Geometrie Jahrgangsstufe 5

Größe: px
Ab Seite anzeigen:

Download "Geometrie Jahrgangsstufe 5"

Transkript

1 Geometrie Jahrgangsstufe 5 Im Rahmen der Kooperation der Kollegen, die im Schuljahr 1997/98 in der fünften Jahrgangstufe Mathematik unterrichteten, wurde in Gemeinschaftsarbeit unter Federführung von Frau v. Piechowski diese Dokumentation erstellt. Die Unterrichtseinheit wurde von Herrn Jorde als Einstieg in den Mathematikunterricht im fünften Schuljahr 1997/98 durchgeführt. Aufgabe I Auf der Wiese Michael steht allein auf der Wiese. Ein Schüler stellt sich ungefähr vier Meter von Michael entfernt hin. Immer mehr Schüler sollen sich im gleichen Abstand zu Michael aufstellen. Es entsteht ein Kreis. Ein Kreis ist die Menge aller Punkte, die vom Mittelpunkt den gleichen Abstand haben. Aufgabe II Auf der Wiese Florian und Edith stehen auf der Wiese, ungefähr vier Meter voneinander entfernt. Immer mehr Schüler sollen sich so hinstellen, dass sie von Florian und Edith genauso weit eintfernt sind. Beim Aufstellen der Schüler haben wir gesehen, dass alle Schüler in einer Linie zwischen Florian und Edith standen. Wie lässt sich mit einem Seil prüfen, ob z.b. Christoph von Florian und Edith den gleichen Abstand hat? Christoph muss das Seil an einem Ende festhalten. Sebastian, unser Abstandsmesser, spannt das Seil zu Edith und geht mit gespanntem Seil zu Florian. Sebastian bewegt sich dabei auf einem Kreisbogen um Christoph. Auswertung an der Tafel Der Zirkel ersetzt unser Seil. So können wir die draußen gestellten Aufgaben zeichnen. 1. Kreis klar Mittelsenkrechte schwieriger... Von jedem Schüler, zum Beispiel Christoph, muss der Kreisbogen durch die Punkte für Florian und Edith (F und E) gehen. Dann müssen sich aber auch umgekehrt bei gleichem Radius (Seillänge) die Kreise um F und E in C(hristoph) schneiden. Zum Zeichnen der Mittelsenkrechten suchen wir mit dem Zirkel zwei Punkte, die von Florian und Edith gleichen Abstand haben. Durch diese beiden Punkt verläuft die Linie. Die Mittelsenkrechte von A und B ist die Menge aller Punkte, die zu den beiden Punkten A und B gleichen Abstand haben. Aufgabe III Festigung des Umkehrschlusses für die Mittelsenkrechte 1. Zeichne einen Punkt M. 2. Stelle den Zirkel auf 5cm ein. 3. Zeichne einen Kreis um M. 4. Wähle auf dem Kreis zwei Punkte A und B. 5. Zeichne zu A und B die Mittelsenkrechte. Auswertung: Die Mittelsenkrechte muss durch M gehen. A und B sind nämlich gleichweit von M entfernt, weil sie auf einem Kreis um M liegen. Dann hat umgekehrt M gleichen Abstand zu A und B, liegt also auf der Mittelsenkrechten.

2 Erklärungen zum genauen Zeichnen 1. Zirkelmine auf Schmirgelpapier schräg anschleifen 2. Geodreieck nie genau auf die zu verbindenden Punkte legen. An Tafel gemalt und mit großen Zirkel vorgeführt Vergrößerung zweier Linien Kreide quer genommen Je nach Stift Geodreieck neben den Punkt Genauigkeit ist Gefühlssache, das Geodreieck muss immer etwas neben den Punkt gelegt werden, damit die Linie genau durch den Punkt verläuft. Dies gelingt dann auch mit unterschiedlichen Stiften. Aufgabe IV - Übungen zum genauen Zeichnen 1 a) Zeichne zwei Strecken. b) Verlängere beide Strecken. 2 a) Zeichne einen Punkt. b) Zeichne viele Linien durch diesen Punkt. Aufgaben mehrfach zur Übung gestellt ästhetische Resultate Aufgabe V Konstruktion: 1. Zeichne einen möglichst großen Kreis auf einem leeren Blatt und lasse den Zirkel so eingestellt. 2. Stich nun auf dem Kreis möglichst genau oben ein und markiere auf dem Kreis einen weiteren Punkt, von diesen neuen Punkt aus noch einmal - usw. 3. Verbinde die gegenüberliegenden Punkte und die benachbarten. 4. Markiere außerhalb des Kreises bei jedem der 6 Dreiecke abwechselnd eine Drehrichtung. 5. a) Wähle ein Dreieck aus. Markiere von jeder Ecke aus 1cm auf der Dreieckseite in Drehrichtung. b) Verbinde die drei Punkte und wiederhole das Abgreifen von 1cm im neuen Dreieck. c) Fülle das Dreieck auf diese Weise aus. 6. Wiederhole Anweisung 5 für die anderen Dreiecke. Diese Aufgabe wurde an der Tafel freihand vorgeführt und erklärt, damit der Text wirklich verständlich wird. Schwierig genug blieb er am Nachmittag bei der Hausaufgabe immer noch. Über die Hausaufgabe für alle hinaus wurde anschließend ein Wettbewerb Zeichnug auf DIN A3- Zeichenblock durchgeführt, an dem sich zwei Drittel der Klasse beteiligten.

3 Korrekt und recht sauber leider schlecht zu scannen, da teilweise sehr leicht gezeichnet. Sehr sauber, aber Drehrichtung nicht durchgehend gewechselt. Senkrecht zu... Aufgabe VI 1. Nimm einen Flummi oder einen Ball und suche eine schräge Fläche. 2. Wirf so den Ball auf die Fläche, dass er möglichst genau in die Wurfhand zurück springt. Zeichne die Situation in das Heft (so wenig wie möglich) und überlege, wie man die Flugbahn genau zeichnen kann? Hier zeichneten die Schüler überwiegend ballistische Kurven, und es entwickelte sich eine lebhafte Diskussion, wie der Ball abspringt, wenn man fester wirft, und wohin man dann werfen muss, damit der Ball genau zurück in die Hand springt. Senkrecht zu.. Im Alltag sagen wir oft der Mast steht senkrecht. Wir meinen damit: Der Mast steht senkrecht zum Horizont. In der Mathematik können wir das Wort senkrecht nie ohne das Wort zu verwenden. Die Flugrichtung des Balls ist senkrecht zur schrägen Fläche. Die Senkrechte wurde hier mit dem Geodreieck gezeichnet. Beide Formen (Zirkel/Geodreieck) standen meist nebeneinander. Beides sollte beherrscht werden. Natürlich wurde der rechte Winkel in diesem Zusammenhang auch gefaltet Papier ohne gerade Kanten: einmal sorgfältig falten, und man erhält eine gerade Linie, ein Lineal. Falten wir diese Kante bündig auf sich selbst, dann erhalten wir einen rechten Winkel.

4 Aufgabe VII 1. Zeichne auf eine leere Seite zwei Punkte A und B. 2. Zeichne durch A eine Gerade und zeichne von B aus eine Senkrechte zu der Geraden. 3. Wiederhole 2. oft. Wie immer Ergebnisse recht unterschiedlicher Qualität. Wiederholung nach ästhetischen Vorbildern... Problem: Zwischen zwei Punkten den Mittelpunkt finden. Dies machte den Schülern wenig Mühe. Als roter Faden zog sich durch den Unterricht, dass wir einen Kreis und eine Mittelsenkrechte zeichnen können und ihre Eigenschaften kennen und dass wir mit diesen Konstruktionen andere Probleme lösen können. Problem: Lot fällen (Senkrechte von Punkt auf Gerade zeichnen). Wir müssen uns Punkte suchen, damit wir unsere Konstruktion einer Mittelsenkrechten durchführen können. A und B müssen gleichen Abstand zu P haben, damit die Mittelsenkrechte durch P verläuft. A und B müssen auf der Geraden liegen (für den richtigen Winkel).

5 Aufgabe VIII Konstruiere mit Zirkel und Lineal ein Quadrat mit der Seitenlänge 5cm! Zuerst zweimal eine Senkrechte konstruiert... Dann nur eine und Längen ausgenutzt... Konstruktion eines Quadrates 1. Strecke von 5cm Länge zeichnen 2. Strecke verlängern (Hilfslinie) 3. Zwei Punkte mit gleichem Abstand zu dem Endpunkt der Strecke mit Zirkel abgreifen 4. Mittelsenkrechte zu diesen Punkten konstruieren (als Hilfslinie) 5. 5cm auf der Mittelsenkrechten als zweite Seite des Quadrates zeichnen 6. Zirkel auf 5cm einstellen und von den Enden der Strecke den vierten Endpunkt zeichnen Spiegelungen Als Einstieg diente das Segelboot, das anghängt wird. Nach anfänglichem Rätselraten, was dies denn sei, wurde das Blatt gefaltet und gegen das Licht gehalten. Hausaufgabe war es, das Bild zu ergänzen egal mit welcher Methode. Konstruktion einer Spiegelachse Überlegung: Beim Falten sehen wir, dass ein Punkt P und sein Spiegelpunkt P aufeinanderfallen, wenn wir an der Spiegelachse knicken. Die Verbindungslinie von P und P steht dann senkrecht zu der Spiegelachse. 1. Von P aus greifen wir mit dem Zirkel auf der Spiegelachse zwei Punkte A und B ab, und verändern den Radius nicht. (A und B haben gleichen Abstand von P, weil sie auf einem Kreis um P liegen. Umgekehrt hat P den gleichen Abstand von A und B. Also muß P auf der Mittelsenkrechten von A und B liegen.) 2. Mit gleichem Radius zeichne ich auf der anderen Seite der Spiegelachse zwei Kreisbögen um A und B so, dass ich den zweiten Punkt P finde, der den gleichen Abstand von A und B hat. (P ist der Spiegelpunkt von P.) Abschließend wurden noch Linien und Dreiecke gespiegelt.

6

7

Inhaltsverzeichnis. Inhaltsverzeichnis

Inhaltsverzeichnis. Inhaltsverzeichnis Inhaltsverzeichnis Inhaltsverzeichnis Einleitung 5 1 Zahlen 7 1.1 Zahlen und Zahlenmengen....................................... 7 1.2 Rechnen mit Zahlen und Termen....................................

Mehr

Konstruktionen mit Zirkel und Lineal

Konstruktionen mit Zirkel und Lineal Konstruktionen mit Zirkel und Lineal Vor den eigentlichen Konstruktionen möchte ich einige emerkungen zu Faltungen machen, da sie leider in der Schule ein Stiefkind darstellen. Mit anderen Worten, sie

Mehr

Aufgabe 1 Erstelle mit Hilfe von GEOGEBRA ein dynamisches Geometrie-Programm, das die Mittelsenkrechte

Aufgabe 1 Erstelle mit Hilfe von GEOGEBRA ein dynamisches Geometrie-Programm, das die Mittelsenkrechte AB Mathematik Experimentieren mit GeoGebra Merke Alle folgenden Aufgaben sind mit dem Programm GEOGEBRA auszuführen! Eine ausführliche Einführung in die Bedienung des Programmes erfolgt im Unterricht.

Mehr

Konstruktion von Kreistangenten

Konstruktion von Kreistangenten Konstruktion von Kreistangenten 1 Gegeben sind die Punkte A und B mit AB = 5cm Konstruiere die Geraden durch B, die von A den Abstand 3cm haben! 2 Eine Ecke einer Rasenfläche, an der die geraden Ränder

Mehr

Mathematik I Prüfung für den Übertritt aus der 8. Klasse

Mathematik I Prüfung für den Übertritt aus der 8. Klasse Aufnahmeprüfung 016 für den Eintritt in das 9. Schuljahr eines Gymnasiums des Kantons Bern Mathematik I Prüfung für den Übertritt aus der 8. Klasse Bitte beachten: - Bearbeitungsdauer: 60 Minuten - Alle

Mehr

Unterrichtsreihe zur Parabel

Unterrichtsreihe zur Parabel Unterrichtsreihe zur Parabel Übersicht: 1. Einstieg: Satellitenschüssel. Konstruktion einer Parabel mit Leitgerade und Brennpunkt 3. Beschreibung dieser Punktmenge 4. Konstruktion von Tangenten 5. Beweis

Mehr

1. Schulaufgabe aus der Mathematik * Klasse 7c * * Gruppe A

1. Schulaufgabe aus der Mathematik * Klasse 7c * * Gruppe A 1. Schulaufgabe aus der Mathematik * Klasse 7c * 17.11.2014 * Gruppe A 1. Finde den Term a) Finde einen Term, der zur folgenden Tabelle passt: x 2 3 4 5 T(x) 82 76 70 64 b) Peter legt aus blauen und roten

Mehr

Mein Indianerheft: Geometrie 4. Lösungen

Mein Indianerheft: Geometrie 4. Lösungen Mein Indianerheft: Geometrie 4 Lösungen So lernst du mit dem Indianerheft Parallele Linien Flächen Kapitel: Flächen Flächen nicht? Prüfe mit dem Geodreieck. e parallele Linien. parallel nicht parallel

Mehr

Aufgaben 1. a) Male die Seite (Skala) des Geodreiecks, mit der Strecken gemessen werden, rot an. b) Markiere den Nullpunkt des Geodreiecks gelb.

Aufgaben 1. a) Male die Seite (Skala) des Geodreiecks, mit der Strecken gemessen werden, rot an. b) Markiere den Nullpunkt des Geodreiecks gelb. Station 2 Strecken Eine Strecke hat einen Anfangspunkt und einen Endpunkt. Diese Strecke ist 2 cm lang. 1. a) Male die Seite (Skala) des Geodreiecks, mit der Strecken gemessen werden, rot an. b) Markiere

Mehr

Erwachsenenschule Bremen Abteilung I: Sekundarstufe Doventorscontrescarpe 172 A Bremen. Die Kursübersicht für das Fach Mathematik

Erwachsenenschule Bremen Abteilung I: Sekundarstufe Doventorscontrescarpe 172 A Bremen. Die Kursübersicht für das Fach Mathematik Erwachsenenschule Bremen Abteilung I: Sekundarstufe Doventorscontrescarpe 172 A 28195 Bremen Die Kursübersicht für das Fach Mathematik Erwachsenenschule Bremen Abteilung I: Sekundarstufe Doventorscontrescarpe

Mehr

Didaktik der Elementargeometrie

Didaktik der Elementargeometrie Humboldt-Universität zu Berlin Sommersemester 2014. Institut für Mathematik A. Filler Zusammenfassende Notizen zu der Vorlesung Didaktik der Elementargeometrie 2 Konstruieren im Geometrieunterricht Konstruieren

Mehr

Körper erkennen und beschreiben

Körper erkennen und beschreiben Vertiefen 1 Körper erkennen und beschreiben zu Aufgabe 6 Schulbuch, Seite 47 6 Passt, passt nicht Nenne zu jeder Aussage alle Formen, auf die die Aussage zutrifft. a) Die Form hat keine Ecken. b) Die Form

Mehr

Viereck und Kreis Gibt es da etwas Besonderes zu entdecken?

Viereck und Kreis Gibt es da etwas Besonderes zu entdecken? Bekanntlich besitzt ein Dreieck einen Umkreis, dessen Mittelpunkt man konstruieren kann. 1) Zeichne in dein Heft ein beliebiges Dreieck und konstruiere den Außenkreis des Dreieckes nur mit Zirkel und Lineal.

Mehr

Die Konstruktion regulärer n-ecke

Die Konstruktion regulärer n-ecke Die Konstruktion regulärer n-ecke Axel Schüler Grimma, 14. September 2007 Gliederung I. Die Quadratur des Kreises und das Delische Problem II. Die zwei Konstruktionsaufgaben III. Geschichtliches zum regulären

Mehr

7.5 Der Schwerpunkt im Dreieck und seine Konstruktion

7.5 Der Schwerpunkt im Dreieck und seine Konstruktion 7.5 Der Schwerpunkt im Dreieck und seine Konstruktion Thema der Unterrichtsstunde Der Schwerpunkt im Dreieck und seine Konstruktion Anmerkungen zur Lerngruppe Seit Beginn des Schuljahres unterrichte ich

Mehr

Vorbereitung auf die Gymiprüfung 2017 im Kanton Zürich. Mathematik. Primarschule, Teil 2. Übungsheft

Vorbereitung auf die Gymiprüfung 2017 im Kanton Zürich. Mathematik. Primarschule, Teil 2. Übungsheft Vorbereitung auf die Gymiprüfung 2017 im Kanton Zürich Mathematik Primarschule, Teil 2 Übungsheft Lektion 7 Umfangberechnungen Lektion 7 Umfangberechnungen 4. Miss alle Seiten und schreibe sie an, berechne

Mehr

1. Mathematik Olympiade 1. Stufe (Schulolympiade) Klasse 8 Saison 1961/1962 Aufgaben und Lösungen

1. Mathematik Olympiade 1. Stufe (Schulolympiade) Klasse 8 Saison 1961/1962 Aufgaben und Lösungen . Mathematik Olympiade. Stufe (Schulolympiade) Saison 96/96 Aufgaben und Lösungen OJM. Mathematik-Olympiade. Stufe (Schulolympiade) Aufgaben Hinweis: Der Lösungsweg mit Begründungen und Nebenrechnungen

Mehr

Rechteck, Quadrat: Umfang

Rechteck, Quadrat: Umfang 12. KAPITEL Rechteck, Quadrat: Umfang mailto:miss.minus@1.klasse Liebste mm, Na, wie ist mein kleines Reimgedicht denn angekommen? Schon als ich ein Junge war, der schöne Friedrich Fies, haben meine Mitschüler

Mehr

Euklid ( v. Chr.) Markus Wurster

Euklid ( v. Chr.) Markus Wurster Geometrische Grundbegriffe Euklid (365 300 v. Chr.) Geometrische Grundbegriffe Euklid (365 300 v. Chr.) Punkte und Linien Zwei Linien Markus Wurster Markus Wurster Geometrische Grundbegriffe Winkel Euklid

Mehr

Tag der Mathematik 2006

Tag der Mathematik 2006 Tag der Mathematik 2006 Gruppenwettbewerb Einzelwettbewerb Mathematische Hürden Lösungen Allgemeine Hinweise: Als Hilfsmittel dürfen nur Schreibzeug, Geodreieck und Zirkel benutzt werden. Taschenrechner

Mehr

Vorbereitung auf die Gymiprüfung 2016 im Kanton Zürich. Mathematik. Primarschule, Teil 2. Übungsheft

Vorbereitung auf die Gymiprüfung 2016 im Kanton Zürich. Mathematik. Primarschule, Teil 2. Übungsheft Vorbereitung auf die Gymiprüfung 2016 im Kanton Zürich Mathematik Primarschule, Teil 2 Übungsheft Lektion 7 Umfangberechnungen Lektion 7 Umfangberechnungen 4. Miss alle Seiten und schreibe sie an, berechne

Mehr

MATHEMATIK ZUR VORBEREITUNG AUF DEN UNMITTELBAREN EINTRITT IN EINEN REALSCHULREIFELEHRGANG ODER FACHSCHULREIFELEHRGANG DER BUNDESWEHRFACHSCHULE

MATHEMATIK ZUR VORBEREITUNG AUF DEN UNMITTELBAREN EINTRITT IN EINEN REALSCHULREIFELEHRGANG ODER FACHSCHULREIFELEHRGANG DER BUNDESWEHRFACHSCHULE ZUR VORBEREITUNG AUF DEN UNMITTELBAREN EINTRITT IN EINEN REALSCHULREIFELEHRGANG ODER FACHSCHULREIFELEHRGANG DER BUNDESWEHRFACHSCHULE MATHEMATIK Lehreinheit 11 Geometrie: Dreiecke und Vierecke II GEOMETRIE:

Mehr

An alle Primarschulen des Kantons SH. Schaffhausen, Geometrie im Mathematiklehrmittel Neues Zahlenbuch Übersicht

An alle Primarschulen des Kantons SH. Schaffhausen, Geometrie im Mathematiklehrmittel Neues Zahlenbuch Übersicht Kanton Schaffhausen Abteilung Schulentwicklung und Aufsicht Herrenacker 3 CH-8200 Schaffhausen www.sh.ch An alle Primarschulen des Kantons SH Schaffhausen, 11.04.2012 Geometrie im Mathematiklehrmittel

Mehr

Tag der Mathematik 2016

Tag der Mathematik 2016 Tag der Mathematik 016 Mathematischer Wettbewerb, Klassenstufe 9 10 30. April 016, 9.00 1.00 Uhr Aufgabe 1 Der Mittelwert von 016 (nicht unbedingt verschiedenen) natürlichen Zahlen zwischen 1 und 0 16

Mehr

An alle Primarschulen des Kantons SH. Schaffhausen, Geometrie im Mathematiklehrmittel Logisch Übersicht. Liebe Kolleginnen und Kollegen

An alle Primarschulen des Kantons SH. Schaffhausen, Geometrie im Mathematiklehrmittel Logisch Übersicht. Liebe Kolleginnen und Kollegen Kanton Schaffhausen Abteilung Schulentwicklung und Aufsicht Herrenacker 3 CH-8200 Schaffhausen www.sh.ch An alle Primarschulen des Kantons SH Schaffhausen, 11.04.2012 Geometrie im Mathematiklehrmittel

Mehr

Aufgabe S 1 (4 Punkte)

Aufgabe S 1 (4 Punkte) Aufgabe S 1 (4 Punkte) In einem regelmäßigen Achteck wird das Dreieck ABC betrachtet, wobei C der Mittelpunkt der Seite ist, die der Seite AB gegenüberliegt Welchen Anteil am Flächeninhalt des Achtecks

Mehr

Anwendungen in geometrischen Konstruktionen (Konstruktionen nur mit Zirkel)

Anwendungen in geometrischen Konstruktionen (Konstruktionen nur mit Zirkel) nwendungen in geometrischen Konstruktionen (Konstruktionen nur mit Zirkel) Frage,r, sind gegeben. Kann man I,r () mit Zirkel und Lineal konstruieren? ntwort Man kann I,r () sogar nur mit Zirkel konstruieren.

Mehr

Digitale Typografie (SS 2016)

Digitale Typografie (SS 2016) Institut für Numerische Mathematik Dr. Andreas F. Borchert 9. April 06 Blatt 3 Digitale Typografie (SS 06) Abgabe bis zum 3. Mai 04, 0:00 Uhr Lernziele: Definition von Type-3-Schriftschnitten in PostScript

Mehr

Äquatoraufgabe. Der Äquator

Äquatoraufgabe. Der Äquator Humboldt Universität zu Berlin Datum: 06.01.09 Institut für Mathematik SE: Ausgewählte Kapitel der Didaktik der Mathematik (Computerunterstützter Mathematikunterricht) Dozent: I. Lehmann Autor: A. Gielsdorf

Mehr

Rohrsysteme - Arbeitsprotokoll

Rohrsysteme - Arbeitsprotokoll Rohrsysteme - Arbeitsprotokoll Fertige Bilder: Das H : Viertelbogen (r=5 cm) in Richtung z-achse zeichnen. 7.5 cm in Richtung z-achse. Viertelbogen( (r=5 cm) gegen die x-achse. 1/6 Kreis (r=2 cm) an ein

Mehr

Anleitung Zweifluchtpunktperspektive

Anleitung Zweifluchtpunktperspektive Anleitung Zweifluchtpunktperspektive Schritt 1 Als erstes positioniert man einen Körper, z.b. ein Gebäude, auf der (grün). Um euch die Theorie der Zweifluchtpunktperspektive zu veranschaulichen, nehme

Mehr

ISSN Kreise und Tangenten. Ein Stundenprotokoll

ISSN Kreise und Tangenten. Ein Stundenprotokoll ISSN 2364-5520 Kreise und Tangenten Ein Stundenprotokoll 5 Herausgeber Universität Bayreuth Forschungsstelle für Mobiles Lernen mit digitalen Medien sketchometry Universitätsstraße 30 95447 Bayreuth Internet

Mehr

Mathematik Aufnahmeprüfung 2015

Mathematik Aufnahmeprüfung 2015 Mathematik Aufnahmeprüfung 2015 Zeit: 2 Stunden. Rechner: TI30/TI34 oder vergleichbare. Hinweis: Der Lösungsweg muss nachvollziehbar sein, ansonsten werden keine Teilpunkte vergeben. Numerische Resultate

Mehr

55. Mathematik-Olympiade 1. Stufe (Schulrunde) Olympiadeklasse 8 Lösungen

55. Mathematik-Olympiade 1. Stufe (Schulrunde) Olympiadeklasse 8 Lösungen 55. Mathematik-Olympiade 1. Stufe (Schulrunde) Olympiadeklasse 8 Lösungen c 2015 Aufgabenausschuss des Mathematik-Olympiaden e.v. www.mathematik-olympiaden.de. Alle Rechte vorbehalten. 550811 Lösung 6

Mehr

Dreiecke, Quadrate, Rechtecke, Kreise erkennen und benennen Würfel, Quader, Kugeln erkennen und benennen

Dreiecke, Quadrate, Rechtecke, Kreise erkennen und benennen Würfel, Quader, Kugeln erkennen und benennen Geometrie Ich kann... Formen und Körper erkennen und beschreiben Dreiecke, Quadrate, Rechtecke, Kreise erkennen und benennen Würfel, Quader, Kugeln erkennen und benennen Symmetrien in Figuren erkennen

Mehr

Der Höhenschnittpunkt im Dreieck

Der Höhenschnittpunkt im Dreieck Der Höhenschnittpunkt im Dreieck 1. Beobachte die Lage des Höhenschnittpunktes H. Wo befindet sich H? a) bei einem spitzwinkligen Dreieck, b) bei einem rechtwinkligen Dreieck, c) bei einem stumpfwinkligen

Mehr

Grundwissen 7 Bereich 1: Terme

Grundwissen 7 Bereich 1: Terme Bereich 1: Terme Termwerte 1.1 S1 T (1) = 6 T (2) = 7 T ( 2) 3 = 12 1 4 = 12, 25 1.2 S1 m 2 0, 5 0 1 2 1 3 6 6 2 A(m) 7 11 5 0 1 Setzt man die Zahl 5 ein, so entsteht im Nenner die Zahl 0. Durch 0 zu teilen

Mehr

Musterlösung zur 3. Hausaufgabe - Unterrichtsanalyse -

Musterlösung zur 3. Hausaufgabe - Unterrichtsanalyse - 1) Vorkenntnisse: Musterlösung zur 3. Hausaufgabe - Unterrichtsanalyse - Im Rahmen der aktuellen Einheit wurden die folgenden Themen im Unterricht behandelt. Grundkonstruktionen mit Zirkel und Lineal;

Mehr

5. Jahrestagung Berlin. Formen und Veränderungen Geometrische Aktivitäten als Grundlage für fachliches Verständnis

5. Jahrestagung Berlin. Formen und Veränderungen Geometrische Aktivitäten als Grundlage für fachliches Verständnis 5/6 5./6. 12. 08 SINUS Transfer Grundschule 5. Jahrestagung Berlin Formen und Veränderungen Geometrische Aktivitäten als Grundlage für fachliches Verständnis Workshop: Faltwinkel, rechte Winkel, Flächeninhalt

Mehr

Eine Einführung Hartmut Braun 2011

Eine Einführung Hartmut Braun 2011 Eine Einführung Hartmut Braun 2011 Inhaltsverzeichnis Inhaltsverzeichnis 1. Einleitung...4 2. Zeichenerklärung...4 3. Die GEONExT- Oberfläche...5 3.1. Menüleiste...6 3.2. Kopfleiste...6 3.3. Konstruktionselemente...7

Mehr

Koordinatensystem, Strecken, Geraden

Koordinatensystem, Strecken, Geraden Koordinatensystem, Strecken, Geraden Zeichne eine Rechts- und eine Hochachse und trage folgende Punkte ein: P(2 1), Q(10 1), R(10 9), S(2 9), T(4 3), U(8 3), V(8 7), W(4 7). Zeichne die Strecken PQ QR

Mehr

Geometrische Grundkonstruktionen

Geometrische Grundkonstruktionen Geometrische Grundkonstruktionen Strecken...2 Halbierung einer Strecke und Mittelsenkrechte...2 Teilung einer Strecke in eine bestimmte Anzahl gleicher Teile...2 Halbierung eines Winkels...3 Tangente an

Mehr

Lambacher Schweizer Schleswig-Holstein Klasse 6 Schule: Lehrer: fakultativ. Leitidee: Zahl und Operationen. Leitidee: Messen

Lambacher Schweizer Schleswig-Holstein Klasse 6 Schule: Lehrer: fakultativ. Leitidee: Zahl und Operationen. Leitidee: Messen Stoffverteilungsplan Lambacher Schweizer Schleswig-Holstein Klasse 6 Schule: Lehrer: fakultativ Stunden Inhalte des Lambacher Schweizer 6 Schleswig-Holstein (G8) Leitideen und Kompetenzerwartungen Kapitel

Mehr

Zahlen und Größen Beitrag 34 Einführung in den Maßstab 1 von 26. Max richtet sein Zimmer neu ein eine Einführung in den Maßstab

Zahlen und Größen Beitrag 34 Einführung in den Maßstab 1 von 26. Max richtet sein Zimmer neu ein eine Einführung in den Maßstab Zahlen und Größen Beitrag 34 Einführung in den Maßstab 1 von 26 Max richtet sein Zimmer neu ein eine Einführung in den Maßstab Von Lisa M. D. Polzer, Karlsruhe In Max Zimmer herrscht ein ganz schönes Chaos!

Mehr

Unterrichtsmaterialien in digitaler und in gedruckter Form. Auszug aus: Unterrichtsreihe zum Thema "Kreise und Winkel"

Unterrichtsmaterialien in digitaler und in gedruckter Form. Auszug aus: Unterrichtsreihe zum Thema Kreise und Winkel Unterrichtsmaterialien in digitaler und in gedruckter Form Auszug aus: Unterrichtsreihe zum Thema "Kreise und Winkel" Das komplette Material finden Sie hier: School-Scout.de Titel: Unterrichtsreihe zum

Mehr

Schulinterner Lehrplan Version 2014 Lambacher Schweizer Kl. 5

Schulinterner Lehrplan Version 2014 Lambacher Schweizer Kl. 5 Schulinterner Lehrplan Version 2014 Lambacher Schweizer Kl. 5 1 Verbalisieren mathematische Sachverhalte, Begriffe, Regeln und Kommunizieren bei der Lösung von Problemen im Team arbeiten; über Begründen

Mehr

Dynamische Geometrie

Dynamische Geometrie Dynamische Geometrie 1) Die Mittelsenkrechten, die Seitenhalbierenden, die Höhen und die Winkelhalbierenden eines beliebigen Dreiecks schneiden sich jeweils in einem Punkt. a) Untersuchen Sie die Lage

Mehr

Geometrische Formen kennenlernen und Wortschatz erweitern

Geometrische Formen kennenlernen und Wortschatz erweitern Mathematik Beitrag 77 Geometrische Formen kennenlernen und Wortschatz erweitern 1 von 20 Ich möchte bitte ein Dreieck kaufen die geometrischen Formen kennenlernen und den Alltagswortschatz erweitern Ein

Mehr

Ich mache eine saubere, klare Konstruktionszeichnungen und zeichne die Lösungen rot

Ich mache eine saubere, klare Konstruktionszeichnungen und zeichne die Lösungen rot athplan 8.4 Geometrie Kreis Kreisteile Flächenberechnung Name: Hilfsmittel : Geometrie 2 / AB 8 Zeitvorschlag: 3 Wochen von: Lernkontrolle am: bis Probe 8.4 Wichtige Punkte: Ich mache eine saubere, klare

Mehr

2.2A. Das allgemeine Dreieck

2.2A. Das allgemeine Dreieck .A. Das allgemeine Dreieck Koordinatentransformation eines Dreiecks Jedes Dreieck läßt sich nach geeigneter Drehung und Verschiebung in ein Dreieck mit den Eckpunkten A = ( x, 0 ), B = ( y, 0 ), C = (

Mehr

1. Was ist GeoGebra? GeoGebra installieren Öffnen Sie die Website und klicken Sie auf der Startseite auf Download.

1. Was ist GeoGebra? GeoGebra installieren Öffnen Sie die Website  und klicken Sie auf der Startseite auf Download. 1. Was ist GeoGebra? GeoGebra ist eine dynamische Mathematiksoftware, die für Schülerinnen und Schüler aller Altersklassen geeignet ist und auf allen gängigen Betriebssystemen läuft. Sie verbindet Geometrie,

Mehr

Übungsaufgaben Geometrie und lineare Algebra - Serie 1

Übungsaufgaben Geometrie und lineare Algebra - Serie 1 Übungsaufgaben Geometrie und lineare Algebra - Serie. Bei einer geraden Pyramide mit einer quadratischen Grundfläche von 00 cm beträgt die Seitenkante 3 cm. a) Welche Höhe hat die Pyramide? b) Wie groß

Mehr

Seiten 5 / 6. Lösungen Geometrie-Dossier Würfel und Quader

Seiten 5 / 6. Lösungen Geometrie-Dossier Würfel und Quader 1 a) c) d) Seiten 5 / 6 Lösungen eometrie-ossier Würfel und Quader Aufgaben Würfel (Lösungen sind verkleinert gezeichnet) Bei allen drei entsteht das gleiche Bild. ie Lösungsidee: 1. Zuerst anhand der

Mehr

Lösungen IV ) β = 54,8 ; γ = 70,4 106) a) 65 b) 65 (115?) d) 57,5

Lösungen IV ) β = 54,8 ; γ = 70,4 106) a) 65 b) 65 (115?) d) 57,5 (Stark 7 S. 6ff) Lösungen IV. a) gleichschenklig 0) a) () α = β = 6,7 () β = 7,8 ; γ = 4,4 () α = 4 ; γ = (4) α = β = (80 γ)/ b) 79,6 und 0,8 oder 0, und 0, c) α = β = 64 ; γ = d) gleichschenklig; zwei

Mehr

(a) 2 Punkte, (b) 2 Punkte (a) 1 Punkt, (b) 1 Punkt, (c) 2 Punkte (a) 1 Punkt, (b) 3 Punkte

(a) 2 Punkte, (b) 2 Punkte (a) 1 Punkt, (b) 1 Punkt, (c) 2 Punkte (a) 1 Punkt, (b) 3 Punkte Mathematik Aufnahmeprüfung 015 Aufgabe 1 3 4 5 6 7 8 9 10 11 1 Summe Punkte 4 4 3 3 3 3 4 4 4 4 40 Punkte für die Teilaufgaben: (a) Punkte, (b) Punkte (a) 1 Punkt, (b) 1 Punkt, (c) Punkte (a) 1 Punkt,

Mehr

Städtewettbewerb Frühjahr 2009

Städtewettbewerb Frühjahr 2009 Städtewettbewerb Frühjahr 2009 Lösungsvorschläge Hamburg 4. März 2009 [Version 1. April 2009] M Mittelstufe Aufgabe M.1 (3 P.). In ein konvexes 2009-Eck werden sämtliche Diagonalen eingezeichnet. (Diagonalen

Mehr

Kompetenzraster Geometrie

Kompetenzraster Geometrie Mathebox 6 I Themenbereich 3 Kompetenzraster Geometrie Eigenschaften von Vierecken und Dreiecken finden Einfachen Anwendungsaufgaben Vierecken lösen unterscheiden Symmetrieachsen in Vierecken und Dreiecken

Mehr

Mathematik B-Tag Freitag, 20. November, 8:00 15:00 Uhr. Um die Ecke. Mathematik B-Tag Seite 1 von 9 -

Mathematik B-Tag Freitag, 20. November, 8:00 15:00 Uhr. Um die Ecke. Mathematik B-Tag Seite 1 von 9 - Mathematik B-Tag 2015 Freitag, 20. November, 8:00 15:00 Uhr Um die Ecke Mathematik B-Tag 2015 - Seite 1 von 9 - Erkundung 1 (Klavier) Ein Klavier soll durch einen 1 m breiten Gang um die Ecke (rechter

Mehr

18. Sächsische Physikolympiade

18. Sächsische Physikolympiade 18. Sächsische Physikolympiade 1. Stufe Klassenstufe 7 Aufgabe 180711 Schulfahrt nach Neustadt Ein Streckenfahrplan ist ein Zeit-Ort-Diagramm, aus dem abgelesen werden kann, an welchem Ort (oder an welchem

Mehr

Übung Elementarmathematik im WS 2012/13. Lösung zum Klausurvorbereitung IV

Übung Elementarmathematik im WS 2012/13. Lösung zum Klausurvorbereitung IV Technische Universität Chemnitz Fakultät für Mathematik Dr. Uwe Streit Jan Blechschmidt Aufgabenkomplex 7 - Vektoren Übung Elementarmathematik im WS 202/3 Lösung zum Klausurvorbereitung IV. (5 Punkte -

Mehr

Erste Unterrichtsstunde: Wievielmal so groß? mit Tangram Flächen vergleichen

Erste Unterrichtsstunde: Wievielmal so groß? mit Tangram Flächen vergleichen Erste Unterrichtsstunde: Wievielmal so groß? mit Tangram Flächen vergleichen Groblernziel: Die Schüler und Schülerinnen können die Größenverhältnisse der geometrischen Figuren des C-Tangrams durch Flächeninhaltsvergleiche

Mehr

Stoffverteilungsplan Mathematik 5 für den G9-Zweig

Stoffverteilungsplan Mathematik 5 für den G9-Zweig Stoffverteilungsplan Mathematik 5 für den G9-Zweig prozessbezogene Kompetenzen inhaltsbezogene Kompetenzen Lehrbuch Argumentieren / Darstellungen (Text, Bild, Tabelle) mit eigenen Worten Begriffe, Regeln

Mehr

Schuleigener Arbeitsplan Fach: Mathematik Jahrgang: 5

Schuleigener Arbeitsplan Fach: Mathematik Jahrgang: 5 Stand:.0.206 Sommerferien Zahlen und Operationen» Zahlen sachangemessen runden» große Zahlen lesen und schreiben» konkrete Repräsentanten großer Zahlen nennen» Zahlen auf der Zahlengeraden und in der Stellenwerttafel

Mehr

2.2C. Das allgemeine Dreieck

2.2C. Das allgemeine Dreieck .C. Das allgemeine Dreieck Jedes Dreieck läßt sich nach geeigneter Drehung und Verschiebung in ein Dreieck mit den Eckpunkten A = ( x, 0 ), B = ( y, 0 ), C = ( 0, z ) (x, y, z > 0) transformieren. Die

Mehr

Serie W1, Kl Wie viele Flächen, Ecken und Kanten hat ein Quader? F: E: K:

Serie W1, Kl Wie viele Flächen, Ecken und Kanten hat ein Quader? F: E: K: Serie W1, Kl. 5 1. 89 + 32 = 2. 17 8 = 3. 120 : 5 = 4. 123 42 = 5. Wie viele Flächen, Ecken und Kanten hat ein Quader? F: E: K: 6. 165 cm = dm 7. 48 000 g = kg 8. Skizziere das abgebildete Würfelnetz.

Mehr

Mathematik, 2. Sekundarschule (bisheriges Lehrmittel)

Mathematik, 2. Sekundarschule (bisheriges Lehrmittel) Zentrale Aufnahmeprüfung 2011 für die Kurzgymnasien und die Handelsmittelschulen des Kantons Zürich Mathematik, 2. Sekundarschule (bisheriges Lehrmittel) Von der Kandidatin oder vom Kandidaten auszufüllen:

Mehr

Aufgaben für die Klassenstufen 11/12

Aufgaben für die Klassenstufen 11/12 Aufgaben für die Klassenstufen /2 Einzelwettbewerb Gruppenwettbewerb Speedwettbewerb Aufgaben OE, OE2, OE3 Aufgaben OG, OG2, OG3, OG4 Aufgaben OS, OS2, OS3, OS4, OS5, OS6, OS7, OS8 Aufgabe OE: (a) 64 kleine

Mehr

Die Ellipse, Zusammenhänge und Konstruktion

Die Ellipse, Zusammenhänge und Konstruktion ie Ellipse, Zusammenhänge und Konstruktion ie Ellipse hat eine große chse und eine kleine chse. Es lassen sich zwei Kreise bilden, einen mit dem großen urchmesser und einen dem kleinen urchmesser. In der

Mehr

1. Aufgabe: Grundwissen

1. Aufgabe: Grundwissen NAME: Mathematik 3. Klassenarbeit Klasse 10e- Gr. A 06. Feb. 2007 Trigonometrie für Winkel bis 90 Grad - ups - Teil A: Arbeitsblatt ohne Nutzung von Tafelwerk, Formelsammlung und Taschenrechner 1. Aufgabe:

Mehr

Regiomontanus - Gymnasium Haßfurt - Grundwissen Mathematik Jahrgangsstufe 7

Regiomontanus - Gymnasium Haßfurt - Grundwissen Mathematik Jahrgangsstufe 7 Regiomontanus - Gymnasium Haßfurt - Grundwissen Mathematik Jahrgangsstufe 7 Wissen und Können 1. Terme Terme sind sinnvolle Rechenausdrücke mit Zahlen, Variablen und Rechenzeichen. Berechnung von Termwerten

Mehr

M 7.1. Achsensymmetrie. Wo liegen alle Punkte, die von zwei gegebenen Punkten gleich weit entfernt sind?

M 7.1. Achsensymmetrie. Wo liegen alle Punkte, die von zwei gegebenen Punkten gleich weit entfernt sind? M 7.1 Achsensymmetrie Wo liegen alle Punkte, die von zwei gegebenen Punkten gleich weit entfernt sind? Nenne drei Eigenschaften achsensymmetrischer Figuren. Gegeben sind ein Punkt und die Symmetrieachse.

Mehr

Schwerpunktfach AM/PH, 2011 KEGELSCHNITTE

Schwerpunktfach AM/PH, 2011 KEGELSCHNITTE Schwerpunktfach AM/PH, 011 KEGELSCHNITTE 5. Kreis und Ellipse 5.1. Grundkonstruktionen am Kreis Konstruktion 1: Konstruiere einen Kreis, welcher durch die gegebenen 3 Punkte A,B und C verläuft: C B A Konstruktionsbericht:

Mehr

Form und Raum Beitrag 25 Geometrie draußen erleben 1 von 36

Form und Raum Beitrag 25 Geometrie draußen erleben 1 von 36 III Form und Raum Beitrag 25 Geometrie draußen erleben 1 von 36 Geometrie draußen erleben Satz des Thales, Mittelsenkrechte, Umkreis und Winkelhalbierende Von Jan und Jana Matjak, Laudenbach Illustriert

Mehr

Großer Wagen. zum Sternbild. Großer Bär

Großer Wagen. zum Sternbild. Großer Bär B1 Sterne / Sternbilder Termin:....................... 1. Suchen Sie auf einer Sternkarte die Sternbilder Großer Bär, Kleiner Bär und Kassiopeia. 2. Bereiten Sie eine Skizze vor, die den Horizont zeigt

Mehr

Teilnahmeurkunde. 4.Klasse. 3. Klasse

Teilnahmeurkunde. 4.Klasse. 3. Klasse 6 Kreisdiagramm Oma hatte am Wochenende Geburtstag. Tante Julia bestellte beim Bäcker verschiedene Kuchensorten. a) Welche Kuchensorte gab es am meisten? Welche Kuchensorte gab es am wenigsten? linkes

Mehr

Achsensymmetrie. Konstruktionen M 7.1

Achsensymmetrie. Konstruktionen M 7.1 M 7.1 Achsensymmetrie Punkte, die auf der Symmetrieachse liegen und nur diese, sind von zueinander symmetrischen Punkten gleich weit entfernt. Eigenschaften achsensymmetrischer Figuren Die Verbindungsstrecke

Mehr

Achsensymmetrie. Grundkonstruktionen

Achsensymmetrie. Grundkonstruktionen M 7.1 Achsensymmetrie Punkte, die auf der Symmetrieachse liegen und nur diese, sind von zueinander symmetrischen Punkten gleich weit entfernt. Eigenschaften achsensymmetrischer Figuren Die Verbindungsstrecke

Mehr

SINUS an Grundschulen Saarland Offene Aufgaben zur Leitidee Raum und Form

SINUS an Grundschulen Saarland Offene Aufgaben zur Leitidee Raum und Form Aufgabe 2.5 Idee und Aufgabenentwurf: Volker Morbe, Grundschule der Gemeinde Nohfelden / Dependance Sötern, Klassenstufe 4 (November 2012) Baue mit 3, 4 oder 5 Würfeln. Skizziere die Anordnungen, die du

Mehr

SAE. Geometrie B Name: Sekundarschulabschluss für Erwachsene

SAE. Geometrie B Name: Sekundarschulabschluss für Erwachsene SE Sekundarschulabschluss für Erwachsene Name: Nummer: Geometrie 2015 Totalzeit: 60 Minuten Hilfsmittel: nichtprogrammierbarer Taschenrechner, Geometrie-Werkzeug Maximal erreichbare Punktzahl: 60 Für die

Mehr

Anleitung für eine selbstgenähte Dirndl-Schürze

Anleitung für eine selbstgenähte Dirndl-Schürze Anleitung für eine selbstgenähte Dirndl-Schürze Du brauchst: Schritt 1: Schneide Dir den Hauptteil zu (78cm x 59cm). ca. 1,5m bis 2m Dirndl-Stoff Deiner Wahl Garn in der passenden Farbe Stecknadeln ein

Mehr

Die Parabel als Ortskurve

Die Parabel als Ortskurve Die Parabel als Ortskurve Autor: Andreas Nüesch, Gymnasium Oberwil/BL, Schweiz Idee: Gegeben ist eine Konstruktionsvorschrift für einen Punkt P im Koordinatensystem. 1. Konstruieren der Ortskurve mit HIlfe

Mehr

Musterseiten aus: tablo-unterrichtsprojekt Wohnen Best.-Nr Projekthandbuch Finken-Verlag

Musterseiten aus: tablo-unterrichtsprojekt Wohnen Best.-Nr Projekthandbuch Finken-Verlag Inhaltsverzeichnis Zur Idee und zum Konzept der tablo-unterrichtsprojekte.................................... 1 Zum tablo-unterrichtsprojekt Wohnen................................................. 2 3

Mehr

Magie der Mathematik Von der Verblüffung zum Verstehen. René Schelldorfer, Pädagogische Hochschule Zürich

Magie der Mathematik Von der Verblüffung zum Verstehen. René Schelldorfer, Pädagogische Hochschule Zürich Magie der Mathematik Von der Verblüffung zum Verstehen René Schelldorfer, Pädagogische Hochschule Zürich Magie der Mathematik: Eine Darbietung in fünf Nummern 1 Die Nummer mit den Zahlenkarten 2 Die Nummer

Mehr

Repetition Mathematik 7. Klasse

Repetition Mathematik 7. Klasse Repetition Mathematik 7. Klasse 1. Ein neugeborenes Kätzchen wiegt bei der Geburt durchschnittlich 100g. Es nimmt in den ersten 8 Wochen pro Woche 60g zu. Wie viel beträgt nachher die Gewichtszunahme pro

Mehr

Beispiellösungen zu Blatt 39

Beispiellösungen zu Blatt 39 µathematischer κorrespondenz- zirkel Mathematisches Institut Georg-August-Universität Göttingen Aufgabe 1 Beispiellösungen zu Blatt 9 Zu Ehren des 9. Aufgabenblattes betrachten wir alle Vielfachen der

Mehr

4. Mathematik Olympiade 1. Stufe (Schulolympiade) Klasse 7 Saison 1964/1965 Aufgaben und Lösungen

4. Mathematik Olympiade 1. Stufe (Schulolympiade) Klasse 7 Saison 1964/1965 Aufgaben und Lösungen . Mathematik Olympiade Saison 196/1965 Aufgaben und Lösungen 1 OJM. Mathematik-Olympiade Aufgaben Hinweis: Der Lösungsweg mit Begründungen und Nebenrechnungen soll deutlich erkennbar in logisch und grammatikalisch

Mehr

Analytische Geometrie

Analytische Geometrie Analytische Geometrie 1 Punkte und Vektoren im Raum G 1.1 Gegeben sind die Vektoren in nebenstehender Abbildung. Drücke die Vektoren AC durch a und b AB durch z und w BC durch c und d DB durch b und u

Mehr

P 0 f (0) schneidet die Gerade mit der Gleichung x Ermitteln Sie die Koordinaten von S.

P 0 f (0) schneidet die Gerade mit der Gleichung x Ermitteln Sie die Koordinaten von S. Zentralabitur 015 im Fach Mathematik Analysis 1 Im nebenstehenden Bild sind die Graphen dreier Funktionen f, g und h dargestellt Geben Sie an, bei welcher der drei Funktionen es sich um eine Stammfunktion

Mehr

Lektionsplanung Primarstufe Mathematik

Lektionsplanung Primarstufe Mathematik Institut Vorschulstufe und Primarstufe Fabrikstrasse 8, CH-3012 Bern T +41 31 309 23 11, info-ivp@phbern.ch, www.phbern.ch Lektionsplanung Primarstufe Mathematik Studentin Laura Blumenthal Profil VUS Lehrperson,

Mehr

HM = 2cm HS = 3.5cm MB = 2cm (weil die Höhe im gleichsch. Dreieck die Basis halbiert)

HM = 2cm HS = 3.5cm MB = 2cm (weil die Höhe im gleichsch. Dreieck die Basis halbiert) Seiten 4 / 5 1 Vorbemerkung: Die Konstruktionsaufgaben sind verkleinert gezeichnet. a) Aus dem Netz wird die Pyramidenhöhe herauskonstruiert. Dies mit dem rechtwinkligen Dreieck HS, wie im Raumbild angedeutet.

Mehr

SINUS Saarland Geometrie beziehungshaltig entdecken Module für den Geometrieunterricht. Kurs 7: Module 13 und :00-18:00 Uhr

SINUS Saarland Geometrie beziehungshaltig entdecken Module für den Geometrieunterricht. Kurs 7: Module 13 und :00-18:00 Uhr SINUS Saarland Geometrie beziehungshaltig entdecken Module für den Geometrieunterricht Kurs 7: Module 13 und 14 08.01.2015 15:00-18:00 Uhr 1 Modul 13: Vielecke (Vielecke; regelmäßige Vielecke; Orientierungsfigur:

Mehr

Eingangstest Mathematik

Eingangstest Mathematik Eingangstest Mathematik DHBW Mannheim Fachbereich Technik e-mail: Adresse: Gesamtzeit: 20 Minuten Gesamtpunktzahl: 20 Beachten Sie bitte folgende Punkte:. Der folgende Test umfasst neun Aufgabenblöcke.

Mehr

Graph der linearen Funktion

Graph der linearen Funktion Graph der linearen Funktion Im unten stehenden Diagramm sind die Grafen der Funktionen f und g gezeichnet (a) Stelle die Gleichungen von f und g auf und berechne die Nullstellen der beiden Funktionen (b)

Mehr

Pangea Ablaufvorschrift

Pangea Ablaufvorschrift Pangea Mathematik-Wettbewerb 2011 Klassenstufe 5 Pangea Ablaufvorschrift Antwortbogen Überprüfung der Anmeldedaten Kennzeichnung (Beispiel) beachten! Prüfung Zur Beantwortung der 25 Fragen hast du 60 Minuten

Mehr

Konzept zur Entwicklung räumlichen Vorstellungsvermögens in MV

Konzept zur Entwicklung räumlichen Vorstellungsvermögens in MV Universität Rostock Prof. Dr. Hans Dieter Sill und Teilnehmer einer Lehrerfortbildung im Schuljahr 2012/13 Konzept zur Entwicklung räumlichen Vorstellungsvermögens in MV Vorbemerkungen Die Vorschläge sind

Mehr

Download. Mathe an Stationen. Mathe an Stationen. Das 5x5-Geobrett in der Sekundarstufe I. Marco Bettner, Erik Dinges

Download. Mathe an Stationen. Mathe an Stationen. Das 5x5-Geobrett in der Sekundarstufe I. Marco Bettner, Erik Dinges Download Marco Bettner, Erik Dinges Mathe an Stationen Das 5x5-Geobrett in der Sekundarstufe I Downloadauszug aus dem Originaltitel: Sekundarstufe I Marco Bettner Erik Dinges Mathe an Stationen Umgang

Mehr

Schulinterner Lehrplan

Schulinterner Lehrplan Fach Mathematik Jahrgangsstufe 6 Themen Inhaltsbezogene Kompetenzen Prozessbezogene Kompetenzen Bruchzahlen - Wiederholen: Anteile als Bruch darstellen - Dezimalschreibweise - Dezimalschreibweisen vergleichen

Mehr

DEMO für Verkettung von Kongruenzabbildungen INTERNETBIBLIOTHEK FÜR SCHULMATHEMATIK. FRIEDRICH W. BUCKEL.

DEMO für  Verkettung von Kongruenzabbildungen INTERNETBIBLIOTHEK FÜR SCHULMATHEMATIK.  FRIEDRICH W. BUCKEL. Abbildungen Verkettung von Kongruenzabbildungen Für Interessenten. Datei Nr. 11059 Stand: 3. Oktober 2013 DEMO für FRIEDRICH W. BUCKEL INTERNETBIBLIOTHEK FÜR SCHULMATHEMATIK 11059 Verkettung von Kongruenzabbildungen

Mehr

1. Lineare Funktionen und lineare Gleichungen

1. Lineare Funktionen und lineare Gleichungen Liebe Schülerin! Lieber Schüler! In den folgenden Unterrichtseinheiten wirst du die Unterrichtssoftware GeoGebra kennen lernen. Mit ihrer Hilfe kannst du verschiedenste mathematische Objekte zeichnen und

Mehr