(x) für z 1 := 1 + 3i und z 2 := 1 + i. Geben Sie das Ergebnis jeweils . Aufgabe Punkte a Berechnen Sie den Grenzwert n + n + 3n. b Leiten Sie die folgenden Funktionen ab. Dabei ist a R eine Konstante. fx : lnx e a, gx : x + x + 4 sinx c Berechnen Sie z z und z z in der Form

Mehr

K. Eppler, Inst. f. Num. Mathematik Übungsaufgaben. 3. Übung WS 17/18: Woche vom

K. Eppler, Inst. f. Num. Mathematik Übungsaufgaben. 3. Übung WS 17/18: Woche vom Übungsaufgaben 3. Übung WS 17/18: Woche vom 3. 10. - 7. 10. 017 Fourierreihen: 16. b,c,e,o), 16.3 a, b), 16.4 a) auch reelle Fourierreihe) Klausureinsicht zu Mathematik II 11.8. 017): 30.10.17, 7.00-8.30

Mehr

Lösungsvorschlag zu den Hausaufgaben der 3. Übung

Lösungsvorschlag zu den Hausaufgaben der 3. Übung Michael Winkler Johannes Lankeit 22.4.204 Lösungsvorschlag zu den Hausaufgaben der 3. Übung Hausaufgabe : 2 Punkte Bei welchen der folgenden Funktionen u: G R kann es sich um den Realteil einer in G holomorphen

Mehr

10 Aus der Analysis. Themen: Konvergenz von Zahlenfolgen Unendliche Reihen Stetigkeit Differenzierbarkeit

10 Aus der Analysis. Themen: Konvergenz von Zahlenfolgen Unendliche Reihen Stetigkeit Differenzierbarkeit 10 Aus der Analysis Themen: Konvergenz von Zahlenfolgen Unendliche Reihen Stetigkeit Differenzierbarkeit Zahlenfolgen Ein unendliche Folge reeller Zahlen heißt Zahlenfolge. Im Beispiel 2, 3, 2, 2 2, 2

Mehr

Apl. Prof. Dr. N. Knarr Höhere Mathematik III Musterlösung , 120min. cos y + x 2 z e z + xy. x sin x + y 2

Apl. Prof. Dr. N. Knarr Höhere Mathematik III Musterlösung , 120min. cos y + x 2 z e z + xy. x sin x + y 2 Apl. Prof. Dr. N. Knarr Höhere Mathematik III Musterlösung.3.27, 2min Aufgabe ( Punkte) Sei S := {(x, y, z) R 3 : z = x 2 y 2 und x 2 + y 2 }. (a) (6 Punkte) Berechnen Sie den Flächeninhalt von S. (b)

Mehr

Inverse Fourier Transformation

Inverse Fourier Transformation ETH Zürich HS 27 Departement Mathematik Seminararbeit Inverse Fourier Transformation Patricia Hinder Sandra König Oktober 27 Prof. M. Struwe Im Vortrag der letzten Woche haben wir gesehen, dass die Faltung

Mehr

Vorname Nachname Matrikelnummer Tutor Uhrzeit

Vorname Nachname Matrikelnummer Tutor Uhrzeit . Arbeitsblatt Analysis SS.. 3. Vorname Nachname Matrikelnummer Tutor Uhrzeit Aufgabe 3 4 5 6 7 8 9 Code Punkte Adµ Universität Stuttgart Fakultät Mathematik und Physik Institut für Analysis, Dynamik und

Mehr

Institut für Analysis WS 2014/15 PD Dr. Peer Christian Kunstmann Dipl.-Math. Leonid Chaichenets

Institut für Analysis WS 2014/15 PD Dr. Peer Christian Kunstmann Dipl.-Math. Leonid Chaichenets Institut für Analysis WS 4/5 PD Dr. Peer Christian Kunstmann 9..4 Dipl.-Math. Leonid Chaichenets Höhere Mathematik III für die Fachrichtung Physik Lösungsvorschläge zum 5. Übungsblatt Aufgabe : (a) Sei

Mehr

Höhere Mathematik II für die Fachrichtung Informatik. Lösungsvorschläge zum 6. Übungsblatt

Höhere Mathematik II für die Fachrichtung Informatik. Lösungsvorschläge zum 6. Übungsblatt KARLSRUHER INSTITUT FÜR TECHNOLOGIE INSTITUT FÜR ANALYSIS Dr. Christoph Schmoeger Heiko Hoffmann SS 2 Höhere Mathematik II für die Fachrichtung Informatik Lösungsvorschläge zum 6. Übungsblatt Aufgabe 2

Mehr

Fourier-Reihen: Konvergenzsatz von Fejér & Weierstraßscher Approximationssatz

Fourier-Reihen: Konvergenzsatz von Fejér & Weierstraßscher Approximationssatz Seminar Analysis III Universität Dortmund / Fachbereich Mathematik Fourier-Reihen: Konvergenzsatz von Fejér & Weierstraßscher Approximationssatz Seminar vom.4.3 von Christian Gervens Christian Gervens:

Mehr

Musterlösung zur Klausur Analysis I für Lehramt Gymnasium Wintersemester 2017/18, am

Musterlösung zur Klausur Analysis I für Lehramt Gymnasium Wintersemester 2017/18, am Musterlösung zur Klausur Analysis I für Lehramt Gymnasium Wintersemester 07/8, am 9.3.08 Aufgabe : Zeigen Sie, dass für alle n N gilt: n n+ n ( ) (8 Punte) Beweis mittels vollständiger Indution n : ( )

Mehr

100 = i. 1 = 10 7 i

100 = i. 1 = 10 7 i UNIVERSITÄT KARLSRUHE Institut für Analysis HDoz. Dr. P. C. Kunstmann Frühjahr 9 6.3.9 Diplom Vorprüfung / Bachelor Höhere Mathematik I für die Fachrichtung Physik Lösungsvorschläge Aufgabe a) Für jedes

Mehr

Mathematik III für Physiker

Mathematik III für Physiker Prof. H.C. Grunau E. Sassone 1 15.10.2002 1.1 Aufgabe Berechnen Sie Mathematik III für Physiker WS 2002/03 1 0 1 y 2 0 1 0 1 1 x 2 dx 1 (1 x 2 )(1 y 2 ) dxdy 1.2 Aufgabe Gegeben sei das Gebiet D = {(x,

Mehr

27 Taylor-Formel und Taylor-Entwicklungen

27 Taylor-Formel und Taylor-Entwicklungen 136 IV. Unendliche Reihen und Taylor-Formel 27 Taylor-Formel und Taylor-Entwicklungen Lernziele: Konzepte: klein o - und groß O -Bedingungen Resultate: Taylor-Formel Kompetenzen: Bestimmung von Taylor-Reihen

Mehr

Serie 12 - Integrationstechniken

Serie 12 - Integrationstechniken Analysis D-BAUG Dr. Meike Akveld HS 5 Serie - Integrationstechniken. Berechnen Sie folgende Integrale: a e x cos(x dx Wir integrieren zwei Mal partiell, bis wir auf der rechten Seite wieder das Integral

Mehr

4x 1 + 2x 2 + 3x 3 = 1, x 2 + ax 3 = 1, ax 2 + x 3 = a 1. 0 a 1 1 Wir führen nun den Gauÿalgorithmus durch:

4x 1 + 2x 2 + 3x 3 = 1, x 2 + ax 3 = 1, ax 2 + x 3 = a 1. 0 a 1 1 Wir führen nun den Gauÿalgorithmus durch: Aufgabe 8 Punkte Bestimmen Sie die Lösungsmenge in R in Abhängigkeit von a R des folgenden linearen Gleichungssystems: 4x + x + 3x 3 =, x + ax 3 =, ax + x 3 =. Lösung. Wir schreiben das lineare Gleichungssystem

Mehr

Höhere Mathematik III für die Fachrichtung Physik Wintersemester 2016/17. Lösungsvorschlag zu Übungsblatt 5

Höhere Mathematik III für die Fachrichtung Physik Wintersemester 2016/17. Lösungsvorschlag zu Übungsblatt 5 Institut für Analysis Dr. Christoph Schmoeger M.Sc. Jonathan Wunderlich Höhere Mathematik III für die Fachrichtung Physik Wintersemester 6/7..7 Lösungsvorschlag zu Übungsblatt 5 Aufgabe 6: Zeigen Sie mit

Mehr

Technische Universität Berlin. Klausur Analysis I

Technische Universität Berlin. Klausur Analysis I SS 2008 Prof. Dr. John M. Sullivan Kerstin Günther Technische Universität Berlin Fakultät II Institut für Mathematik Klausur Analysis I 4.07.2008 Name: Vorname: Matr.-Nr.: Studiengang: Mit der Veröffentlichung

Mehr

TECHNISCHE UNIVERSITÄT MÜNCHEN

TECHNISCHE UNIVERSITÄT MÜNCHEN Prof. Dr. Simone Warzel Max Lein Zentralübung 5. Dirac-Folgen TECHNISCHE UNIVESITÄT MÜNCHEN Zentrum Mathematik Mathematik 4 für Physik Analysis 3 Sei δ k k N eine Dirac-Folge und f L n. Zeigen Sie, dass

Mehr

10 Differenzierbare Funktionen

10 Differenzierbare Funktionen 10 Differenzierbare Funktionen 10.1 Definition: Es sei S R, x 0 S Häufungspunkt von S. Eine Funktion f : S R heißt im Punkt x 0 differenzierbar, wenn der Grenzwert f (x 0 ) := f(x 0 + h) f(x 0 ) lim h

Mehr

Komplexe Analysis für ITET und RW/CSE. Serie 11

Komplexe Analysis für ITET und RW/CSE. Serie 11 Prof. Dr. F. Da Lio R. Gantner Frühlingssemester 5 Komplexe Analysis für ITET und RW/CSE ETH Zürich D-MATH Serie Aufgabe. Fourierreihen (.a Sei f p die ungerade periodische Fortsetzung der Funktion f :

Mehr

Klausur: Differentialgleichungen Version mit Lösungen

Klausur: Differentialgleichungen Version mit Lösungen Universität Kassel Fachbereich 10/16 Dr. Sebastian Petersen 16.03.2016 Klausur: Differentialgleichungen Version mit Lösungen Name: Vorname: Matrikelnummer: Versuch: Unterschrift: Bitte fangen Sie für jede

Mehr

1.3 Differenzierbarkeit

1.3 Differenzierbarkeit 1 1.3 Differenzierbarkeit Definition Sei B R n offen, a B, f : B R eine Funktion und v 0 ein beliebiger Vektor im R n. Wenn der Grenzwert D v f(a) := lim t 0 f(a + tv) f(a) t existiert, so bezeichnet man

Mehr

f(x 0 ) = lim f(b k ) 0 0 ) = 0

f(x 0 ) = lim f(b k ) 0 0 ) = 0 5.10 Zwischenwertsatz. Es sei [a, b] ein Intervall, a < b und f : [a, b] R stetig. Ist f(a) < 0 und f(b) > 0, so existiert ein x 0 ]a, b[ mit f(x 0 ) = 0. Wichtig: Intervall, reellwertig, stetig Beweis.

Mehr

Westfälische Wilhelms-Universität Münster. Seminararbeit. Fourier-Reihen. vorgelegt von. Stefan Marczinzik

Westfälische Wilhelms-Universität Münster. Seminararbeit. Fourier-Reihen. vorgelegt von. Stefan Marczinzik Westfälische Wilhelms-Universität Münster Seminararbeit Fourier-Reihen vorgelegt von Stefan Marczinzik Fachbereich Mathematik und Informatik Seminar: Integraltransformationen (WS /3) Seminarleiter: Prof.

Mehr

Grundlagen der Fourier Analysis

Grundlagen der Fourier Analysis KAPITEL A Grundlagen der Fourier Analysis Wir definieren wie üblich die L p -Räume { ( } 1/p L p (R) = f : R C f(x) dx) p =: f p < 1. Fourier Transformation in L 1 (R) Definition A.1. (Fourier Transformation,

Mehr

Nachklausur zur Analysis 2, SoSe 2017

Nachklausur zur Analysis 2, SoSe 2017 BERGISCHE UNIVERSITÄT WUPPERTAL 18.9.17 Fakultät 4 - Mathematik und Naturwissenschaften Prof. N. V. Shcherbina Dr. T. P. Pawlaschyk www.kana.uni-wuppertal.de Nachklausur zur Analysis 2, SoSe 217 Aufgabe

Mehr

Apl. Prof. Dr. N. Knarr Musterlösung , 120min

Apl. Prof. Dr. N. Knarr Musterlösung , 120min Apl. Prof. Dr. N. Knarr Musterlösung 4.3.25, 2min Aufgabe ( Punkte) Es sei S := {(x, y, z) R 3 z = x 2 + y 2, z 2}. (a) (6 Punkte) Berechnen Sie den Flächeninhalt von S. (b) (4 Punkte) Berechnen Sie die

Mehr

15. Übungsblatt zur Höheren Mathematik III (P/ET/AI/IT/IKT/MP) WS 2012/13

15. Übungsblatt zur Höheren Mathematik III (P/ET/AI/IT/IKT/MP) WS 2012/13 Prof. Dr. L. Schwachhöfer Dr. J. Horst Fakultät Mathematik TU Dortmund 15. Übungsblatt zur Höheren Mathematik III P/ET/AI/IT/IKT/MP WS 1/13 Aufgabe 1 Bestimmen Sie eine auf der Menge M := {x, y R x + y

Mehr

sign: R R, sign(x) := 0 falls x = 0 1 falls x < 0 Diese ist im Punkt x 0 = 0 nicht stetig, denn etwa zu ε = 1 finden wir kein δ > 0

sign: R R, sign(x) := 0 falls x = 0 1 falls x < 0 Diese ist im Punkt x 0 = 0 nicht stetig, denn etwa zu ε = 1 finden wir kein δ > 0 ANALYSIS FÜR PHYSIK UND VERWANDTE FÄCHER I 81 3. Stetigkeit 3.1. Stetigkeit. Im Folgenden sei D R eine beliebige nichtleere Teilmenge. Typischerweise wird D ein allgemeines Intervall sein, siehe Abschnitt

Mehr

Analysis I. 6. Beispielklausur mit Lösungen

Analysis I. 6. Beispielklausur mit Lösungen Fachbereich Mathematik/Informatik Prof. Dr. H. Brenner Analysis I 6. Beispielklausur mit en Aufgabe. Definiere die folgenden (kursiv gedruckten) Begriffe. () Eine Relation zwischen den Mengen X und Y.

Mehr

3.5 Glattheit von Funktionen und asymptotisches Verhalten der Fourierkoeffizienten

3.5 Glattheit von Funktionen und asymptotisches Verhalten der Fourierkoeffizienten Folgerung 3.33 Es sei f : T C in einem Punkt x T Hölder stetig, d.h. es gibt ein C > und ein < α 1 so, dass f(x) f(x ) C x x α für alle x T. Dann gilt lim N S N f(x ) = f(x ). Folgerung 3.34 Es f : T C

Mehr

53 Die Parsevalsche Gleichung

53 Die Parsevalsche Gleichung 53 Die Parsevalsche Gleichung 53 Die Parsevalsche Gleichung 5 53. Skalarprodukte auf Räumen quadratintegrierbarer Funktionen. a) Die Orthogonalitätsrelationen (5.5) legen die Interpretation des Ausdrucks

Mehr

9. Übung zur Maß- und Integrationstheorie, Lösungsskizze Aufgaben

9. Übung zur Maß- und Integrationstheorie, Lösungsskizze Aufgaben 9. Übung zur aß- und Integrationstheorie, Lösungsskizze Aufgaben A 50 (Eine Flächenberechnung mit dem Cavalierischen Prinzip). Es seien a, b > 0 und : { (x, y) R 2 : (x/a) 2 + (y/b) 2 1 }. (a) Skizzieren

Mehr