5. Assoziationsregeln

Größe: px
Ab Seite anzeigen:

Download "5. Assoziationsregeln"

Transkript

1 5. Generieren von Assoziationsregeln Grundbegriffe 5. Assoziationsregeln Assoziationsregeln beschreiben gewisse Zusammenhänge und Regelmäßigkeiten zwischen verschiedenen Dingen, z.b. den Artikeln eines Warenhauses. Die Zusammenhänge sind allgemeiner Art und nicht notwendigerweise kausal bedingt. Man unterstellt aber, daß implizite strukturelle Abhängigkeiten vorliegen. Diese möchte man erkennen. Typischer Anwendungsbereich: Verkaufsdatenanalyse Maschinelles Lernen und unsicheres Wissen FH Bonn-Rhein-Sieg, WS 08/09 213

2 5. Generieren von Assoziationsregeln Grundbegriffe Itemmenge, Transaktion und Datenbasis Definition 5.1. Die Dinge, deren Beziehungen zueinander analysiert werden sollen, werden als Items bezeichnet. Es sei I = {i 1,...,i n } eine endliche Menge von Items. Eine Teilmenge X I heißt Itemmenge. Eine k-itemmenge ist eine Itemmenge mit k Elementen. Eine Transaktion t I ist eine Itemmenge. Die Datenbasis D = {d 1,...,d m } ist eine Menge von Transaktionen. Maschinelles Lernen und unsicheres Wissen FH Bonn-Rhein-Sieg, WS 08/09 214

3 5. Generieren von Assoziationsregeln Grundbegriffe Support Definition 5.2. Es sei X I eine Itemmenge. Der Support von X ist der Anteil aller Transaktionen aus D, die X enthalten: support(x) := {t D X t} D Beispiel 5.1. Bei der Verkaufsdatenanalyse eines Supermarktes sind Items die Artikel aus dem Sortiment. Die Transaktionen entsprechen den Einkäufen von Kunden. Die Datenbasis besteht aus den Einkäufen der Kunden eines bestimmten Zeitraums. Der Support der Itemmenge {Milch} ist dann der Anteil der Einkäufe, bei denen u.a. Milch gekauft wurde. Maschinelles Lernen und unsicheres Wissen FH Bonn-Rhein-Sieg, WS 08/09 215

4 5. Generieren von Assoziationsregeln Grundbegriffe Assoziationsregel Definition 5.3. Gegeben seien zwei disjunkte Itemmengen X, Y, also X,Y I und X Y =. Eine Assoziationsregel hat die Form X Y. Eine Transaktion erfüllt die Regel X Y gdw. X Y t gilt, d.h. t enthält alle Items der Assoziationsregel. Der Support von X Y ist der Support der Itemmenge X Y support(x Y) := support(x Y) Maschinelles Lernen und unsicheres Wissen FH Bonn-Rhein-Sieg, WS 08/09 216

5 5. Generieren von Assoziationsregeln Grundbegriffe Konfidenz Definition 5.4. Gegeben sei die Assoziationsregel X Y. Die Konfidenz von X Y confidence(x Y) ist definiert durch confidence(x Y) := = {t D X Y t} {t D X t} support(x Y) support(x) Bemerkung 5.1. Die Konfidenz ist eine bedingte relative Häufigkeit bzw. bedingte Wahrscheinlichkeit. Maschinelles Lernen und unsicheres Wissen FH Bonn-Rhein-Sieg, WS 08/09 217

6 5. Generieren von Assoziationsregeln Grundbegriffe Beispiel 5.2. Transaktion Items 1 Brot, Kaffee, Milch, Kuchen 2 Kaffee, Milch, Kuchen 3 Brot, Butter, Kaffee, Milch 4 Milch, Kuchen 5 Brot, Kuchen 6 Brot support({kaffee, Milch}) = 0.5 = 50% support({kaffee, Kuchen, Milch}) = 0.33 = 33% support({milch, Kaffee} {Kuchen}) = 0.33 = 33% confidence({milch, Kaffee} {Kuchen}) = 0.67 = 67% Maschinelles Lernen und unsicheres Wissen FH Bonn-Rhein-Sieg, WS 08/09 218

7 5. Generieren von Assoziationsregeln Apriori-Algorithmus Suche nach Assoziationsregeln Support und Konfidenz sind Parameter mit denen die Relevanz einer Regel beurteilt wird. Beide Maßzahlen sollten möglichst groß sein. Finde alle Assoziationsregeln, die in der betrachteten Datenbasis einen Support minsupp und eine Konfidenz minconf haben. Die Werte minsupp und minconf sind dabei benutzerdefiniert. Maschinelles Lernen und unsicheres Wissen FH Bonn-Rhein-Sieg, WS 08/09 219

8 5. Generieren von Assoziationsregeln Apriori-Algorithmus Das Problem wird in zwei Teilprobleme zerlegt: 1. Finde alle Itemmengen, deren Support minsupp ist. Diese Itemmengen heißen häufige Itemmengen (frequent itemsets). 2. Finde in jeder häufigen Itemmenge I alle Assoziationsregeln I I \ I mit I I und mit Konfidenz minconf. Die wesentliche Schwierigkeit besteht in der Lösung des ersten Teilproblems. Enthält die Menge I insgesamt n Items, so sind prinzipiell 2 n Itemmengen auf ihren Support hin zu untersuchen. Maschinelles Lernen und unsicheres Wissen FH Bonn-Rhein-Sieg, WS 08/09 220

9 5. Generieren von Assoziationsregeln Apriori-Algorithmus Apriori-Algorithmus Der sogenannte Apriori-Algorithmus nutzt folgendes bei der Suche nach häufigen Itemmengen aus: Für zwei Itemmengen I 1, I 2 mit I 1 I 2 gilt Somit folgt: support(i 2 ) support(i 1 ) Alle Teilmengen einer häufigen Itemmenge sind ebenfalls häufige Itemmengen. Alle Obermengen einer nicht häufigen Itemmenge sind ebenfalls nicht häufig. Maschinelles Lernen und unsicheres Wissen FH Bonn-Rhein-Sieg, WS 08/09 221

10 5. Generieren von Assoziationsregeln Apriori-Algorithmus Grober Ablauf des Apriori-Algorithmus: Der Apriori-Algorithmus bestimmt zunächst die einelementigen häufigen Itemmengen. In jedem weiteren Durchlauf werden die Obermengen mit k + 1 Elementen von häufigen k-itemmengen darauf untersucht, ob sie ebenfalls häufig sind. Die Obermengen der häufigen k-itemmengen werden mit dem Algorithmus AprioriGen ermittelt. Werden keine häufigen k+1-itemmengen mehr gefunden, bricht der Algorithmus ab. Voraussetzung: Itemmengen sind lexikographisch geordnet. Maschinelles Lernen und unsicheres Wissen FH Bonn-Rhein-Sieg, WS 08/09 222

11 5. Generieren von Assoziationsregeln Apriori-Algorithmus Algorithmus 5.1. [Apriori-Algorithmus] L 1 := { häufige 1-Itemmengen } k := 2 while L k 1 do C k := AprioriGen(L k 1 ) for all Transaktionen t D do C t := {c C k c t} for all Kandidaten c C t do c.count := c.count + 1 end end L k := {c C k c.count D minsupp} k := k + 1 end return k L k Maschinelles Lernen und unsicheres Wissen FH Bonn-Rhein-Sieg, WS 08/09 223

12 5. Generieren von Assoziationsregeln Apriori-Algorithmus Algorithmus 5.2. [AprioriGen] C k := for all p,q L k 1 mit p q do if p q = k 2 and p = {e 1,...,e k 2, e p } and q = {e 1,...,e k 2,e q } then C k := C k {e 1,...,e k 2, e p,e q } end for all c C k do for all (k 1)-Teilmengen s von c do if s / L k 1 then C k := C k \ {c} end end return C k Maschinelles Lernen und unsicheres Wissen FH Bonn-Rhein-Sieg, WS 08/09 224

13 5. Generieren von Assoziationsregeln Apriori-Algorithmus Beispiel 5.3. minsupp = 40% Transaktion Items 1 A C D 2 B C E 3 A B C E 4 B E C 1 Itemm. Support {A} 50% {B} 75% {C} 75% {D} 25% {E} 75% L 1 Itemm. Support {A} 50% {B} 75% {C} 75% {E} 75% Maschinelles Lernen und unsicheres Wissen FH Bonn-Rhein-Sieg, WS 08/09 225

14 5. Generieren von Assoziationsregeln Apriori-Algorithmus Itemm. {A,B} {A,C} {A,E} {B,C} {B,E} {C,E} C 2 Support C 2 Itemm. Support {A,B} 25% {A,C} 50% {A,E} 25% {B,C} 50% {B,E} 75% {C,E} 50% L 2 Itemm. Support {A,C} 50% {B,C} 50% {B,E} 75% {C,E} 50% Itemm. {B,C,E} C 3 Support C 3 Itemm. Support {B,C,E} 50% L 3 Itemm. Support {B,C,E} 50% Maschinelles Lernen und unsicheres Wissen FH Bonn-Rhein-Sieg, WS 08/09 226

15 5. Generieren von Assoziationsregeln Datenstrukturen für die Teilmengenoperation Unterstützung der Teilmengenoperation Im Apriori- und im AprioriGen-Algorithmus werden sehr häufig Teilmengen überprüft. Um diese Tests effizient durchführen zu können, werden die Kandidatenmengen in einem Hash-Baum verwaltet. Struktur eines Hash-Baums: Innerer Knoten: Hashtabelle bezüglich Hashfunktion h; Buckets der Hashtabelle verweisen auf die Sohnknoten. Blattknoten: enthält Liste von Itemmengen Maschinelles Lernen und unsicheres Wissen FH Bonn-Rhein-Sieg, WS 08/09 227

16 5. Generieren von Assoziationsregeln Datenstrukturen für die Teilmengenoperation Suchen einer Itemmenge X = {i 1,...,i k }: Innerer Knoten auf Ebene d: Anwendung der Hashfunktion h auf i d Das Ergebnis von h legt den Zweig fest, der weiter verfolgt wird. Blatt: Suche in der Liste der Itemmengen Einfügen einer Itemmenge X = {i 1,...,i k }: Zunächst erfolgt eine Suche für X bis zu einem Blatt, in das die Itemmenge eingefügt werden soll. Ist in dem Blatt Platz für eine weitere Itemmenge vorhanden, dann wird X dort eingefügt. Kann das Blatt keine Itemmenge mehr aufnehmen, dann wird es zu einem inneren Knoten und die Einträge werden gemäß h auf neue Blätter verteilt. Maschinelles Lernen und unsicheres Wissen FH Bonn-Rhein-Sieg, WS 08/09 228

17 5. Generieren von Assoziationsregeln Datenstrukturen für die Teilmengenoperation Kapazität der Blätter = h(k) = K mod {3,6,7} {3,5,7} {7,9,12} {1,4,11} {7,8,9} {2,3,8} {3,5,11} {1,6,11} {1,7,9} {1,8,11} {5,6,7} {2,5,6} {2,5,7} {5,8,11} {3,4,15} {3,7,11} {3,4,11} {3,4,8} {2,4,6} {2,4,7} {2,7,9} {5,7,10} Maschinelles Lernen und unsicheres Wissen FH Bonn-Rhein-Sieg, WS 08/09 229

18 5. Generieren von Assoziationsregeln Datenstrukturen für die Teilmengenoperation Suchen aller Itemmengen X, die von einer Transaktion t = {t 1,...,t m } erfüllt werden: Wurzel: Für jedes t i t wird h(t i ) bestimmt und in den resultierenden Söhnen wird weitergesucht. Innerer Knoten: Hat man den Knoten durch h(t i ) erreicht, dann wird h(t j ) für jedes t j mit j > i bestimmt. Auf die so resultierenden Söhne wird das Verfahren in gleicher Weise fortgesetzt, bis ein Blatt erreicht wird. Blatt: Prüfung, welche der in dem Blatt enthaltenen Itemmengen die Transaktion t erfüllen. Maschinelles Lernen und unsicheres Wissen FH Bonn-Rhein-Sieg, WS 08/09 230

19 5. Generieren von Assoziationsregeln Datenstrukturen für die Teilmengenoperation t = {1, 3, 7, 9, 12} h(k) = K mod {3,6,7} {3,5,7} {7,9,12} {1,4,11} {7,8,9} {2,3,8} {2,5,6} {3,5,11} {1,6,11} {1,7,9} {1,8,11} {5,6,7} {2,5,7} {5,8,11} {3,4,15} {3,7,11} {3,4,11} {3,4,8} {2,4,6} {2,4,7} {2,7,9} {5,7,10} Maschinelles Lernen und unsicheres Wissen FH Bonn-Rhein-Sieg, WS 08/09 231

20 5. Generieren von Assoziationsregeln Ermittlung der Assoziationsregeln Bestimmung der Assoziationsregeln Nach der Bestimmung der häufigen Itemmengen müssen noch die Assoziationsregeln mit einer Konfidenz minconf bestimmt werden. Diese werden aus den häufigen Itemmengen generiert. Gegeben seien Itemmengen X, Y mit Y X. Dann gilt: confidence((x \ Y) Y) minconf = confidence((x \ Y ) Y ) minconf für alle Y Y Bei der Regelgenerierung nutzt man wiederum die Umkehrung aus. Man beginnt mit einer möglichst kleinen Menge Y und schließt alle Obermengen von Y aus, falls gilt: confidence((x \ Y ) Y ) < minconf Maschinelles Lernen und unsicheres Wissen FH Bonn-Rhein-Sieg, WS 08/09 232

21 5. Generieren von Assoziationsregeln Ermittlung der Assoziationsregeln Man erzeugt aus einer häufigen Itemmenge X zunächst alle Assoziationsregeln mit einelementiger Konklusion (rechter Seite). Alle Regeln mit Konfidenz minconf werden ausgegeben. Sei H m die Menge der Konklusionen häufiger Itemmengen mit m Elementen. Wir setzen H m+1 := AprioriGen(H m ). Für alle Konklusionen h m+1 H m+1 überprüft man nun, ob confidence((x \ h m+1 ) h m+1 ) minconf gilt. Falls ja, dann wird die Regel ausgegeben, ansonsten wird h m+1 aus H m+1 entfernt. Maschinelles Lernen und unsicheres Wissen FH Bonn-Rhein-Sieg, WS 08/09 233

22 5. Generieren von Assoziationsregeln Ermittlung der Assoziationsregeln Warenkorbanalyse Beispiel 5.4. [Warenkorbanalyse] ID Artikel t 1 t 2 t 3 t 4 t 5 t 6 t 7 t 8 t 9 t 10 support A Seife x x x x 0.4 B Shampoo x x x x x x x x 0.8 C Haarspülung x x x x x x 0.6 D Duschgel x x x x x x 0.6 E Zahnpasta x x x x 0.4 F Zahnbürste x x 0.2 G Haarfärbung x x x 0.3 H Haargel x 0.1 J Deodorant x x x x x x 0.6 K Parfüm x x 0.2 L Kosmetikartikel x x x x x 0.5 Maschinelles Lernen und unsicheres Wissen FH Bonn-Rhein-Sieg, WS 08/09 234

23 5. Generieren von Assoziationsregeln Ermittlung der Assoziationsregeln Wir setzen: minsupp = 0.4,minconf = 0.7 L 1 = {{A}, {B},{C}, {D},{E}, {J}, {L}} C 2 Tafel. L 2 = {{B, C},{B, D},{B,J}, {B, L}, {C,J}, {C, L}} C 3 vor Teilmengencheck: {{B, C,D},{B, C,J}, {B, C,L}, {B, D,J}, {B,D,L}, {B, J,L}, {C, J, L}} C 3 nach Teilmengencheck: {{B,C, J}, {B,C, L}} L 3 = {{B, C,J}, {B, C,L}} C 4 = L 4 = Maschinelles Lernen und unsicheres Wissen FH Bonn-Rhein-Sieg, WS 08/09 235

24 5. Generieren von Assoziationsregeln Ermittlung der Assoziationsregeln Für die Generierung der Assoziationsregeln beginnen wir mit L 2. Wir erhalten: B C,C B,D B,L B, L C Aus {B, C,J} aus L 3 ergeben sich die Regeln (Konfidenz in Klammern): BC J[0.67],BJ C[1.00],CJ B[1.00] und H 1 = {{B}, {C}} H 2 = AprioriGen(H 1 ) = {{B,C}}, aber J BC[0.67] erfüllt nicht das Konfidenzkriterium. Aus {B, C,L} ergeben sich die Regeln: BC L[0.67],BL C[0.8],CL B[1.00] Mit H 2 = {{B, C}} ergibt sich L BC[0.8] Maschinelles Lernen und unsicheres Wissen FH Bonn-Rhein-Sieg, WS 08/09 236

25 5. Generieren von Assoziationsregeln Ermittlung der Assoziationsregeln Regel Support Konfidenz Shampoo Haarspülung Haarspülung Shampoo Duschgel Shampoo Kosmetik Shampoo Kosmetik Haarspülung Shampoo, Deodorant Haarspülung Haarspülung, Deodorant Shampoo Shampoo, Kosmetik Haarspülung Haarspülung, Kosmetik Shampoo Kosmetik Shampoo, Haarspülung Maschinelles Lernen und unsicheres Wissen FH Bonn-Rhein-Sieg, WS 08/09 237

26 5. Generieren von Assoziationsregeln Zusammenfassung Zusammenfassung Entscheidungsbäume Aufbau einer Klassifikationshierarchie für eine Trainingsmenge top-down, rekursives Verfahren Wesentlich ist die Attributauswahl ID3-Algorithmus: Attributauswahl auf Basis der Entropie Assoziationsregeln Wesentlich: Berechnung häufiger Itemmengen Apriori-Algorithmus zur Berechnung häufiger Itemmengen Unterstützung des Apriori-Algorithmus durch Hash-Trees Aus den häufigen Itemmengen werden unter Einsatz von Apriori- Gen die Assoziationsregeln generiert. Maschinelles Lernen und unsicheres Wissen FH Bonn-Rhein-Sieg, WS 08/09 238

Darstellung, Verarbeitung und Erwerb von Wissen

Darstellung, Verarbeitung und Erwerb von Wissen Darstellung, Verarbeitung und Erwerb von Wissen Gabriele Kern-Isberner LS 1 Information Engineering TU Dortmund Wintersemester 2015/16 WS 2015/16 G. Kern-Isberner (TU Dortmund) DVEW WS 2015/16 1 / 169

Mehr

Darstellung, Verarbeitung und Erwerb von Wissen

Darstellung, Verarbeitung und Erwerb von Wissen Darstellung, Verarbeitung und Erwerb von Wissen Gabriele Kern-Isberner LS 1 Information Engineering TU Dortmund WiSe 2016/17 G. Kern-Isberner (TU Dortmund) DVEW WiSe 2016/17 1 / 169 Kapitel 5 Entscheidungsbäume

Mehr

Darstellung, Verarbeitung und Erwerb von Wissen

Darstellung, Verarbeitung und Erwerb von Wissen Darstellung, Verarbeitung und Erwerb von Wissen Gabriele Kern-Isberner LS 1 Information Engineering TU Dortmund Wintersemester 2015/16 WS 2015/16 G. Kern-Isberner (TU Dortmund) DVEW WS 2015/16 1 / 169

Mehr

6.6 Vorlesung: Von OLAP zu Mining

6.6 Vorlesung: Von OLAP zu Mining 6.6 Vorlesung: Von OLAP zu Mining Definition des Begriffs Data Mining. Wichtige Data Mining-Problemstellungen, Zusammenhang zu Data Warehousing,. OHO - 1 Definition Data Mining Menge von Techniken zum

Mehr

Kapitel 7: Assoziationsregeln

Kapitel 7: Assoziationsregeln Ludwig Maximilians Universität München Institut für Informatik Lehr- und Forschungseinheit für Datenbanksysteme Skript zur Vorlesung Knowledge Discovery in Databases im Wintersemester 2007/2008 Kapitel

Mehr

Kapitel 7: Assoziationsregeln

Kapitel 7: Assoziationsregeln Ludwig-Maximilians-Universität München Institut für Informatik Lehr- und Forschungseinheit für Datenbanksysteme Skript zur Vorlesung Knowledge Discovery in Databases im Wintersemester 2010/2011 Kapitel

Mehr

Skript zur Vorlesung. Knowledge Discovery in Databases. im Wintersemester 2009/2010. Assoziationsregeln

Skript zur Vorlesung. Knowledge Discovery in Databases. im Wintersemester 2009/2010. Assoziationsregeln Ludwig Maximilians Universität München Institut für Informatik Lehr- und Forschungseinheit für Datenbanksysteme Skript zur Vorlesung Knowledge Discovery in Databases im Wintersemester 2009/2010 Kapitel

Mehr

Assoziationsregeln & Sequenzielle Muster. A. Hinneburg, Web Data Mining MLU Halle-Wittenberg, SS 2007

Assoziationsregeln & Sequenzielle Muster. A. Hinneburg, Web Data Mining MLU Halle-Wittenberg, SS 2007 Assoziationsregeln & Sequenzielle Muster 0 Übersicht Grundlagen für Assoziationsregeln Apriori Algorithmus Verschiedene Datenformate Finden von Assoziationsregeln mit mehren unteren Schranken für Unterstützung

Mehr

Intelligente Systeme. Einführung. Christian Moewes

Intelligente Systeme. Einführung. Christian Moewes Intelligente Systeme Einführung Prof. Dr. Rudolf Kruse Christian Moewes Georg Ruß {kruse,russ,cmoewes}@iws.cs.uni-magdeburg.de Arbeitsgruppe Computational Intelligence Institut für Wissens- und Sprachverarbeitung

Mehr

Intelligente Systeme

Intelligente Systeme Intelligente Systeme Maschinelles Lernen Prof. Dr. R. Kruse C. Moewes G. Ruß {kruse,cmoewes,russ}@iws.cs.uni-magdeburg.de Institut für Wissens- und Sprachverarbeitung Fakultät für Informatik Otto-von-Guericke

Mehr

Intelligente Systeme

Intelligente Systeme Intelligente Systeme Maschinelles Lernen Prof. Dr. R. Kruse C. Braune C. Moewes {kruse,cmoewes,russ}@iws.cs.uni-magdeburg.de Institut für Wissens- und Sprachverarbeitung Fakultät für Informatik Otto-von-Guericke

Mehr

Kapitel 8: Assoziationsregeln

Kapitel 8: Assoziationsregeln Ludwig-Maximilians-Universität München Institut für Informatik Lehr- und Forschungseinheit für Datenbanksysteme Skript zur Vorlesung Knowledge Discovery in Databases im Sommersemester 2015 Kapitel 8: Assoziationsregeln

Mehr

Kapitel 8: Assoziationsregeln

Kapitel 8: Assoziationsregeln Ludwig-Maximilians-Universität München Institut für Informatik Lehr- und Forschungseinheit für Datenbanksysteme Skript zur Vorlesung Knowledge Discovery in Databases im Sommersemester 2014 Kapitel 8: Assoziationsregeln

Mehr

Fortgeschrittene Computerintensive Methoden: Assoziationsregeln Steffen Unkel Manuel Eugster, Bettina Grün, Friedrich Leisch, Matthias Schmid

Fortgeschrittene Computerintensive Methoden: Assoziationsregeln Steffen Unkel Manuel Eugster, Bettina Grün, Friedrich Leisch, Matthias Schmid Fortgeschrittene Computerintensive Methoden: Assoziationsregeln Steffen Unkel Manuel Eugster, Bettina Grün, Friedrich Leisch, Matthias Schmid Institut für Statistik LMU München Sommersemester 2013 Zielsetzung

Mehr

Apriori-Algorithmus zur Entdeckung von Assoziationsregeln

Apriori-Algorithmus zur Entdeckung von Assoziationsregeln Apriori-Algorithmus zur Entdeckung von PG 42 Wissensmanagment Lehrstuhl für Künstliche Intelligenz 22. Oktober 21 Gliederung Motivation Formale Problemdarstellung Apriori-Algorithmus Beispiel Varianten

Mehr

Lernen von Assoziationsregeln

Lernen von Assoziationsregeln Lernen von Assoziationsregeln Gegeben: R eine Menge von Objekten, die binäre Werte haben t eine Transaktion, t! R r eine Menge von Transaktionen S min " [0,] die minimale Unterstützung, Conf min " [0,]

Mehr

Data Mining und Maschinelles Lernen Wintersemester 2015/2016 Lösungsvorschlag für das 13. Übungsblatt

Data Mining und Maschinelles Lernen Wintersemester 2015/2016 Lösungsvorschlag für das 13. Übungsblatt Data Mining und Maschinelles Lernen Wintersemester 2015/2016 Lösungsvorschlag für das 13. Übungsblatt 9. Februar 2016 1 Aufgabe 1: Apriori (1) Gegeben seien folgende Beobachtungen vom Kaufverhalten von

Mehr

Selbstständiges Lernen

Selbstständiges Lernen Kapitel 5 Spezialvorlesung Modul 10-202-2206 (Fortgeschrittene Methoden in der Bioinformatik) Jana Hertel Professur für Bioinformatik Institut für Informatik Universität Leipzig Machine learning in bioinformatics

Mehr

Maschinelles Lernen: Symbolische Ansätze

Maschinelles Lernen: Symbolische Ansätze Maschinelles Lernen: Symbolische Ansätze Wintersemester 2009/2010 Musterlösung für das 13. Übungsblatt Aufgabe 1: Apriori Gegeben seien folgende Beobachtungen vom Kaufverhalten von Kunden: beer chips dip

Mehr

Data Mining. Informationssysteme, Sommersemester 2017

Data Mining. Informationssysteme, Sommersemester 2017 Data Mining Informationssysteme, Sommersemester 2017 Literatur zu Data-Mining Pang-Ning Tan, Michael Steinbach, Vipin Kuma. Introduction to Data Minig. Ein paar relevante Kapitel sind frei verfügbar unter

Mehr

Darstellung, Verarbeitung und Erwerb von Wissen

Darstellung, Verarbeitung und Erwerb von Wissen Darstellung, Verarbeitung und Erwerb von Wissen Gabriele Kern-Isberner LS 1 Information Engineering TU Dortmund Wintersemester 2015/16 WS 2015/16 G. Kern-Isberner (TU Dortmund) DVEW WS 2015/16 1 / 169

Mehr

Übersicht. A. Hinneburg, Web Data Mining MLU Halle-Wittenberg, SS 2007

Übersicht. A. Hinneburg, Web Data Mining MLU Halle-Wittenberg, SS 2007 Übersicht Grundlagen für Assoziationsregeln Apriori Algorithmus Verschiedene Datenformate Finden von Assoziationsregeln mit mehren unteren Schranken für Unterstützung Finden von Assoziationsregeln für

Mehr

4. Assoziationsregeln

4. Assoziationsregeln 4.1 Einleitung 4. Assoziationsregeln Inhalt dieses Kapitels Transaktionsdatenbanken, Warenkorbanalyse 4.2 Einfache Assoziationsregeln Grundbegriffe, Aufgabenstellung, Apriori-Algorithmus, Hashbäume, Interessantheit

Mehr

4. Assoziationsregeln. 4.1 Einleitung. 4.2 Einfache Assoziationsregeln. 4.1 Einleitung. Inhalt dieses Kapitels. Motivation

4. Assoziationsregeln. 4.1 Einleitung. 4.2 Einfache Assoziationsregeln. 4.1 Einleitung. Inhalt dieses Kapitels. Motivation 4.1 Einleitung 4. Assoziationsregeln Inhalt dieses Kapitels Transaktionsdatenbanken, Warenkorbanalyse 4.2 Einfache Assoziationsregeln Grundbegriffe, Aufgabenstellung, Apriori-Algorithmus, Hashbäume, Interessantheit

Mehr

XML & Intelligente Systeme. - XQuery Teil 2 - Datamining auf XML Dokumenten

XML & Intelligente Systeme. - XQuery Teil 2 - Datamining auf XML Dokumenten - XQuery Teil 2 - Datamining auf XML Dokumenten Seminarvortrag von Dominik Westhues dwesthue@techfak.uni-bielefeld.de 21.11.2005 Überblick XQuery & Datamining Verknüpfungsregeln Apriori Algorithmus Verknüpfungsregel

Mehr

4.1 Einleitung. 4. Assoziationsregeln. 4.2 Einfache Assoziationsregeln. 4.1 Einleitung. Inhalt dieses Kapitels. Motivation. Assoziationsregeln

4.1 Einleitung. 4. Assoziationsregeln. 4.2 Einfache Assoziationsregeln. 4.1 Einleitung. Inhalt dieses Kapitels. Motivation. Assoziationsregeln 4.1 Einleitung 4. Assoziationsregeln Inhalt dieses Kapitels Transaktionsdatenbanken, Warenkorbanalyse 4.2 Einfache Assoziationsregeln Grundbegriffe, Aufgabenstellung, Apriori-Algorithmus, Hashbäume, Interessantheit

Mehr

INTELLIGENTE DATENANALYSE IN MATLAB

INTELLIGENTE DATENANALYSE IN MATLAB INTELLIGENTE DATENANALYSE IN MATLAB Lernen von Assoziationsregeln Literatur J. Han, M. Kamber: Data Mining i Concepts and Techniques. J. Han et. al: Mining i Frequent Patterns without t Candidate Generation.

Mehr

FernUniversität in Hagen. Seminar 01912 Data Mining im Sommersemester 2008 Häufige Muster und Assoziationsregeln. Thema 1.1.1 Der Apriori-Algorithmus

FernUniversität in Hagen. Seminar 01912 Data Mining im Sommersemester 2008 Häufige Muster und Assoziationsregeln. Thema 1.1.1 Der Apriori-Algorithmus FernUniversität in Hagen Seminar 01912 Data Mining im Sommersemester 2008 Häufige Muster und Assoziationsregeln Thema 1.1.1 Der Apriori-Algorithmus Referentin: Olga Riener Olga Riener. Thema 1.1.1. Der

Mehr

4.2 Constraints für Assoziationsregeln

4.2 Constraints für Assoziationsregeln 4.2 Constraints für Assoziationsregeln zu viele Frequent Item Sets Effizienzproblem zu viele Assoziationsregeln Evaluationsproblem Motivation manchmal Constraints apriori bekannt nur Assoziationsregeln

Mehr

INTELLIGENTE DATENANALYSE IN MATLAB. Unüberwachtes Lernen: Clustern von Attributen

INTELLIGENTE DATENANALYSE IN MATLAB. Unüberwachtes Lernen: Clustern von Attributen INTELLIGENTE DATENANALYSE IN MATLAB Unüberwachtes Lernen: Clustern von Attributen Literatur J. Han, M. Kamber: Data Mining Concepts and Techniques. J. Han et. al: Mining Frequent Patterns without Candidate

Mehr

Häufige Item-Mengen: die Schlüssel-Idee. Vorlesungsplan. Apriori Algorithmus. Methoden zur Verbessung der Effizienz von Apriori

Häufige Item-Mengen: die Schlüssel-Idee. Vorlesungsplan. Apriori Algorithmus. Methoden zur Verbessung der Effizienz von Apriori Vorlesungsplan 17.10. Einleitung 24.10. Ein- und Ausgabe 31.10. Reformationstag, Einfache Regeln 7.11. Naïve Bayes, Entscheidungsbäume 14.11. Entscheidungsregeln, Assoziationsregeln 21.11. Lineare Modelle,

Mehr

Data Mining und Statistik: Gemeinsamkeiten und Unterschiede. Daniel Meschenmoser

Data Mining und Statistik: Gemeinsamkeiten und Unterschiede. Daniel Meschenmoser Data Mining und Statistik: Gemeinsamkeiten und Unterschiede Daniel Meschenmoser Übersicht Gemeinsamkeiten von Data Mining und Statistik Unterschiede zwischen Data Mining und Statistik Assoziationsregeln

Mehr

Data Mining und Maschinelles Lernen Lösungsvorschlag für das 12. Übungsblatt

Data Mining und Maschinelles Lernen Lösungsvorschlag für das 12. Übungsblatt Data Mining und Maschinelles Lernen Lösungsvorschlag für das 12. Übungsblatt Knowledge Engineering Group Data Mining und Maschinelles Lernen Lösungsvorschlag 12. Übungsblatt 1 Aufgabe 1: Apriori (1) Gegeben

Mehr

4. Lernen von Entscheidungsbäumen

4. Lernen von Entscheidungsbäumen 4. Lernen von Entscheidungsbäumen Entscheidungsbäume 4. Lernen von Entscheidungsbäumen Gegeben sei eine Menge von Objekten, die durch Attribut/Wert- Paare beschrieben sind. Jedes Objekt kann einer Klasse

Mehr

2. Lernen von Entscheidungsbäumen

2. Lernen von Entscheidungsbäumen 2. Lernen von Entscheidungsbäumen Entscheidungsbäume 2. Lernen von Entscheidungsbäumen Gegeben sei eine Menge von Objekten, die durch Attribut/Wert- Paare beschrieben sind. Jedes Objekt kann einer Klasse

Mehr

Intelligente Systeme

Intelligente Systeme Intelligente Systeme Maschinelles Lernen Prof. Dr. R. Kruse C. Braune {rudolf.kruse,christian.braune}@ovgu.de Institut für Intelligente Kooperierende Systeme Fakultät für Informatik Otto-von-Guericke-Universität

Mehr

Mining über RDBMSe. von. Christian Widmer. Wie gut lässt sich Mining mit SQL realisieren?

Mining über RDBMSe. von. Christian Widmer. Wie gut lässt sich Mining mit SQL realisieren? Mining über RDBMSe von Christian Widmer Wie gut lässt sich Mining mit SQL realisieren? Müssen neue Konstrukte zur Verfügung gestellt werden, wenn ja welche? Vortragsüberblick Association Rules Apriori

Mehr

Übersicht. A. Hinneburg, Web Data Mining MLU Halle-Wittenberg, SS 2007

Übersicht. A. Hinneburg, Web Data Mining MLU Halle-Wittenberg, SS 2007 Übersicht Grundlagen für Assoziationsregeln Apriori Algorithmus Verschiedene Datenformate Finden von Assoziationsregeln mit mehren unteren Schranken für Unterstützung Finden von Assoziationsregeln für

Mehr

Häufige Mengen ohne Kandidatengenerierung. FP-Tree: Transaktionen. Konstruktion eines FP-Trees. FP-Tree: Items

Häufige Mengen ohne Kandidatengenerierung. FP-Tree: Transaktionen. Konstruktion eines FP-Trees. FP-Tree: Items Häufige Mengen ohne Kandidatengenerierung Jiawei Han, Micheline Kamber 2006 (2nd ed.)! Ziel 1: Kompression der Datenbank in eine Frequent-Pattern Tree Struktur (FP-Tree)! Stark komprimiert, vollständig

Mehr

Kapitel 11: Association Rules

Kapitel 11: Association Rules Kapitel 11: Association Association Einleitung Association : Eine wichtige Art von Mustern, an der man im Data-Mining Kontext interessiert ist. Muster mit einfacher Struktur. Ziel im folgenden: Finden

Mehr

Frequent Itemset Mining und FP-Tree

Frequent Itemset Mining und FP-Tree Übung 4 Frequent Itemset Mining und FP-Tree Frequent Itemset Mining Motivation: Es existiert eine Datenbank mit vielen Einträgen Man möchte wissen, welche Einträge oft zusammen vorkommen Frequent Itemset

Mehr

Häufige Mengen ohne Kandidatengenerierung

Häufige Mengen ohne Kandidatengenerierung Häufige Mengen ohne Kandidatengenerierung Jiawei Han, Micheline Kamber 2006 (2nd ed.) Ziel 1: Kompression der Datenbank in eine Frequent-Pattern Tree Struktur (FP-Tree) Stark komprimiert, vollständig bzgl.

Mehr

VII.3 Assoziationsregeln

VII.3 Assoziationsregeln VII.3 Assoziationsregelverfahren VII.3. Einführung [Bollinger 96] VII.3 Assoziationsregeln Algorithmen zum Entdecken von Assoziationsregeln sind typische Vertreter von Data Mining Verfahren. Assoziationsregeln

Mehr

Kapitel 11: Association Rules

Kapitel 11: Association Rules Kapitel 11: Association Association Einleitung Association : Eine wichtige Art von Mustern, an der man im Data-Mining Kontext interessiert ist. Muster mit einfacher Struktur. Ziel im folgenden: Finden

Mehr

Maschinelles Lernen in der Bioinformatik

Maschinelles Lernen in der Bioinformatik Maschinelles Lernen in der Bioinformatik Spezialvorlesung Modul 10-202-2206 (Fortgeschrittene Methoden in der Bioinformatik) VL 5/6 Selbständiges Lernen Jana Hertel Professur für Bioinformatik Institut

Mehr

Was wissen Sie jetzt?

Was wissen Sie jetzt? Was wissen Sie jetzt?! Sie haben drei Prinzipien für die Regelbewertung kennen gelernt:! Unabhängige Mengen sollen mit bewertet werden.! Der Wert soll höher werden, wenn die Regel mehr Belege hat.! Der

Mehr

Lemma Für jede monotone Grammatik G gibt es eine kontextsensitive

Lemma Für jede monotone Grammatik G gibt es eine kontextsensitive Lemma Für jede monotone Grammatik G gibt es eine kontextsensitive Grammatik G mit L(G) = L(G ). Beweis im Beispiel (2.): G = (V,Σ, P, S) : P = {S asbc, S abc, CB BC, ab ab, bb bb, bc bc, cc cc}. (i) G

Mehr

Data Warehousing und Data Mining

Data Warehousing und Data Mining Data Warehousing und Data Mining Association Rule Mining Ulf Leser Wissensmanagement in der Bioinformatik Inhalt dieser Vorlesung Association Rule Mining (ARM) A-Priori Algorithmus Varianten Ulf Leser:

Mehr

5. Bäume und Minimalgerüste

5. Bäume und Minimalgerüste 5. Bäume und Minimalgerüste Charakterisierung von Minimalgerüsten 5. Bäume und Minimalgerüste Definition 5.1. Es ein G = (V, E) ein zusammenhängender Graph. H = (V,E ) heißt Gerüst von G gdw. wenn H ein

Mehr

Ermittlung von Assoziationsregeln aus großen Datenmengen. Zielsetzung

Ermittlung von Assoziationsregeln aus großen Datenmengen. Zielsetzung Ermittlung von Assoziationsregeln aus großen Datenmengen Zielsetzung Entscheidungsträger verwenden heutzutage immer häufiger moderne Technologien zur Lösung betriebswirtschaftlicher Problemstellungen.

Mehr

Data Mining 5-1. Kapitel 5: Frequent Itemsets. Johannes Zschache Wintersemester 2018/19

Data Mining 5-1. Kapitel 5: Frequent Itemsets. Johannes Zschache Wintersemester 2018/19 Data Mining Kapitel 5: Frequent Itemsets Johannes Zschache Wintersemester 2018/19 Abteilung Datenbanken, Universität Leipzig http://dbs.uni-leipzig.de Data Mining 5-1 5-2 Data Mining Übersicht Hochdimension.

Mehr

Cognitive Interaction Technology Center of Excellence

Cognitive Interaction Technology Center of Excellence Kanonische Abdeckung Motivation: eine Instanz einer Datenbank muss nun alle funktionalen Abhängigkeiten in F + erfüllen. Das muss natürlich immer überprüft werden (z.b. bei jedem update). Es reicht natürlich

Mehr

4. Lernen von Entscheidungsbäumen. Klassifikation mit Entscheidungsbäumen. Entscheidungsbaum

4. Lernen von Entscheidungsbäumen. Klassifikation mit Entscheidungsbäumen. Entscheidungsbaum 4. Lernen von Entscheidungsbäumen Klassifikation mit Entscheidungsbäumen Gegeben sei eine Menge von Objekten, die durch /Wert- Paare beschrieben sind. Jedes Objekt kann einer Klasse zugeordnet werden.

Mehr

Kapitel 12: Schnelles Bestimmen der Frequent Itemsets

Kapitel 12: Schnelles Bestimmen der Frequent Itemsets Einleitung In welchen Situationen ist Apriori teuer, und warum? Kapitel 12: Schnelles Bestimmen der Frequent Itemsets Data Warehousing und Mining 1 Data Warehousing und Mining 2 Schnelles Identifizieren

Mehr

{0,1} rekursive Aufteilung des Datenraums in die Quadranten NW, NE, SW und SE feste Auflösung des Datenraums in 2 p 2 p Gitterzellen

{0,1} rekursive Aufteilung des Datenraums in die Quadranten NW, NE, SW und SE feste Auflösung des Datenraums in 2 p 2 p Gitterzellen 4.4 MX-Quadtrees (I) MatriX Quadtree Verwaltung 2-dimensionaler Punkte Punkte als 1-Elemente in einer quadratischen Matrix mit Wertebereich {0,1} rekursive Aufteilung des Datenraums in die Quadranten NW,

Mehr

Technische Universität München. Vorlesungsgrobstruktur: wo stehen wir, wie geht s weiter

Technische Universität München. Vorlesungsgrobstruktur: wo stehen wir, wie geht s weiter Vorlesungsgrobstruktur: wo stehen wir, wie geht s weiter Kapitel 7 Fortgeschrittene Datenstrukturen Motivation: Lineare Liste: Suchen eines Elements ist schnell O(log n) Einfügen eines Elements ist langsam

Mehr

Algorithms for Pattern Mining AprioriTID. Stefan George, Felix Leupold

Algorithms for Pattern Mining AprioriTID. Stefan George, Felix Leupold Algorithms for Pattern Mining AprioriTID Stefan George, Felix Leupold Gliederung 2 Einleitung Support / Confidence Apriori ApriorTID Implementierung Performance Erweiterung Zusammenfassung Einleitung 3

Mehr

Algorithmische Kryptographie

Algorithmische Kryptographie Algorithmische Kryptographie Walter Unger Lehrstuhl für Informatik I 16. Februar 2007 Public-Key-Systeme: Rabin 1 Das System nach Rabin 2 Grundlagen Körper Endliche Körper F(q) Definitionen Quadratwurzel

Mehr

4 Induktion von Regeln

4 Induktion von Regeln 4 Induktion von egeln Gegeben sei eine Menge von Objekten, die durch Attribut/Wert- aare beschrieben sind. Jedes Objekt kann einer Klasse zugeordnet werden. Ein Entscheidungsbaum liefert eine Entscheidung

Mehr

Erkennung Sequenzieller Muster Algorithmen und Anwendungen

Erkennung Sequenzieller Muster Algorithmen und Anwendungen Achim Eisele, Thema 1.4.3: Sequenzielle Muster 1 FernUniversität in Hagen Seminar 01912 im Sommersemester 2008 Erkennung Sequenzieller Muster Algorithmen und Anwendungen Thema 1.4.3: Sequenzielle Muster

Mehr

Maschinelles Lernen: Symbolische Ansätze

Maschinelles Lernen: Symbolische Ansätze Klausur zur Vorlesung Maschinelles Lernen: Symbolische Ansätze Prof. J. Fürnkranz Technische Universität Darmstadt Wintersemester 2014/15 Termin: 17. 2. 2015 Name: Vorname: Matrikelnummer: Fachrichtung:

Mehr

3.2. Divide-and-Conquer-Methoden

3.2. Divide-and-Conquer-Methoden LUDWIG- MAXIMILIANS- UNIVERSITY MUNICH DEPARTMENT INSTITUTE FOR INFORMATICS DATABASE 3.2. Divide-and-Conquer-Methoden Divide-and-Conquer-Methoden Einfache Sortieralgorithmen reduzieren die Größe des noch

Mehr

Fortgeschrittene Netzwerk- und Graph-Algorithmen

Fortgeschrittene Netzwerk- und Graph-Algorithmen Fortgeschrittene Netzwerk- und Graph-Algorithmen Prof. Dr. Hanjo Täubig Lehrstuhl für Effiziente Algorithmen (Prof. Dr. Ernst W. Mayr) Institut für Informatik Technische Universität München Wintersemester

Mehr

Entdeckung häufiger Episoden und repräsentativer Episode-Regeln in Ereignis-Sequenzen

Entdeckung häufiger Episoden und repräsentativer Episode-Regeln in Ereignis-Sequenzen Diplomarbeit Entdeckung häufiger Episoden und repräsentativer Episode-Regeln in Ereignis-Sequenzen Nuhad Shaabani Lehrstuhl für künstliche Intelligenz Fachbereich Informatik Universität Dortmund Dortmund,

Mehr

Algorithmen und Datenstrukturen

Algorithmen und Datenstrukturen Algorithmen und Datenstrukturen Prof. Martin Lercher Institut für Informatik Heinrich-Heine-Universität Düsseldorf Teil 10 Suche in Graphen Version vom 13. Dezember 2016 1 / 2 Vorlesung 2016 / 2017 2 /

Mehr

11.1 Grundlagen - Denitionen

11.1 Grundlagen - Denitionen 11 Binärbäume 11.1 Grundlagen - Denitionen Denition: Ein Baum ist eine Menge, die durch eine sog. Nachfolgerrelation strukturiert ist. In einem Baum gilt: (I) (II) 1 Knoten w ohne VATER(w), das ist die

Mehr

Vorlesung Wissensentdeckung

Vorlesung Wissensentdeckung Vorlesung Wissensentdeckung MinEx 27.4.2010 Gliederung 1 Closed Item Sets 2 Free sets 3 MinEx Wir erinnern uns... Hypothesen werden in einem Verband angeordnet. Ein Versionenraum gibt die möglichen Hypothesen

Mehr

Induktion von Assoziationsregeln. Stefan Mandl

Induktion von Assoziationsregeln. Stefan Mandl Induktion von Assoziationsregeln Stefan Mandl Inhalt Was sind Assoziationsregeln? Qualitätsbewertung Algorithmus Was sind Assoziationsregeln? Assoziationsregeln Assoziationsregeln beschreiben Korrelationen

Mehr

Informationssysteme. Prof. Dr. Hans Czap. Lehrstuhl für Wirtschaftsinformatik I. Lehrstuhl für Wirtschaftsinformatik I - II - 1 -

Informationssysteme. Prof. Dr. Hans Czap. Lehrstuhl für Wirtschaftsinformatik I. Lehrstuhl für Wirtschaftsinformatik I - II - 1 - Vorlesung Grundlagen betrieblicher Informationssysteme Prof. Dr. Hans Czap Email: Hans.Czap@uni-trier.de - II - 1 - Inhalt Kap. 1 Ziele der Datenbanktheorie Kap. 2 Datenmodellierung und Datenbankentwurf

Mehr

Frequent Itemset Mining + Association Rule Mining

Frequent Itemset Mining + Association Rule Mining Frequent Itemset Mining + Association Rule Mining Studiengang Angewandte Mathematik WS 2015/16 Frequent Itemset Mining (FIM) 21.10.2015 2 Einleitung Das Frequent-Itemset-Mining kann als Anfang des modernen,

Mehr

Algorithmen und Datenstrukturen 1 VL Übungstest WS Januar 2011

Algorithmen und Datenstrukturen 1 VL Übungstest WS Januar 2011 Technische Universität Wien Institut für Computergraphik und Algorithmen Arbeitsbereich für Algorithmen und Datenstrukturen 186.172 Algorithmen und Datenstrukturen 1 VL 4.0 2. Übungstest WS 2010 14. Januar

Mehr

Inhalt. 7.1 Motivation. 7.2 Artikelmengen. 7.3 Assoziationsregeln. 7.4 Sequenzen. Entscheidungsunterstützende Systeme / Kapitel 7: Mustererkennung

Inhalt. 7.1 Motivation. 7.2 Artikelmengen. 7.3 Assoziationsregeln. 7.4 Sequenzen. Entscheidungsunterstützende Systeme / Kapitel 7: Mustererkennung 7. Mustererkennung Inhalt 7.1 Motivation 7.2 Artikelmengen 7.3 Assoziationsregeln 7.4 Sequenzen 2 7.1 Motivation Mustererkennung (pattern mining) sucht in oft großen Datenmengen nach häufig auftretenden

Mehr

Data Mining and Knowledge Discovery zielt darauf ab, verwertbare Erkenntnisse aus Daten zu gewinnen

Data Mining and Knowledge Discovery zielt darauf ab, verwertbare Erkenntnisse aus Daten zu gewinnen Rückblick Data Mining and Knowledge Discovery zielt darauf ab, verwertbare Erkenntnisse aus Daten zu gewinnen Klassifikation ordnet neue Datenpunkte in Klassen ein, deren Charakteristika vorab anhand von

Mehr

ID3 und Apriori im Vergleich

ID3 und Apriori im Vergleich ID3 und Apriori im Vergleich Lassen sich bei der Klassifikation mittels Apriori bessere Ergebnisse als durch ID3 erzielen? Sebastian Boldt, Christian Schulz, Marc Thielbeer KURZFASSUNG Das folgende Dokument

Mehr

Stud.-Nummer: Datenstrukturen & Algorithmen Seite 1

Stud.-Nummer: Datenstrukturen & Algorithmen Seite 1 Stud.-Nummer: Datenstrukturen & Algorithmen Seite 1 Aufgabe 1. / 16 P Instruktionen: 1) In dieser Aufgabe sollen Sie nur die Ergebnisse angeben. Diese können Sie direkt bei den Aufgaben notieren. 2) Sofern

Mehr

Humboldt-Universität zu Berlin Berlin, den Institut für Informatik

Humboldt-Universität zu Berlin Berlin, den Institut für Informatik Humboldt-Universität zu Berlin Berlin, den 15.06.2015 Institut für Informatik Prof. Dr. Ulf Leser Übungen zur Vorlesung M. Bux, B. Grußien, J. Sürmeli, S. Wandelt Algorithmen und Datenstrukturen Übungsblatt

Mehr

Copyright, Page 1 of 7 Heapsort

Copyright, Page 1 of 7 Heapsort www.mathematik-netz.de Copyright, Page 1 of 7 Heapsort Alle grundlegenden, allgemeinen Sortierverfahren benötigen O(n 2 ) Zeit für das Sortieren von n Schlüsseln. Die kritischen Operationen, d.h. die Auswahl

Mehr

1. Vordiplom D-INFK Prüfung Informatik I + II 2. Oktober 2003

1. Vordiplom D-INFK Prüfung Informatik I + II 2. Oktober 2003 Eidgenössische Technische Hochschule Zürich Institut für Theoretische Informatik Peter Widmayer Jörg Derungs Ecole polytechnique fédérale de Zurich Politecnico federale di Zurigo Federal Institute of Technology

Mehr

Data Mining auf Datenströmen Andreas M. Weiner

Data Mining auf Datenströmen Andreas M. Weiner Technische Universität Kaiserslautern Fachbereich Informatik Lehrgebiet Datenverwaltungssysteme Integriertes Seminar Datenbanken und Informationssysteme Sommersemester 2005 Thema: Data Streams Andreas

Mehr

Datenstrukturen Teil 2. Bäume. Definition. Definition. Definition. Bäume sind verallgemeinerte Listen. Sie sind weiter spezielle Graphen

Datenstrukturen Teil 2. Bäume. Definition. Definition. Definition. Bäume sind verallgemeinerte Listen. Sie sind weiter spezielle Graphen Bäume sind verallgemeinerte Listen Datenstrukturen Teil 2 Bäume Jeder Knoten kann mehrere Nachfolger haben Sie sind weiter spezielle Graphen Graphen bestehen aus Knoten und Kanten Kanten können gerichtet

Mehr

TU München, Fakultät für Informatik Lehrstuhl III: Datenbanksysteme Prof. Alfons Kemper, Ph.D.

TU München, Fakultät für Informatik Lehrstuhl III: Datenbanksysteme Prof. Alfons Kemper, Ph.D. TU München, Fakultät für Informatik Lehrstuhl III: Datenbanksysteme Prof. Alfons Kemper, Ph.D. Blatt Nr. 2 Übung zur Vorlesung Grundlagen: Datenbanken im WS3/4 Henrik Mühe (muehe@in.tum.de) http://www-db.in.tum.de/teaching/ws34/dbsys/exercises/

Mehr

5 BINÄRE ENTSCHEIDUNGS- DIAGRAMME (BDDS)

5 BINÄRE ENTSCHEIDUNGS- DIAGRAMME (BDDS) 5 BINÄRE ENTSCHEIDUNGS- DIAGRAMME (BDDS) Sommersemester 2009 Dr. Carsten Sinz, Universität Karlsruhe Datenstruktur BDD 2 1986 von R. Bryant vorgeschlagen zur Darstellung von aussagenlogischen Formeln (genauer:

Mehr

Vorlesung Informatik 2 Algorithmen und Datenstrukturen

Vorlesung Informatik 2 Algorithmen und Datenstrukturen Vorlesung Informatik 2 Algorithmen und Datenstrukturen (12 Hashverfahren: Verkettung der Überläufer) Prof. Dr. Susanne Albers Möglichkeiten der Kollisionsbehandlung Kollisionsbehandlung: Die Behandlung

Mehr

Aufgabe (Schreibtischtest, Algorithmenanalyse)

Aufgabe (Schreibtischtest, Algorithmenanalyse) Aufgabe (Schreibtischtest, Algorithmenanalyse) Führen Sie einen Schreibtischtest für den Algorithmus Positionsort für das folgende Eingabe-Array durch. Geben Sie nach jedem Durchlauf der for-schleife mit

Mehr

6. Flüsse in Netzwerken Berechnung maximaler Flüsse. dann berechnet der Markierungsalgorithmus für beliebige Kapazitätsfunktionen

6. Flüsse in Netzwerken Berechnung maximaler Flüsse. dann berechnet der Markierungsalgorithmus für beliebige Kapazitätsfunktionen 6. Flüsse in Netzwerken Berechnung maximaler Flüsse Satz 6.4. Ersetzt man in Algorithmus 6.1 den Schritt 2 durch 2a. Wähle den Knoten, der zuerst in eingefügt wurde. Setze. dann berechnet der arkierungsalgorithmus

Mehr

5 Bäume. 5.1 Suchbäume. ein geordneter binärer Wurzelbaum. geordnete Schlüsselwertmenge. heißt (schwach) sortiert, g.d.w. gilt:

5 Bäume. 5.1 Suchbäume. ein geordneter binärer Wurzelbaum. geordnete Schlüsselwertmenge. heißt (schwach) sortiert, g.d.w. gilt: 5 Bäume 5.1 Suchbäume Sei ein geordneter binärer Wurzelbaum. Sei Abbildung der Knotenmenge eine in eine vollständig geordnete Schlüsselwertmenge. heißt (schwach) sortiert, g.d.w. gilt: Falls sortiert ist,

Mehr

Maschinelles Lernen: Symbolische Ansätze

Maschinelles Lernen: Symbolische Ansätze Semestralklausur zur Vorlesung Maschinelles Lernen: Symbolische Ansätze Prof. J. Fürnkranz / Dr. G. Grieser Technische Universität Darmstadt Wintersemester 2005/06 Termin: 23. 2. 2006 Name: Vorname: Matrikelnummer:

Mehr

Lösungsvorschläge zur Hauptklausur Datenstrukturen

Lösungsvorschläge zur Hauptklausur Datenstrukturen Lösungsvorschläge zur Hauptklausur 9 9 166211663 Datenstrukturen 9. August 2003 Seite 2 Lösungsvorschlage zur Klausur vom 9.08.2003 Kurs 166211663,,Datenstrukturen" Aufgabe 1 Bei jedem rekursiven Aufruf

Mehr

Lösungen von Übungsblatt 12

Lösungen von Übungsblatt 12 Lösungen von Übungsblatt 12 Algorithmen (WS 2018, Ulrike von Luxburg) Lösungen zu Aufgabe 1 Eine (kanonische) Möglichkeit, die Branch-Schritte auszuführen ergibt sich wie folgt: Das ursprüngliche Problem

Mehr

12. Hashing. Hashing einfache Methode um Wörtebücher zu implementieren, d.h. Hashing unterstützt die Operationen Search, Insert, Delete.

12. Hashing. Hashing einfache Methode um Wörtebücher zu implementieren, d.h. Hashing unterstützt die Operationen Search, Insert, Delete. Hashing einfache Methode um Wörtebücher zu implementieren, d.h. Hashing unterstützt die Operationen Search, Insert, Delete. Worst-case Zeit für Search: Θ(n). In der Praxis jedoch sehr gut. Unter gewissen

Mehr

Klasse räumlicher Indexstrukturen, die den Datenraum rekursiv in 4 gleich große Zellen unterteilen (Quadranten NW, NE, SW, SE)

Klasse räumlicher Indexstrukturen, die den Datenraum rekursiv in 4 gleich große Zellen unterteilen (Quadranten NW, NE, SW, SE) 4.4 Quadtrees Überblick Klasse räumlicher Indexstrukturen, die den Datenraum rekursiv in 4 gleich große Zellen unterteilen (Quadranten NW, NE, SW, SE) Verwaltung von Punkten, Kurven, Flächen usw., häufig

Mehr

4.4 Quadtrees. Literatur

4.4 Quadtrees. Literatur 4.4 Quadtrees Überblick Klasse räumlicher Indexstrukturen, die den Datenraum rekursiv in 4 gleich große Zellen unterteilen (Quadranten NW, NE, SW, SE) Verwaltung von Punkten, Kurven, Flächen usw., häufig

Mehr

Algorithmen und Datenstrukturen 1 VL Übungstest WS Jänner 2009

Algorithmen und Datenstrukturen 1 VL Übungstest WS Jänner 2009 Technische Universität Wien Institut für Computergraphik und Algorithmen Arbeitsbereich für Algorithmen und Datenstrukturen 186.172 Algorithmen und Datenstrukturen 1 VL 4.0 2. Übungstest WS 2008 16. Jänner

Mehr

5. Clusteranalyse. Lernziele: Grundlegende Algorithmen der Clusteranalyse kennen, ihre Eigenschaften

5. Clusteranalyse. Lernziele: Grundlegende Algorithmen der Clusteranalyse kennen, ihre Eigenschaften 5. Clusteranalyse Lernziele: Grundlegende Algorithmen der Clusteranalyse kennen, ihre Eigenschaften benennen und anwenden können, einen Test auf das Vorhandensein einer Clusterstruktur kennen, verschiedene

Mehr

Beschreibung von Web- Nutzungsverhalten unter Verwendung von Data Mining Techniken

Beschreibung von Web- Nutzungsverhalten unter Verwendung von Data Mining Techniken Diplomarbeit Beschreibung von Web- Nutzungsverhalten unter Verwendung von Data Mining Techniken Irina Alesker Diplomarbeit am Fachbereich Informatik der Universität Dortmund 23. Juni 2005 Betreuer: Prof.

Mehr

5. Clusteranalyse Vorbemerkungen. 5. Clusteranalyse. Grundlegende Algorithmen der Clusteranalyse kennen, ihre Eigenschaften

5. Clusteranalyse Vorbemerkungen. 5. Clusteranalyse. Grundlegende Algorithmen der Clusteranalyse kennen, ihre Eigenschaften 5. Clusteranalyse Vorbemerkungen 5. Clusteranalyse Lernziele: Grundlegende Algorithmen der Clusteranalyse kennen, ihre Eigenschaften benennen und anwenden können, einen Test auf das Vorhandensein einer

Mehr