METALLGUMMI. Berechnungsgrundlagen

Größe: px
Ab Seite anzeigen:

Download "METALLGUMMI. Berechnungsgrundlagen"

Transkript

1 METLLGUMMI Berechnungsgrundlagen Formelzeichen Die verwendeten Formelzeichen entsprechen der DIN Dort nicht aufgeführte Formelzeichen sind in diesem Programm mit den üblichen Buchstaben bezeichnet. Die Einheiten entsprechen dem internationalen Einheitensystem. Häufig gebrauchte Indizes Index D S V Kard e err stat dyn st ges zul x y z Erläuterung Druck Schub Verdrehung Kardanisch Eigen Erreger statisch dynamisch Stoß, Schock gesamt zulässig Längsrichtung Querrichtung Hochrichtung Zeichen Einheit Erläuterung F N, kn Kraft m kg Masse a m/s Beschleunigung g 9,81 m/s Erdbeschleunigung G N, kn Gewichtskraft f Hz = 1/s Frequenz n 1/min Drehzahl c N/m, N/mm Federrate c v Nm/Grad Verdrehfederrate η 1 Frequenzverhältnis i % Isolationsgrad s mm, m Federweg φ Grad Verdrehwinkel γ Grad Schubwinkel δ Grad Verlustwinkel M Nm, Nmm Moment W J = Nm = Ws rbeitsaufnahme E J = Nm = Ws Energie P W Leistung p Ns = Kgm /s Impuls ε % Druckverformung mm, cm Fläche v m/s Geschwindigkeit Grad nstellwinkel D 1 Dämpfungsmaß D db Körperschall-Dämmwert Festlegung der Belastungsrichtung von MEGI -Federelementen In den meisten Fällen ist eine Lagerung mit unterschiedlichen Federraten in den verschiedenen Belastungsrichtungen erforderlich. Um die Richtungen der angreifenden Kräfte und Verformungen eindeutig festzulegen, werden diese mit x, y und z bezeichnet. Dementsprechend werden die Federraten für die jeweiligen Richtungen mit c x, c y und c z bezeichnet. x z y 81

2 Berechnungsgrundlagen Bestimmung der Federrate aus einem Federdiagramm Wirkt eine Kraft F oder ein Moment M auf ein MEGI-Federelement, dann verformt dieses sich um einen Federweg s bzw. einen Verdrehwinkel φ. Je nach Gestaltung des MEGI-Elementes ist zwischen progressivem, linearem oder degressivem Verlauf der Federkurve zu unterscheiden. Nur bei linearem Kurvenverlauf ist die Federrate c oder bei Verdrehung c v über den gesamten Federungsbereich konstant. In den beiden anderen Fällen ist die Federrate c vom Grad der Verformung abhängig. Die Ermittlung der jeweiligen Federrate ergibt sich aus der Zusammenstellung (Bild 1). Durch nlegen der Tangente im Punkt bei der angenommenen Belastung F bzw. des Drehmoments M erhält man die Strecke S sub bzw. φsub. Der Quotient aus Belastung und dieser so ermittelten Strecke ergibt die Federrate in diesem Punkt. Federrate df c = ds dm c v = dφ F c = s M c v = φ Federrate im rbeitspunkt F c = s sub M c φ = φ sub F c = S M c φ = φ F,(M) Federdiagramm F,(M) F, M F, M S (φ) progressiv S sub (φsub ) s,(φ) linear s,(φ) degressiv df c = ds F c = S sub F,(M) F, M dm c v = dφ M c φ = φ sub nordnungsmöglichkeiten von MEGI -Elementen Bild 1 S sub (φsub ) s,(φ) Parallelschaltung: Hintereinanderschaltung: ngestellt: Federweg: F F s = = c ges c 1 + c + c 3 + c 4 Federweg: F F F F F s = = c ges c 1 c c 3 c 4 Federweg: F Z s = cz Federrate: c ges = c 1 + c + c 3 + c 4 Federrate: = c ges c 1 c c 3 c 4 Federrate: c Z = (c D cos² + cs sin² ) F c D F Z c Z cd c 1 c c 3 c 4 F c S c S c 4 c 3 c c 1 Verwendet man vier bzw. sechs Federn, dann ändert sich in der Formel der Faktor in 4 bzw. 6. 8

3 METLLGUMMI Berechnungsgrundlagen Berechnungsanleitung für die gleichmäßige Belastung von MEGI -Elementen Eine elastische Lagerung soll so ausgeführt werden, dass sich gleiche Einfederungen einstellen. Bei einem verwindungssteifen System wird diese Voraussetzung erfüllt, wenn die Summe der Produkte aus Federwert und dem dazugehörigen Schwerpunktabstand auf beiden Seiten des Schwerpunktes gleich ist. Berechnung der Verteilung der MEGI-Elemente x, y [mm] G, F, F B, F C, F D [N] Y X L X R C Y R G X Y L B D Bild uflagerkräfte F, F B, F C, F D Berechnung der Punktlasten bei gegebenen Befestigungspunkten und unsymmetrischer Schwerpunktlage y L G x R G x R y R F = F x R + x L y R + y B = L x R + x L y R + y L G x L y L G x L y R F C = F x R + x L y R + y D = L x R + x L y R + y L 83

4 Berechnungsgrundlagen Schwingungsisolation periodischer Erregung nzahl der Lagerpunkte Lagerabstände vom Schwerpunkt Gewicht G Masse m Erregerfrequenz f err Drehzahl n err uflagerkräfte nach Seite 1 Megi-Federelement F zul F uflager Federrate C Eigenfrequenz 1 c fe = π m Frequenzverhältnis f η = err fe statische Einfederung F s stat = C maximaler Schwingungsausschlag s stat ŝ = 1- η² Isolationsgrad η²- i = 100% η²-1 maximale Beschleunigung aus Bild Schwingungsisolation Isolationsgrad i 3000 Erregerfrequenz nerr (1/min) Resonanzgerade (Eigenfrequenzen) keine Schwingungsisolation i(%) db , , , , 0,4 0,6 0, stat. Durchsenkung s (mm) Bild 3 84

5 METLLGUMMI Berechnungsgrundlagen Schock- und Stoßisolierung Reaktion einer elastischen Lagerung mit einem Freiheitsgrad und linearer Charakteristik auf einen Rechteckstoß. Eingangsdaten: Erdbeschleunigung g >= 9,81 m/s Masse m (kg); Beschleunigung a e [m/s ]; Stoßzeit t st [s] oder Schockklasse nach BM Bau z.b. RK 0,63/6,3 Kinetische Energie der nregung: Energieaufname des MEGI-Elementes 1 E kin = mv [Nm] 4 F zul E [Nm] oder aus Federkurve ausplanimetrieren c dyn Festigkeitsnachweis c dyn E kin E kin E oder F zul [N] 4 uswahl des MEGI -Elementes F zul c dyn MEGI-Element rtikelgeometrie Dynamische Federrate: c dyn 1, c [N/m] Statische Einfederung: m g s stat = [m] c Eigenfrequenz: 1 g s stat f e = [Hz] π a e t st Restbeschleunigung: a r = [m/s ] s stat g Schwingwegamplitude: a r ŝ = [m] (πf e ) Statische Einfederung bei vorgegebener Restbeschleunigung: a e s stat = g ( t st) [m] a r 8

6 Berechnungsgrundlagen Bild 4 bhängigkeit zwischen mplitude, Frequenz und Beschleunigung Schwingweg-mplitude s ˆ [mm] Erregerfrequenz f err [Hz] [ Beschleunigung a[g] 10 9,81m S² ] bhängigkeit zwischen mplitude, Frequenz und Beschleunigung Bild bhängigkeit des Vergrößerungsverhältnisses ŝ/s stat für den Schwingungsausschlag vom Frequenzverhältnis n err /n e bei verschiedenen Dämpfungen D. ŝ größter Schwingungsausschlag s stat statische Durchfederung n err Erregerdrehzahl n e Eigenschwingungszahl ŝ 1 = s stat (1-η ) + 4 D η Für D = 0: ŝ 1 = s stat 1-η Vergrößerungsverhältnis s/sstat ˆ 4, 4,0 3, 3,0,,0 1, 1,0 0,3 0, 0,1 D=0 0, D =1 0 0, 1,0 1,,0, 3,0 3, 4,0 Frequenzverhältnis n err /n e = η 86

7 METLLGUMMI Berechnungs-Beispiel Ein Maschinenaggregat mit einem Gesamtgewicht von 30 kn und einer Erregerdrehzahl von n err = 140 1/min, verursacht durch ein rotierendes Teil, soll schwingungsisoliert aufgestellt werden. Vorgesehen sind 4 Lagerpunkte. Die Schwerpunktslage ist nicht symmetrisch. Rahmenskizze: Gegeben: Gewicht G = 30 kn, Erregerdrehzahl n err = 140 1/min, nzahl der Lagerpunkte: 4 bstand der Lagerpunkte vom Schwerpunkt: Skizze Y C Gesucht: uflagerkräfte, Megi-Federelement, Federrate, statische Einfederung, Eigenfrequenz, Frequenzverhältnis, Isolationsgrad, Körperschall- Dämmwert, maximaler Schwingungsausschlag, maximale Beschleunigung der Maschine B G D X Lösung 1. uflagerkräfte: F, F B, F C, F D Die uflagerkräfte werden nach der Berechnungsanleitung für die gleichmäßige Belastung von MEGI-Elementen (Seite 1) bestimmt. 30 kn F = F B = = 6 kn kn F C = F D = = 9 kn MEGI-Federelement us den Federdiagrammen bzw. aus den Tabellen wird der MEGI-Maschinenfuß in der Qualität hart (für die rechte Lagerebene) und in der Qualität mittel (für die linke Lagerebene) ausgesucht. Dieser rtikel hat in der Qualität mittel bei einer Belastung von 6 kn und in der Qualität hart bei einer Belastung von 9 kn eine Einfederung von 3 mm. 3. Federrate: c Die Federrate ist für den MEGI-Maschinenfuß F 6000 N mittel c = = 10 6 N/m = c,b und s stat 0,003 m F C 9000 N hart c = = N/m = c C,D s stat 0,003 m 87

8 Berechnungs-Beispiel 4. Statische Einfederung: s stat. Eigenfrequenz: f e 6. Frequenzverhältnis: η 7. Isolationsgrad: i 8. Körperschall-Dämmwert: D 9. Maximaler Schwingungsausschlag: ŝ 9. Maximale Beschleunigung: a max Die Federelemente sind parallel geschaltet. Demnach ist die Gesamtfederrate c ges = c,b + c C,D = 10 6 N/m = N/m. Die statische Gesamteinfederung wird somit G N s stat = = = 0,003 m c ges N/m Die Eigenfrequenz der elastisch gelagerten Maschine errechnet sich mit der Formel 1 c ges G f e = [Hz] wobei die Masse m = [kg] ist. π m g Damit wird die Eigenfrequenz 1 9, f e = = 9,1 Hz π Das Frequenzverhältnis η ist f err n err η =, wobei f err = Hz ist. f e 60 In diesem Beispiel ist das Frequenzverhältnis 140 η = =, ,1 Der Isolationsgrad i kann aus Bild 3 mit der Erregerdrehzahl n err und der statischen Einfederung s stat abgelesen oder mit der Formel η -,66 - i = 100% = 100% = 83,4% η -1, errechnet werden. Daraus ist ersichtlich, daß nur noch ca. 16,% der Erregerstörkräfte, die von der Maschine ausgehen, in das Fundament geleitet werden. Der Körperschall-Dämmwert kann genau wie der Isolationsgrad direkt aus Bild 3 abgelesen werden, oder er wird mit der Formel 1 1 D = 0 lg = 0 lg = 1,67 db 1- i 1-0,834 berechnet. In dieser Formel wird der Isolationsgrad i nicht in % eingesetzt. Der maximale Schwingungsausschlag kann aus Bild bestimmt werden oder wird mit der Formel s stat 0,003 ŝ = = = 0,00049 m 1-η 1-,66 berechnet. Die maximale Beschleunigung kann aus Bild 4 bestimmt werden oder wird mit der Formel 140 a max = ŝ (π f err ) = 0,00049 (π ) = 11,3 m/s 60 berechnet. D.h., die Maschine wird mit maximal 1,1g beschleunigt. 88

2. Sätze von Castigliano und Menabrea

2. Sätze von Castigliano und Menabrea 2. Sätze von Castigliano und Menabrea us der Gleichheit von äußerer rbeit und Formänderungsenergie kann die Verschiebung am Lastangriffspunkt berechnet werden, wenn an der Struktur nur eine Last angreift.

Mehr

Übung zu Mechanik 4 Seite 17

Übung zu Mechanik 4 Seite 17 Übung zu Mechanik 4 Seite 17 Aufgabe 31 Gegeben sei der dargestellte, gedämpfte Schwinger. Die beiden homogenen Kreisscheiben (m B, r B und m C, r C ) sind fest miteinander verbunden und frei drehbar auf

Mehr

Tutorium Physik 2. Rotation

Tutorium Physik 2. Rotation 1 Tutorium Physik 2. Rotation SS 16 2.Semester BSc. Oec. und BSc. CH 2 Themen 7. Fluide 8. Rotation 9. Schwingungen 10. Elektrizität 11. Optik 12. Radioaktivität 3 8. ROTATION 8.1 Rotation: Lösungen a

Mehr

Übung zu Mechanik 4 Seite 28

Übung zu Mechanik 4 Seite 28 Übung zu Mechanik 4 Seite 28 Aufgabe 47 Auf ein Fundament (Masse m), dessen elastische Bettung durch zwei Ersatzfedern dargestellt wird, wirkt die periodische Kraft F(t) = F 0 cos (Ω t). Die seitliche

Mehr

Versuchsprotokoll von Thomas Bauer, Patrick Fritzsch. Münster, den

Versuchsprotokoll von Thomas Bauer, Patrick Fritzsch. Münster, den M1 Pendel Versuchsprotokoll von Thomas Bauer, Patrick Fritzsch Münster, den 15.01.000 INHALTSVERZEICHNIS 1. Einleitung. Theoretische Grundlagen.1 Das mathematische Pendel. Das Federpendel.3 Parallel- und

Mehr

Rheinische Fachhochschule Köln

Rheinische Fachhochschule Köln Rheinische Fachhochschule Köln Matrikel-Nr. Nachname Dozent Ianniello Semester Klausur Datum Fach Urteil BM4 II, SS11 K2 Jan 12 Kinetik+Kinematik Genehmigte Hilfsmittel: Ergebnis: Punkte Taschenrechner

Mehr

1.Torsion # Frage Antw. P.

1.Torsion # Frage Antw. P. 1.Torsion # Frage Antw. P. 1 Der skizzierte Schalthebel mit Schaltwelle wird durch die Kraft F = 1 kn belastet. Die zulässigen Spannungen beträgt für eine Torsion 20 N/mm 2. a b 2 3 4 Bestimmen Sie das

Mehr

Federelemente. Technische Grundlagen

Federelemente. Technische Grundlagen Federungstechnik Federelemente Technische Grundlagen 05-135 RRG INDUSTRIETECHNIK GMBH Brunshofstraße 10 D-45470 Mülheim an der Ruhr Telefon (0208) 37 83-0 Telefax (0208) 37 83-156 E-Mail: federung@rrg.de

Mehr

Experimentalphysik EP, WS 2012/13

Experimentalphysik EP, WS 2012/13 FAKULTÄT FÜR PHYSIK Ludwig-Maximilians-Universität München Prof. O. Biebel, PD. W. Assmann Experimentalphysik EP, WS 0/3 Probeklausur (ohne Optik)-Nummer: 7. Januar 03 Hinweise zur Bearbeitung Alle benutzten

Mehr

3. Erzwungene gedämpfte Schwingungen

3. Erzwungene gedämpfte Schwingungen 3. Erzwungene gedämpfte Schwingungen 3.1 Schwingungsgleichung 3.2 Unwuchtanregung 3.3 Weganregung 3.4 Komplexe Darstellung 2.3-1 3.1 Schwingungsgleichung F(t) m Bei einer erzwungenen gedämpften Schwingung

Mehr

Berechnungen bei dynamischer Belastung: Kritische Drehzahl n zul.

Berechnungen bei dynamischer Belastung: Kritische Drehzahl n zul. Nachfolgend sind die relevanten Berechnungsgrundlagen aufgeführt, die eine ausreichend sichere und in der Praxis bewährte Auslegung eines Kugelgewindetriebs erlauben. Detaillierte Angaben zur Auslegung

Mehr

Rheinische Fachhochschule Köln

Rheinische Fachhochschule Köln Rheinische Fachhochschule Köln Matrikel-Nr. Nachname Dozent Ianniello Semester Klausur Datum Fach Urteil BM, Ing. K 8 11.7.14 Kinetik, Kinematik Genehmigte Hilfsmittel: Punkte Taschenrechner Literatur

Mehr

Gegeben ist die in Abbildung 1 dargestellte zentrische Schubkurbel mit den Längen a=50mm und b=200mm. Zu bestimmen sind:

Gegeben ist die in Abbildung 1 dargestellte zentrische Schubkurbel mit den Längen a=50mm und b=200mm. Zu bestimmen sind: 1 Aufgabenstellung Gegeben ist die in Abbildung 1 dargestellte zentrische Schubkurbel mit den Längen a=50mm und b=200mm. Zu bestimmen sind: 1. Die Geschwindigkeit υ B am Gleitsteinzapfen (Kolbenbolzen)

Mehr

Experimentalphysik 1

Experimentalphysik 1 Technische Universität München Fakultät für Physik Ferienkurs Experimentalphysik 1 WS 16/17 Lösung 1 Ronja Berg (ronja.berg@tum.de) Katharina Scheidt (katharina.scheidt@tum.de) Aufgabe 1: Superposition

Mehr

Funktionsbeschreibung

Funktionsbeschreibung Funktionsbeschreibung Die vorliegende Baugruppe dient zur Erregung eines Schwingsiebes. Wird die vorgesehene Drehzahl und das Drehmoment auf die Antriebswelle übertragen, erzeugt die exzentrisch angeordnete

Mehr

CITELBRONG. Schwingungsisolierung und Körperschalldämmung streifenförmig gelagerter Maschinen. planmäßig elastisch lagern

CITELBRONG. Schwingungsisolierung und Körperschalldämmung streifenförmig gelagerter Maschinen. planmäßig elastisch lagern CITELBRONG Schwingungsisolierung und Körperschalldämmung streifenförmig gelagerter Maschinen planmäßig elastisch lagern Eigenfrequenz Inhaltsverzeichnis Seite Produktbeschreibung 2 Eigenfrequenz 2 Dämpfungsgrad

Mehr

Klausur Physik I für Chemiker

Klausur Physik I für Chemiker Universität Siegen Wintersemester 2017/18 Naturwissenschaftlich-Technische Fakultät Department Physik Klausur Physik I für Chemiker Prof. Dr. M. Agio Lösung zu Aufgabe 1: Schiefe Ebene i) Siehe Zeichnung

Mehr

TECHNISCHE MECHANIK III (DYNAMIK)

TECHNISCHE MECHANIK III (DYNAMIK) Klausur im Fach TECHNISCHE MECHANIK III (DYNAMIK) WS 2014 / 2015 Matrikelnummer: Vorname: Nachname: Ergebnis Klausur Aufgabe: 1 2 3 4 Summe Punkte: 15 7 23 15 60 Davon erreicht Bearbeitungszeit: Hilfsmittel:

Mehr

:= (Energieprdoukt b x h) m 3

:= (Energieprdoukt b x h) m 3 - Feder: l F := 55 0 3 m (Länge der Feder) b F := 4 0 3 m (Breite der Feder) h F := 0.7 0 3 m (Dicke der Feder) E F 80 0 9 kg := (E-Modul) (=Pa) (Stahl) m s R m_federstahl := 800 0 6 Pa (Zugfestigkeit)

Mehr

3. Erzwungene Schwingungen

3. Erzwungene Schwingungen 3. Erzwungene Schwingungen 3.1 Grundlagen 3.2 Tilger 3.3 Kragbalken 3.4 Fahrbahnanregung 3.3-1 3.1 Grundlagen Untersucht wird die Antwort des Systems auf eine Anregung mit harmonischem Zeitverlauf. Bewegungsgleichung:

Mehr

Schwingungsisolieren der Maschinen

Schwingungsisolieren der Maschinen Schwingungsisolieren der Maschinen Ing. Jiří Hovorka 1. Schwingungsisolierung der Maschinen - Aktivisolierung (Quellenisolierung) Schutz gegenüber den Erschütterungswellen, die aus dem Umfeld kommen, von

Mehr

Auftraggeber. Aufgestellt. Geprüft NRB Datum Dez Korrigiert MEB Datum April 2006

Auftraggeber. Aufgestellt. Geprüft NRB Datum Dez Korrigiert MEB Datum April 2006 Nr. OSM 4 Blatt 1 von 8 Index B Stainless Steel Valorisation Project BEMESSUNGSBEISPIEL 9 KALTVERFESTIGTES U-PROFIL UNTER BIEGUNG MIT ABGESTUFTEN, SEITLICHEN HALTERUNGEN DES DRUCKFLANSCHES, BIEGEDRILLKNICKEN

Mehr

05200 Elastomerlochplatte ISOPLAT

05200 Elastomerlochplatte ISOPLAT Seite 46 05200 Elastomerlochplatte ISOPLAT 05210 ISOPLAT, NR-Qualität, Härte 47 Sh A Konstruieren und Berechnen von ISOPLAT-Elastomerlochplatten Seit 20 Jahren wird ISOPLAT als Schutz gegen Erschütterungen,

Mehr

Formelsammlung: Physik I für Naturwissenschaftler

Formelsammlung: Physik I für Naturwissenschaftler Formelsammlung: Physik I für Naturwissenschaftler 1 Was ist Physik? Stand: 13. Dezember 212 Physikalische Größe X = Zahl [X] Einheit SI-Basiseinheiten Mechanik Zeit [t] = 1 s Länge [x] = 1 m Masse [m]

Mehr

(2 π f C ) I eff Z = 25 V

(2 π f C ) I eff Z = 25 V Physik Induktion, Selbstinduktion, Wechselstrom, mechanische Schwingung ösungen 1. Eine Spule mit der Induktivität = 0,20 mh und ein Kondensator der Kapazität C = 30 µf werden in Reihe an eine Wechselspannung

Mehr

Aufgabenübersicht für tägliche Übungen mit zugehörigen Klassenstufen:

Aufgabenübersicht für tägliche Übungen mit zugehörigen Klassenstufen: Aufgabenübersicht für tägliche Übungen mit zugehörigen Klassenstufen: Größen mit Formelzeichen, Einheiten und Umrechnungen: Bsp.: 520 mm : 10 = 52 cm Bsp.: 120 h : 24 = 5 d 6 Weg FZ: s Einheiten: mm; cm;

Mehr

Musterlösung zur 10. Übung Mechanik II SS 08. Aufgabe 1: Schubspannungen infolge Querkraft: Bei dünnwandigen Querschnitten t 1, t 2

Musterlösung zur 10. Übung Mechanik II SS 08. Aufgabe 1: Schubspannungen infolge Querkraft: Bei dünnwandigen Querschnitten t 1, t 2 Musterlösung ur 10. Übung Mechanik II SS 08 Aufgabe 1: Schubspannungen infolge Querkraft: Bei dünnwandigen Querschnitten t 1, t 2 b, h können die Schubspannungen in Richtung der bereichsweise einuführenden

Mehr

(no title) Ingo Blechschmidt. 13. Juni 2005

(no title) Ingo Blechschmidt. 13. Juni 2005 (no title) Ingo Blechschmidt 13. Juni 2005 Inhaltsverzeichnis 0.1 Tests............................. 1 0.1.1 1. Extemporale aus der Mathematik...... 1 0.1.2 Formelsammlung zur 1. Schulaufgabe..... 2 0.1.3

Mehr

a) b) c) d) e) f) g) h) i)

a) b) c) d) e) f) g) h) i) Ausgabe: 8.1.15 Übung 5: Schub Einleitung und Lernziele strukturen bestehen meist aus dünnwandigen Profilen. Während bei vollen Querschnitten die Schubspannungen oft kaum eine Rolle spielen, ist der Einfluss

Mehr

1. Aufgabe: Impuls des Waggons beim Aufprall ist mit 1 2 mv2 = mgh und v = 2gh p = m v 1 = m 2gh

1. Aufgabe: Impuls des Waggons beim Aufprall ist mit 1 2 mv2 = mgh und v = 2gh p = m v 1 = m 2gh 3 Lösungen 1. Aufgabe: Impuls des Waggons beim Aufprall ist mit 1 2 mv2 = mgh und v = 2gh p = m v 1 = m 2gh 1 (a) Nach dem Aufprall m u 1 = p = m v 1 m u 1 = m 2gh 1 e 1 = 12664Ns e 1 F = p t (b) p 2 =

Mehr

KONSTRUKTIONSLEHRE Prof. Dr.-Ing. M. Reichle. Federn. DHBW-STUTTGART Studiengang Mechatronik. df ds. df ds

KONSTRUKTIONSLEHRE Prof. Dr.-Ing. M. Reichle. Federn. DHBW-STUTTGART Studiengang Mechatronik. df ds. df ds Blatt. ederkennlinie Die ederkennlinie gibt die Abhängigkeit zwischen Belastung (Kraft, Moment) und Verformung (Weg, Winkel) an. Man unterscheidet drei grundsätzlich unterschiedliche Verhaltensweisen mit

Mehr

Formelsammlung. Physik. [F] = kg m s 2 = N (Newton) v = ṡ = ds dt. [v] = m/s. a = v = s = d2 s dt 2 [s] = m/s 2. v = a t.

Formelsammlung. Physik. [F] = kg m s 2 = N (Newton) v = ṡ = ds dt. [v] = m/s. a = v = s = d2 s dt 2 [s] = m/s 2. v = a t. Formelsammlung Physik Mechanik. Kinematik und Kräfte Kinematik Erstes Newtonsches Axiom (Axio/Reaxio) F axio = F reaxio Zweites Newtonsches Axiom Translationsbewegungen Konstante Beschleunigung F = m a

Mehr

CIPREMONT. Schwingungs- und Körperschallisolierung für Gebäude- und Maschinenlagerungen bis 4 N/mm 2. planmäßig elastisch lagern

CIPREMONT. Schwingungs- und Körperschallisolierung für Gebäude- und Maschinenlagerungen bis 4 N/mm 2. planmäßig elastisch lagern CIPREMONT Schwingungs- und Körperschallisolierung für Gebäude- und Maschinenlagerungen bis 4 N/mm 2 planmäßig elastisch lagern Eigenfrequenz Inhalt Seite Allgemeines 2 Eigenfrequenz 2 Produktbeschreibung

Mehr

= 4 = x + 3. y(x) = x

= 4 = x + 3. y(x) = x Ü Aufgabenblatt Inhalt Brüche. Gleichungen. Summen. Potenzen. Logarithmen. Ebener Winkel (Definition und Einheiten). Trigonometrische Funktionen. Basisgrößen und Basiseinheiten des SI. Bequemes Rechnen

Mehr

Experimentalphysik E1

Experimentalphysik E1 Experimentalphysik E1 Newtonsche Axiome, Kräfte, Arbeit, Skalarprodukt, potentielle und kinetische Energie Alle Informationen zur Vorlesung unter : http://www.physik.lmu.de/lehre/vorlesungen/index.html

Mehr

Übungen zu Experimentalphysik 2

Übungen zu Experimentalphysik 2 Physik Department, Technische Universität München, PD Dr. W. Schindler Übungen zu Experimentalphysik 2 SS 13 - Lösungen zu Übungsblatt 4 1 Schiefe Ebene im Magnetfeld In einem vertikalen, homogenen Magnetfeld

Mehr

Allgemeine Bewegungsgleichung

Allgemeine Bewegungsgleichung Freier Fall Allgemeine Bewegungsgleichung (gleichmäßig beschleunigte Bewegung) s 0, v 0 Ableitung nach t 15 Freier Fall Sprung vom 5-Meter Turm s 0 = 0; v 0 = 0 (Aufprallgeschwindigkeit: v = -10m/s) Weg-Zeit

Mehr

ERGEBNISSE TECHNISCHE MECHANIK III-IV Lehrstuhl für Technische Mechanik, TU Kaiserslautern

ERGEBNISSE TECHNISCHE MECHANIK III-IV Lehrstuhl für Technische Mechanik, TU Kaiserslautern ERGEBNISSE TECHNISCHE MECHANIK III-IV Lehrstuhl für Technische Mechanik, TU Kaiserslautern WS 12/13, 13.02.2013 1. Aufgabe: (TM III) Um vom Boden aufzustehen, rutscht ein Mensch mit konstanter Geschwindigkeitv

Mehr

2.4 Ermittlung unbekannter Kräfte im zentralen Kräftesystem

2.4 Ermittlung unbekannter Kräfte im zentralen Kräftesystem Ermittlung unbekannter Kräfte im zentralen Kräftesystem.4 Ermittlung unbekannter Kräfte im zentralen Kräftesystem ( Lehrbuch: Kapitel.3.) Gegebenenfalls auftretende Reibkräfte werden bei den folgenden

Mehr

Physikunterricht 11. Jahrgang P. HEINECKE.

Physikunterricht 11. Jahrgang P. HEINECKE. Physikunterricht 11. Jahrgang P. HEINECKE Hannover, Juli 2008 Inhaltsverzeichnis 1 Kinematik 3 1.1 Gleichförmige Bewegung.................................. 3 1.2 Gleichmäßig

Mehr

B Konstruktion. Werktstoff 16MnCr5 (1.7131): Vorgegebene Werte:

B Konstruktion. Werktstoff 16MnCr5 (1.7131): Vorgegebene Werte: B Konstruktion Tabelle1 Vorgegebene Werte: Drehzahl [1/min] Startleistung [kw] Planetengetriebe Eingang 3520 377 Planetengetriebe Ausgang 565 369 Eingriffswinkel α 20.00 0.3491 Verzahnungsqualität Q 5

Mehr

1. Geradlinige Bewegung

1. Geradlinige Bewegung 1. Geradlinige Bewegung 1.1 Kinematik 1.2 Schwerpunktsatz 1.3 Dynamisches Gleichgewicht 1.4 Arbeit und Energie 1.5 Leistung Prof. Dr. Wandinger 3. Kinematik und Kinetik TM 3.1-1 1.1 Kinematik Ort: Bei

Mehr

Berechnung der nominellen Lebensdauer

Berechnung der nominellen Lebensdauer 50G Auswahlkriterien Die Lebensdauer von gleichen Linearführungssystemen ist oftmals unterschiedlich, obwohl sie unter gleichen Bedingungen hergestellt und auch betrieben werden. Als Richtlinie wird die

Mehr

Aufgabe 6. Lösungsvorschlag zu Aufgabe 6. Klausur Mechanik II vom 27. März 2007 Seite 1 von 12

Aufgabe 6. Lösungsvorschlag zu Aufgabe 6. Klausur Mechanik II vom 27. März 2007 Seite 1 von 12 Klausur echanik II vom 7. ärz 7 Seite 1 von 1 ufge 6 a Der Querschnitt eines Trägers ist aus drei gleichen Rechtecken zusammengesetzt. a) estimmen Sie I yy und I zz! b) Wie groß ist I yz? y b S Gegeben:,

Mehr

Grund- und Angleichungsvorlesung Energie, Arbeit & Leistung.

Grund- und Angleichungsvorlesung Energie, Arbeit & Leistung. 2 Grund- und Angleichungsvorlesung Physik. Energie, Arbeit & Leistung. WS 16/17 1. Sem. B.Sc. LM-Wissenschaften Diese Präsentation ist lizenziert unter einer Creative Commons Namensnennung Nichtkommerziell

Mehr

3. Erzwungene Schwingungen

3. Erzwungene Schwingungen 3. Erzwungene Schwingungen Bei erzwungenen Schwingungen greift am schwingenden System eine zeitlich veränderliche äußere Anregung an. Kraftanregung: Am schwingenden System greift eine zeitlich veränderliche

Mehr

Physik 1 Zusammenfassung

Physik 1 Zusammenfassung Physik 1 Zusammenfassung Lukas Wilhelm 31. August 009 Inhaltsverzeichnis 1 Grundlagen 3 1.1 Mathe...................................... 3 1.1.1 Einheiten................................ 3 1. Trigonometrie..................................

Mehr

Grund- und Angleichungsvorlesung Energie, Arbeit & Leistung.

Grund- und Angleichungsvorlesung Energie, Arbeit & Leistung. 3 Grund- und Angleichungsvorlesung Physik. Energie, Arbeit & Leistung. WS 16/17 1. Sem. B.Sc. LM-Wissenschaften Diese Präsentation ist lizenziert unter einer Creative Commons Namensnennung Nichtkommerziell

Mehr

Physik Profilkurs ÜA 07 mechanische Wellen Ks. 2011

Physik Profilkurs ÜA 07 mechanische Wellen Ks. 2011 Aufgabe 1) Ein Wellenträger wird mit f = 2,0 Hz harmonisch angeregt, wobei sich Wellen der Länge 30 cm und der Amplitude 3,0 cm bilden. Zur Zeit t o = 0,0 s durchläuft der Anfang des Wellenträgers gerade

Mehr

Technische Schwingungslehre Prof. Dr.-Ing. habil. Michael Hanss. Aufgabensammlung mit Kurzlösungen

Technische Schwingungslehre Prof. Dr.-Ing. habil. Michael Hanss. Aufgabensammlung mit Kurzlösungen Prof. Dr.-Ing. Prof. E.h. P. Eberhard / Prof. Dr.-Ing. M. Hanss SS 17 Ü1 Technische Schwingungslehre Prof. Dr.-Ing. habil. Michael Hanss Aufgabensammlung mit Kurzlösungen Sommersemester 017 Prof. Dr.-Ing.

Mehr

Leistungselektronik und Antriebstechnik Laborberichte. Christian Burri Tobias Plüss Pascal Schwarz

Leistungselektronik und Antriebstechnik Laborberichte. Christian Burri Tobias Plüss Pascal Schwarz Leistungselektronik und Antriebstechnik Laborberichte Christian Burri Tobias Plüss Pascal Schwarz 26. April 2013 Inhaltsverzeichnis 1 Asynchronmaschine am Netz 3 1.1 Versuchsaufbau......................................

Mehr

Formelsammlung

Formelsammlung Formelsammlung Geradlinige Bewegung Bewegung eines Körpers Geschwindigkeit Weg Zeit - Diagramme Zeit s s ~ t v v = const t a a = 0 t t Bewegung eines Körpers Beschleunigte Bewegung Beschleunigung Geschwindigkeit

Mehr

Experimentalphysik EP, WS 2013/14

Experimentalphysik EP, WS 2013/14 FAKULTÄT FÜR PHYSIK Ludwig-Maximilians-Universität München Prof. J. Schreiber, PD. W. Assmann Experimentalphysik EP, WS 2013/14 Probeklausur (ohne Optik)-Nummer: 7. Januar 2014 Hinweise zur Bearbeitung

Mehr

Grund- und Angleichungsvorlesung Kinematik, Dynamik.

Grund- und Angleichungsvorlesung Kinematik, Dynamik. 2 Grund- und Angleichungsvorlesung Physik. Kinematik, Dynamik. WS 18/19 1. Sem. B.Sc. LM-Wissenschaften Diese Präsentation ist lizenziert unter einer Creative Commons Namensnennung Nichtkommerziell Weitergabe

Mehr

4. Transiente Analyse

4. Transiente Analyse 4. Transiente Analyse Bei der transienten Analyse wird der zeitliche Verlauf der Antwort auf eine zeitlich veränderliche Last bestimmt. Die zu lösende Bewegungsgleichung lautet: [ M ] [ü ]+[ D ] [ u ]+

Mehr

Übungsblatt 9. a) Wie groß ist der Impuls des Autos vor und nach der Kollision und wie groß ist die durchschnittliche Kraft, die auf das Auto wirkt?

Übungsblatt 9. a) Wie groß ist der Impuls des Autos vor und nach der Kollision und wie groß ist die durchschnittliche Kraft, die auf das Auto wirkt? Aufgabe 32: Impuls Bei einem Crash-Test kollidiert ein Auto der Masse 2000Kg mit einer Wand. Die Anfangsund Endgeschwindigkeit des Autos sind jeweils v 0 = (-20m/s) e x und v f = (6m/s) e x. Die Kollision

Mehr

Berechnung der einwirkenden Belastung

Berechnung der einwirkenden Belastung Linearführungen können aus allen Richtungen Belastungen und Momente resultierend aus der Einbaulage der Führungen, dem Antrieb, der Beschleunigung, den Bearbeitungskräften sowie dem Massenschwerpunkt des

Mehr

Besprechung am /

Besprechung am / PN1 - Physik 1 für Chemiker und Biologen Prof. J. Lipfert WS 2017/18 Übungsblatt 10 Übungsblatt 10 Besprechung am 16.01.2018/18.01.2018 Aufgabe 1 Bluttranfusion: Ein Patient benötigt dringend eine Bluttransfusion.

Mehr

Technische Mechanik I

Technische Mechanik I 1 Die Technische Mechanik ist ein Teilgebiet der Physik und wird definiert als Lehre von den Bewegungen und den Kräften. Sie lässt sich unterteilen in die Behandlung von Kräften an ruhenden Körpern (Statik,

Mehr

Sylodyn Werkstoffdatenblatt

Sylodyn Werkstoffdatenblatt NF Sylodyn Werkstoffdatenblatt Werkstoff geschlossenzelliges Polyetherurethan Farbe violett Sylodyn Typenreihe Standard-Lieferformen, ab Lager Dicke:, mm bei Sylodyn NF mm bei Sylodyn NF Rollen:, m breit,,

Mehr

ca. 10 %** ca. 20 %** ca. 50 %** DIN EN ISO 527-3/5/100* DIN EN ISO 527-3/5/100* DIN 53515* DIN Getzner Werkstoffe Getzner Werkstoffe

ca. 10 %** ca. 20 %** ca. 50 %** DIN EN ISO 527-3/5/100* DIN EN ISO 527-3/5/100* DIN 53515* DIN Getzner Werkstoffe Getzner Werkstoffe sylodyn NE Werkstoff geschlossenzelliges Polyetherurethan Farbe blau Sylodyn Typenreihe Standard-Lieferformen, ab Lager Dicke: 1, mm bei Sylodyn NE1 mm bei Sylodyn NE Rollen: 1, m breit,, m lang Streifen:

Mehr

Blatt Musterlösung Seite 1. Aufgabe 1: Schwingender Stab

Blatt Musterlösung Seite 1. Aufgabe 1: Schwingender Stab Seite 1 Aufgabe 1: Schwingender Stab Ein Stahlstab der Länge l = 1 m wird an beiden Enden fest eingespannt. Durch Reiben erzeugt man Eigenschwingungen. Die Frequenz der Grundschwingung betrage f 0 = 250

Mehr

Stärkt Euch und bereitet Euch gut vor... Die Übungsaufgaben bitte in den nächsten Tagen (in Kleingruppen) durchrechnen! Am werden sie von Herrn

Stärkt Euch und bereitet Euch gut vor... Die Übungsaufgaben bitte in den nächsten Tagen (in Kleingruppen) durchrechnen! Am werden sie von Herrn Stärkt Euch und bereitet Euch gut vor... Die Übungsaufgaben bitte in den nächsten Tagen (in Kleingruppen) durchrechnen! Am 4.11. werden sie von Herrn Hofstaetter in den Übungen vorgerechnet. Vom Weg zu

Mehr

Zugversuch - Versuchsprotokoll

Zugversuch - Versuchsprotokoll Gruppe 13: René Laquai Jan Morasch Rudolf Seiler 16.1.28 Praktikum Materialwissenschaften II Zugversuch - Versuchsprotokoll Betreuer: Heinz Lehmann 1. Einleitung Der im Praktikum durchgeführte Zugversuch

Mehr

ca. 11 %** ca. 16 %** ca. 50 %** DIN EN ISO 527-3/5/100* DIN EN ISO 527-3/5/100* DIN 53515* DIN Getzner Werkstoffe Getzner Werkstoffe

ca. 11 %** ca. 16 %** ca. 50 %** DIN EN ISO 527-3/5/100* DIN EN ISO 527-3/5/100* DIN 53515* DIN Getzner Werkstoffe Getzner Werkstoffe sylodyn NF Werkstoff geschlossenzelliges Polyetherurethan Farbe violett Sylodyn Typenreihe Standard-Lieferformen, ab Lager Dicke:,5 mm bei Sylodyn NF 5 mm bei Sylodyn NF5 Rollen:,5 m breit, 5, m lang Streifen:

Mehr

2. Einmassenschwinger. Inhalt:

2. Einmassenschwinger. Inhalt: . Einmassenschwinger Inhalt:.1 Bewegungsdifferentialgleichung. Eigenschwingung.3 Harmonische Anregung.4 Schwingungsisolation.5 Stossartige Belastung.6 Allgemeine Belastung.7 Nichtlineare Systeme.8 Dämpfungsarten

Mehr

3. Übertragungsfunktionen

3. Übertragungsfunktionen Definitionen: Die Fourier-Transformierte der Impulsantwortfunktion heißt Übertragungsfunktion: H ( f )= h(t )e 2 π i f t dt Mithilfe der Übertragungsfunktion kann die Fourier-Transformierte der Antwort

Mehr

Dynamische Lasten. 1. Kraft- und Weganregung 2. Deterministische Lasten. 3. Stochastische Lasten

Dynamische Lasten. 1. Kraft- und Weganregung 2. Deterministische Lasten. 3. Stochastische Lasten Dynamische Lasten 1. Kraft- und Weganregung 2. Deterministische Lasten 2.1 Allgemeine zeitabhängige Lasten 2.2 Periodische Lasten 2.3 Harmonische Lasten 3. Stochastische Lasten 3.1 Instationäre stochastische

Mehr

Beispiel zur Berechnung der nominellen Lebensdauer

Beispiel zur Berechnung der nominellen Lebensdauer [Bedingung (Horizontalmontage)] Betrachteter Typ : KR 5520A Linearführung (C = 800N, C 0 = 6900N) Kugelgewindetrieb (C a = 620N, C 0a = 9290N) Lager (Festlager) (C a = 7600N, P 0a = 990N) Gewicht : m =

Mehr

Sylomer Typenreihe 1 0,1 0,01 0,001. WERKSTOFFEIGENSCHAFTEN Prüfverfahren Anmerkung

Sylomer Typenreihe 1 0,1 0,01 0,001. WERKSTOFFEIGENSCHAFTEN Prüfverfahren Anmerkung L Werkstoff: Farbe: gemischtzelliges Polyetherurethan grün Sylomer Typenreihe Einsatzbereich: Druckbelastung Verformung (formfaktorabhängig) Statische Dauerlast: bis 5 N/mm 2 ca. 7% Arbeitsbereich: bis

Mehr

Statik I Ergänzungen zum Vorlesungsskript Dr.-Ing. Stephan Salber Institut für Statik und Dynamik der Luft- und Raumfahrtkonstruktionen Statik I Vorlesungs- und Übungsmaterial Vorlesung Benutzername: Vorlesungsskript

Mehr

Physik 1. Kinematik, Dynamik.

Physik 1. Kinematik, Dynamik. Physik Mechanik 3 Physik 1. Kinematik, Dynamik. WS 15/16 1. Sem. B.Sc. Oec. und B.Sc. CH Physik Mechanik 5 Themen Definitionen Kinematik Dynamik Physik Mechanik 6 DEFINITIONEN Physik Mechanik 7 Was ist

Mehr

Lösungen Aufgabenblatt 6

Lösungen Aufgabenblatt 6 Ludwig Maximilians Universität München Fakultät für Physik Lösungen Aufgabenblatt 6 Übungen E Mechanik WS 07/08 Dozent: Prof. Dr. Hermann Gaub Übungsleitung: Dr. Martin Benoit und Dr. Res Jöhr Verständnisfragen

Mehr

Gummipuffer Maschinenfüße

Gummipuffer Maschinenfüße Maschinenfüße DVA 2 Ausführung Basis Stahl, verzinkt, glänzend Körper Schwingungsdämpfer Naturkautschuk, Härte 55 ± 5 Shore A, schwarz DVA.1: Stahl, verzinkt, glänzend mit Gewindebolzen. DVA.2: Gewindebolzen

Mehr

2. Freie Schwingungen

2. Freie Schwingungen 2. Freie Schwingungen Die einfachsten schwingungsfähigen Systeme sind lineare Systeme: Die Rückstellkräfte sind proportional zur Auslenkung. Die Dämpfungskräfte sind proportional zur Geschwindigkeit. Bei

Mehr

Aufgabe 1: Elektro-mechanischer Oszillator

Aufgabe 1: Elektro-mechanischer Oszillator 37. Internationale Physik-Olympiade Singapur 6 Lösungen zur zweiten Runde R. Reindl Aufgabe : Elektro-mechanischer Oszillator Formeln zum Plattenkondensator mit der Plattenfläche S, dem Plattenabstand

Mehr

Beispiel 3: Ersatzstabverfahren

Beispiel 3: Ersatzstabverfahren Beispiel: Ersatzstabverfahren Blatt: Seite 1 von 9 Beispiel 3: Ersatzstabverfahren Bestimmung der maßgeblichen Knickfigur und zugehörigen Knicklänge in der Ebene. Nachweis gegen Biegeknicken nach dem Ersatzstabverfahren

Mehr

1. Kraft- und Weganregung 2. Deterministische Lasten. 3. Stochastische Lasten

1. Kraft- und Weganregung 2. Deterministische Lasten. 3. Stochastische Lasten Dynamische Lasten 1. Kraft- und Weganregung 2. Deterministische Lasten 2.1 Periodische Lasten 2.2 Allgemeine zeitabhängige Lasten 2.3 Harmonische Lasten 3. Stochastische Lasten 3.1 Instationäre stochastische

Mehr

Lösungserwartung und Lösungsschlüssel zur prototypischen Schularbeit für die 7. Klasse (Autor: Gottfried Gurtner)

Lösungserwartung und Lösungsschlüssel zur prototypischen Schularbeit für die 7. Klasse (Autor: Gottfried Gurtner) Lösungserwartung und Lösungsschlüssel zur prototypischen Schularbeit für die 7. Klasse (Autor: Gottfried Gurtner) Teil : Mathematische Grundkompetenzen ) Es muss (ausschließlich) die richtige Antwortmöglichkeit

Mehr

Experimentalphysik EP, WS 2011/12

Experimentalphysik EP, WS 2011/12 FAKULTÄT FÜR PHYSIK Ludwig-Maximilians-Universität München Prof. O. Biebel, PD. W. Assmann Experimentalphysik EP, WS 0/ Probeklausur (ohne Optik)-Nummer:. Februar 0 Hinweise zur Bearbeitung Alle benutzten

Mehr

Resonanz und Dämpfung

Resonanz und Dämpfung Resonanz und ämpfung Wenn eine Masse m an einem Federpendel (Federkonstante ) frei ohne ämpfung schwingt, genügt die Elongation s = s ( t ) der ifferentialgleichung m # s ( t ) + # s( t ) = 0. ies ist

Mehr

Das Torsionsmoment ergibt sich aus dem Abstand des Schnittufers mal der Windkraft

Das Torsionsmoment ergibt sich aus dem Abstand des Schnittufers mal der Windkraft 1. Zeichen eindeutige Fehler in der oberen Hälfte: eine Körperkante uviel / falsch eine Körperkante u wenig Doppelpassungen am Lager Doppelpassung am Zahnrad Lagerung -> Loslagerung falsch, da falsche

Mehr

3. Kreisbewegung. Punkte auf einem Rad Zahnräder, Getriebe Drehkran Turbinen, Hubschrauberrotor

3. Kreisbewegung. Punkte auf einem Rad Zahnräder, Getriebe Drehkran Turbinen, Hubschrauberrotor 3. Kreisbewegung Ein wichtiger technischer Sonderfall ist die Bewegung auf einer Kreisbahn. Dabei hat der Massenpunkt zu jedem Zeitpunkt den gleichen Abstand vom Kreismittelpunkt. Beispiele: Punkte auf

Mehr

Mausefallenfahrzeug Samuel Antz, Ralf Antz, Simon Haslach Januar/Februar 2013

Mausefallenfahrzeug Samuel Antz, Ralf Antz, Simon Haslach Januar/Februar 2013 Mausefallenfahrzeug Samuel Antz, Ralf Antz, Simon Haslach Januar/Februar 2013 Projekt "Mausefallenauto" Aufgabe: Ein Fahrzeug soll nur mit der Spannkraft einer Mausefalle möglichst weit fahren. Unser Konzept

Mehr

m 1 und E kin, 2 = 1 2 m v 2 Die Gesamtenergie des Systems Zwei Wagen vor dem Stoß ist dann:

m 1 und E kin, 2 = 1 2 m v 2 Die Gesamtenergie des Systems Zwei Wagen vor dem Stoß ist dann: Wenn zwei Körper vollkommen elastisch, d.h. ohne Energieverluste, zusammenstoßen, reicht der Energieerhaltungssatz nicht aus, um die Situation nach dem Stoß zu beschreiben. Wenn wir als Beispiel zwei Wagen

Mehr

Leichte Masse- Feder-Systeme

Leichte Masse- Feder-Systeme Regupol on your wavelength 69 Leichte Masse- Feder-Systeme Zuverlässiger Schutz vor Erschütterungen Regupol Schwingungstechnik Zuverlässiger Schutz vor Erschütterungen Straßen- und Stadtbahnen erzeugen

Mehr

tgt HP 2015/16-1: Pumpspeicherkraftwerk

tgt HP 2015/16-1: Pumpspeicherkraftwerk tgt HP 015/16-1: Pumpspeicherkraftwerk Pflichtaufgabe Oberbecken Fallrohr h f Motor / Generator Pumpe / Turbine Unterbecken 1 Daten: Nutzbares Volumen des Oberbeckens V 0 5 10 6 m³ Mittlere Fallhöhe h

Mehr

Mechanik 2. Übungsaufgaben

Mechanik 2. Übungsaufgaben Mechanik 2 Übungsaufgaben Professor Dr.-Ing. habil. Jörg Schröder Universität Duisburg Essen, Standort Essen Fachbereich 10 - Bauwesen Institut für Mechanik Übung zu Mechanik 2 Seite 1 Aufgabe 1 Berechnen

Mehr

Dreiphasenwechselstrommotor. Leistung: - Blindleistung Q=U I Sin φ 3 (in VAR)

Dreiphasenwechselstrommotor. Leistung: - Blindleistung Q=U I Sin φ 3 (in VAR) Dreiphasenwechselstrommotor Leistung: - Blindleistung Q=U I in φ 3 (in VAR) - cheinleistung =U I 3 (in VA) - zugeführte Wirkleistung PZU=U I 3 cos φ (in W) U = pannung I = trom cos φ = Leistungsfaktor

Mehr

2.4 Stoßvorgänge. Lösungen

2.4 Stoßvorgänge. Lösungen .4 Stoßvorgänge Lösungen Aufgabe 1: a) Geschwindigkeit und Winkel: Für die Wurfhöhe gilt: H = v 0 g sin Die zugehörige x-koordinate ist: x 1 = v 0 g sincos Aus diesen beiden Gleichungen lässt sich die

Mehr

Einsatzmöglichkeiten von Polyurethan-Punktlagern bei Maschinenfundamenten

Einsatzmöglichkeiten von Polyurethan-Punktlagern bei Maschinenfundamenten Einsatzmöglichkeiten von Polyurethan-Punktlagern bei Maschinenfundamenten Untersuchung anhand von Rechenbeispielen Dr.-Ing. T. Uzunoglu, Dipl.-Ing. F. Knobloch, Dipl.-Ing. (FH) K. Edegger, convex ZT GmbH,

Mehr

2. Schwingungen eines Einmassenschwingers

2. Schwingungen eines Einmassenschwingers Baudynamik (Master) SS 2017 2. Schwingungen eines Einmassenschwingers 2.1 Freie Schwingungen 2.1.1 Freie ungedämpfte Schwingungen 2.1.2 Federzahlen und Federschaltungen 2.1.3 Freie gedämpfte Schwingungen

Mehr

FORMELSAMMLUNG PHYSIK. by Marcel Laube

FORMELSAMMLUNG PHYSIK. by Marcel Laube FORMELSAMMLUNG PHYSIK by Marcel Laube INHALTSVERZEICHNIS INHALTSVERZEICHNIS 1 Die gradlinige Bewegung: 3 Die gleichförmig gradlinige Bewegung: 3 Zurückgelegter Weg: 3 Die gleichmässig beschleunigte geradlinige

Mehr

k = 1, 2,..., n (4.44) J k ϕ

k = 1, 2,..., n (4.44) J k ϕ 236 4 Torsionsschwinger und Längsschwinger ( J1 J2) M J M J2/ J1= 02, 10 0,5 8 1 + 6 2 max 4 5 2 10 2 bezogenes Moment 0 Bild 45 1 2 5 10 relatives Spiel ctϕ S/ M10 Maximales Moment infolge Spiel im Antrieb

Mehr