Laborchemische Referenzwerte in der klinischen Versorgung

Größe: px
Ab Seite anzeigen:

Download "Laborchemische Referenzwerte in der klinischen Versorgung"

Transkript

1 Laborchemische Referenzwerte in der klinischen Versorgung Dr. Robin Haring Institut für Klinische Chemie und Laboratoriumsmedizin Universitätsmedizin Greifswald

2 Wozu Referenzwerte? Vor allem in der Laboratoriumsmedizin werden Referenzwerte benutzt, um gemessene Werte überhaupt einordnen zu können und damit eine Orientierung zu geben, ob dieser Parameter pathologisch (krankhaft) ist oder nicht.

3 Berechnung von Referenzwerten? statistisch ermittelt aus Ergebnissen gesunder Personen

4 Berechnung von Referenzwerten? statistisch ermittelt aus Ergebnissen gesunder Personen normal = Ergebnisse, die bei rund 95% aller Personen vorkommen d.h. immer 2,5% weisen einen zu hohen und 2,5% einen zu niedrigen Wert auf

5 Population-based Primary Care Referred Patients ARR SHIP Male SHIP Female Olivieri et al. [33] Perschel et al. [31] Trenkel et al. [32] Ferrari et al. [34] Unger et al. [35] Westerdahl et al. [36] Figure 3. Comparison of elevated aldosterone-to-renin ratio (ARR) limits in seven studies by type of study population. In all studies plasma renin concentration (PRC) was measured.

6 Statistischer Hintergrund Häufigkeitverteilung eine Funktion, die zu jedem Wert angibt, wie häufig dieser Wert vorgekommen ist

7 Statistischer Hintergrund Häufigkeitverteilung Normalverteilung

8 Statistischer Hintergrund Häufigkeitverteilung Gleichverteilung, rechtsschiefe (linkssteile) Verteilung

9 Statistischer Hintergrund statistische Kenngrößen Mittelwert: x = x 1 + x x n n Durchschnitt Bsp.: Körpergröße: 164; 162; 168; 190; 166; 166; 175 x = 1/7* ( ) = 170,1

10 Statistischer Hintergrund statistische Kenngrößen Mittelwert: x = x 1 + x x n n Durchschnitt Standardabweichung: S = 1 n 1 n ( x i x) 1 i= 2 - Maß für die Streuung um den Mittelwert

11 Statistischer Hintergrund statistische Kenngrößen Mittelwert: x = x 1 + x x n n Durchschnitt Standardabweichung: S = 1 n 1 n ( x i x) 1 i= 2 Bsp.: Körpergröße: 164; 162; 168; 190; 166; 166; 175 [ ] s = 1/6* ( ,1) ( ,1) 2 = 9,35 - Werte außerhalb der zwei- bis dreifachen Standardabweichung werden oft als Ausreißer behandelt

12 Statistischer Hintergrund statistische Kenngrößen Quantile:

13 Statistischer Hintergrund statistische Kenngrößen Quantile: p-quantil = Merkmalswert, unterhalb dessen p % aller Fälle der Verteilung liegen.

14 Statistischer Hintergrund statistische Kenngrößen Quantile: p-quantil = Merkmalswert, unterhalb dessen p % aller Fälle der Verteilung liegen. 50% Quantil = Median 95% Perzentil ist derjenige Wert, der in der Mitte steht, wenn alle Beobachtungswerte der Größe nach geordnet sind

15 Berechnung von Referenzwerten? 1. Zentrales 95% Interval mittels 2,5% und 97,5% Quantil bestimmen keine Berücksichtigung andere Faktoren möglich zentraler 95% Bereich 2,5% Quantil 97,5% Quantil

16

17 Berechnung von Referenzwerten? 1. Zentrales 95% Interval mittels 2,5% und 97,5% Quantil bestimmen keine Berücksichtigung andere Faktoren möglich 2. lineare Regression: Berücksichtigung von Faktoren wie Alter Schätzung des Mittwelwertes; 1.96*SD - Ansatz 3. quantile Regression: Berücksichtigung von Faktoren wie Alter Schätzung einzelner Quantile

18 Berechnung von Referenzwerten? Lineare Regressionsanalyse Beziehungen zwischen einer abhängigen und einer oder mehreren unabhängigen Variablen feststellen

19 Berechnung von Referenzwerten? Quantile Regression vs. Linear Regression Schätzung von bedingten Quantilen Schätzung einzelner Perzentile Schätzung des bedingten Mittelwertes

20 Berechnung von Referenzwerten? Quantile Regression vs. Linear Regression Schätzung von bedingten Quantilen Schätzung einzelner Perzentile robust gegen Ausreißer Schätzung des bedingten Mittelwertes Median = Mittelwert + Ausreißer Median Mittelwert + Ausreißer Median Mittelwert

21 Berechnung von Referenzwerten? Quantile Regression vs. Linear Regression Schätzung von bedingten Quantilen Schätzung einzelner Perzentile robust gegen Ausreißer keine Verteilungsannahme Schätzung des bedingten Mittelwertest Normalverteilung erforderlich median / mean 2.5% 2.5% SD SD 95%

22 Berechnung von Referenzwerten? Quantile Regression vs. Linear Regression Schätzung von bedingten Quantilen Schätzung einzelner Perzentile robust gegen Ausreißer keine Verteilungsannahme Schätzung des bedingten Mittelwertes Normalverteilung erforderlich median mean 2.5% 2.5% SD SD 95%

23 Berechnung von Referenzwerten? Quantile Regression vs. Linear Regression Schätzung von bedingten Quantilen Schätzung einzelner Perzentile robust gegen Ausreißer keine Verteilungsannahme Schätzung des bedingten MW Normalverteilung erforderlich initiale Transformation (log) Problem der Rücktransformation

24 DHEAS [μg/dl] Beispiel: Zentrales 95% Interval ,5 Perzentil: Age [years] 2,5 Perzentil: 45

25 DHEAS [μg/dl] Beispiel: lineare Regression linear Regression linear Regression: 1.6% außerhalb Referenz [oberhalb: 0.6%; unterhalb: 1.0%] MW SD Age [years] MW 1.96 SD

26 DHEAS [μg/dl] Beispiel: quantile Regression linear Regression quantile Regression linear Regression: 1.6% außerhalb Referenz [oberhalb: 0.6%; unterhalb: 1.0%] quantile Regression: 5.0% außerhalb Referenz [oberhalb : 2.5%; unterhalb : 2.6%] Age [years]

27 Verallgemeinerung von Referenzwerten? ACHTUNG: Referenzbereiche für ein und denselben Parameter auch abhängig von der verwendeten Analysemethode und dem Messgerät mitunter starke Variabilität Deshalb: sollten zu jeder Analyse die jeweiligen Referenzbereiche immer mit angegeben werden.

28 IGFBP-3 [ng/ml] Verallgemeinerung von Referenzwerten? Nichols Avantage Assay Range: ng/ml

29 IGFBP-3 [ng/ml] IGFBP-3 [ng/ml] Verallgemeinerung von Referenzwerten? Nichols Avantage Assay Range: ng/ml Immulite 2500 Range: ng/ml Age [years]

30 Verallgemeinerung von Referenzwerten? None of the immunoassays tested was sufficiently reliable for the investigation of sera from children and women, in whom very low (0.17 nmol/l) and low (<1.7 nmol/l) testosterone concentrations are expected. Taieb et al. 2003;49:

31 Verallgemeinerung von Referenzwerten? None of the immunoassays tested proved sufficiently reliable when low testosterone concentrations ( 3.47 nmol/l) were measured. ONLY LC-MS/MS allowed the precise determination of low T. Moal et al. 2007;386:12-19

32 Beispiel: quantile Regression J Clin Endocrinol Metab 2012 [Epub ahead of print]

33 Beispiel: quantile Regression

34 Beispiel: quantile Regression

35 Beispiel: quantile Regression

36 Beispiel: quantile Regression Reference ranges for the blood content of estradiol during the menstrual cycle.

37

38 Verallgemeinerung von Referenzwerten? Wie sinnvoll sind Referenzwerte?

If something has a 50% chance of happening, then 9 times out of 10 it will. Yogi Berra

If something has a 50% chance of happening, then 9 times out of 10 it will. Yogi Berra If something has a 50% chance of happening, then 9 times out of 10 it will. Yogi Berra If you torture your data long enough, they will tell you whatever you want to hear. James L. Mills Warum Biostatistik?

Mehr

1. Maße der zentralen Tendenz Beispiel: Variable Anzahl der Geschwister aus Jugend '92. Valid Cum Value Frequency Percent Percent Percent

1. Maße der zentralen Tendenz Beispiel: Variable Anzahl der Geschwister aus Jugend '92. Valid Cum Value Frequency Percent Percent Percent Deskriptive Statistik 1. Verteilungsformen symmetrisch/asymmetrisch unimodal(eingipflig) / bimodal (zweigipflig schmalgipflig / breitgipflig linkssteil / rechtssteil U-förmig / abfallend Statistische Kennwerte

Mehr

Graphische Verfahren in der Statistik: Q-Q- und P-P-Plots

Graphische Verfahren in der Statistik: Q-Q- und P-P-Plots Prof. Dr. Dietmar Pfeifer Institut für Mathemati Graphische Verfahren in der Statisti: Q-Q- und P-P-Plots Bei den üblichen parametrischen Testverfahren in der Statisti wird in der Regel eine Annahme über

Mehr

Herzlich willkommen zur Vorlesung Statistik. Streuungsmaße oder die Unterschiedlichkeit der Daten nebst kurzen Ausführungen zu Schiefe und Wölbung

Herzlich willkommen zur Vorlesung Statistik. Streuungsmaße oder die Unterschiedlichkeit der Daten nebst kurzen Ausführungen zu Schiefe und Wölbung FB 1 W. Ludwig-Mayerhofer Statistik 1 Herzlich willkommen zur Vorlesung Statistik smaße oder die Unterschiedlichkeit der Daten nebst kurzen Ausführungen zu Schiefe und Wölbung FB 1 W. Ludwig-Mayerhofer

Mehr

Statistik II: Grundlagen und Definitionen der Statistik

Statistik II: Grundlagen und Definitionen der Statistik Medien Institut : Grundlagen und Definitionen der Statistik Dr. Andreas Vlašić Medien Institut (0621) 52 67 44 vlasic@medien-institut.de Gliederung 1. Hintergrund: Entstehung der Statistik 2. Grundlagen

Mehr

Inhaltsverzeichnis. Vorwort

Inhaltsverzeichnis. Vorwort V Vorwort XI 1 Zum Gebrauch dieses Buches 1 1.1 Einführung 1 1.2 Der Text in den Kapiteln 1 1.3 Was Sie bei auftretenden Problemen tun sollten 2 1.4 Wichtig zu wissen 3 1.5 Zahlenbeispiele im Text 3 1.6

Mehr

Prüfung & Tutorium. Der 1. Prüfungstermin findet am 27. Juni 2011 um 10h im Audimaxstatt. Anmeldung in UNIVIS vom Juni

Prüfung & Tutorium. Der 1. Prüfungstermin findet am 27. Juni 2011 um 10h im Audimaxstatt. Anmeldung in UNIVIS vom Juni Prüfung & Tutorium Der 1. Prüfungstermin findet am 27. Juni 2011 um 10h im Audimaxstatt Anmeldung in UNIVIS vom 14.-22. Juni Die Prüfung wird aus 30 Multiple Choice Fragen(5 Antwortalternativen, 1-3 Richtige)

Mehr

Kapitel 12 Stetige Zufallsvariablen Dichtefunktion und Verteilungsfunktion. stetig. Verteilungsfunktion

Kapitel 12 Stetige Zufallsvariablen Dichtefunktion und Verteilungsfunktion. stetig. Verteilungsfunktion Kapitel 12 Stetige Zufallsvariablen 12.1. Dichtefunktion und Verteilungsfunktion stetig Verteilungsfunktion Trägermenge T, also die Menge der möglichen Realisationen, ist durch ein Intervall gegeben Häufig

Mehr

Lösung Aufgabe 19. ( ) = [Mio Euro]. Empirische Varianz s 2 = 1 n

Lösung Aufgabe 19. ( ) = [Mio Euro]. Empirische Varianz s 2 = 1 n Statistik I für Statistiker, Mathematiker und Informatiker Lösungen zu Blatt 4 Gerhard Tutz, Jan Ulbricht, Jan Gertheiss WS 07/08 Lösung Aufgabe 9 (a) Lage und Streuung: Arithmetisches Mittel x = n i=

Mehr

Troponin-T T high sensitive. Benjamin Dieplinger

Troponin-T T high sensitive. Benjamin Dieplinger Troponin-T T high sensitive Benjamin Dieplinger Entwicklung des Troponin-T hs Assays Erhöhung des Probenvolumens von 15 µl auf 50 µl Signalverstärkung durch den Einsatz hochoptimierter Antikörper-Ru Konjugaten

Mehr

Regression ein kleiner Rückblick. Methodenseminar Dozent: Uwe Altmann Alexandra Kuhn, Melanie Spate

Regression ein kleiner Rückblick. Methodenseminar Dozent: Uwe Altmann Alexandra Kuhn, Melanie Spate Regression ein kleiner Rückblick Methodenseminar Dozent: Uwe Altmann Alexandra Kuhn, Melanie Spate 05.11.2009 Gliederung 1. Stochastische Abhängigkeit 2. Definition Zufallsvariable 3. Kennwerte 3.1 für

Mehr

Beschreibende Statistik Eindimensionale Daten

Beschreibende Statistik Eindimensionale Daten Mathematik II für Biologen 16. April 2015 Prolog Geordnete Stichprobe Rang Maße für die mittlere Lage der Daten Robustheit Quantile Maße für die Streuung der Daten Erkennung potentieller Eindimensionales

Mehr

3.4.1 Referenzwerte für das fetale Schätzgewicht in der SSW

3.4.1 Referenzwerte für das fetale Schätzgewicht in der SSW 60 3.4 Die Bedeutung des fetalen und des mütterlichen Gewichts in der 21.-24.SSW als prädiktiver Parameter für das Geburtsgewicht bei Geburt in der 36.-43.SSW 3.4.1 Referenzwerte für das fetale Schätzgewicht

Mehr

ÜBUNGSAUFGABEN ZUR DESKRIPTIVEN UND EXPLORATIVEN DATENANALYSE

ÜBUNGSAUFGABEN ZUR DESKRIPTIVEN UND EXPLORATIVEN DATENANALYSE ÜBUNGSAUFGABEN ZUR DESKRIPTIVEN UND EXPLORATIVEN DATENANALYSE 1.1 Füllen Sie bitte folgenden Lückentext aus. Daten, die in Untersuchungen erhoben werden, muss man grundsätzlich nach ihrem unterscheiden.

Mehr

Einführung in die Statistik für Politikwissenschaftler Sommersemester 2011

Einführung in die Statistik für Politikwissenschaftler Sommersemester 2011 Einführung in die Statistik für Politikwissenschaftler Sommersemester 2011 Es können von den Antworten alle, mehrere oder keine Antwort(en) richtig sein. Nur bei einer korrekten Antwort (ohne Auslassungen

Mehr

Mittelwert und Standardabweichung

Mittelwert und Standardabweichung Professur E-Learning und Neue Medien Institut für Medienforschung Philosophische Fakultät Einführung in die Statistik Mittelwert und Standardabweichung Überblick Mittelwert Standardabweichung Weitere Maße

Mehr

Statistik, Geostatistik

Statistik, Geostatistik Geostatistik Statistik, Geostatistik Statistik Zusammenfassung von Methoden (Methodik), die sich mit der wahrscheinlichkeitsbezogenen Auswertung empirischer (d.h. beobachteter, gemessener) Daten befassen.

Mehr

3.3.1 Referenzwerte für Fruchtwasser-Schätzvolumina ( SSW)

3.3.1 Referenzwerte für Fruchtwasser-Schätzvolumina ( SSW) 50 3.3 Das Fruchtwasser-Schätzvolumen in der 21.-24.SSW und seine Bedeutung für das fetale Schätzgewicht in der 21.-24.SSW und für das Geburtsgewicht bei Geburt in der 36.-43.SSW 3.3.1 Referenzwerte für

Mehr

Anteile Häufigkeiten Verteilungen Lagemaße Streuungsmaße Merkmale von Verteilungen. Anteile Häufigkeiten Verteilungen

Anteile Häufigkeiten Verteilungen Lagemaße Streuungsmaße Merkmale von Verteilungen. Anteile Häufigkeiten Verteilungen DAS THEMA: VERTEILUNGEN LAGEMAßE - STREUUUNGSMAßE Anteile Häufigkeiten Verteilungen Lagemaße Streuungsmaße Merkmale von Verteilungen Anteile Häufigkeiten Verteilungen Anteile und Häufigkeiten Darstellung

Mehr

Übungen (HS-2010): Urteilsfehler. Autor: Siegfried Macho

Übungen (HS-2010): Urteilsfehler. Autor: Siegfried Macho Übungen (HS-2010): Urteilsfehler Autor: Siegfried Macho Inhaltsverzeichnis i Inhaltsverzeichnis 1. Übungen zu Kapitel 2 1 Übungen zu Kontingenz- und Kausalurteile 1 Übung 1-1: 1. Übungen zu Kapitel 2 Gegeben:

Mehr

Seminar zur Energiewirtschaft:

Seminar zur Energiewirtschaft: Seminar zur Energiewirtschaft: Ermittlung der Zahlungsbereitschaft für erneuerbare Energien bzw. bessere Umwelt Vladimir Udalov 1 Modelle mit diskreten abhängigen Variablen 2 - Ausgangssituation Eine Dummy-Variable

Mehr

Methodenlehre. Vorlesung 10. Prof. Dr. Björn Rasch, Cognitive Biopsychology and Methods University of Fribourg

Methodenlehre. Vorlesung 10. Prof. Dr. Björn Rasch, Cognitive Biopsychology and Methods University of Fribourg Methodenlehre Vorlesung 10 Prof. Dr., Cognitive Biopsychology and Methods University of Fribourg 1 Methodenlehre II Woche Datum Thema 1 FQ Einführung, Verteilung der Termine 1 18.2.15 Psychologie als Wissenschaft

Mehr

Lösungen zu Janssen/Laatz, Statistische Datenanalyse mit SPSS 1

Lösungen zu Janssen/Laatz, Statistische Datenanalyse mit SPSS 1 LÖSUNG 2C a) Lösungen zu Janssen/Laatz, Statistische Datenanalyse mit SPSS 1 Bei HHEINK handelt es sich um eine metrische Variable. Bei den Analysen sollen Extremwerte ausgeschlossen werden. Man sollte

Mehr

Lage- und Streuungsparameter

Lage- und Streuungsparameter Lage- und Streuungsparameter Beziehen sich auf die Verteilung der Ausprägungen von intervall- und ratio-skalierten Variablen Versuchen, diese Verteilung durch Zahlen zu beschreiben, statt sie graphisch

Mehr

Beide Verteilungen der Zeiten sind leicht schief. Der Quartilsabstand für Zeiten zum Surfen ist kleiner als der zum Fernsehen.

Beide Verteilungen der Zeiten sind leicht schief. Der Quartilsabstand für Zeiten zum Surfen ist kleiner als der zum Fernsehen. Welche der folgenden Maßzahlen sind resistent gegenüber Ausreißer? Der Mittelwert und die Standardabweichung. Der und die Standardabweichung. Der und die Spannweite. Der und der Quartilsabstand. Die Spannweite

Mehr

Datenanalyse und Statistik

Datenanalyse und Statistik Datenanalyse und Statistik p. 1/44 Datenanalyse und Statistik Vorlesung 2 (Graphik I) K.Gerald van den Boogaart http://www.stat.boogaart.de Datenanalyse und Statistik p. 2/44 Daten Schätzung Test Mathe

Mehr

Einführung in die computergestützte Datenanalyse

Einführung in die computergestützte Datenanalyse Karlheinz Zwerenz Statistik Einführung in die computergestützte Datenanalyse 6., überarbeitete Auflage DE GRUYTER OLDENBOURG Vorwort Hinweise zu EXCEL und SPSS Hinweise zum Master-Projekt XI XII XII TEIL

Mehr

Stochastik und Statistik

Stochastik und Statistik Stochastik und Statistik p. 1/44 Stochastik und Statistik Vorlesung 2 (Graphik I) K.Gerald van den Boogaart http://www.stat.boogaart.de Stochastik und Statistik p. 2/44 Daten Schätzung Test Mathe Die Datenminen

Mehr

Statistik. Datenanalyse mit EXCEL und SPSS. R.01denbourg Verlag München Wien. Von Prof. Dr. Karlheinz Zwerenz. 3., überarbeitete Auflage

Statistik. Datenanalyse mit EXCEL und SPSS. R.01denbourg Verlag München Wien. Von Prof. Dr. Karlheinz Zwerenz. 3., überarbeitete Auflage Statistik Datenanalyse mit EXCEL und SPSS Von Prof. Dr. Karlheinz Zwerenz 3., überarbeitete Auflage R.01denbourg Verlag München Wien Inhalt Vorwort Hinweise zu EXCEL und SPSS Hinweise zum Master-Projekt

Mehr

Teil: lineare Regression

Teil: lineare Regression Teil: lineare Regression 1 Einführung 2 Prüfung der Regressionsfunktion 3 Die Modellannahmen zur Durchführung einer linearen Regression 4 Dummyvariablen 1 Einführung o Eine statistische Methode um Zusammenhänge

Mehr

I. Deskriptive Statistik 1

I. Deskriptive Statistik 1 I. Deskriptive Statistik 1 1. Einführung 3 1.1. Grundgesamtheit und Stichprobe.................. 5 1.2. Merkmale und Verteilungen..................... 6 1.3. Tabellen und Grafiken........................

Mehr

Statistik. Datenanalyse mit EXCEL und SPSS. Prof. Dr. Karlheinz Zwerenz. R.Oldenbourg Verlag München Wien. Von

Statistik. Datenanalyse mit EXCEL und SPSS. Prof. Dr. Karlheinz Zwerenz. R.Oldenbourg Verlag München Wien. Von Statistik Datenanalyse mit EXCEL und SPSS Von Prof. Dr. Karlheinz Zwerenz R.Oldenbourg Verlag München Wien Inhalt Vorwort Hinweise zu EXCEL und SPSS Hinweise zum Master-Projekt XI XII XII TEIL I GRUNDLAGEN

Mehr

Dr. Reinhard Vonthein, Dipl. Statistiker (Univ.)

Dr. Reinhard Vonthein, Dipl. Statistiker (Univ.) Dr. Reinhard Vonthein, Dipl. Statistiker (Univ.) Reinhard.Vonthein@imbs.uni-luebeck.de Institut für Medizinische Biometrie und Statistik Universität zu Lübeck / Universitätsklinikums Schleswig-Holstein

Mehr

Identifikation von Zeitwerten für LEP-Pflegeinterventionen. Reto Bürgin, Dieter Baumberger,

Identifikation von Zeitwerten für LEP-Pflegeinterventionen. Reto Bürgin, Dieter Baumberger, Identifikation von Zeitwerten für LEP-Pflegeinterventionen Reto Bürgin, Dieter Baumberger, 15.11.2016 Einleitung Für statistische Auswertungen können für LEP-Interventionen Zeitwerte erfasst werden Z.B.

Mehr

Kapitel 5 Kenngrößen empirischer Verteilungen 5.1. Lagemaße. x mod (lies: x-mod) Wofür? Lageparameter. Modus/ Modalwert Zentrum. Median Zentralwert

Kapitel 5 Kenngrößen empirischer Verteilungen 5.1. Lagemaße. x mod (lies: x-mod) Wofür? Lageparameter. Modus/ Modalwert Zentrum. Median Zentralwert Kapitel 5 Kenngrößen empirischer Verteilungen 5.1. Lagemaße Wofür? Lageparameter Modus/ Modalwert Zentrum Median Zentralwert Im Datensatz stehende Informationen auf wenige Kenngrößen verdichten ermöglicht

Mehr

Omalizumab Stolpersteine in der Therapie. Stephanie Korn III. Medizinische Klinik Universitätsmedizin Mainz

Omalizumab Stolpersteine in der Therapie. Stephanie Korn III. Medizinische Klinik Universitätsmedizin Mainz Omalizumab Stolpersteine in der Therapie Stephanie Korn III. Medizinische Klinik Universitätsmedizin Mainz Stolpersteine 1. Alter Alter 484 Asthma-Patienten 174 Pat. 50 Jahre (40.7% männlich) 297 Pat.

Mehr

Wartezeit in Deutschland auf eine Nierentransplantation: Aktuelle Aspekte oder Das Blutgruppe 0-Problem

Wartezeit in Deutschland auf eine Nierentransplantation: Aktuelle Aspekte oder Das Blutgruppe 0-Problem Wartezeit in Deutschland auf eine Nierentransplantation: Aktuelle Aspekte oder Das Blutgruppe 0-Problem Wartezeit und Ergebnisse nach NTX USA Waiting time on dialysis as the strongest modifiable risk factor

Mehr

Statistik. Jan Müller

Statistik. Jan Müller Statistik Jan Müller Skalenniveau Nominalskala: Diese Skala basiert auf einem Satz von qualitativen Attributen. Es existiert kein Kriterium, nach dem die Punkte einer nominal skalierten Variablen anzuordnen

Mehr

Univariate Häufigkeitsverteilungen Kühnel, Krebs 2001: Statistik für die Sozialwissenschaften, S.41-66

Univariate Häufigkeitsverteilungen Kühnel, Krebs 2001: Statistik für die Sozialwissenschaften, S.41-66 Univariate Häufigkeitsverteilungen Kühnel, Krebs 2001: Statistik für die Sozialwissenschaften, S.41-66 Gabriele Doblhammer: Empirische Sozialforschung Teil II, SS 2004 1/19 Skalenniveaus Skalenniveau Relation

Mehr

Einleitung. I. GENAUIGKEIT Methode

Einleitung. I. GENAUIGKEIT Methode Genauigkeit und Präzision des Accu-Chek Aviva Systems Einleitung Die Genauigkeit des Systems wurde gemäß der Norm ISO 15197:2003 untersucht. In einer externen Diabetesklinik wurde Diabetikern kapillares

Mehr

Bei näherer Betrachtung des Diagramms Nr. 3 fällt folgendes auf:

Bei näherer Betrachtung des Diagramms Nr. 3 fällt folgendes auf: 18 3 Ergebnisse In diesem Kapitel werden nun zunächst die Ergebnisse der Korrelationen dargelegt und anschließend die Bedingungen der Gruppenbildung sowie die Ergebnisse der weiteren Analysen. 3.1 Ergebnisse

Mehr

Statistische Tests für unbekannte Parameter

Statistische Tests für unbekannte Parameter Konfidenzintervall Intervall, das den unbekannten Parameter der Verteilung mit vorgegebener Sicherheit überdeckt ('Genauigkeitsaussage' bzw. Zuverlässigkeit einer Punktschätzung) Statistischer Test Ja-Nein-Entscheidung

Mehr

Bitte am PC mit Windows anmelden!

Bitte am PC mit Windows anmelden! Einführung in SPSS Plan für heute: Grundlagen/ Vorwissen für SPSS Vergleich der Übungsaufgaben Einführung in SPSS http://weknowmemes.com/generator/uploads/generated/g1374774654830726655.jpg Standardnormalverteilung

Mehr

Kenngrößen von Zufallsvariablen

Kenngrößen von Zufallsvariablen Kenngrößen von Zufallsvariablen Die Wahrscheinlichkeitsverteilung kann durch die sogenannten Kenngrößen beschrieben werden, sie charakterisieren sozusagen die Verteilung. Der Erwartungswert Der Erwartungswert

Mehr

Methoden der Werkstoffprüfung Kapitel II Statistische Verfahren I. WS 2009/2010 Kapitel 2.0

Methoden der Werkstoffprüfung Kapitel II Statistische Verfahren I. WS 2009/2010 Kapitel 2.0 Methoden der Werkstoffprüfung Kapitel II Statistische Verfahren I WS 009/010 Kapitel.0 Schritt 1: Bestimmen der relevanten Kenngrößen Kennwerte Einflussgrößen Typ A/Typ B einzeln im ersten Schritt werden

Mehr

Populationspharmakokinetik, Allometrie und Skalierung von Modellparametern. Tillmann Utesch, Axel Rack, U. K., Max von Kleist

Populationspharmakokinetik, Allometrie und Skalierung von Modellparametern. Tillmann Utesch, Axel Rack, U. K., Max von Kleist Populationspharmakokinetik, Allometrie und Skalierung von Modellparametern Tillmann Utesch, Axel Rack, U. K., Max von Kleist Übersicht Einleitung Allometrie (Populations-)Pharmakokinetik Zusammenfassung

Mehr

Kapitel 1 Beschreibende Statistik

Kapitel 1 Beschreibende Statistik Beispiel 1.25: fiktive Aktienkurse Zeitpunkt i 0 1 2 Aktienkurs x i 100 160 100 Frage: Wie hoch ist die durchschnittliche Wachstumsrate? Dr. Karsten Webel 53 Beispiel 1.25: fiktive Aktienkurse (Fortsetzung)

Mehr

Fachrechnen für Tierpfleger

Fachrechnen für Tierpfleger Z.B.: Fachrechnen für Tierpfleger A10. Statistik 10.1 Allgemeines Was ist Statistik? 1. Daten sammeln: Durch Umfragen, Zählung, Messung,... 2. Daten präsentieren: Tabellen, Grafiken 3. Daten beschreiben/charakterisieren:

Mehr

3. Übung Deskription und Diagnose Wer oder was ist normal?

3. Übung Deskription und Diagnose Wer oder was ist normal? Querschnittsbereich 1: Epidemiologie, Medizinische Biometrie und Medizinische Informatik - Übungsmaterial - Erstellt von Mitarbeitern des IMISE und des ZKS Leipzig 3. Übung Deskription und Diagnose Wer

Mehr

Quantitative Methoden (Vertretung für Prof. Th. Pechmann)

Quantitative Methoden (Vertretung für Prof. Th. Pechmann) Quantitative Methoden (Vertretung für Prof. Th. Pechmann) Deskriptive Statistik II Kennwerte der Dispersion Andreas Opitz Universität Leipzig Institut für Linguistik Fragen, die Sie nach der letzten Sitzung

Mehr

Übung 1: Wiederholung Wahrscheinlichkeitstheorie

Übung 1: Wiederholung Wahrscheinlichkeitstheorie Übung 1: Wiederholung Wahrscheinlichkeitstheorie Ü1.1 Zufallsvariablen Eine Zufallsvariable ist eine Variable, deren numerischer Wert solange unbekannt ist, bis er beobachtet wird. Der Wert einer Zufallsvariable

Mehr

Empirische Verteilungsfunktion

Empirische Verteilungsfunktion Empirische Verteilungsfunktion H(x) := Anzahl der Werte x ist. Deskriptive

Mehr

Modul G Anmerkungen zur Hausaufgabe vom

Modul G Anmerkungen zur Hausaufgabe vom Modul G 6.12.2007 Anmerkungen zur Hausaufgabe vom 22.11.07 Gewichtung zwischen eleganter und einfacher Programmierung finden (je nach Kenntnissen, Aufgabenstellung und Interesse an Programmierarbeit. Z.B.

Mehr

4 Statistische Maßzahlen

4 Statistische Maßzahlen 4 Statistische Maßzahlen 4.1 Maßzahlen der mittleren Lage 4.2 Weitere Maßzahlen der Lage 4.3 Maßzahlen der Streuung 4.4 Lineare Transformationen, Schiefemaße 4.5 Der Box Plot Ziel: Charakterisierung einer

Mehr

Modul G.1 WS 07/08: Statistik

Modul G.1 WS 07/08: Statistik Modul G.1 WS 07/08: Statistik 10.01.2008 1 2 Test Anwendungen Der 2 Test ist eine Klasse von Verfahren für Nominaldaten, wobei die Verteilung der beobachteten Häufigkeiten auf zwei mehrfach gestufte Variablen

Mehr

Beispiel für Anwendung: z-tabelle kann genutzt werden, um z.b. Poissonverteilung näherungsweise zu integrieren. Beispiel: wie wahrscheinlich ist es

Beispiel für Anwendung: z-tabelle kann genutzt werden, um z.b. Poissonverteilung näherungsweise zu integrieren. Beispiel: wie wahrscheinlich ist es Beispiel für Anwendung: z-tabelle kann genutzt werden, um z.b. Poissonverteilung näherungsweise zu integrieren. Beispiel: wie wahrscheinlich ist es beim radioaktiven Zerfall, zwischen 100 und 110 Zerfälle

Mehr

Medizinische Biometrie (L5)

Medizinische Biometrie (L5) Medizinische Biometrie (L5) Vorlesung III Wichtige Verteilungen Prof. Dr. Ulrich Mansmann Institut für Medizinische Informationsverarbeitung, Biometrie und Epidemiologie mansmann@ibe.med.uni-muenchen.de

Mehr

Grundlagen der Probabilistik

Grundlagen der Probabilistik Grundlagen der Probabilistik Gliederung Einleitung Theoretische Grundlagen der Stochastik Probabilistische Methoden Mögliche Ergebnisse von probabilistischen Untersuchungen Mögliche Fehlerquellen bei probabilistischen

Mehr

Deskriptive Statistik

Deskriptive Statistik Markus Wirtz, Christof Nachtigall Deskriptive Statistik 2008 AGI-Information Management Consultants May be used for personal purporses only or by libraries associated to dandelon.com network. Statistische

Mehr

Medizinische Klinik II Medizinische Klinik IV

Medizinische Klinik II Medizinische Klinik IV CAMPUS GROSSHADERN CAMPUS INNENSTADT LOREM IPSUM SETUR ALARME Medizinische Klinik II Medizinische Klinik IV Effect of Mipomersen on LDL-Cholesterol levels in Patients with Severe LDL-Hypercholesterolemia

Mehr

Deskriptive Statistik

Deskriptive Statistik Fakultät für Humanwissenschaften Sozialwissenschaftliche Methodenlehre Prof. Dr. Daniel Lois Deskriptive Statistik Stand: April 2015 (V2) Inhaltsverzeichnis 1. Notation 2 2. Messniveau 3 3. Häufigkeitsverteilungen

Mehr

Inhaltsverzeichnis. Teil 1 Basiswissen und Werkzeuge, um Statistik anzuwenden

Inhaltsverzeichnis. Teil 1 Basiswissen und Werkzeuge, um Statistik anzuwenden Inhaltsverzeichnis Teil 1 Basiswissen und Werkzeuge, um Statistik anzuwenden 1 Statistik ist Spaß 3 Warum Statistik? 3 Checkpoints 4 Daten 4 Checkpoints 7 Skalen - lebenslang wichtig bei der Datenanalyse

Mehr

Statistik II Übung 1: Einfache lineare Regression

Statistik II Übung 1: Einfache lineare Regression Statistik II Übung 1: Einfache lineare Regression Diese Übung beschäftigt sich mit dem Zusammenhang zwischen dem Lohneinkommen von sozial benachteiligten Individuen (16-24 Jahre alt) und der Anzahl der

Mehr

Angewandte Statistik 3. Semester

Angewandte Statistik 3. Semester Angewandte Statistik 3. Semester Übung 5 Grundlagen der Statistik Übersicht Semester 1 Einführung ins SPSS Auswertung im SPSS anhand eines Beispieles Häufigkeitsauswertungen Grafiken Statistische Grundlagen

Mehr

Drittvariablenkontrolle in der linearen Regression: Trivariate Regression

Drittvariablenkontrolle in der linearen Regression: Trivariate Regression Drittvariablenkontrolle in der linearen Regression: Trivariate Regression 14. Januar 2002 In der Tabellenanalyse wird bei der Drittvariablenkontrolle für jede Ausprägung der Kontrollvariablen eine Partialtabelle

Mehr

STATISTIK I Übung 07 Box-Plots und Stem-and-Leaf-Diagramme. 1 Kurze Wiederholung. Warum nur zwei grafische Darstellungsformen?

STATISTIK I Übung 07 Box-Plots und Stem-and-Leaf-Diagramme. 1 Kurze Wiederholung. Warum nur zwei grafische Darstellungsformen? STATISTIK I Übung 07 Box-Plots und Stem-and-Leaf-Diagramme 1 Kurze Wiederholung Warum nur zwei grafische Darstellungsformen? Im Rahmen der Vorlesungen haben wir kurz eine ganze Reihe grafischer Darstellungsformen

Mehr

Statistische Grundlagen I

Statistische Grundlagen I Statistische Grundlagen I Arten der Statistik Zusammenfassung und Darstellung von Daten Beschäftigt sich mit der Untersuchung u. Beschreibung von Gesamtheiten oder Teilmengen von Gesamtheiten durch z.b.

Mehr

Statistische Auswertungsmethoden für Ingenieure

Statistische Auswertungsmethoden für Ingenieure Manfred Kühlmeyer Statistische Auswertungsmethoden für Ingenieure mit Praxisbeispielen Unter Mitarbeit von Claudia Kühlmeyer Mit 55 Abbildungen Springer Inhaltsverzeichnis Seite 1 Einführung 1 1.1 Was

Mehr

Vorlesung Wirtschaftsstatistik 2 (FK ) Wiederholungen deskriptive Statistik und Einleitung Normalverteilungsverfahren. Dipl.-Ing.

Vorlesung Wirtschaftsstatistik 2 (FK ) Wiederholungen deskriptive Statistik und Einleitung Normalverteilungsverfahren. Dipl.-Ing. Vorlesung Wirtschaftsstatistik 2 (FK 040637) Wiederholungen deskriptive Statistik und Einleitung Normalverteilungsverfahren Dipl.-Ing. Robin Ristl Wintersemester 2012/13 1 Vorlesungsinhalte Wiederholung:

Mehr

Mathematische und statistische Methoden II

Mathematische und statistische Methoden II Statistik & Methodenlehre e e Prof. Dr. G. Meinhardt 6. Stock, Wallstr. 3 (Raum 06-206) Sprechstunde jederzeit nach Vereinbarung und nach der Vorlesung. Mathematische und statistische Methoden II Dr. Malte

Mehr

K8 Stetige Zufallsvariablen Theorie und Praxis

K8 Stetige Zufallsvariablen Theorie und Praxis K8 Stetige Zufallsvariablen Theorie und Praxis 8.1 Theoretischer Hintergrund Wir haben (nicht abzählbare) Wahrscheinlichkeitsräume Meßbare Funktionen Zufallsvariablen Verteilungsfunktionen Dichten in R

Mehr

KiGGS: Neue Referenzwerte bei Kindern und Jugendlichen

KiGGS: Neue Referenzwerte bei Kindern und Jugendlichen Fortbildungsveranstaltung für den Öffentlichen Gesundheitsdienst Berlin, 25.-27. März 2009 KiGGS: Neue Referenzwerte bei Kindern und Jugendlichen Angelika Schaffrath Rosario Reinhard Dortschy rosarioa@rki.de

Mehr

Konfidenzintervalle Grundlegendes Prinzip Erwartungswert Bekannte Varianz Unbekannte Varianz Anteilswert Differenzen von Erwartungswert Anteilswert

Konfidenzintervalle Grundlegendes Prinzip Erwartungswert Bekannte Varianz Unbekannte Varianz Anteilswert Differenzen von Erwartungswert Anteilswert Konfidenzintervalle Grundlegendes Prinzip Erwartungswert Bekannte Varianz Unbekannte Varianz Anteilswert Differenzen von Erwartungswert Anteilswert Beispiel für Konfidenzintervall Im Prinzip haben wir

Mehr

absolute Häufigkeit h: Anzahl einer bestimmten Note relative Häufigkeit r: Anzahl einer bestimmten Note, gemessen an der Gesamtzahl der Noten

absolute Häufigkeit h: Anzahl einer bestimmten Note relative Häufigkeit r: Anzahl einer bestimmten Note, gemessen an der Gesamtzahl der Noten Statistik Eine Aufgabe der Statistik ist es, Datenmengen zusammenzufassen und darzustellen. Man verwendet dazu bestimmte Kennzahlen und wertet Stichproben aus, um zu Aussagen bzw. Prognosen über die Gesamtheit

Mehr

1.1.1 Ergebnismengen Wahrscheinlichkeiten Formale Definition der Wahrscheinlichkeit Laplace-Experimente...

1.1.1 Ergebnismengen Wahrscheinlichkeiten Formale Definition der Wahrscheinlichkeit Laplace-Experimente... Inhaltsverzeichnis 0 Einführung 1 1 Zufallsvorgänge und Wahrscheinlichkeiten 5 1.1 Zufallsvorgänge.......................... 5 1.1.1 Ergebnismengen..................... 6 1.1.2 Ereignisse und ihre Verknüpfung............

Mehr

Mathematische und statistische Methoden I

Mathematische und statistische Methoden I Prof. Dr. G. Meinhardt Methodenlehre Mathematische und statistische Methoden I Sprechstunde jederzeit nach Vereinbarung und nach der Vorlesung Wallstr. 3, 6. Stock, Raum 06-206 Dr. Malte Persike persike@uni-mainz.de

Mehr

Tabellarische und graphie Darstellung von univariaten Daten

Tabellarische und graphie Darstellung von univariaten Daten Part I Wrums 1 Motivation und Einleitung Motivation Satz von Bayes Übersetzten mit Paralleltext Merkmale und Datentypen Skalentypen Norminal Ordinal Intervall Verältnis Merkmalstyp Diskret Stetig Tabellarische

Mehr

Dipl.-Volksw. Markus Pullen Wintersemester 2012/13

Dipl.-Volksw. Markus Pullen Wintersemester 2012/13 Statistische Auswertungen mit R Universität Kassel, FB 07 Wirtschaftswissenschaften Dipl.-Volksw. Markus Pullen Wintersemester 2012/13 Beispiele 8. Sitzung Konfidenzintervalle, Hypothesentests > # Anwendungsbeispiel

Mehr

Statistik. Average requirement. deficiency. Sufficient supply for 97.5% of the population. 2 sd 2 sd

Statistik. Average requirement. deficiency. Sufficient supply for 97.5% of the population. 2 sd 2 sd Themenübersicht: Grundlegende statistische Verfahren: Mittelwert, Median,Standardabweichung, Standardfehler Regression mit Beispielen (Eichkurven, Korrelationskoeffizienten) t-tests, Normalverteilung,

Mehr

Problem aller bisheriger Methoden: Ergebnis ist nur so gut wie das Modell selbst.

Problem aller bisheriger Methoden: Ergebnis ist nur so gut wie das Modell selbst. 2.7 Validierung durch Backtesting Problem aller bisheriger Methoden: Ergebnis ist nur so gut wie das Modell selbst. Modell besteht im Wesentlichen aus zwei Faktoren: 1. Einflussgrößen 2. Modellierungsalgorithmus

Mehr

Inhaltsverzeichnis. Inhalt Teil I: Beschreibende (Deskriptive) Statistik Seite. 1.0 Erste Begriffsbildungen Merkmale und Skalen 5

Inhaltsverzeichnis. Inhalt Teil I: Beschreibende (Deskriptive) Statistik Seite. 1.0 Erste Begriffsbildungen Merkmale und Skalen 5 Inhaltsverzeichnis Inhalt Teil I: Beschreibende (Deskriptive) Statistik Seite 1.0 Erste Begriffsbildungen 1 1.1 Merkmale und Skalen 5 1.2 Von der Urliste zu Häufigkeitsverteilungen 9 1.2.0 Erste Ordnung

Mehr

1 45, 39, 44, 48, 42, 39, 40, , 31, 46, 35, 31, 42, 51, , 42, 33, 46, 33, 44, 43

1 45, 39, 44, 48, 42, 39, 40, , 31, 46, 35, 31, 42, 51, , 42, 33, 46, 33, 44, 43 1) Ermittle jeweils das arithmetische Mittel. Ordne die Datenerhebungen nach der Größe der arithmetischen Mittel. Beginne mit dem Größten. 1 45, 39, 44, 48, 42, 39, 40, 31 2 35, 31, 46, 35, 31, 42, 51,

Mehr

2. Eindimensionale (univariate) Datenanalyse

2. Eindimensionale (univariate) Datenanalyse 2. Eindimensionale (univariate) Datenanalyse Dr. Antje Kiesel Institut für Angewandte Mathematik WS 2011/2012 Kennzahlen, Statistiken In der Regel interessieren uns nicht so sehr die beobachteten Einzeldaten

Mehr

Willkommen zur Vorlesung Statistik

Willkommen zur Vorlesung Statistik Willkommen zur Vorlesung Statistik Thema dieser Vorlesung: Maßzahlen für zentrale Tendenz, Streuung und andere Eigenschaften von Verteilungen Prof. Dr. Wolfgang Ludwig-Mayerhofer Universität Siegen Philosophische

Mehr

Übersicht deskriptiver Maße & anderer. Nützliche Funktionen. Statistische Software (R-Vertiefung) artihmetische Mittel median() mean()

Übersicht deskriptiver Maße & anderer. Nützliche Funktionen. Statistische Software (R-Vertiefung) artihmetische Mittel median() mean() Übersicht deskriptiver Maße & anderer nützlicher Funktionen Statistische Software (R-Vertiefung) Paul Fink, M.Sc. Institut für Statistik Ludwig-Maximilians-Universität München Pseudo Zufallszahlen, Dichten,

Mehr

Es können keine oder mehrere Antworten richtig sein. Eine Frage ist NUR dann richtig beantwortet, wenn ALLE richtigen Antworten angekreuzt wurden.

Es können keine oder mehrere Antworten richtig sein. Eine Frage ist NUR dann richtig beantwortet, wenn ALLE richtigen Antworten angekreuzt wurden. Teil III: Statistik Alle Fragen sind zu beantworten. Es können keine oder mehrere Antworten richtig sein. Eine Frage ist NUR dann richtig beantwortet, wenn ALLE richtigen Antworten angekreuzt wurden. Wird

Mehr

Skalenniveaus =,!=, >, <, +, -

Skalenniveaus =,!=, >, <, +, - ZUSAMMENHANGSMAßE Skalenniveaus Nominalskala Ordinalskala Intervallskala Verhältnisskala =,!= =,!=, >, < =,!=, >, ,

Mehr

Häufigkeitsauszählungen, zentrale statistische Kennwerte und Mittelwertvergleiche

Häufigkeitsauszählungen, zentrale statistische Kennwerte und Mittelwertvergleiche Lehrveranstaltung Empirische Forschung und Politikberatung der Universität Bonn, WS 2007/2008 Häufigkeitsauszählungen, zentrale statistische Kennwerte und Mittelwertvergleiche 30. November 2007 Michael

Mehr

Prüfungstutorat: Angewandte Methoden der Politikwissenschaft. Polito Seminar Carl Schweinitz 10.12.2014

Prüfungstutorat: Angewandte Methoden der Politikwissenschaft. Polito Seminar Carl Schweinitz 10.12.2014 Prüfungstutorat: Angewandte Methoden der Politikwissenschaft Polito Seminar Carl Schweinitz 10.12.2014 Übersicht 1. Einheiten und Variablen 2. Skalen und ihre Transformation 3. Deskriptive Statistik 4.

Mehr

3. Deskriptive Statistik

3. Deskriptive Statistik 3. Deskriptive Statistik Eindimensionale (univariate) Daten: Pro Objekt wird ein Merkmal durch Messung / Befragung/ Beobachtung erhoben. Resultat ist jeweils ein Wert (Merkmalsausprägung) x i : - Gewicht

Mehr

Anpassungstests VORGEHENSWEISE

Anpassungstests VORGEHENSWEISE Anpassungstests Anpassungstests prüfen, wie sehr sich ein bestimmter Datensatz einer erwarteten Verteilung anpasst bzw. von dieser abweicht. Nach der Erläuterung der Funktionsweise sind je ein Beispiel

Mehr

RSV-Infektion Mögliche pathogenetische Mechanismen und Labordiagnostik

RSV-Infektion Mögliche pathogenetische Mechanismen und Labordiagnostik RSV-Infektion Mögliche pathogenetische Mechanismen und Labordiagnostik Therese Popow-Kraupp Respiratory Syncytial Virus (RSV) Häufigste Ursache von Infektionen der Atemwege bei Kleinkindern In Europa:

Mehr

Willkommen zur Vorlesung Statistik (Master)

Willkommen zur Vorlesung Statistik (Master) Willkommen zur Vorlesung Statistik (Master) Thema dieser Vorlesung: Punkt- und Prof. Dr. Wolfgang Ludwig-Mayerhofer Universität Siegen Philosophische Fakultät, Seminar für Sozialwissenschaften Prof. Dr.

Mehr

Tiefes Testosteron... Nach Testosteron Substitution...? Kausaler Zusammenhang?? Yesterday, all those troubles seemed so far away..

Tiefes Testosteron... Nach Testosteron Substitution...? Kausaler Zusammenhang?? Yesterday, all those troubles seemed so far away.. Herr F.H., 69 jähriger Manager JA: seit ein paar Jahren zunehmende Libido Erektile Dysfunktion, fühlt sich subdepressiv, vergesslich, abends oft müde Herr F.H., 69 jähriger Manager JA: seit ein paar Jahren

Mehr

Statistik und Wahrscheinlichkeitsrechnung

Statistik und Wahrscheinlichkeitsrechnung Statistik und Wahrscheinlichkeitsrechnung Dr. Jochen Köhler 26.02.2008 1 Warum Statistik und Wahrscheinlichkeits rechnung im Ingenieurwesen? Zusammenfassung der letzten Vorlesung Statistik und Wahrscheinlichkeitsrechnung

Mehr

Univariates Datenmaterial

Univariates Datenmaterial Univariates Datenmaterial 1.6.1 Deskriptive Statistik Zufallstichprobe: Umfang n, d.h. Stichprobe von n Zufallsvariablen o Merkmal/Zufallsvariablen: Y = {Y 1, Y 2,..., Y n } o Realisationen/Daten: x =

Mehr

Heinz Holling & Günther Gediga. Statistik - Deskriptive Verfahren

Heinz Holling & Günther Gediga. Statistik - Deskriptive Verfahren Heinz Holling & Günther Gediga Statistik - Deskriptive Verfahren Übungen Version 15.12.2010 Inhaltsverzeichnis 1 Übung 1; Kap. 4 3 2 Übung 2; Kap. 5 4 3 Übung 3; Kap. 6 5 4 Übung 4; Kap. 7 6 5 Übung 5;

Mehr

Verteilungsfunktion und dquantile

Verteilungsfunktion und dquantile Statistik 1 für SoziologInnen Verteilungsfunktion und dquantile Univ.Prof. Dr. Marcus Hudec Kumulierte Häufigkeiten Hinweis: Damit die Kumulation inhaltlich sinnvoll ist, muss das Merkmal zumindest ordinal

Mehr

Einführung in SPSS. Sitzung 5: Faktoranalyse und Mittelwertsvergleiche. Knut Wenzig. 22. Januar 2007

Einführung in SPSS. Sitzung 5: Faktoranalyse und Mittelwertsvergleiche. Knut Wenzig. 22. Januar 2007 Sitzung 5: Faktoranalyse und Mittelwertsvergleiche 22. Januar 2007 Verschiedene Tests Anwendungsfall und Voraussetzungen Anwendungsfall Mehrere Variablen, die Gemeinsamkeiten haben, werden gebündelt. (Datenreduktion)

Mehr

4. Kumulierte Häufigkeiten und Quantile

4. Kumulierte Häufigkeiten und Quantile 4. Kumulierte Häufigkeiten und Quantile Kumulierte Häufigkeiten Oft ist man nicht an der Häufigkeit einzelner Merkmalsausprägungen interessiert, sondern an der Häufigkeit von Intervallen. Typische Fragestellung:

Mehr