Physikalisches Praktikum

Save this PDF as:
 WORD  PNG  TXT  JPG

Größe: px
Ab Seite anzeigen:

Download "Physikalisches Praktikum"

Transkript

1 Physikalisches Praktikum Versuch 26: Stirling-Motor UNIVERSITÄT DER BUNDESWEHR MÜNCHEN Fakultät für Elektrotechnik und Informationstechnik Institut für Physik Oktober 2015

2 2 Versuch 26 Stirling-Motor Der Stirling-Motor ist nach der Dampfmaschine die zweitälteste Wärmekraftmaschine. Er wurde von Robert Stirling im Jahr 1816 entwickelt. Im Unterschied zu den gängigen Motoren, wie z.b. Otto- oder Dieselmotor, erfolgt beim Stirling-Motor keine innere Verbrennung. Die Wärmeenergie wird stattdessen in Form von Heißluft von außen an den Motor herangeführt. Somit ist der Stirling-Motor relativ geräuscharm, da keine Explosions- oder Auspuffgeräusche auftreten. Eine weitere Besonderheit des Stirling-Motors besteht darin, dass er von außen angetrieben werden und somit als Wärmepumpe oder Kältemaschine wirken kann. 1. Lernziele dieses Versuchs Die Studierenden sollen 1.1 sich an die Vorlesungsinhalte zum Thema Kreisprozesse erinnern. 1.2 die Besonderheiten des Stirling-Motors nennen können. 1.3 den Stirling-Kreisprozess beschreiben und daraus die wichtigen zu messenden Parameter des Experiments bestimmen können. 1.4 die Unterschiede beim Betrieb als Wärmekraftmaschine und als Wärmepumpe aufzeigen können. 1.5 aus den gemessenen Werten einen vollständigen Kreisprozess und dessen Wirkungsgrad berechnen können. 2. Voraussetzungen Vorlesungsstoff zu den Themen: thermodynamische Prozesse, Kreisprozesse, Wärmekraftmaschinen, Wirkungsgrad, ideales Gas, thermodynamische Zustandsgrößen Selbststudium zu den Themen: Stirling-Motor, Stirling-Kreisprozess, Wärmepumpe, Kältemaschine, Elektromotor, Generator 3. Literatur Hering, Martin, Stohrer, Physik für Ingenieure, 11. Auflage, S (als.pdf-datei über die Uni-Bibliothek downloadbar) Mitschrift zur Vorlesung Physik 1

3 3 4. Versuchsbeschreibung In diesem Versuch arbeiten Sie mit einem fast völlig transparenten Stirling-Motor, der es Ihnen ermöglicht, die einzelnen Schritte des Kreisprozesses im Detail zu beobachten. Beim Stirling-Motor bleibt das Arbeitsgas (in unserem Fall Luft) vollständig im Inneren des Motors und wird nicht ausgetauscht. Abgesehen von der evtl. durch Verbrennung erzeugten externen Energiezufuhr produziert der Stirling-Motor also keine eigenen Abgase. Daher eignet er sich z.b. auch für den Betrieb mit Solar- oder Erdwärme. Abbildung 1: Stirling-Motor 4.1 Der ideale Stirling-Prozess Der Motor durchläuft im Idealfall einen reversiblen, das heißt umkehrbaren, Kreisprozess. Er besteht aus vier Takten: 1. Arbeitstakt: Das Arbeitsgas dehnt sich isotherm (T 1 = const.) von (V 1 p 1 ) nach (V 2 p 2 ) aus. Dabei verrichtet das Gas Arbeit und nimmt eine äquivalente Wärmemenge Q 12 aus der Umgebung auf. Der Arbeitskolben wird nach oben gedrückt und gibt Arbeit an die Umgebung (Schwungrad) ab.

4 4 Abbildung 2: Arbeitstakt 2. Verdrängungstakt I: Das Arbeitsgas erfährt von (V 2 p 2 ) nach (V 2 p 3 ) eine isochore Abkühlung. Vom Gas wird dabei die Wärmemenge Q 23 an den Verdrängerkolbenabgegeben, während der Verdrängerkolben die heiße Luft in den gekühlten Bereich schiebt. Dabei verrichtet das Gas keine Arbeit gegenüber seiner Umgebung. Dies führt dazu, dass die Temperatur des Gases von T 1 nach T 2 sinkt, der Druck sinkt ebenfalls. Abbildung 3: Verdrängungstakt I 3. Kompressionstakt: Das Arbeitsgas wird isotherm von (V 2 p 3 ) nach (V 1 p 4 ) komprimiert. Die dabei am Gas verrichtete Arbeit, die durch das Schwungrad geliefert wird, wird bei konstanter Temperatur

5 5 T 2 als Wärme Q 34 abgegeben. Die hier von außen am Gas verrichtete Arbeit ist geringer als die Arbeit, die der Motor im Arbeitstakt an der Umgebung verrichtet. Abbildung 4: Kompressionstakt 4. Verdrängungstakt II: Das Arbeitsgas wird isochor von (V 1 p 4 ) nach (V 1 p 1 ) komprimiert. Da an dem Arbeitsgas keine Arbeit verrichtet wird und somit das Volumen konstant bleibt, muss das Arbeitsgas die Wärmemenge Q 41 aufnehmen. Dies geschieht, während der Verdrängerkolben die kalte Luft in den geheizten Bereich schiebt. Die Temperatur des Gases steigt von T 2 nach T 1. Der Kreisprozess beginnt wieder von vorne. Abbildung 5: Verdrängungstakt II

6 6 Den gesamten idealisierten Stirling-Kreisprozess sehen Sie in Abbildung Abbildung 6: idealer Stirling-Kreisprozess 4.2 Der reale Stirling-Prozess Ein idealer Stirling-Prozess kann nicht realisiert werden, da keine kontinuierlich laufende Maschine gebaut werden kann, in der lediglich eine isochore Zustandsänderung abläuft. Der ideale Stirling-Prozess wird durch den Phasenversatz zwischen Arbeits- und Verdrängerkolben angenähert. Im realen Stirling-Motor überlappen sich aber die Prozessschritte, da der Kurbelantrieb kontinuierlich läuft. Bei der Expansion findet immer auch schon ein Gasaustausch statt, während bei der Kompression der Gaswechsel noch nicht abgeschlossen ist. 5. Vorbereitungsfragen Benutzen Sie bitte zur Beantwortung der Fragen diese Versuchsanleitung und die o.a. Literatur. Bei weiterem Bedarf recherchieren Sie im Internet weitere Quellen und geben Sie diese Quellen hier an. 5.1 Fertigen Sie zu Anfang Ihres Praktikumsprotokolls eine Versuchsskizze mit kurzer Versuchsbeschreibung an.

7 7 5.2 Geben Sie einen kurzen Überblick (jeweils mit Skizze im p-v-diagramm) über die wichtigsten thermodynamischen Zustandsänderungen (isobar, isochor, isotherm, adiabatisch). 5.3 Zeichnen Sie den Stirling-Kreisprozess in einem p-v-diagramm. Benennen Sie hierbei die entsprechenden thermodynamischen Zustandsgrößen und Zustandsänderungen. Beschreiben Sie die einzelnen Prozesschritte in je einem Satz. 5.4 Wie könnte ein realer Stirling-Kreisprozess aussehen? Skizzieren Sie im Diagramm aus 5.3 und beschreiben Sie in einem Satz. 5.5 Wie ändert sich der Kreisprozess, wenn der Stirling-Motor nicht mehr als Heißluftmotor, sondern als Kältemaschine betrieben wird? 5.6 Was ändert sich beim Wechsel von Kältemaschine auf Wärmepumpe? 5.7 Berechnen Sie den Wirkungsgrad eines idealen Stirling-Prozesses. 5.8 Wie unterscheiden sich Stirling-Motoren des -, - und -Typs voneinander? Um welchen Typ (vgl. Abb. 2-5) handelt es sich hier? 6. Versuchsdurchführung 6.1 Betreiben Sie den Stirling-Motor als Heißluft-Motor. Benutzen Sie als Energiequelle den Spiritusbrenner. Achtung: Das Löschen des Spiritusbrenners ist nur mit der beiliegenden Kappe gestattet. Ausblasen führt zu thermischen Spannungen im Kolben und bringt diesen zum Platzen. Wenn der Motor seine volle Drehzahl erreicht hat, messen Sie diese an der Schwungscheibe mit dem Stroboskop und notieren Sie sie in Ihr Messprotokoll. 6.2 Schalten Sie den Generator zu und wiederholen Sie die Drehzahlmessung. 6.3 Greifen Sie die Spannung an den Kontakten des Generators ab und stellen Sie sie auf dem Oszilloskop dar. Ermitteln Sie daraus das Übersetzungsverhältnis von Schwungscheibe und Generator. Kontrollieren Sie Ihr Ergebnis durch Messung der Radien. 6.4 Betreiben Sie den Stirling-Motor jeweils 10 Minuten als Heißluftmotor, als Kältemaschine und als Wärmepumpe. Für die beiden letzteren Betriebsarten benutzen Sie eine Antriebsspannung von 12V. Messen Sie nach Ablauf der Zeit die Temperaturen an den beiden Messstutzen des Glaskolbens.

8 8 6.5 In 6.4 haben Sie Erfahrungen im Betrieb der Motor-Generator-Einheit gemacht. Beschreiben Sie kurz, wie diese funktioniert. Zeichnen Sie hierzu einen kleinen Schaltplan. 7. Auswertung 7.1 Geben Sie die Zustandsgrößen des Kreisprozesses für die drei Betriebsarten aus Aufgabe 6.4 an. 7.2 Berechnen Sie für die drei obigen Fälle jeweils den Wirkungsgrad und die Leistung des Kreisprozesses.

1. EIN MOTOR LÄUFT MIT HEIßER LUFT

1. EIN MOTOR LÄUFT MIT HEIßER LUFT Stirling-Motor 1. EIN MOTOR LÄUFT MIT HEIßER LUFT Stellt man den Kolben in Abb. 1 von dem kalten in das heiße Wasserbad, so dehnt sich die Luft im Kolben aus. Der Stempel kann eine Last hochheben Physiker

Mehr

1. EIN MOTOR LÄUFT MIT HEIßER LUFT

1. EIN MOTOR LÄUFT MIT HEIßER LUFT Stirling-Motor 1. EIN MOTOR LÄUFT MIT HEIßER LUFT Stellt man den Kolben in Abb. 1 von dem kalten in das heiße Wasserbad, so dehnt sich die Luft im Kolben aus. Der Stempel kann eine Last hochheben, das

Mehr

Teilprozesse idealer 4-Takt DIESEL-Prozess (theoretischer Vergleichsprozess)

Teilprozesse idealer 4-Takt DIESEL-Prozess (theoretischer Vergleichsprozess) Maschine: 4-Takt Dieselmotor Teilprozesse idealer 4-Takt DIESEL-Prozess (theoretischer Vergleichsprozess) (1)-(2) adiabatische Kompression (4)-(1) isochore Abkühlung (Ausgangszustand) Hubraum V 1 = 500

Mehr

STIRLING -Prozess W 24

STIRLING -Prozess W 24 STIRLING -Prozess W 24 Aufgabenstellung. Der STIRLINGmotor ist als Kältemaschine zu betreiben; die umgesetzten Energien und die Leistungszahl sind zu ermitteln..2 Der STIRLINGmotor ist als Heißluftmotor

Mehr

Der Stirlingmotor. ein Motor, der mit Luft läuft? Inhalt. 2.1 Kalibrierung für Temperatur- und Volumenmessungen

Der Stirlingmotor. ein Motor, der mit Luft läuft? Inhalt. 2.1 Kalibrierung für Temperatur- und Volumenmessungen Der Stirlingmotor ein Motor, der mit Luft läuft? Inhalt 1. Wie funktioniert ein Stirlingmotor? 1.1 Einleitung 1.2 Thermodynamische Grundlagen 1.3 Der stirlingsche Kreisprozess 2. Experimente 2.1 Kalibrierung

Mehr

W12. Stirling-Prozess

W12. Stirling-Prozess W12 Stirling-Prozess Thermodynamische Kreisprozesse sind die physikalische Grundlage der Erzeugung mechanischer Arbeit durch Wärmeenergiemaschinen. In diesem Versuch soll ein Einblick in technische Anwendung

Mehr

(ohne Übergang der Wärme)

(ohne Übergang der Wärme) Adiabatische Zustandsänderungen Adiabatische Zustandsänderungen δq= 0 (ohne Übergang der Wärme) Adiabatischer Prozess (Q = const) Adiabatisch = ohne Wärmeaustausch, Temperatur ändert sich bei Expansion/Kompression

Mehr

Perpetuum Mobile I. Ein Perpetuum mobile erster Art wird durch den ersten Hauptsatz der Thermodynamik ausgeschlossen.

Perpetuum Mobile I. Ein Perpetuum mobile erster Art wird durch den ersten Hauptsatz der Thermodynamik ausgeschlossen. Perpetuum Mobile I Perpetuum mobile erster Art: Unter einem perpetuum mobile erster Art versteht man eine Vorrichtung, deren Teile, einmal angeregt, nicht nur dauernd in Bewegung bleiben, sondern dabei

Mehr

ST Der Stirling-Motor als Wärmekraftmaschine

ST Der Stirling-Motor als Wärmekraftmaschine ST Der Stirling-Motor als Wärmekraftmaschine Blockpraktikum Herbst 2007 Gruppe 2b 24. Oktober 2007 Inhaltsverzeichnis 1 Grundlagen 2 1.1 Stirling-Kreisprozess............................. 2 1.2 Technische

Mehr

2.6 Zweiter Hauptsatz der Thermodynamik

2.6 Zweiter Hauptsatz der Thermodynamik 2.6 Zweiter Hauptsatz der Thermodynamik Der zweite Hauptsatz der Thermodynamik ist ein Satz über die Eigenschaften von Maschinen die Wärmeenergie Q in mechanische Energie E verwandeln. Diese Maschinen

Mehr

Aufgaben zum Stirlingschen Kreisprozess Ein Stirling-Motor arbeite mit 50 g Luft ( M= 30g mol 1 )zwischen den Temperaturen = 350 C und T3

Aufgaben zum Stirlingschen Kreisprozess Ein Stirling-Motor arbeite mit 50 g Luft ( M= 30g mol 1 )zwischen den Temperaturen = 350 C und T3 Aufgaben zum Stirlingschen Kreisrozess. Ein Stirling-Motor arbeite mit 50 g Luft ( M 0g mol )zwischen den emeraturen 50 C und 50 C sowie den olumina 000cm und 5000 cm. a) Skizzieren Sie das --Diagramm

Mehr

Isotherme 3. 4 Adiabate 2 T 1. Adiabate Isotherme T 2. Arbeit nach außen = eingeschlossene Kurve

Isotherme 3. 4 Adiabate 2 T 1. Adiabate Isotherme T 2. Arbeit nach außen = eingeschlossene Kurve Carnotscher Kreisprozess Carnot Maschine = idealisierte Maschine, experimentell nicht gut zu realisieren. Einfacher Kreisprozess aus zwei isothermen und zwei adiabatischen Zustandsänderungen. Arbeit nach

Mehr

Adiabatische Expansion. p. 30

Adiabatische Expansion. p. 30 Adiabatische Expansion p. 30 Isotherme Kompression p. 31 Adiabatische Kompression p. 32 PV Diagramm und Arbeit im Carnotzyklus 1. Isotherme Expansion 2. Adiabatisch Expansion 3. Isotherme Kompression 4.

Mehr

1 Thermodynamik allgemein

1 Thermodynamik allgemein Einführung in die Energietechnik Tutorium II: Thermodynamik Thermodynamik allgemein. offenes System: kann Materie und Energie mit der Umgebung austauschen. geschlossenes System: kann nur Energie mit der

Mehr

Zur Erinnerung. Wärmetransport durch: -Wärmekonvektion -Wärmestrahlung -Wärmeleitung. Planck sches Strahlungsgesetz. Stefan-Boltzman-Gesetz

Zur Erinnerung. Wärmetransport durch: -Wärmekonvektion -Wärmestrahlung -Wärmeleitung. Planck sches Strahlungsgesetz. Stefan-Boltzman-Gesetz Zur Erinnerung Stichworte aus der 9. orlesung: Wärmetransort durch: -Wärmekonvektion -Wärmestrahlung -Wärmeleitung Planck sches Strahlungsgesetz Stefan-Boltzman-Gesetz Wiensches erschiebungsgesetz Hautsätze

Mehr

21. Wärmekraftmaschinen

21. Wärmekraftmaschinen . Wärmekraftmaschinen.. Einleitung Wärmekraftmaschinen (Motoren, Gasturbinen) wandeln Wärmeenergie in mechanische Energie um. Analoge Maschinen ( Kraftwärmemaschinen ) verwandeln mechanische Energie in

Mehr

Praktikum II ST: Stirling-Motor

Praktikum II ST: Stirling-Motor Praktikum II ST: Stirling-Motor Betreuer: Norbert Lages Hanno Rein praktikum2@hanno-rein.de Florian Jessen florian.jessen@student.uni-tuebingen.de 14. April 2004 Made with L A TEX and Gnuplot Praktikum

Mehr

Physikalisches Anfaengerpraktikum. Stirling-Motor

Physikalisches Anfaengerpraktikum. Stirling-Motor Physikalisches Anfaengerpraktikum Stirling-Motor Ausarbeitung von Constantin Tomaras & David Weisgerber (Gruppe 10) Montag, 24. Oktober 2005 email: Weisgerber@mytum.de 1 (1) Einleitung Ein Stirling-Motor

Mehr

Versuch 7. Stirlingmotor. 7.1 Einleitung. Abbildung 7.1: Patentzeichnung des ersten Stirlingmotors

Versuch 7. Stirlingmotor. 7.1 Einleitung. Abbildung 7.1: Patentzeichnung des ersten Stirlingmotors Versuch 7 Stirlingmotor 7.1 Einleitung Abbildung 7.1: Patentzeichnung des ersten Stirlingmotors Der Heißluft-Motor wurde bereits 1816 vom Schotten Robert Stirling (1790-1878), erfunden und erreichte bereits

Mehr

Thermodynamik des Kraftfahrzeugs

Thermodynamik des Kraftfahrzeugs Cornel Stan Thermodynamik des Kraftfahrzeugs Mit 200 Abbildungen und 7 Tabellen Springer Inhaltsverzeichnis Liste der Formelzeichen XV 1 Grundlagen der Technischen Thermodynamik 1 1.1 Gegenstand und Untersuchungsmethodik

Mehr

6. Energieumwandlungen als reversible und nichtreversible Prozesse 6. 1 Reversibel-isotherme Arbeitsprozesse 1. Hauptsatz für geschlossene Systeme

6. Energieumwandlungen als reversible und nichtreversible Prozesse 6. 1 Reversibel-isotherme Arbeitsprozesse 1. Hauptsatz für geschlossene Systeme 6. Energieumwandlungen als reversible und nichtreversible Prozesse 6. 1 Reversibel-isotherme Arbeitsprozesse 1. Hauptsatz für geschlossene Systeme Für isotherme reversible Prozesse gilt und daher mit der

Mehr

a) Wie nennt man den oben beschriebenen Vergleichsprozess in Bezug auf die Klassifizierung der Idealprozesse?

a) Wie nennt man den oben beschriebenen Vergleichsprozess in Bezug auf die Klassifizierung der Idealprozesse? Aufgabe 11: Das Betriebsverhalten eines Viertakt- Dieselmotors kann durch folgenden reversiblen Kreisprozess näherungsweise beschrieben werden, wobei kinetische und potenzielle Energien zu vernachlässigen

Mehr

(1) du = dq + dw. ln( Ω)

(1) du = dq + dw. ln( Ω) Theorie Wärmehauptsätze Erster Hauptsatz der Thermodynamik Dieser Satz sagt aus, dass sich die innere Energie eines thermodynamischen Systems sich durch Zufuhr bzw. Entnahme von Wärme und Arbeit ändern

Mehr

Experimentalphysik I : Mechanik und Wärmelehre WS 2010/11 Prof. Dr. J. Winter

Experimentalphysik I : Mechanik und Wärmelehre WS 2010/11 Prof. Dr. J. Winter Informationen zur Klausur 2. Teilklausur Freitag, den 28.1.2011 Schwingungen (2.7) Wellen (2.8) Wärmelehre kin. Gastheorie (3.1) Wärme (3.2) Wärmetransport (3.3) 1. Haupsatz (isotherm, adiabatisch, isochor,

Mehr

Thermodynamik des Kraftfahrzeugs

Thermodynamik des Kraftfahrzeugs Thermodynamik des Kraftfahrzeugs Bearbeitet von Cornel Stan 1. Auflage 2012. Buch. xxiv, 598 S. Hardcover ISBN 978 3 642 27629 3 Format (B x L): 15,5 x 23,5 cm Gewicht: 1087 g Weitere Fachgebiete > Technik

Mehr

Technische Thermodynamik. FB Maschinenwesen. Übungsfragen Technische Thermodynamik II. University of Applied Sciences

Technische Thermodynamik. FB Maschinenwesen. Übungsfragen Technische Thermodynamik II. University of Applied Sciences University of Applied Sciences Übungsfragen Technische Thermodynamik II Prof. Dr.-Ing. habil. H.-J. Kretzschmar FB Maschinenwesen Technische Thermodynamik HOCHSCHULE ZITTAU/GÖRLITZ (FH) - University of

Mehr

Allgemeine Gasgleichung und technische Anwendungen

Allgemeine Gasgleichung und technische Anwendungen Allgemeine Gasgleichung und technische Anwendungen Ziele i.allgemeine Gasgleichung: Darstellung in Diagrammen: Begriffsdefinitionen : Iso bar chor them Adiabatische Zustandsänderung Kreisprozess prinzipiell:

Mehr

5. Energieumwandlungen als reversible und nichtreversible Prozesse 5.1 Reversibel-isotherme Arbeitsprozesse Energiebilanz für geschlossene Systeme

5. Energieumwandlungen als reversible und nichtreversible Prozesse 5.1 Reversibel-isotherme Arbeitsprozesse Energiebilanz für geschlossene Systeme 5. Energieumwandlungen als reversible und nichtreversible Prozesse 5.1 Reversibel-isotherme Arbeitsprozesse Energiebilanz für geschlossene Systeme Für isotherme reversible Prozesse gilt und daher Dies

Mehr

Laborversuche zur Physik 1 I - 6. Stirling- oder Heißluftmotor

Laborversuche zur Physik 1 I - 6. Stirling- oder Heißluftmotor FB Physik Laborversuche zur Physik 1 I - 6 Stirlingmaschine Reyher Stirling- oder Heißluftmotor Ziele Kennenlernen der Arbeitsweise der Stirlingmaschine beim Betrieb als Wärmekraftmaschine, Wärmepumpe

Mehr

Labor zur Vorlesung Physik

Labor zur Vorlesung Physik Labor zur Vorlesung Physik. Zur Vorbereitung Die folgenden Begriffe sollten Sie kennen und erklären können: Thermodynamik, allgemeine Gasgleichung, Zustandsänderungen, isotherm, isochor, Expansion, Kompression,

Mehr

Ermittlung des realen und idealen Wirkungsgrads durch die Bestimmung der vom Motor abgegebenen Arbeit aus einer Drehmomentmessung an der Motorachse

Ermittlung des realen und idealen Wirkungsgrads durch die Bestimmung der vom Motor abgegebenen Arbeit aus einer Drehmomentmessung an der Motorachse Grundlagen: Erster und zweiter Hauptsatz der Thermodynamik, Entropie, allgemeine Gasgleichung, Wärmekapazität, Wirkungsgrad, Carnotprozess, Stirlingprozess: Gemeinsamkeiten und Unterschiede, Thermodynamische

Mehr

Sonnenmotor STIRLING

Sonnenmotor STIRLING Umwelt / Energien Lehrwerkstätten und Berufsschule Zeughausstrasse 56 für Mechanik und Elektronik Tel. 052 267 55 42 CH-8400 Winterthur Fax 052 267 50 64 Sonnenmotor STIRLING P A6042 STIRLING- Funktionsmodell

Mehr

Institut für Fachdidaktik der Naturwissenschaften Abteilung Physik und Physikdidaktik

Institut für Fachdidaktik der Naturwissenschaften Abteilung Physik und Physikdidaktik WÄRME-LEHRE I ZUSTANDSGRÖßEN BEI GASEN MITTWOCH 13.04.16 UND 20.04.16 GRUPPE H (DEMO) Zustandsgrößen bei Gasen: Temperatur und Thermometer (Gasthermometer), Volumen, Druck; Gasgesetze: Boyle-Mariotte,

Mehr

9.10.2 Der Carnotsche Kreisprozess

9.10.2 Der Carnotsche Kreisprozess 9. Thermodynamik 99 9.9 Der erste Hauptsatz 9.10 Der zweite Hauptsatz 9101 9.10.1 Thermodynamischer Wirkungsgrad 9.10.2 Der Carnotsche Kreisprozess 9.9 Der erste Hauptsatz Für kinetische Energie der ungeordneten

Mehr

Physikalische Chemie: Kreisprozesse

Physikalische Chemie: Kreisprozesse Physikalische Chemie: Kreisprozesse Version vom 29. Mai 2006 Inhaltsverzeichnis 1 Diesel Kreisprozess 2 1.1 Wärmemenge Q.................................. 2 1.2 Arbeit W.....................................

Mehr

2.11. Heißluftmotor (neuer Aufbau von Phywe mit PC seit Oktober 2008)

2.11. Heißluftmotor (neuer Aufbau von Phywe mit PC seit Oktober 2008) 2.11 Heißluftmotor (neuer Aufbau von Phywe mit PC seit Oktober 2008) 271 2.11. Heißluftmotor (neuer Aufbau von Phywe mit PC seit Oktober 2008) Ziel Der Versuch soll das Verständnis für die Funktionsweise

Mehr

Aufgaben Kreisprozesse. 1. Ein ideales Gas durchläuft den im V(T)- Diagramm dargestellten Kreisprozess. Es ist bekannt:

Aufgaben Kreisprozesse. 1. Ein ideales Gas durchläuft den im V(T)- Diagramm dargestellten Kreisprozess. Es ist bekannt: Aufgaben Kreisrozesse. Ein ideales Gas durchläuft den im ()- Diagramm dargestellten Kreisrozess. Es ist bekannt: 8 cm 6 cm 00 K 8MPa MPa a) Geben Sie die fehlenden Zustandsgrößen, und für die Zustände

Mehr

Stirlingmotor. Überblick. aus Wikipedia, der freien Enzyklopädie

Stirlingmotor. Überblick. aus Wikipedia, der freien Enzyklopädie Stirlingmotor aus Wikipedia, der freien Enzyklopädie Der Stirlingmotor ist eine Wärmekraftmaschine, in der ein hermetisch abgeschlossenes Arbeitsmedium (meistens ein Gas wie Luft oder Helium) durch drastische

Mehr

3.6 Kreisprozesse. System durchläuft eine Folge von Zustandsänderungen im pv-diagramm, so dass Anfangszustand = Endzustand. Bsp: 4-Takt Ottomotor

3.6 Kreisprozesse. System durchläuft eine Folge von Zustandsänderungen im pv-diagramm, so dass Anfangszustand = Endzustand. Bsp: 4-Takt Ottomotor System durchläuft eine Folge von Zustandsänderungen im p-diagramm, so dass Anfangszustand Endzustand. Bsp: 4-at Ottomotor Die eingesetzten nutzbaren Energien/Arbeiten ergeben sich ieder aus den jeeiligen

Mehr

Vergleich der Kreisprozesse eines Ottomotors in Anwesenheit und Abwesenheit von N 2 O

Vergleich der Kreisprozesse eines Ottomotors in Anwesenheit und Abwesenheit von N 2 O Vergleich der Kreisprozesse eines Ottomotors in Anwesenheit und Abwesenheit von N 2 O Wie stark sich das Distickstoffmonooxid auf die Leistung eines Motors auswirkt sieht man sehr gut anhand einer exemplarischen

Mehr

Grundlagen der Wärmelehre

Grundlagen der Wärmelehre Ausgabe 2007-09 Grundlagen der Wärmelehre (Erläuterungen) Die Wärmelehre ist das Teilgebiet der Physik, in dem Zustandsänderungen von Körpern infolge Zufuhr oder Abgabe von Wärmeenergie und in dem Energieumwandlungen,

Mehr

Physik 4 Praktikum Auswertung Wä rmepumpe

Physik 4 Praktikum Auswertung Wä rmepumpe Physik 4 Praktikum Auswertung Wä rmepumpe Von J.W., I.G. 2014 Seite 1. Kurzfassung........ 2 2. Theorie......... 2 3. Durchführung........ 3 3.1. Geräteliste & Versuchsaufbau.... 3 3.2. Versuchsablauf.......

Mehr

Die Wärmepumpe. Abb. 1: Energiefluss-Diagramme für Ofen, Wärmekraftmaschine und Wärmepumpe

Die Wärmepumpe. Abb. 1: Energiefluss-Diagramme für Ofen, Wärmekraftmaschine und Wärmepumpe Die Stichworte: Thermische Maschinen; 1. und. Hauptsatz; Wirkungsgrad und Leistungsziffer 1 Einführung und Themenstellung Mit einer wird - entgegen der natürlichen Richtung eines Wärmestroms - Wärme von

Mehr

PS9-LW2. Heißluftmotor - Stirlingprozess Version vom 19. August 2016

PS9-LW2. Heißluftmotor - Stirlingprozess Version vom 19. August 2016 -LW2 Heißluftmotor - Stirlingprozess Version vom 19. August 2016 Inhaltsverzeichnis 1 Allgemeine Grundlagen - Wärmekraftmaschinen 1 1.1 Begriffe..................................... 1 1.2 Das Prinzip von

Mehr

a) Welche der folgenden Aussagen treffen nicht zu? (Dies bezieht sind nur auf Aufgabenteil a)

a) Welche der folgenden Aussagen treffen nicht zu? (Dies bezieht sind nur auf Aufgabenteil a) Aufgabe 1: Multiple Choice (10P) Geben Sie an, welche der Aussagen richtig sind. Unabhängig von der Form der Fragestellung (Singular oder Plural) können eine oder mehrere Antworten richtig sein. a) Welche

Mehr

Die Stirling-Maschine, Thermodynamische Kreisprozesse (STI)

Die Stirling-Maschine, Thermodynamische Kreisprozesse (STI) Seite 1 Die, Thermodynamische Kreisprozesse Themengebiet: Thermodynamik 1 Stichworte Thermodynamischer Zustand, Zustandsgröße, thermodynamischer Kreisprozess, Wirkungsgrad 2 Literatur 1. W. Demtröder,

Mehr

Thermodynamik. oder Website der Fachhochschule Osnabrück

Thermodynamik.  oder Website der Fachhochschule Osnabrück Thermodynamik Prof. Dr.-Ing. Matthias Reckzügel Vorlesung, Übung und Praktikum im 3. Semester für die Studiengänge: Maschinenbau Fahrzeugtechnik Maschinenbauinformatik Integrierte Produktentwicklung EMS

Mehr

W2 Gasthermometer. 1. Grundlagen: 1.1 Gasthermometer und Temperaturmessung

W2 Gasthermometer. 1. Grundlagen: 1.1 Gasthermometer und Temperaturmessung W2 Gasthermometer Stoffgebiet: Versuchsziel: Literatur: emperaturmessung, Gasthermometer, Gasgesetze Mit Hilfe eines Gasthermometers ist der Ausdehnungs- und Druckkoeffizient von Luft zu bestimmen. Beschäftigung

Mehr

FAQ Entropie. S = k B ln W. 1.) Ist die Entropie für einen Zustand eindeutig definiert?

FAQ Entropie. S = k B ln W. 1.) Ist die Entropie für einen Zustand eindeutig definiert? FAQ Entroie S = k B ln W 1.) Ist die Entroie für einen Zustand eindeutig definiert? Antwort: Nein, zumindest nicht in der klassischen Physik. Es sei an die Betrachtung der Ortsraum-Entroie des idealen

Mehr

- B03.1 - am Kolben verrichten. Die am Gas verrichtete mechanische Arbeit ist entsprechend:

- B03.1 - am Kolben verrichten. Die am Gas verrichtete mechanische Arbeit ist entsprechend: - B03.1 - Versuch B3: Heißluftmotor 1. Literatur: Gerthsen- Kneser-Vogel, Physik Bergmann-Schaefer, Lehrbuch der Physik, Bd. I Stichworte: Hauptsätze der Thermodynamik, Gasgesetze, Energieumwandlungen,

Mehr

13.Wärmekapazität. EP Vorlesung 14. II) Wärmelehre

13.Wärmekapazität. EP Vorlesung 14. II) Wärmelehre 13.Wärmekapazität EP Vorlesung 14 II) Wärmelehre 10. Temperatur und Stoffmenge 11. Ideale Gasgleichung 12. Gaskinetik 13. Wärmekapazität 14. Hauptsätze der Wärmelehre Versuche: Mechanisches Wärmeäquivalent

Mehr

Versuch W6: Thermische Zustandsgleichung des idealen Gases

Versuch W6: Thermische Zustandsgleichung des idealen Gases Versuch W6: Thermische Zustandsgleichung des idealen Gases Aufgaben: 1. Führen Sie isotherme Zustandsänderungen durch! Zeigen Sie die Gültigkeit des Gesetzes von BOYLE MARIOTTE für Luft bei Zimmertemperatur!

Mehr

WÄRMEKRAFTMASCHINEN TECHNISCHE NUTZUNG DER INNEREN ENERGIE

WÄRMEKRAFTMASCHINEN TECHNISCHE NUTZUNG DER INNEREN ENERGIE WÄRMEKRAFTMASCHINEN TECHNISCHE NUTZUNG DER INNEREN ENERGIE Die in Natur r Verfügung stehende mechanische Energie kann häufig technisch genutzt werden Bei Windmühlen wird die kinetische Energie der Luft

Mehr

Thermodynamik I. Sommersemester 2012 Kapitel 5, Teil 1. Prof. Dr. Ing. Heinz Pitsch

Thermodynamik I. Sommersemester 2012 Kapitel 5, Teil 1. Prof. Dr. Ing. Heinz Pitsch Thermodynamik I Sommersemester 2012 Kapitel 5, Teil 1 Prof. Dr. Ing. Heinz Pitsch Kapitel 5, Teil 1: Übersicht 5. Energieumwandlungen als reversible und nichtreversible Prozesse 5.1 Reversibel isotherme

Mehr

Aufgabe 1 - Schiefe Ebene - (10 Punkte)

Aufgabe 1 - Schiefe Ebene - (10 Punkte) - schriftlich Klasse: 4AW (Profil A) - (HuR) Prüfungsdauer: Erlaubte Hilfsmittel: Bemerkungen: 4h Taschenrechner TI-nspire CAS Der Rechner muss im Press-to-Test-Modus sein. Formelsammlung Beginnen Sie

Mehr

Thermodynamik. Springer. Peter Stephan Karlheinz Schaber Karl Stephan Franz Mayinger. Grundlagen und technische Anwendungen Band 1: Einstoffsysteme

Thermodynamik. Springer. Peter Stephan Karlheinz Schaber Karl Stephan Franz Mayinger. Grundlagen und technische Anwendungen Band 1: Einstoffsysteme Peter Stephan Karlheinz Schaber Karl Stephan Franz Mayinger Thermodynamik Grundlagen und technische Anwendungen Band 1: Einstoffsysteme 16., vollständig neu bearbeitete Auflage Mit 195 Abbildungen und

Mehr

Versuch W7: Der Stirling-Motor

Versuch W7: Der Stirling-Motor Versuch W7: Der Stirling-Motor Aufgaben: 1. Bestimmen Sie die Heizleistung des Brenners. 2. Berechnen Sie die Gesamtenergie, die vom Motor abgegeben wird, durch Bestimmung der Fläche im pv-diagramm auf

Mehr

Verbundstudium TBW Teil 1 Wärmelehre 1 3. Semester

Verbundstudium TBW Teil 1 Wärmelehre 1 3. Semester Verbundstudium TBW Teil 1 Wärmelehre 1 3. Semester 1. Temperaturmessung Definition der Temperaturskala durch ein reproduzierbares thermodynam. Phänomen, dem Thermometer Tripelpunkt: Eis Wasser - Dampf

Mehr

Expansionsmaschine. Prinzip: Arbeitsgas: Helium "Brayton-Verfahren" z. B. Luftverflüssigung: Kondensation am Kaltkopf Destillation mit Trennsäule

Expansionsmaschine. Prinzip: Arbeitsgas: Helium Brayton-Verfahren z. B. Luftverflüssigung: Kondensation am Kaltkopf Destillation mit Trennsäule 5.1.1 Expansionsmaschinen Prinzip: Kompressor Kühler (Wasser, Luft, fl. N 2 ) Arbeitsgas: Helium "Brayton-Verfahren" z. B. Luftverflüssigung: Kondensation am Kaltkopf Destillation mit Trennsäule 77,4K

Mehr

Physik für Bauingenieure

Physik für Bauingenieure Fachbereich Physik Prof. Dr. Rudolf Feile Dipl. Phys. Markus Domschke Sommersemster 2010 17. 21. Mai 2010 Physik für Bauingenieure Übungsblatt 5 Gruppenübungen 1. Wärmepumpe Eine Wärmepumpe hat eine Leistungszahl

Mehr

Praktikum - Wärmepumpe

Praktikum - Wärmepumpe Praktikum - Wärmepumpe chris@university-material.de, Arthur Halama Inhaltsverzeichnis 1 Theorie 2 2 Durchführung 2 2.1 Prinzip............................................ 2 2.2 Messung...........................................

Mehr

Wie arbeitet der Stirlingmotor?

Wie arbeitet der Stirlingmotor? Stirlingmotor Seite 1 von 1 Wolfgang Haas Wie arbeitet der Stirlingmotor? Der Stirlingmotor ist nach der Dampfmaschine die 2. älteste Wärmekraftmaschine. Vom Prinzip her hat der Stirlingmotor einen höheren

Mehr

Beispiel für ein thermodynamisches System: ideales Gas (Edelgas)

Beispiel für ein thermodynamisches System: ideales Gas (Edelgas) 10. Hauptsätze tze der Wärmelehre Thermodynamik: zunächst: Klassische Mechanik punktförmiger Teilchen, starrer und deformierbarer Körper aber: Bewegungsgleichungen für N=10 23 Teilchen mit 6N ariablen

Mehr

Biomasse-Verstromung mittels Stirlingmotor Grundlagen und praktische Erfahrungen

Biomasse-Verstromung mittels Stirlingmotor Grundlagen und praktische Erfahrungen Biomasse-Verstromung mittels Stirlingmotor Grundlagen und praktische Erfahrungen BIOENERGIESYSTEME GmbH Sandgasse 47, A-8010 A Graz,, Austria TEL.: +43 (316) 481300; FAX: +43 (316) 4813004 E-MAIL: office@bios-bioenergy

Mehr

Physik II Übung 7, Teil I - Lösungshinweise

Physik II Übung 7, Teil I - Lösungshinweise Physik II Übung 7, Teil I - Lösungshinweise Stefan Reutter SoSe 2012 Moritz Kütt Stand: 15.06.2012 Franz Fujara Aufgabe 1 Das Kühlen eines Klotzes Klaus spielt gern mit Bauklötzen, doch irgendwann fängt

Mehr

Verbrennungskraftmaschine

Verbrennungskraftmaschine Wirtz Luc 10TG2 Verbrennungskraftmaschine Eine Verbrennungskraftmaschine ist im Prinzip jede Art von Maschine, die mechanische Energie in einer Verbrennungskammer gewinnt. Die Kammer ist ein fester Bestandteil

Mehr

Thermodynamik des Kraftfahrzeugs

Thermodynamik des Kraftfahrzeugs Cornel Stan Thermodynamik des Kraftfahrzeugs Mit 199 Abbildungen Inhaltsverzeichnis Liste der Formelzeichen... XV 1 Grundlagen der Technischen Thermodynamik...1 1.1 Gegenstand und Untersuchungsmethodik...1

Mehr

Fundamentalgleichung für die Entropie. spezifische Entropie: s = S/m molare Entropie: s m = S/n. Entropie S [S] = J/K

Fundamentalgleichung für die Entropie. spezifische Entropie: s = S/m molare Entropie: s m = S/n. Entropie S [S] = J/K Fundamentalgleichung für die Entropie Entropie S [S] = J/K spezifische Entropie: s = S/m molare Entropie: s m = S/n Mit dem 1. Hauptsatz für einen reversiblen Prozess und der Definition für die Entropie

Mehr

Kopplungsmotor: Das Ziel: Energiesysteme der Maschiene:

Kopplungsmotor: Das Ziel: Energiesysteme der Maschiene: Kopplungsmotor: Das Ziel: Das Ziel der Maschine ist es nicht nur sparsamer zu laufen, sondern auch die Umwelt weniger zu belasten, was später bei den Berechnungen verdeutlicht wird. Es soll eine neue Klasse

Mehr

Innere Energie eines Gases

Innere Energie eines Gases Innere Energie eines Gases Die innere Energie U eines Gases im Volumen V setzt sich zusammen aus der gesamten Energie (Translationsenergie, Rotationsenergie und Schwingungsenergie) seiner N Moleküle. Der

Mehr

Die innere Energie eines geschlossenen Systems ist konstant

Die innere Energie eines geschlossenen Systems ist konstant Rückblick auf vorherige Vorlesung Grundsätzlich sind alle möglichen Formen von Arbeit denkbar hier diskutiert: Mechanische Arbeit: Arbeit, die nötig ist um einen Massepunkt von A nach B zu bewegen Konservative

Mehr

Physikalisches Anfängerpraktikum, Fakultät für Physik und Geowissenschaften, Universität Leipzig

Physikalisches Anfängerpraktikum, Fakultät für Physik und Geowissenschaften, Universität Leipzig Physikalisches Anfängerpraktikum, Fakultät für Physik und Geowissenschaften, Universität Leipzig W 10 Wärmepumpe Aufgaben 1 Nehmen Sie die Temperatur- und Druckverläufe einer Wasser-Wasser-Wärmepumpe auf!

Mehr

Physikalisches Grundpraktikum für Physiker/innen Teil I. Stirling-Motor ThermodynamischeKreisprozesse

Physikalisches Grundpraktikum für Physiker/innen Teil I. Stirling-Motor ThermodynamischeKreisprozesse Fachrichtungen der Physik UNIVERSITÄT DES SAARLANDES Physikalisches Grundpraktikum für Physiker/innen Teil I Stirling-Motor ThermodynamischeKreisprozesse WWW-Adresse Grundpraktikum Physik: 0H0Hhttp://grundpraktikum.physik.uni-saarland.de/

Mehr

Orientierungshilfen für die Zugangsprüfung Physik

Orientierungshilfen für die Zugangsprüfung Physik Orientierungshilfen für die Zugangsprüfung Physik Anliegen der Prüfung Die Zugangsprüfung dient dem Herausstellen der Fähigkeiten des Prüflings, physikalische Zusammenhänge zu erkennen. Das physikalische

Mehr

Thermodynamik Prof. Dr.-Ing. Peter Hakenesch

Thermodynamik Prof. Dr.-Ing. Peter Hakenesch Thermodynamik Thermodynamik Prof. Dr.-Ing. Peter Hakenesch peter.hakenesch@hm.edu www.lrz-muenchen.de/~hakenesch Thermodynamik Einleitung Grundbegriffe 3 Systembeschreibung 4 Zustandsgleichungen 5 Kinetische

Mehr

Die Arbeitsweise des Stirlingmotors durch Analyse eines selbst gefertigten Funktionsmodells

Die Arbeitsweise des Stirlingmotors durch Analyse eines selbst gefertigten Funktionsmodells Adalbert-Stifter-Gymnasium Die Arbeitsweise des Stirlingmotors durch Analyse eines selbst gefertigten Funktionsmodells Facharbeit im Grundkurs Technik/Frau Eidmann von Ricarda Sellinghoff Schuljahr 2015/16

Mehr

Kraft- und Arbeitsmaschinen Klausur zur Diplom-Hauptprüfung, 26. Juli 2006

Kraft- und Arbeitsmaschinen Klausur zur Diplom-Hauptprüfung, 26. Juli 2006 Kraft- und Arbeitsmaschinen Klausur zur Diplom-Hauptprüfung, 26. Juli 2006 Bearbeitungszeit: 120 Minuten Umfang der Aufgabenstellung: 7 nummerierte Seiten; Die Foliensammlung, Ihre Mitschrift der Vorlesung

Mehr

Schriftliche Prüfung aus VO Kraftwerke am Name/Vorname: / Matr.-Nr./Knz.: / V1 = 2,7 Liter

Schriftliche Prüfung aus VO Kraftwerke am Name/Vorname: / Matr.-Nr./Knz.: / V1 = 2,7 Liter Schriftliche Prüfung aus VO Kraftwerke am 10.11.2015 Name/Vorname: / Matr.-Nr./Knz.: / 1. Stirlingmotor (25 Punkte) Ein Stirlingmotor soll zur Stromerzeugung in einem 50 Hz Netz eingesetzt werden. Es wird

Mehr

U. Nickel Irreversible Volumenarbeit 91

U. Nickel Irreversible Volumenarbeit 91 U. Nickel Irreversible Volumenarbeit 91 geben, wird die bei unterschiedlichem Innen- und Außendruck auftretende Arbeit als irreversible Volumenarbeit irr bezeichnet. Die nachfolgend angegebene Festlegung

Mehr

JUFOTech. wko.at/tirol/jufotech DATENBLATT. Jugend forscht in der Technik. Titel der Projektarbeit: Fachgebiet:

JUFOTech. wko.at/tirol/jufotech DATENBLATT. Jugend forscht in der Technik. Titel der Projektarbeit: Fachgebiet: Datenblatt (dient als Titelblatt für die Projektarbeit) Seite 1/2 JUFOTech Jugend forscht in der Technik wko.at/tirol/jufotech DATENBLATT Wir nehmen am Wettbewerb Jugend forscht in der Technik Auf den

Mehr

IIW5. Modul Wärmelehre. Thermodynamische Kreisprozesse

IIW5. Modul Wärmelehre. Thermodynamische Kreisprozesse IIW5 Modul Wärmelehre Thermodynamische Kreisprozesse In diesem ersuch soll anhand des Stirlingmotors die Funktionsweise einer Wärmekraftmaschine untersucht werden. Aus dem dabei beobachteten p-diagramm

Mehr

Physik III im Studiengang Elektrotechnik

Physik III im Studiengang Elektrotechnik Physik III im Studiengang Elektrotechnik - Einführung in die Wärmelehre - Prof. Dr. Ulrich Hahn WS 2008/09 Entwicklung der Wärmelehre Sinnesempfindung: Objekte warm kalt Beschreibung der thermische Eigenschaften

Mehr

Kühlung: Verdampfer-Kühlschrank: Das Arbeitsgas muss sich bei der gewünschten Temperatur verflüssigen lassen. (Frigen, NH 3, SO 2, Propan)

Kühlung: Verdampfer-Kühlschrank: Das Arbeitsgas muss sich bei der gewünschten Temperatur verflüssigen lassen. (Frigen, NH 3, SO 2, Propan) Kühlung: Verdampfer-Kühlschrank: Das Arbeitsgas muss sich bei der gewünschten Temperatur verflüssigen lassen. (Frigen, NH 3, SO 2, Propan) Ein Kompressor komprimiert das Gas. Bei Abkühlung auf Raumtemperatur

Mehr

Physik 2 ET, SoSe 2013 Aufgaben mit Lösung 2. Übung (KW 17/18)

Physik 2 ET, SoSe 2013 Aufgaben mit Lösung 2. Übung (KW 17/18) 2. Übung (KW 17/18) Aufgabe 1 (T 3.1 Sauerstoffflasche ) Eine Sauerstoffflasche, die das Volumen hat, enthält ab Werk eine Füllung O 2, die bei Atmosphärendruck p 1 das Volumen V 1 einnähme. Die bis auf

Mehr

INSTITUT FÜR THERMODYNAMIK UND WÄRMETECHNIK

INSTITUT FÜR THERMODYNAMIK UND WÄRMETECHNIK UNIVERSITÄT STUTTGART INSTITUT FÜR THERMODYNAMIK UND WÄRMETECHNIK Professor Dr. Dr.-Ing. habil. H. Müller-Steinhagen PRAKTIKUM Versuch 10 Elektronische Bestimmung des Indikatordiagramms an einem Modell

Mehr

tgt HP 2007/08-2: Heizungsanlage

tgt HP 2007/08-2: Heizungsanlage tgt HP 007/08-: Heizungsanlage Ein Wohngebäude wird durch eine Warmwasserheizung beheizt und erfordert eine maximale Wärmeleistung von 50 kw. Wärmepumpe Anlagenschema Stoffwerte für leichtes Heizöl: Dichte:

Mehr

3B SCIENTIFIC PHYSICS

3B SCIENTIFIC PHYSICS 3B SCIENTIFIC HYSICS Stirling-Motor D 1000817 Bedienungsanleitung 09/15 THL/ALF 1 Grundplatte 2 Aussparung für Teelicht 3 Heizplattenanschluss 4 Schlauchanschlussstutzen mit erschlusskappe 5 Stativsäule

Mehr

(Sie ist temperaturabhängig.) Ihre Einheit ist kj kg -1 K -1

(Sie ist temperaturabhängig.) Ihre Einheit ist kj kg -1 K -1 Werte Name: Technik 13: Thermodynamik/Strömungsmechanik Datum: Seite 16 2.4.1 Der erste Hauptsatz der Wärmelehre In einem abgeschlossenen System, in dem beliebige Vorgänge ablaufen, bleibt die vorhandene

Mehr

Stationsunterricht im Physikunterricht der Klasse 10

Stationsunterricht im Physikunterricht der Klasse 10 Oranke-Oberschule Berlin (Gymnasium) Konrad-Wolf-Straße 11 13055 Berlin Frau Dr. D. Meyerhöfer Stationsunterricht im Physikunterricht der Klasse 10 Experimente zur spezifischen Wärmekapazität von Körpern

Mehr

t 2 p 2 t 1 p 1 Systemgrenze

t 2 p 2 t 1 p 1 Systemgrenze Prof Dr-Ing G Wilhelms 1 Geschichte 1765 Dampfmaschine von Watt 1816 Heißgasmotor von Stirling 1 1876 Otto-Motor 2 1896 Diesel Motor, Elektromotor Bild 1 Stirlingmotor, β-typ 3 Bild 2 1884 Louis Heinrici

Mehr

Die Stirling Maschine

Die Stirling Maschine PG 268-II 18. November 2000 Die Stirling Maschine Die Stirling Maschine oder der Heißluftmotor ist eine Wärmekraftmaschine, bei der ein Gas abwechselnd mit einer Wärmequelle und einer Kühlung in Kontakt

Mehr

Klausur Wärmelehre E2/E2p, SoSe 2012 Braun. Formelsammlung Thermodynamik

Klausur Wärmelehre E2/E2p, SoSe 2012 Braun. Formelsammlung Thermodynamik Name: Klausur Wärmelehre E2/E2p, SoSe 2012 Braun Matrikelnummer: Benotung für: O E2 O E2p (bitte ankreuzen, Mehrfachnennungen möglich) Mit Stern (*) gekennzeichnete Aufgaben sind für E2-Kandidaten [E2p-Kandidaten

Mehr

Physikalische Chemie Physikalsiche Chemie I SoSe 2009 Prof. Dr. Norbert Hampp 1/10 5. Zustandsfunktionen Idealer und Realer Gase. ZustandsÄnderungen

Physikalische Chemie Physikalsiche Chemie I SoSe 2009 Prof. Dr. Norbert Hampp 1/10 5. Zustandsfunktionen Idealer und Realer Gase. ZustandsÄnderungen Prof. Dr. Norbert Ham 1/10 5. Zustandsfunktionen Idealer und Realer Gase ZustandsÄnderungen Die rennung zwischen unserem System und der ÅUmweltÇ wird durch eine Wand realisiert. WÄnde kånnen unterschiedliche

Mehr

Willkommen. Welcome. Bienvenue. Raumlufttechnik Wärmepumpe Energierückgewinnung und Energieeffizienztechnologien

Willkommen. Welcome. Bienvenue. Raumlufttechnik Wärmepumpe Energierückgewinnung und Energieeffizienztechnologien Willkommen Bienvenue Welcome Raumlufttechnik Wärmepumpe Energierückgewinnung und Energieeffizienztechnologien in der Lüftungstechnik Prof. Dr.-Ing. Christoph Kaup c.kaup@umwelt-campus.de Dipl.-Ing. Christian

Mehr

wegen Massenerhaltung

wegen Massenerhaltung 3.3 Bilanzgleichungen Allgemein: Änderung der Bilanzgröße im System = Eingang Ausgang + Bildung - Verbrauch. 3.3.1 Massenbilanz Integration für konstante Massenströme: 0 wegen Massenerhaltung 3.3-1 3.3.2

Mehr

Musterlösung zu Übung 7

Musterlösung zu Übung 7 PCI hermodynamik G. Jeschke FS 05 Musterlösung zu Übung 7 08.04.05 a Der Goldbarren wird beim Einbringen in das Reservoir sprunghaft erwärmt. Der Wärmeaustausch erfolgt daher auf irreversiblem Weg. Um

Mehr

Stickstoff kann als ideales Gas betrachtet werden mit einer spezifischen Gaskonstante von R N2 = 0,297 kj

Stickstoff kann als ideales Gas betrachtet werden mit einer spezifischen Gaskonstante von R N2 = 0,297 kj Aufgabe 4 Zylinder nach oben offen Der dargestellte Zylinder A und der zugehörige bis zum Ventil reichende Leitungsabschnitt enthalten Stickstoff. Dieser nimmt im Ausgangszustand ein Volumen V 5,0 dm 3

Mehr

Motor Steuerung. Grundlagen. Bildquelle: Auto & Technik. Grundlagen. AGVS Ausbildungszentrum Berner Oberland 1/10

Motor Steuerung. Grundlagen. Bildquelle: Auto & Technik. Grundlagen. AGVS Ausbildungszentrum Berner Oberland 1/10 Bildquelle: Auto & Technik Motor AGVS Ausbildungszentrum Berner Oberland 1/10 L:\Kurse\ab 2012\AF 1.2\1 Theorien\Motor.doc 26.08.2013 INHALTSVERZEICHNIS BENZINMOTOR AUFBAU... 3 DIESELMOTOR... 4 4-TAKT

Mehr

3B SCIENTIFIC PHYSICS

3B SCIENTIFIC PHYSICS 3B SCIENTIFIC HYSICS Stirling-Motor D U8440450 Bedienungsanleitung 05/10 THL/ALF 1 Grundplatte 2 Aussparung für Teelicht 3 Heizplattenanschluss 4 Schlauchanschlussstutzen mit erschlusskappe 5 Stativsäule

Mehr