2.2 Quadratwurzeln. e) f) 8

Save this PDF as:
 WORD  PNG  TXT  JPG

Größe: px
Ab Seite anzeigen:

Download "2.2 Quadratwurzeln. e) f) 8"

Transkript

1 I. Quadratwurzeln Rechne im Kopf und erkläre, wie du vorgegangen bist!, H a) 7 8 b) 5 6 c) 9 d) 6 9 e) 0 _ f) 8 _ g) 7 _ 00 h) 5 _ 69 Teilweises Wurzelziehen ist dann möglich, wenn sich eine Zahl so zerlegen lässt, dass ein Faktor eine Quadratzahl ist. z. B. 9 = 9 = = Zwischen dem Faktor außerhalb der Wurzel und der Wurzel kannst du das Multiplikationszeichen weglassen. 5x y = 5 x y = 5 x y = 5x y Vereinfache durch teilweises Wurzelziehen! H, a) 6 b) 5 c) 9 5 d) 6 7 e) 6 f) g) 9 9 h) 6 7 i) 69 j) 97 k) 6 l) 5 5 Vereinfache durch teilweises Wurzelziehen! (x, y > 0) H, a) x b) c) _ 6y x d) e) x x f) _ 5x g) h) 6 x 9y i) j) _ 8y x k) l) y 7x 5 Vereinfache durch teilweises Wurzelziehen! (x, y > 0) H, a) 5 0 b) 9 8 c) 6 5 d) 5 e) 5 9 f) 6 6 g) 9 5 x h) x y i) _ 6xy j) 6xy k) _ 5x y l) 5xy Rationalmachen des Nenners: Ein Bruch mit einer Wurzel im Nenner kann so erweitert werden, dass die Wurzel im Nenner wegfällt. Dann steht eine rationale Zahl im Nenner. z. B. = = 6 Erweitere den Bruch so, dass der Nenner rational wird! H a) c) e) 6 g) b) 5 d) 5 f) 7 6 h) 0 75 i) j) 5 5 k) 5 l) 5 7 Berechne und vergleiche die beiden Ergebnisse!, H a) und b) 6 9 und 6 9 a + b a + b _ a b a b a, b > 0 Es können nur gleiche Wurzeln durch Addition und Subtraktion zusammengefasst werden. z. B = (8 + 6) = x a + y a = (x + y) a a > = (8 6) = x a y a = (x y) a a > 0 Fasse gleiche Wurzeln zusammen! (a, x, y > 0) 8 H a) b) x + 9 x c) d) e) 0 y y f) 5 8 g) a + a h) 5 + i) 5 5 Genial! Mathematik

2 . Quadratwurzeln I Untersuche, ob die linke und die rechte Seite übereinstimmen! 9 a) 5 + = 5 + b) 5 = 5 c) 5 = 5 d) H 5 = 5 Vereinfache so weit wie möglich! (x, y > 0) 50 a) x + y x + y d) b) 5 y y + y x e) + c) 7 y 7 y + 5 x 5 x f) + + Teilweises Wurzelziehen mit Hilfe der Primfaktorenzerlegung: = 5 5 = (5) = 5 = Ziehe teilweise die Wurzel! 5 a) 50 H b) c) _ 5 8 d) _ e) _ 8 5 f) _ g) _ 6 h) _ i) j) k) l) 80 Ziehe teilweise die Wurzel! (x, y > 0) 5 a) H 9x b) y x y c) 6x _ d) 0x 5y 0x e) x _ 6y f) 60x _ 80y Mache den Nenner rational! 5 + a) H c) 5 + z. B. ( + ) = + 6 = + e) 5 + b) + 5 d) f) Mache den Nenner rational und kürze dann! (x, y, z > 0) 5 a) x 6xy c) 6xy e) x g) 0,x x i) x x k) 5 x 0z H xy b) xy 9x d) x f) x x h) x x y j) z yz 8x l) x Wende die Rechenregeln für Wurzeln an und vereinfache! (x, y > 0) 55 H, a) 8y : y c) x : xy b) 9x 5 : x d) 7x y : xy z. B. x : 6x = x 6x = x 6x = x = x? + = 8 8 Manuel behauptet: Addiere ich die Flächeninhalte zweier Quadrate, die eine Seitenlänge von cm haben, so erhalte ich die Fläche eines Quadrats mit 8 cm Seitenlänge! a) Überprüfe diese Behauptung! b) Berechne, wie viele Quadrate du addieren müsstest, dass die Gleichung stimmt! 56 H, H Ersetze x so, dass eine wahre Aussage entsteht! 57 a) + 9 = x b) _ 69 5 = x c) + x = 6 d) 8 x = I,, H Genial! Mathematik 5

3 I. Irrationale Zahlen 58, H, H Denis behauptet: Wenn die Quadratwurzel von = und dann muss die zwischen und liegen! mit deinem Taschenrechner! Trage das Ergebnis in das a) Berechne Display im Buch ein! = ist, b) Tippe die Zahl, die du im Display notiert hast, in deinen Taschenrechner ein und quadriere sie! Welche Zahl erhältst du? c) Woran könnte das liegen? Irrationale Zahlen sind Zahlen wie, 5. Sie sind unendliche, nicht periodische Dezimalzahlen. Irrationale Zahlen können mit Hilfe von Dezimalzahlen immer nur näherungsweise angegeben werden. Sie können nicht als Bruch geschrieben werden. Die Menge der rationalen Zahlen (Q) und die Menge der irrationalen Zahlen (I) werden zur Menge der reellen Zahlen (R) vereinigt. 59 Berechne folgende Wurzeln und ordne sie dann in die Tabelle ein!, H,,, 8, 9, 0,, 6, 9, 5, 7, 5, 6 rationale Zahlen, irrationale Zahlen, 60 H, H ist eine irrationale Zahl. Anhand der Intervallschachtelung kannst du erkennen, zwischen welchen rationalen Zahlen liegt. 0,6,7,8,9,7,7,7,75 < < weil: < < < <,. < <,. weil: < < < <,.. < <,.. weil: < < < < Durch das Quadrieren von,;,;,8;,9 erkennst du, zwischen welchen rationalen Zahlen mit einer Dezimalstelle liegt. a) Gib mit Hilfe der Abbildung an, zwischen welchen rationalen Zahlen mit einer Dezimalstelle liegt! b) Gib mit Hilfe der Abbildung an, zwischen welchen rationalen Zahlen mit zwei Dezimalstellen liegt! c) Lies aus der Abbildung ab, zwischen welchen rationalen Zahlen mit Stellen nach dem Komma liegt! 6, H Gib an, zwischen welchen natürlichen Zahlen die angegebene Zahl liegt. Rechne im Kopf und überprüfe mit dem Taschenrechner! a) < 8 < b) < < c) < 55 < d) < 90 < 6 Genial! Mathematik

4 . Irrationale Zahlen I Gib an, welche Zahl x zwischen den angegebenen Schranken liegt! Nenne immer zwei Möglichkeiten! Begründe, warum es immer mindestens zwei Lösungen geben muss! a) < x < 5 b) < x < c) < x < 5 d) 8 < x < 9 6 H, H Kreuze wahre Aussagen an! 6 - _ _ -900,5-5 0,5 Q 0 99 Z N R 8 50 I Jede natürliche Zahl ist auch eine ganze Zahl. Jede reelle Zahl ist auch eine natürliche Zahl. Eine ganze Zahl kann auch eine irrationale Zahl sein. Eine ganze Zahl muss eine rationale Zahl sein. Eine reelle Zahl kann auch irrational sein. Eine reelle Zahl muss rational sein. Alle ganzen Zahlen sind reelle Zahlen. Es gibt irrationale Zahlen, die keine reellen Zahlen sind. Es gibt irrationale Zahlen, deren 0-Faches eine rationale Zahl ergibt. H, H a) Gib drei rationale Zahlen an, die zwischen, und,9 liegen! b) Gib drei natürliche Zahlen an, deren Wurzel wieder eine natürliche Zahl ist! c) Gib drei rationale Zahlen an, deren Wurzel eine irrationale Zahl ist! d) Gib drei Zahlen an, deren Wurzel rational und größer ist! e) Gib drei ganze Zahlen an, deren Wurzel du nicht ziehen kannst! 6 H, H Setze (ist Element von) oder (ist nicht Element von) so, dass eine wahre Aussage entsteht! 65 H a) Q c) I e) 9 Z g) 5 6 N b) N d) R f) 9 I h) 5 6 Q s Was kannst du bei der Größe des Flächeninhalts des roten Quadrats entdecken? Vergleiche mit dem kleineren Quadrat! 66 H, H Überprüfe mit Hilfe der Beispiele, ob die Behauptung Das Produkt zweier unterschiedlicher irrationaler Zahlen ist wieder eine irrationale Zahl gilt! a) 5 b) 8 c) d) H Berechne jeweils die Länge der Seite x! 68 a) b) x x I, H, H, x Genial! Mathematik 7

5 I. Kubikwurzeln 69 Astrid bastelt Würfel aus Papier. Berechne die Volumina ihrer Würfel! a cm cm cm 5 cm V = a 8 cm 70 Berechne die dritte Potenz der Zahlen! a a 7 H, Denise behauptet: Ich habe einen Würfel mit 6 cm Volumen gebastelt! Welche Seitenlänge hat ihr Würfel? Wenn du die dritte Potenz einer Zahl berechnest, so kubierst du diese Zahl. a a a = a sprich: a hoch = 8 ( ) = 8 = 7 Taschenrechner: z. B. ^ = Die Umkehroperation heißt Kubikwurzelziehen. x sprich: Kubikwurzel aus x oder. Wurzel aus x 8 = 8 7 = 8 7 = Taschenrechner: z. B. _ x 6 nd ^ 6 = Du kannst auch aus negativen Zahlen die Kubikwurzel ziehen. z. B. ( ) = 8 8 = 7 Berechne die Kubikwurzeln! a a 7 7 H, H Berechne mit dem Taschenrechner, runde auf Dezimalstellen, falls nötig! a) 8 c) 6 e) 9 g) 7 b) d) 75 f) 5 i) h) Überprüfe, ob die Rechnungen stimmen! Was fällt dir auf? ( 6 ) = 6 5,65 j) 0,5 a) ( 8 ) = 8 b) ( 7 ) = 7 c) ( _ 5 ) = 5 75 Berechne die Kantenlänge eines Würfels, wenn du das Volumen kennst! Verwende den Taschenrechner! a) V = 75 dm b) V = cm c) V = 5,65 mm d) V = 95,5 m 8 Genial! Mathematik

6 . Kubikwurzeln I Zwischen welchen ganzen Zahlen liegt die Kubikwurzel? 76 a) < _ 00 < b) < 7 < c) < _ 50 < d) < 80 < e) < _ 00 < f) < 5 < 6 < 6 < weil: < 6 < < 6 < 8 H Ergänze die Tabelle und formuliere mit eigenen Worten, welche Gesetzmäßigkeit dir auffällt! a , 0,0 0,00 a 77, H, H Ergänze die Tabelle und formuliere mit eigenen Worten, welche Gesetzmäßigkeit dir auffällt! a ,008 0, a 78, H, H Berechne ohne Taschenrechner! 79 a) ( 5 ) b) 5 ( ) c) 0 ( 7 ) d) 9 ( _ 5 ) 5 ( 8 ) = 5 8 = 0 Berechne im Kopf! Kontrolliere mit dem Taschenrechner! 80 a) ( 5 6 ) d) ( ( ) = ( ) ( ) 8 = 5 7 = 7 b) ( ) ) e) ( x c) ( 5 x ) ) f) ( x x ) Ergänze die Tabelle! a b c a ( b ) b ( c ) c ( a ) a b ( c ) 8 H, 0 0, 5 0, Die Masse eines Würfels beträgt 0 kg. Berechne die Kantenlänge des Würfels! a) Goldwürfel (ρ = 9 00 kg/m ) b) Glaswürfel (ρ = 00 kg/m ) c) Fichtenholzwürfel (ρ = 500 kg/m ) d) Korkwürfel (ρ = 00 kg/m ) e) Erkläre, warum der Holzwürfel schwimmt und der Metallwürfel sinkt! Forsche im Internet nach, welcher in Wien lebende Rechenmeister das Zeichen als Erster in einem Buch vewendete! 8 I, H, Genial! Mathematik 9

7 I Kompetenz Lernen : Unendlich viele Zahlen R Q Z N I B K, K, H,, H In welcher Zahlenmenge liegen die Ergebnisse der folgenden Rechnungen? Formuliere eine Vermutung und versuche diese, bevor du rechnest, zu begründen! Schreibe die Ergebnisse in das passende Feld im Diagramm oben! a) + = b) 5 + = c) 5 7 = d) ( ) + ( ) = e) 5 + ( ) = f) ( ) = g) ( ) = h) 7 7 = i) [( ) ( ) + ( 8)] = j) ( ) = 0 Genial! Mathematik

a heißt Radikand Das (Quadrat-)Wurzelziehen ist die Umkehrung des Quadrierens. Das Quadrieren ist die Umkehrung des (Quadrat-)Wurzelziehens.

a heißt Radikand Das (Quadrat-)Wurzelziehen ist die Umkehrung des Quadrierens. Das Quadrieren ist die Umkehrung des (Quadrat-)Wurzelziehens. 1 Reelle Zahlen - Quadratwurzeln Wir kennen den Flächeninhalt A = 49 m 2 eines Quadrats und möchten seine Seitenlänge x berechnen Es ist also jene Zahl x zu ermitteln, die mit sich selbst multipliziert

Mehr

J Quadratwurzeln Reelle Zahlen

J Quadratwurzeln Reelle Zahlen J Quadratwurzeln Reelle Zahlen J Quadratwurzeln Reelle Zahlen 1 Quadratwurzeln Ein Quadrat habe einen Flächeninhalt von 64 cm. Will man wissen, wie lang die Seiten des Quadrates sind, so muss man herausfinden,

Mehr

Mathematik: Mag. Schmid Wolfgang Arbeitsblatt 8 2. Semester ARBEITSBLATT 8 DIE REELLEN ZAHLEN

Mathematik: Mag. Schmid Wolfgang Arbeitsblatt 8 2. Semester ARBEITSBLATT 8 DIE REELLEN ZAHLEN Mathematik: Mag. Schmid Wolfgang Arbeitsblatt 8. Semester ARBEITSBLATT 8 DIE REELLEN ZAHLEN Bisher kennen wir bereits folgende Zahlenbereiche: N Natürliche Zahlen Z Ganze Zahlen Q Rationale Zahlen Bei

Mehr

Reelle Zahlen (R)

Reelle Zahlen (R) Reelle Zahlen (R) Bisher sind bekannt: Natürliche Zahlen (N): N {,,,,,6... } Ganze Zahlen (Z): Z {...,,,0,,,... } Man erkennt: Rationale Zahlen (Q):.) Zwischen den natürlichen Zahlen befinden sich große

Mehr

Mathematik Quadratwurzel und reelle Zahlen

Mathematik Quadratwurzel und reelle Zahlen Mathematik Quadratwurzel und reelle Zahlen Grundwissen und Übungen a : a a Stefan Gärtner 1999 004 Gr Mathematik elementare Algebra Seite Inhalt Inhaltsverzeichnis Seite Grundwissen Definition Quadratwurzel

Mehr

Gruber I Neumann. Erfolg in VERA-8. Vergleichsarbeit Mathematik Klasse 8 Gymnasium

Gruber I Neumann. Erfolg in VERA-8. Vergleichsarbeit Mathematik Klasse 8 Gymnasium Gruber I Neumann Erfolg in VERA-8 Vergleichsarbeit Mathematik Klasse 8 Gymnasium . Zahlen Zahlen Tipps ab Seite, Lösungen ab Seite 0. Zahlen und Zahlenmengen Es gibt verschiedene Zahlenarten, z.b. ganze

Mehr

Michael Körner. Grundwissen Wurzeln und Potenzen Klasse VORSCHAU. Bergedorfer Kopiervorlagen. zur Vollversion

Michael Körner. Grundwissen Wurzeln und Potenzen Klasse VORSCHAU. Bergedorfer Kopiervorlagen. zur Vollversion Michael Körner Grundwissen Wurzeln und Potenzen 5.-10. Klasse Bergedorfer Kopiervorlagen Zu diesem Material Zu dieser Mappe Was sind Wurzeln? Wozu benötigt man Potenzen? Wieso gelten die Potenzgesetze

Mehr

4 Wurzeln, Dezimalzahlen und schon wieder eine neue Menge Die reellen Zahlen

4 Wurzeln, Dezimalzahlen und schon wieder eine neue Menge Die reellen Zahlen Ma th ef it 4 Wurzeln, Dezimalzahlen und schon wieder eine neue Menge Die reellen Zahlen Tom und Sara werden jeden Tag von einem Schüler/innen-Lotsen über einen Zebrastreifen vor der Schule geleitet. Sara

Mehr

Demo-Text für Quadratwurzeln ALGEBRA. Teil 1. Einführung und Grundeigenschaften. (Klasse 8 / 9) Friedrich W.

Demo-Text für  Quadratwurzeln ALGEBRA. Teil 1. Einführung und Grundeigenschaften. (Klasse 8 / 9) Friedrich W. Teil 1 Einführung und Grundeigenschaften (Klasse 8 / 9) Datei Nr. 101 Friedrich W. Buckel Stand: 1. Mai 014 ALGEBRA Quadratwurzeln INTERNETBIBLIOTHEK FÜR SCHULMATHEMATIK Vorwort Die Einführung des 1-jährigen

Mehr

Mathematik-Dossier Potenzen und Wurzeln Stoffsicherung und repetition.

Mathematik-Dossier Potenzen und Wurzeln Stoffsicherung und repetition. Name: Mathematik-Dossier Potenzen und Wurzeln Stoffsicherung und repetition. Inhalt: Potenzen Die zweite Wurzel (Quadratwurzel) Verwendung: Dieses Dossier dient der Repetition und Festigung innerhalb der

Mehr

DOWNLOAD. Wurzeln. Quadratwurzeln, Wurzelgesetze, Wurzelziehen. Michael Körner. Downloadauszug aus dem Originaltitel: Grundwissen Wurzeln und Potenzen

DOWNLOAD. Wurzeln. Quadratwurzeln, Wurzelgesetze, Wurzelziehen. Michael Körner. Downloadauszug aus dem Originaltitel: Grundwissen Wurzeln und Potenzen DOWNLOAD Michael Körner Wurzeln Quadratwurzeln, Wurzelgesetze, Wurzelziehen Michael Körner Grundwissen Wurzeln und Potenzen 5. 0. Klasse Bergedorfer Kopiervorlagen Downloadauszug aus dem Originaltitel:

Mehr

Übungsbeispiele- Mathematik 2. Schularbeit, am

Übungsbeispiele- Mathematik 2. Schularbeit, am 011 Übungsbeispiele- Mathematik. Schularbeit, am 7.1.011 M 3b/I. KL, KV 1.11.011 . Schularbeit: MTHEMTIK KL.: M3b/I. - S. 1) Ergänze die Tabelle! a 1 3 4 5 6 7 8 9 10 a ) Fasse zusammen und schreibe als

Mehr

1.2 Mengenlehre-Einführung in die reellen Zahlen

1.2 Mengenlehre-Einführung in die reellen Zahlen .2 Mengenlehre-Einführung in die reellen Zahlen Inhaltsverzeichnis Repetition 2 2 Dezimalzahlen 3 3 weitere irrationale Zahlen 4 3. Zusatz: Der Beweis, dass 2 irrational ist.......................... 5

Mehr

Tandembogen und Irrgarten eine Einführung der irrationalen Zahlen. Irmgard Letzner, Berlin. M 1 Die rationalen Zahlen Brüche würfeln und berechnen

Tandembogen und Irrgarten eine Einführung der irrationalen Zahlen. Irmgard Letzner, Berlin. M 1 Die rationalen Zahlen Brüche würfeln und berechnen S 1 Tandembogen und Irrgarten eine Einführung der irrationalen Zahlen Irmgard Letzner, Berlin M 1 Die rationalen Zahlen Brüche würfeln und berechnen Ein Würfelspiel für 2 Spieler Materialien r 2 Würfel

Mehr

(a+1) = a+12 12(b+6) 36. = 12b (a+4) 12(a-2) = 12a+48. 3a b a. kürzen mit 19 (=ggt) k)

(a+1) = a+12 12(b+6) 36. = 12b (a+4) 12(a-2) = 12a+48. 3a b a. kürzen mit 19 (=ggt) k) Lösungen Mathematik Dossier Rechnen mit Varilen a) Erweitern mit Bruch (-) (-) 6 a+ b+6 a+ a- 6 (a+) 6 a+ (b+6) b+ (a+) (a-) a+ a-6 6 0 (a+) a+ (b+6) 6 b+ 6 (a+) (a-) a+ a- (-0) (-0) (-) (-) (-0) (-)(a+)

Mehr

Mathematik für Naturwissenschaftler I WS 2009/2010

Mathematik für Naturwissenschaftler I WS 2009/2010 Mathematik für Naturwissenschaftler I WS 2009/2010 Lektion 4 23. Oktober 2009 Kapitel 1. Mengen, Abbildungen und Funktionen (Fortsetzung) Berechnung der Umkehrfunktion 1. Man löst die vorgegebene Funktionsgleichung

Mehr

Zahlen und elementares Rechnen (Teil 1)

Zahlen und elementares Rechnen (Teil 1) und elementares Rechnen (Teil 1) Dr. Christian Serpé Universität Münster 6. September 2010 Dr. Christian Serpé (Universität Münster) und elementares Rechnen (Teil 1) 6. September 2010 1 / 40 Gliederung

Mehr

Download. Hausaufgaben Potenzen und Wurzeln. Üben in drei Differenzierungsstufen. Otto Mayr. Downloadauszug aus dem Originaltitel:

Download. Hausaufgaben Potenzen und Wurzeln. Üben in drei Differenzierungsstufen. Otto Mayr. Downloadauszug aus dem Originaltitel: Download Otto Mayr Hausaufgaben Potenzen und Wurzeln Üben in drei Differenzierungsstufen Downloadauszug aus dem Originaltitel: Hausaufgaben Potenzen und Wurzeln Üben in drei Differenzierungsstufen Dieser

Mehr

Unterrichtsmaterialien in digitaler und in gedruckter Form. Auszug aus: Grundwissen Mathematik - Wurzeln und Potenzen

Unterrichtsmaterialien in digitaler und in gedruckter Form. Auszug aus: Grundwissen Mathematik - Wurzeln und Potenzen Unterrichtsmaterialien in digitaler und in gedruckter Form Auszug aus: Grundwissen Mathematik - Wurzeln und Potenzen Das komplette Material finden Sie hier: School-Scout.de Michael Körner Grundwissen Wurzeln

Mehr

Die folgenden Aufgaben stellen als Überblick die Grundlagen für einen erfolgreichen Start im EA-Kurs dar.

Die folgenden Aufgaben stellen als Überblick die Grundlagen für einen erfolgreichen Start im EA-Kurs dar. Die folgenden Aufgaben stellen als Überblick die Grundlagen für einen erfolgreichen Start im EA-Kurs dar. Es gelten der Stoff aus www.mathbu.ch 8+ resp. 9+. A00 Arithmetisches Rechnen / allgemeines Rechnen

Mehr

Grundwissen 9. Klasse 9/1. Grundwissen 9. Klasse 9/2

Grundwissen 9. Klasse 9/1. Grundwissen 9. Klasse 9/2 Grundwissen 9. Klasse 9/. Quadratwurzel Definition: a ist diejenige positive Zahl, deren Quadrat a ergibt: a =a z.b. 5=5 Bezeichnung: Die Zahl a unter der Wurzel heißt Radikand. Radikandenbedingung: a

Mehr

Zahlen und elementares Rechnen

Zahlen und elementares Rechnen und elementares Rechnen Christian Serpé Universität Münster 7. September 2011 Christian Serpé (Universität Münster) und elementares Rechnen 7. September 2011 1 / 51 Gliederung 1 2 Elementares Rechnen 3

Mehr

Curriculum Mathematik. Bereich Schulabschluss

Curriculum Mathematik. Bereich Schulabschluss Curriculum Mathematik Bereich Schulabschluss Im Folgenden finden Sie eine Übersicht über alle Lerneinheiten im Fach Mathematik. Das Fach Mathematik ist in Lernstufen, Kapitel, Lerneinheiten und Übungen

Mehr

Wiederholung der Algebra Klassen 7-10

Wiederholung der Algebra Klassen 7-10 PKG Oberstufe 0.07.0 Wiederholung der Algebra Klassen 7-0 06rr5 4. (a) Kürze so weit wie möglich: 4998 (b) Schreibe das Ergebnis als gemischte Zahl und als Dezimalbruch: (c) Schreibe das Ergebnis als Bruch:

Mehr

Corinne Schenka Vorkurs Mathematik WiSe 2012/13. Die kleineren Zahlbereiche sind jeweils Teilmengen von größeren Zahlbereichen:

Corinne Schenka Vorkurs Mathematik WiSe 2012/13. Die kleineren Zahlbereiche sind jeweils Teilmengen von größeren Zahlbereichen: 2. Zahlbereiche Besonderheiten und Rechengesetze Die kleineren Zahlbereiche sind jeweils Teilmengen von größeren Zahlbereichen: 2.1. Die natürlichen Zahlen * + besitzt abzählbar unendlich viele Elemente

Mehr

1 Mengen und Mengenoperationen

1 Mengen und Mengenoperationen 1 Mengen und Mengenoperationen Man kann verschiedene Objekte mit gemeinsamen Eigenschaften zu Mengen zusammenfassen. In der Mathematik kann man z.b. Zahlen zu Mengen zusammenfassen. Die Zahlen 0; 1; 2;

Mehr

Repetition Mathematik 6. Klasse (Zahlenbuch 6)

Repetition Mathematik 6. Klasse (Zahlenbuch 6) Repetition Mathematik 6. Klasse (Zahlenbuch 6) Grundoperationen / Runden / Primzahlen / ggt / kgv / Klammern 1. Berechne schriftlich: 2'097 + 18 6 16'009 786 481 274 69 d.) 40'092 : 78 2. Die Summe von

Mehr

I. Reelle Zahlen GRUNDWISSEN MATHEMATIK - 9. KLASSE

I. Reelle Zahlen GRUNDWISSEN MATHEMATIK - 9. KLASSE I. Reelle Zahlen 1. Die Menge der rationalen Zahlen und die Menge der irrationalen Zahlen bilden zusammen die Menge der reellen Zahlen. Nenne Beispiele für rationale und irrationale Zahlen.. Aus negativen

Mehr

Mathematik 4 Primarstufe

Mathematik 4 Primarstufe Mathematik 4 Primarstufe Handlungs-/Themenaspekte Bezüge zum Lehrplan 21 Die Übersicht zeigt die Bezüge zwischen den Themen des Lehrmittels und den Kompetenzen des Lehrplans 21. Es ist jeweils diejenige

Mehr

Reell : rational irrational 13

Reell : rational irrational 13 Reell : rational irrational -0 5 Mögliche : Reelle Zahlen sind alle Zahlen innerhalb des dunkelblauen Ovals. azu gehören also auch alle rationalen Zahlen. Rationale Zahlen sind alle Zahlen innerhalb des

Mehr

1 Grundwissen 6 2 Dezimalbrüche (Dezimalzahlen) 9 3 Brüche 11 4 Rationale Zahlen 16 5 Potenzen und Wurzeln 20 6 Größen und Schätzen 24

1 Grundwissen 6 2 Dezimalbrüche (Dezimalzahlen) 9 3 Brüche 11 4 Rationale Zahlen 16 5 Potenzen und Wurzeln 20 6 Größen und Schätzen 24 Inhalt A Grundrechenarten Grundwissen 6 Dezimalbrüche (Dezimalzahlen) 9 Brüche Rationale Zahlen 6 5 Potenzen und Wurzeln 0 6 Größen und Schätzen B Zuordnungen Proportionale Zuordnungen 8 Umgekehrt proportionale

Mehr

2 ZAHLEN UND VARIABLE

2 ZAHLEN UND VARIABLE Zahlen und Variable 2 ZAHLEN UND VARIABLE 2.1 Grundlagen der Mengenlehre Unter einer Menge versteht man die Zusammenfassung von unterscheidbaren Objekten zu einem Ganzen. Diese Objekte bezeichnet man als

Mehr

Addition und Subtraktion Addieren heißt zusammenzählen, plus rechnen oder die Summe bilden.

Addition und Subtraktion Addieren heißt zusammenzählen, plus rechnen oder die Summe bilden. 1 Grundwissen Rechenarten Addition und Subtraktion Addieren heißt zusammenzählen, plus rechnen oder die Summe bilden. 418 + 2 987 = 3 405 + 2 987 418 Umkehraufgabe 3 405 Summe Ergebnis der Summe 2 987

Mehr

Quadratwurzel. Wie lassen sich die Zahlen auf dem oberen und unteren Notizzettel einander sinnvoll zuordnen?

Quadratwurzel. Wie lassen sich die Zahlen auf dem oberen und unteren Notizzettel einander sinnvoll zuordnen? 1. Zahlenpartner Quadratwurzel Wie lassen sich die Zahlen auf dem oberen und unteren Notizzettel einander sinnvoll zuordnen? Quelle: Schnittpunkt 9 (1995) Variationen: (a) einfachere Zahlen (b) ein weiteres

Mehr

Ein Bruchteil vom Ganzen lässt sich mit Hilfe von Bruchzahlen darstellen. Bsp.: Ganzes: 20 Kästchen

Ein Bruchteil vom Ganzen lässt sich mit Hilfe von Bruchzahlen darstellen. Bsp.: Ganzes: 20 Kästchen Grundwissen Mathematik G8 6. Klasse Zahlen. Brüche.. Bruchteile und Bruchzahlen Ein Bruchteil vom Ganzen lässt sich mit Hilfe von Bruchzahlen darstellen. Ganzes: 0 Kästchen 6 6 graue Kästchen, also: 0

Mehr

Erwachsenenschule Bremen Abteilung I: Sekundarstufe Doventorscontrescarpe 172 A Bremen. Die Kursübersicht für das Fach Mathematik

Erwachsenenschule Bremen Abteilung I: Sekundarstufe Doventorscontrescarpe 172 A Bremen. Die Kursübersicht für das Fach Mathematik Erwachsenenschule Bremen Abteilung I: Sekundarstufe Doventorscontrescarpe 172 A 28195 Bremen Die Kursübersicht für das Fach Mathematik Erwachsenenschule Bremen Abteilung I: Sekundarstufe Doventorscontrescarpe

Mehr

perfekt für Klassenarbeiten Videos zu jeder Übungsaufgabe alle Themen sehr übersichtlich alle Anforderungsbereiche StrandMathe GbR

perfekt für Klassenarbeiten Videos zu jeder Übungsaufgabe alle Themen sehr übersichtlich alle Anforderungsbereiche StrandMathe GbR perfekt für Klassenarbeiten Videos zu jeder Übungsaufgabe alle Themen sehr übersichtlich alle Anforderungsbereiche Unsere Übungshefte sind für alle Schülerinnen und Schüler, die keine Lust auf 300-seitige

Mehr

Jahresplanung 1.Klasse 100% Mathematik

Jahresplanung 1.Klasse 100% Mathematik Jahresplanung 1.Klasse 100% Mathematik Unterrichtswoche Schuljahr 2015/2016 Kapitel Seitentitel Schulbuchseiten 1 - Wiederholung von Lerninhalten der Volksschule 2 1 Statistik Wie viele Geschwister hast

Mehr

Name: Klasse: Datum: 2 Überlege, bei welchen Längenberechnungen du den pythagoräischen Lehrsatz anwenden kannst.

Name: Klasse: Datum: 2 Überlege, bei welchen Längenberechnungen du den pythagoräischen Lehrsatz anwenden kannst. Mach mit Mathematik 4: Wiederholung aus der 3. Klasse Name: Klasse: Datum: 1 Berechne den Flächeninhalt des rechtwinkligen Dreiecks. Der rechte Winkel ist bei Punkt C. Kreuze danach die richtige Lösung

Mehr

2. Schularbeit Mathematik 3 10./11. Dezember 2015

2. Schularbeit Mathematik 3 10./11. Dezember 2015 2. Schularbeit Mathematik 3 10./11. Dezember 2015 Name: Klasse: Wichtige Anmerkungen: Rechne OHNE Taschenrechner! Schreibe alle Rechenwege oder Nebenrechnungen übersichtlich auf! Ergebnisse ohne Nebenrechnung,

Mehr

Jahresplanung. Jahresplanung

Jahresplanung. Jahresplanung Jahresplanung Reihenfolge und Zeitbedarf der Themenblöcke in der Jahresplanung haben Vorschlagscharakter und müssen an die individuellen Bedürfnisse, die Länge des es, Ferienzeiten und besondere inhaltliche

Mehr

Tag der Mathematik 2013

Tag der Mathematik 2013 Tag der Mathematik 2013 Gruppenwettbewerb Allgemeine Hinweise: Als Hilfsmittel dürfen nur Schreibzeug, Geodreieck und Zirkel benutzt werden. Taschenrechner sind nicht zugelassen. Teamnummer Die folgende

Mehr

Stoffverteilungsplan Mathematik 6 auf der Grundlage der Kerncurricula 2005 Schnittpunkt 6 Klettbuch KGS Schneverdingen

Stoffverteilungsplan Mathematik 6 auf der Grundlage der Kerncurricula 2005 Schnittpunkt 6 Klettbuch KGS Schneverdingen Kompetenzen Inhalte Schnittpunkt 6 nehmen Probleme als Herausforderung an nutzen das Buch zur Informationsbeschaffung übertragen Lösungsbeispiele auf neue Aufgaben stellen das Problem anders dar ebener

Mehr

1.Weiterentwicklung der Zahlvorstellung 1.1.Bruchteile und Bruchzahlen

1.Weiterentwicklung der Zahlvorstellung 1.1.Bruchteile und Bruchzahlen Grundwissen Mathematik 6.Klasse Gymnasium SOB.Weiterentwicklung der Zahlvorstellung..Bruchteile und Bruchzahlen 3 des Kreises ist rot, des Kreises ist blau gefärbt. Über dem Bruchstrich steht der Zähler,

Mehr

Potenzen - Wurzeln - Logarithmen

Potenzen - Wurzeln - Logarithmen Potenzen - Wurzeln - Logarithmen Anna Geyer 4. Oktober 2006 1 Potenzrechnung Potenz Produkt mehrerer gleicher Faktoren 1.1 Definition (Potenz): (i) a n : a... a, n N, a R a... Basis n... Exponent od. Hochzahl

Mehr

1.2 Rechnen mit Termen II

1.2 Rechnen mit Termen II 1.2 Rechnen mit Termen II Inhaltsverzeichnis 1 Ziele 2 2 Potenzen, bei denen der Exponent negativ oder 0 ist 2 3 Potenzregeln 3 4 Terme mit Wurzelausdrücken 4 5 Wurzelgesetze 4 6 Distributivgesetz 5 7

Mehr

Zahlen und Funktionen

Zahlen und Funktionen Kapitel Zahlen und Funktionen. Mengen und etwas Logik Aufgabe. : Kreuzen Sie an, ob die Aussagen wahr oder falsch sind:. Alle ganzen Zahlen sind auch rationale Zahlen.. R beschreibt die Menge aller natürlichen

Mehr

Übungsbuch Algebra für Dummies

Übungsbuch Algebra für Dummies ...für Dummies Übungsbuch Algebra für Dummies von Mary Jane Sterling, Alfons Winkelmann 1. Auflage Wiley-VCH Weinheim 2012 Verlag C.H. Beck im Internet: www.beck.de ISBN 978 3 527 70800 0 Zu Leseprobe

Mehr

M 6.1. Brüche. Benenne die Teile eines Bruches. Veranschauliche den Bruch in einem Kreisdiagramm.

M 6.1. Brüche. Benenne die Teile eines Bruches. Veranschauliche den Bruch in einem Kreisdiagramm. M 6.1 Brüche Benenne die Teile eines Bruches. Veranschauliche den Bruch in einem Kreisdiagramm. Welchem Anteil entspricht ein Stück der Schokoladentafel? M 6.2 Erweitern und Kürzen Wie erweitert man einen

Mehr

M 6.1 M 6.2. Brüche. Prozentschreibweise. Benenne die Teile eines Bruches. Veranschauliche den Bruch in einem Kreisdiagramm.

M 6.1 M 6.2. Brüche. Prozentschreibweise. Benenne die Teile eines Bruches. Veranschauliche den Bruch in einem Kreisdiagramm. M 6.1 Brüche Benenne die Teile eines Bruches. Veranschauliche den Bruch in einem Kreisdiagramm. = Welchem Anteil entspricht ein Stück der Schokoladentafel? M 6.2 Prozentschreibweise Was bedeutet Prozent?

Mehr

Zentrale Abschlussprüfung 10 Gymnasiales Niveau für die Gesamtschule Mathematik (A)

Zentrale Abschlussprüfung 10 Gymnasiales Niveau für die Gesamtschule Mathematik (A) Die Senatorin für Bildung und Wissenschaft Freie Hansestadt Bremen Zentrale Abschlussprüfung 10 Gymnasiales Niveau für die Gesamtschule 2010 Mathematik (A) Teil 1 Taschenrechner und Formelsammlung sind

Mehr

Rechendreiecke Ich erkenne einfache Formen aus der Umwelt, beschreibe und benenne sie: Rechteck, Dreieck, Kreis, Quadrat

Rechendreiecke Ich erkenne einfache Formen aus der Umwelt, beschreibe und benenne sie: Rechteck, Dreieck, Kreis, Quadrat Mathematik 1. Klasse EBENE UND RAUM Gegenstandsmengen zählen, vergleichen und Ich orientiere und positioniere mich im Raum (links, rechts, oben, unten) und bewege mich zielorientiert. Zahlenraum 20/30

Mehr

Informationsblatt für den Einstieg ins 1. Mathematikjahr AHS

Informationsblatt für den Einstieg ins 1. Mathematikjahr AHS Informationsblatt für den Einstieg ins 1. Mathematikjahr AHS Stoff für den Einstufungstest Mathematik in das 1. Jahr AHS: Mit und ohne Taschenrechner incl. Vorrangregeln ( Punkt vor Strich, Klammern, ):

Mehr

Grundwissen Mathematik 6. Klasse

Grundwissen Mathematik 6. Klasse Themen Brüche Eigenschaften Besonderheiten - Beispiele Ein Bruchteil ist stets ein Teil eines Ganzen, zum Beispiel eine Hälfte, ein Drittel oder drei Viertel. Bruchteile stellt man mithilfe von Brüchen

Mehr

Serie 2. Algebra-Training. Potenzen und Wurzeln. Theorie & Aufgaben. VSGYM / Volksschule Gymnasium

Serie 2. Algebra-Training. Potenzen und Wurzeln. Theorie & Aufgaben. VSGYM / Volksschule Gymnasium Algebra-Training Theorie & Aufgaben Serie 2 Potenzen und Wurzeln Theorie und Aufgaben: Ronald Balestra, Katharina Lapadula VSGYM / Volksschule Gymnasium Liebe Schülerin, lieber Schüler Der Leitspruch «Übung

Mehr

Berechne schriftlich: a) b) Bilde selbst ähnliche Beispiele.

Berechne schriftlich: a) b) Bilde selbst ähnliche Beispiele. Basiswissen Mathematik Klasse 5 / 6 Seite 1 von 12 1 Berechne schriftlich: a) 538 + 28 b) 23 439 Bilde selbst ähnliche Beispiele. 2 Berechne schriftlich: a) 36 23 b) 989: 43 Bilde selbst ähnliche Beispiele.

Mehr

Fachcurriculum Mathematik (G8) MPG Klassen 5 und 6. Bildungsplan Bildungsstandards für Mathematik. Kern- und Schulcurriculum Klassen 5 und 6

Fachcurriculum Mathematik (G8) MPG Klassen 5 und 6. Bildungsplan Bildungsstandards für Mathematik. Kern- und Schulcurriculum Klassen 5 und 6 Bildungsplan 2004 Bildungsstandards für Mathematik Kern- und Klassen 5 und 6 Max-Planck-Gymnasium Böblingen 1 UE 1: Rechnen mit großen Zahlen UE 2: Messen und Auswerten natürliche Zahlen einfache Zehnerpotenzen

Mehr

Pangea Ablaufvorschrift

Pangea Ablaufvorschrift Pangea Mathematik-Wettbewerb 2011 Klassenstufe 7 Pangea Ablaufvorschrift Antwortbogen Überprüfung der Anmeldedaten Kennzeichnung (Beispiel) beachten! Prüfung Zur Beantwortung der 25 Fragen hast du 60 Minuten

Mehr

MATHEMATIK - LEHRPLAN UNTERSTUFE

MATHEMATIK - LEHRPLAN UNTERSTUFE INSTITUTO AUSTRIACO GUATEMALTECO MATHEMATIK - LEHRPLAN UNTERSTUFE Der Lehrplan für Mathematik wurde in Anlehnung an den österreichischen Lehrplan ( 11. Mai 2000 ) erstellt. Durch die Verwendung von österreichischen

Mehr

GS Rethen. Themenzuordnung. Zu erwerbende Kompetenzen am Ende von Jahrgang 4: Die Schülerinnen und Schüler

GS Rethen. Themenzuordnung. Zu erwerbende Kompetenzen am Ende von Jahrgang 4: Die Schülerinnen und Schüler GS Rethen Kompetenzorientierung Fach: Mathematik Zu erwerbende Kompetenzen am Ende von Jahrgang 4: Die Schülerinnen und Schüler - verwenden eingeführte mathematische Fachbegriffe sachgerecht. - erläutern

Mehr

Repetition Mathematik 7. Klasse

Repetition Mathematik 7. Klasse Repetition Mathematik 7. Klasse 1. Ein neugeborenes Kätzchen wiegt bei der Geburt durchschnittlich 100g. Es nimmt in den ersten 8 Wochen pro Woche 60g zu. Wie viel beträgt nachher die Gewichtszunahme pro

Mehr

II* III* IV* Niveau das kann ich das kann er/sie. Mein Bericht, Kommentar (Einsatz, Schwierigkeiten, Fortschritte, Zusammenarbeit) Name:... Datum:...

II* III* IV* Niveau das kann ich das kann er/sie. Mein Bericht, Kommentar (Einsatz, Schwierigkeiten, Fortschritte, Zusammenarbeit) Name:... Datum:... Titel MB 7 LU Nr nhaltliche Allg. Buch Arbeitsheft AB V* Mit Kopf, Hand und Taschenrechner MB 7 LU 3 nhaltliche Allg. Buch Arbeitsheft AB einfache Rechnungen im Kopf lösen und den TR sinnvoll einsetzen

Mehr

Treffpunkte für die kantonale Vergleichsarbeit der 6. Klassen. Mathematik

Treffpunkte für die kantonale Vergleichsarbeit der 6. Klassen. Mathematik Treffpunkte für die kantonale Vergleichsarbeit der 6. Klassen Mathematik Solothurn, 21. Mai 2012 1 Arithmetik 1.1 Natürliche Zahlen 1.1.1 Die Sch können natürliche Zahlen lesen und schreiben. S. 6/7 S.

Mehr

Anhang 6. Eingangstest II. 1. Berechnen Sie den Durchschnitt von 6 + 3,9 + 12, 0 = 2. Berechnen Sie: : = 3. Berechnen Sie: = 3 und 6

Anhang 6. Eingangstest II. 1. Berechnen Sie den Durchschnitt von 6 + 3,9 + 12, 0 = 2. Berechnen Sie: : = 3. Berechnen Sie: = 3 und 6 Anhang 6 Eingangstest II 1. Berechnen Sie den Durchschnitt von 6 + 3,9 + 12, 0 = 8 4 2. Berechnen Sie: : = 3 1 2x x 3. Berechnen Sie: = 9 9 4. Wie groß ist die Summe von 4 3 und 6?. Berechnen Sie: 3 (

Mehr

Das Jahr der Mathematik

Das Jahr der Mathematik Das Jahr der Mathematik Eine mathematische Sammlung - kinderleicht Thomas Ferber Forschung und Lehre Sun Microsystems GmbH Die Themen 1 2 Sind die Zahlen universell? π-day 3 Die Eine Million $-Frage 4

Mehr

Jgst. 5 Fach Mathematik Lehrwerk: Elemente der Mathematik 5

Jgst. 5 Fach Mathematik Lehrwerk: Elemente der Mathematik 5 Jgst. 5 Fach Mathematik Lehrwerk: Elemente der Mathematik 5 3 pro (maximal 45 Minuten) Rechnen mit natürlichen Zahlen; Darstellung natürlicher Zahlen und einfacher Bruchteile; Rechnen mit Größen Maßstabsverhältnisse;

Mehr

Buch Medien / Zuordnung zu den Kompetenzbereichen Seite Methoden inhaltsbezogen prozessbezogen

Buch Medien / Zuordnung zu den Kompetenzbereichen Seite Methoden inhaltsbezogen prozessbezogen Quadratwurzel Reelle Zahlen Quadratwurzeln Reelle Zahlen Zusammenhang zwischen Wurzelziehen und Quadrieren Rechenregeln Umformungen (Bd. Kl. 9) 7 46 8 18 19 20 21 24 25 29 30 34 + 2 mit Excel Beschreiben

Mehr

3 Zahlen und Arithmetik

3 Zahlen und Arithmetik In diesem Kapitel werden Zahlen und einzelne Elemente aus dem Bereich der Arithmetik rekapituliert. Insbesondere werden die reellen Zahlen eingeführt und einige Rechenregeln wie Potenzrechnung und Logarithmieren

Mehr

Wurzeln als Potenzen mit gebrochenen Exponenten. Vorkurs, Mathematik

Wurzeln als Potenzen mit gebrochenen Exponenten. Vorkurs, Mathematik Wurzeln als Potenzen mit gebrochenen Exponenten Zur Einstimmung Wir haben die Formel benutzt x m n = x m n nach der eine Exponentialzahl potenziert wird, indem man die Exponenten multipliziert. Dann sollte

Mehr

Modulare Förderung Mathematik

Modulare Förderung Mathematik 1) 1 Umfang und Fläche begrifflich verstehen Welche Aussagen stimmen? Kreuze an. Der Umfang einer Figur ist immer größer als sein Flächeninhalt. Der Flächeninhalt wird kleiner, wenn ich eine Fläche zerschneide

Mehr

Grundwissen 5 - Aufgaben Seite Gegeben sind die drei (graugetönten) Figuren A, B und C (vergleiche Abbildung).

Grundwissen 5 - Aufgaben Seite Gegeben sind die drei (graugetönten) Figuren A, B und C (vergleiche Abbildung). Grundwissen 5 - Aufgaben 22.01.2016 Seite 1 1. Gegeben sind die drei (graugetönten) Figuren A, B und C (vergleiche Abbildung). a) Gib an, welche dieser drei Figuren den größten und welche den kleinsten

Mehr

Eignungstest Mathematik

Eignungstest Mathematik Eignungstest Mathematik Klasse 3 Name: Datum: Von Punkten hast du Punkte erreicht Zensur: 1. Kreuze jeweils die richtigen se (Umrechnungen) an! 2. Ergänze jeweils! Gib jeweils unbedingt die entsprechende

Mehr

Grundlage ist das Lehrbuch Fundamente der Mathematik, Cornelsen Verlag, ISBN

Grundlage ist das Lehrbuch Fundamente der Mathematik, Cornelsen Verlag, ISBN Schulinternes Curriculum der Klasse 8 am Franz-Stock-Gymnasium (vorläufige Version, Stand: 20.08.16) Grundlage ist das Lehrbuch, Cornelsen Verlag, ISBN 978-3-06-040323-3 ca. 6 Wochen Kapitel I: Terme Terme

Mehr

Kern- und Schulcurriculum Mathematik Klasse 5/6. Stand Schuljahr 2009/10

Kern- und Schulcurriculum Mathematik Klasse 5/6. Stand Schuljahr 2009/10 Kern- und Schulcurriculum Mathematik Klasse 5/6 Stand Schuljahr 2009/10 Klasse 5 UE 1 Natürliche en und Größen Große en Zweiersystem Römische en Anordnung, Vergleich Runden, Bilddiagramme Messen von Länge

Mehr

Repetitionsaufgaben Wurzelgleichungen

Repetitionsaufgaben Wurzelgleichungen Repetitionsaufgaben Wurzelgleichungen Inhaltsverzeichnis A) Vorbemerkungen B) Lernziele C) Theorie mit Aufgaben D) Aufgaben mit Musterlösungen 4 A) Vorbemerkungen Bitte beachten Sie: Bei Wurzelgleichungen

Mehr

5. 7. Brüche und Dezimalzahlen. Mathematik. Das 3-fache Training für bessere Noten: Klasse. Klasse

5. 7. Brüche und Dezimalzahlen. Mathematik. Das 3-fache Training für bessere Noten: Klasse. Klasse Das 3-fache Training für bessere Noten: WISSEN ÜBEN TESTEN Die wichtigsten Regeln zum Thema Brüche und Dezimalzahlen mit passenden Beispielen verständlich erklärt Zahlreiche Übungsaufgaben in drei Schwierigkeitsstufen

Mehr

Stunden Inhalte Mathematik 9 978-3-14-121839-8 Inhaltsbezogene Kompetenzen Prozessbezogene Kompetenzen 1 Zentrische Streckung

Stunden Inhalte Mathematik 9 978-3-14-121839-8 Inhaltsbezogene Kompetenzen Prozessbezogene Kompetenzen 1 Zentrische Streckung 1 Zentrische Streckung Bauzeichnungen 8 vergrößern und verkleinern einfache nutzen Geometriesoftware zum Erkunden Maßstäbliches Vergrößern und Verkleinern 10 Figuren maßstabsgetreu inner- und außer- Ähnliche

Mehr

Mathematik - Ein Lehr- und Übungsbuch

Mathematik - Ein Lehr- und Übungsbuch Die wichtigsten Lehrbücher bei HD Mathematik - Ein Lehr- und Übungsbuch Band : Arithmetik, Algebra, Mengen- und Funktionenlehre Bearbeitet von Carsten Gellrich, Regina Gellrich 4., korr. Aufl. 006. Buch.

Mehr

Minimalziele Mathematik

Minimalziele Mathematik Jahrgang 5 o Kopfrechnen, Kleines Einmaleins o Runden und Überschlagrechnen o Schriftliche Grundrechenarten in den Natürlichen Zahlen (ganzzahliger Divisor, ganzzahliger Faktor) o Umwandeln von Größen

Mehr

2. Gleichwertige Darstellung von Zahlen als Bruchzahlen, Dezimalbrüche oder Prozentzahlen

2. Gleichwertige Darstellung von Zahlen als Bruchzahlen, Dezimalbrüche oder Prozentzahlen Grundwissen Klasse 6 I. Bruchzahlen 1. Sicheres Umgehen mit Bruchzahlen - Brüche als Anteil verstehen - Brüche am Zahlenstrahl darstellen - Brüche erweitern / kürzen können (Mathehelfer1: S.16/17) Aufgabe

Mehr

MATHEMATIK 7. Schulstufe Schularbeiten

MATHEMATIK 7. Schulstufe Schularbeiten MATHEMATIK 7. Schulstufe Schularbeiten 1. S c h u l a r b e i t Grundrechnungsarten mit ganzen Zahlen Koordinatensystem rationale Zahlen Prozentrechnung a) Berechne: [( 26) : (+ 2) ( 91) : ( 7)] + ( 12)

Mehr

Bruchzahlen Herbert Paukert Die Grundlagen [ 02 ] 2. Kürzen und Erweitern [ 14 ] 3. Addieren und Subtrahieren [ 24 ]

Bruchzahlen Herbert Paukert Die Grundlagen [ 02 ] 2. Kürzen und Erweitern [ 14 ] 3. Addieren und Subtrahieren [ 24 ] Bruchzahlen Herbert Paukert 1 DIE BRUCHZAHLEN Version 2.0 Herbert Paukert 1. Die Grundlagen [ 02 ] 2. Kürzen und Erweitern [ 14 ] 3. Addieren und Subtrahieren [ 24 ] 4. Multiplizieren und Dividieren [

Mehr

Arbeitsblatt Mathematik

Arbeitsblatt Mathematik Teste dich! - (/6) Schreibe mithilfe von Potenzen. a) ( 5) ( 5) ( 5) ( 5) b) a a a a a a b b b c) r r r r 0 Cornelsen Verlag, Berlin. Alle Rechte vorbehalten. Berechne ohne Taschenrechner. a) 9 0 5 b)

Mehr

1. Schularbeit Stoffgebiete:

1. Schularbeit Stoffgebiete: 1. Schularbeit Stoffgebiete: Terme binomische Formeln lineare Gleichungen mit einer Variablen Maschine A produziert a Werkstücke, davon sind 2 % fehlerhaft, Maschine B produziert b Werkstücke, davon sind

Mehr

r)- +"1. ([+ ax1 8t1 1. Klammere alle gemeinsamen Faktoren aus. 1Bx2y3-2axtf 2. Multipliziere aus:

r)- +1. ([+ ax1 8t1 1. Klammere alle gemeinsamen Faktoren aus. 1Bx2y3-2axtf 2. Multipliziere aus: Seite 1 von 22 8t1 1. Klammere alle gemeinsamen Faktoren aus. 1Bx2y3-2axtf Multipliziere aus: r)- +"1. ([+ ax1 Venvandle mit Hilfe einer binomischen Formel in ein Produkt. 9a2-30ab'+ ba In einem Dreieck

Mehr

1. Mathematik-Schularbeit für die 5. Klasse Autor: Gottfried Gurtner

1. Mathematik-Schularbeit für die 5. Klasse Autor: Gottfried Gurtner 1. Mathematik-Schularbeit für die 5. Klasse Autor: Gottfried Gurtner Arbeitszeit: 50 Minuten Lernstoff: Mathematische Grundkompetenzen: AG1.1 Wissen über die Zahlenmengen,,, verständig einsetzen können

Mehr

Zahlenmengenerweiterung Von den rationalen Zahlen zu den irrationalen Zahlen

Zahlenmengenerweiterung Von den rationalen Zahlen zu den irrationalen Zahlen Zahlenmengenerweiterung Von den rationalen Zahlen zu den irrationalen Zahlen Inhalte Heron-Verfahren Iteration Näherungsverfahren Irrationale Zahlen Überprüfungsmöglichkeiten Themenbereich Heron -Verfahren

Mehr

Arbeitsheft + weitere Aufgaben «Zusatzanforderungen» 401 Bestimme a, b, c, x, y, z und w. 6 = 1 : c c = 16, 6 % = 0,1

Arbeitsheft + weitere Aufgaben «Zusatzanforderungen» 401 Bestimme a, b, c, x, y, z und w. 6 = 1 : c c = 16, 6 % = 0,1 18 Prozente A518-04 1 6 1 Bestimme a, b, c, x, y, z und w. A 12,5 % = 125 = 1 : a a = B b % = 015 = 3 : 200 b = C 16, 6 % = 1 6 = 1 : c c = D x % = y = 7 : 20 x = y = E 1_ 4 % = z = 1 : w z = w = 2 Berechne

Mehr

Grundwissen. 5. Jahrgangsstufe. Mathematik

Grundwissen. 5. Jahrgangsstufe. Mathematik Grundwissen 5. Jahrgangsstufe Mathematik Grundwissen Mathematik 5. Jahrgangsstufe Seite 1 1 Natürliche Zahlen 1.1 Große Zahlen und Zehnerpotenzen eine Million = 1 000 000 = 10 6 eine Milliarde = 1 000

Mehr

Mathematik-Dossier 1 Die Welt der rationalen Zahlen (angepasst an das Lehrmittel Mathematik 2)

Mathematik-Dossier 1 Die Welt der rationalen Zahlen (angepasst an das Lehrmittel Mathematik 2) Name: Mathematik-Dossier 1 Die Welt der rationalen Zahlen (angepasst an das Lehrmittel Mathematik 2) Inhalt: Brüche und ihre Eigenschaften: Kurze Repetition Erweitern und Kürzen von Brüchen Ordnung der

Mehr

Grundwissen. 6. Jahrgangsstufe. Mathematik

Grundwissen. 6. Jahrgangsstufe. Mathematik Grundwissen 6. Jahrgangsstufe Mathematik 1 Brüche Grundwissen Mathematik 6. Jahrgangsstufe Seite 1 1.1 Bruchteil 1.2 Erweitern und Kürzen Erweitern: Zähler und Nenner mit der selben Zahl multiplizieren

Mehr

Kompetenzen. Umfang eines Kreises Flächeninhalt eines Kreises Mathematische Reise: Die Kreiszahl. bearbeiten Sachaufgaben

Kompetenzen. Umfang eines Kreises Flächeninhalt eines Kreises Mathematische Reise: Die Kreiszahl. bearbeiten Sachaufgaben 1. Wiederholung aus Jg 8 und Vorbereitung auf den Einstellungstest 3 Wochen Seiten 206-228 2. Potenzen und Wurzeln Seiten 32-45 3. Kreisumfang und Kreisfläche Brüche und Dezimalzahlen Brüche und Dezimalzahlen:

Mehr

Lernmodul Bruchrechnen. Gemischte, unechte Brüche. Brüche: Addition, Subtraktion. Brüche multiplizieren. Kehrwert.

Lernmodul Bruchrechnen. Gemischte, unechte Brüche. Brüche: Addition, Subtraktion. Brüche multiplizieren. Kehrwert. Lernmodul Bruchrechnen Gemischte, unechte Brüche Brüche: Addition, Subtraktion Brüche multiplizieren Kehrwert Brüche dividieren Lernmodul Dezimalrechnung Dezimalzahlen addieren, subtrahieren Dezimalzahlen

Mehr

Mathematik Aufnahmeprüfung 2013 Profile m,n,s

Mathematik Aufnahmeprüfung 2013 Profile m,n,s Mathematik Aufnahmeprüfung 2013 Profile m,n,s Zeit: 2 Stunden. Rechner: TI30/TI34 oder vergleichbare. Hinweis: Der Lösungsweg muss nachvollziehbar sein, ansonsten werden keine Teilpunkte vergeben. Aufgabe

Mehr

1. Schularbeit R

1. Schularbeit R 1. Schularbeit 23.10.1997... 3R 1a) Stelle die Rechnung 5-3 auf der Zahlengerade durch Pfeile dar! Gibt es mehrere Möglichkeiten der Darstellung? Wenn ja, zeichne alle diese auf! 1b) Ergänze die Tabelle:

Mehr

b) Notieren Sie hier die Brüche aus der Tabelle, die sich noch kürzen lassen und kürzen Sie diese soweit als möglich: 1 2

b) Notieren Sie hier die Brüche aus der Tabelle, die sich noch kürzen lassen und kürzen Sie diese soweit als möglich: 1 2 Addieren und Subtrahieren gleichnamiger Brüche Addition gleichnamiger Brüche: Nenner übernehmen; Zähler addieren: Subtraktion gleichnamiger Brüche: Nenner übernehmen; Zähler subtrahieren. Füllen Sie die

Mehr

Aufgabe 2: Welche Brüche sind auf dem Zahlenstrahl durch die Pfeile gekennzeichnet? Schreibe die Brüche in die Kästen.

Aufgabe 2: Welche Brüche sind auf dem Zahlenstrahl durch die Pfeile gekennzeichnet? Schreibe die Brüche in die Kästen. Grundwissen Klasse 6 - Lösungen I. Bruchzahlen. Sicheres Umgehen mit Bruchzahlen Brüche als Anteil verstehen Brüche am Zahlenstrahl darstellen Brüche erweitern / kürzen können (Mathehelfer: S.6/7) Aufgabe

Mehr

Download. Basics Mathe Gleichungen mit Klammern und Binomen. Einfach und einprägsam mathematische Grundfertigkeiten wiederholen.

Download. Basics Mathe Gleichungen mit Klammern und Binomen. Einfach und einprägsam mathematische Grundfertigkeiten wiederholen. Download Michael Franck Basics Mathe Gleichungen mit Klammern und Binomen Einfach und einprägsam mathematische Grundfertigkeiten wiederholen Downloadauszug aus dem Originaltitel: Basics Mathe Gleichungen

Mehr

Quadrat. Rechteck. Rechteck. 1) Was ist hier falsch? 2) Welche Fläche entsteht? Zeichne zur Hilfe, wenn du möchtest! 3) Erkennst du die Fläche?

Quadrat. Rechteck. Rechteck. 1) Was ist hier falsch? 2) Welche Fläche entsteht? Zeichne zur Hilfe, wenn du möchtest! 3) Erkennst du die Fläche? So fit BIST du 1 1) Was ist hier falsch? 2) Welche Fläche entsteht? Zeichne zur Hilfe, wenn du möchtest! Quadrat 3) Erkennst du die Fläche? Rechteck 4) Versuch es gleich noch einmal: Rechteck 102 So fit

Mehr

Wurzelgleichungen. 1.1 Was ist eine Wurzelgleichung? 1.2 Lösen einer Wurzelgleichung. 1.3 Zuerst die Wurzel isolieren

Wurzelgleichungen. 1.1 Was ist eine Wurzelgleichung? 1.2 Lösen einer Wurzelgleichung. 1.3 Zuerst die Wurzel isolieren 1.1 Was ist eine Wurzelgleichung? Wurzelgleichungen Beispiel für eine Wurzelgleichung Eine Wurzelgleichung ist eine Gleichung bei der in mindestens einem Radikanten (Term unter der Wurzel) die Unbekannte

Mehr