Geometrie Jahrgangsstufe 5

Save this PDF as:
 WORD  PNG  TXT  JPG

Größe: px
Ab Seite anzeigen:

Download "Geometrie Jahrgangsstufe 5"

Transkript

1 Geometrie Jahrgangsstufe 5 Im Rahmen der Kooperation der Kollegen, die im Schuljahr 1997/98 in der fünften Jahrgangstufe Mathematik unterrichteten, wurde in Gemeinschaftsarbeit unter Federführung von Frau v. Piechowski diese Dokumentation erstellt. Die Unterrichtseinheit wurde von Herrn Jorde als Einstieg in den Mathematikunterricht im fünften Schuljahr 1997/98 durchgeführt. Aufgabe I Auf der Wiese Michael steht allein auf der Wiese. Ein Schüler stellt sich ungefähr vier Meter von Michael entfernt hin. Immer mehr Schüler sollen sich im gleichen Abstand zu Michael aufstellen. Es entsteht ein Kreis. Ein Kreis ist die Menge aller Punkte, die vom Mittelpunkt den gleichen Abstand haben. Aufgabe II Auf der Wiese Florian und Edith stehen auf der Wiese, ungefähr vier Meter voneinander entfernt. Immer mehr Schüler sollen sich so hinstellen, dass sie von Florian und Edith genauso weit eintfernt sind. Beim Aufstellen der Schüler haben wir gesehen, dass alle Schüler in einer Linie zwischen Florian und Edith standen. Wie lässt sich mit einem Seil prüfen, ob z.b. Christoph von Florian und Edith den gleichen Abstand hat? Christoph muss das Seil an einem Ende festhalten. Sebastian, unser Abstandsmesser, spannt das Seil zu Edith und geht mit gespanntem Seil zu Florian. Sebastian bewegt sich dabei auf einem Kreisbogen um Christoph. Auswertung an der Tafel Der Zirkel ersetzt unser Seil. So können wir die draußen gestellten Aufgaben zeichnen. 1. Kreis klar Mittelsenkrechte schwieriger... Von jedem Schüler, zum Beispiel Christoph, muss der Kreisbogen durch die Punkte für Florian und Edith (F und E) gehen. Dann müssen sich aber auch umgekehrt bei gleichem Radius (Seillänge) die Kreise um F und E in C(hristoph) schneiden. Zum Zeichnen der Mittelsenkrechten suchen wir mit dem Zirkel zwei Punkte, die von Florian und Edith gleichen Abstand haben. Durch diese beiden Punkt verläuft die Linie. Die Mittelsenkrechte von A und B ist die Menge aller Punkte, die zu den beiden Punkten A und B gleichen Abstand haben. Aufgabe III Festigung des Umkehrschlusses für die Mittelsenkrechte 1. Zeichne einen Punkt M. 2. Stelle den Zirkel auf 5cm ein. 3. Zeichne einen Kreis um M. 4. Wähle auf dem Kreis zwei Punkte A und B. 5. Zeichne zu A und B die Mittelsenkrechte. Auswertung: Die Mittelsenkrechte muss durch M gehen. A und B sind nämlich gleichweit von M entfernt, weil sie auf einem Kreis um M liegen. Dann hat umgekehrt M gleichen Abstand zu A und B, liegt also auf der Mittelsenkrechten.

2 Erklärungen zum genauen Zeichnen 1. Zirkelmine auf Schmirgelpapier schräg anschleifen 2. Geodreieck nie genau auf die zu verbindenden Punkte legen. An Tafel gemalt und mit großen Zirkel vorgeführt Vergrößerung zweier Linien Kreide quer genommen Je nach Stift Geodreieck neben den Punkt Genauigkeit ist Gefühlssache, das Geodreieck muss immer etwas neben den Punkt gelegt werden, damit die Linie genau durch den Punkt verläuft. Dies gelingt dann auch mit unterschiedlichen Stiften. Aufgabe IV - Übungen zum genauen Zeichnen 1 a) Zeichne zwei Strecken. b) Verlängere beide Strecken. 2 a) Zeichne einen Punkt. b) Zeichne viele Linien durch diesen Punkt. Aufgaben mehrfach zur Übung gestellt ästhetische Resultate Aufgabe V Konstruktion: 1. Zeichne einen möglichst großen Kreis auf einem leeren Blatt und lasse den Zirkel so eingestellt. 2. Stich nun auf dem Kreis möglichst genau oben ein und markiere auf dem Kreis einen weiteren Punkt, von diesen neuen Punkt aus noch einmal - usw. 3. Verbinde die gegenüberliegenden Punkte und die benachbarten. 4. Markiere außerhalb des Kreises bei jedem der 6 Dreiecke abwechselnd eine Drehrichtung. 5. a) Wähle ein Dreieck aus. Markiere von jeder Ecke aus 1cm auf der Dreieckseite in Drehrichtung. b) Verbinde die drei Punkte und wiederhole das Abgreifen von 1cm im neuen Dreieck. c) Fülle das Dreieck auf diese Weise aus. 6. Wiederhole Anweisung 5 für die anderen Dreiecke. Diese Aufgabe wurde an der Tafel freihand vorgeführt und erklärt, damit der Text wirklich verständlich wird. Schwierig genug blieb er am Nachmittag bei der Hausaufgabe immer noch. Über die Hausaufgabe für alle hinaus wurde anschließend ein Wettbewerb Zeichnug auf DIN A3- Zeichenblock durchgeführt, an dem sich zwei Drittel der Klasse beteiligten.

3 Korrekt und recht sauber leider schlecht zu scannen, da teilweise sehr leicht gezeichnet. Sehr sauber, aber Drehrichtung nicht durchgehend gewechselt. Senkrecht zu... Aufgabe VI 1. Nimm einen Flummi oder einen Ball und suche eine schräge Fläche. 2. Wirf so den Ball auf die Fläche, dass er möglichst genau in die Wurfhand zurück springt. Zeichne die Situation in das Heft (so wenig wie möglich) und überlege, wie man die Flugbahn genau zeichnen kann? Hier zeichneten die Schüler überwiegend ballistische Kurven, und es entwickelte sich eine lebhafte Diskussion, wie der Ball abspringt, wenn man fester wirft, und wohin man dann werfen muss, damit der Ball genau zurück in die Hand springt. Senkrecht zu.. Im Alltag sagen wir oft der Mast steht senkrecht. Wir meinen damit: Der Mast steht senkrecht zum Horizont. In der Mathematik können wir das Wort senkrecht nie ohne das Wort zu verwenden. Die Flugrichtung des Balls ist senkrecht zur schrägen Fläche. Die Senkrechte wurde hier mit dem Geodreieck gezeichnet. Beide Formen (Zirkel/Geodreieck) standen meist nebeneinander. Beides sollte beherrscht werden. Natürlich wurde der rechte Winkel in diesem Zusammenhang auch gefaltet Papier ohne gerade Kanten: einmal sorgfältig falten, und man erhält eine gerade Linie, ein Lineal. Falten wir diese Kante bündig auf sich selbst, dann erhalten wir einen rechten Winkel.

4 Aufgabe VII 1. Zeichne auf eine leere Seite zwei Punkte A und B. 2. Zeichne durch A eine Gerade und zeichne von B aus eine Senkrechte zu der Geraden. 3. Wiederhole 2. oft. Wie immer Ergebnisse recht unterschiedlicher Qualität. Wiederholung nach ästhetischen Vorbildern... Problem: Zwischen zwei Punkten den Mittelpunkt finden. Dies machte den Schülern wenig Mühe. Als roter Faden zog sich durch den Unterricht, dass wir einen Kreis und eine Mittelsenkrechte zeichnen können und ihre Eigenschaften kennen und dass wir mit diesen Konstruktionen andere Probleme lösen können. Problem: Lot fällen (Senkrechte von Punkt auf Gerade zeichnen). Wir müssen uns Punkte suchen, damit wir unsere Konstruktion einer Mittelsenkrechten durchführen können. A und B müssen gleichen Abstand zu P haben, damit die Mittelsenkrechte durch P verläuft. A und B müssen auf der Geraden liegen (für den richtigen Winkel).

5 Aufgabe VIII Konstruiere mit Zirkel und Lineal ein Quadrat mit der Seitenlänge 5cm! Zuerst zweimal eine Senkrechte konstruiert... Dann nur eine und Längen ausgenutzt... Konstruktion eines Quadrates 1. Strecke von 5cm Länge zeichnen 2. Strecke verlängern (Hilfslinie) 3. Zwei Punkte mit gleichem Abstand zu dem Endpunkt der Strecke mit Zirkel abgreifen 4. Mittelsenkrechte zu diesen Punkten konstruieren (als Hilfslinie) 5. 5cm auf der Mittelsenkrechten als zweite Seite des Quadrates zeichnen 6. Zirkel auf 5cm einstellen und von den Enden der Strecke den vierten Endpunkt zeichnen Spiegelungen Als Einstieg diente das Segelboot, das anghängt wird. Nach anfänglichem Rätselraten, was dies denn sei, wurde das Blatt gefaltet und gegen das Licht gehalten. Hausaufgabe war es, das Bild zu ergänzen egal mit welcher Methode. Konstruktion einer Spiegelachse Überlegung: Beim Falten sehen wir, dass ein Punkt P und sein Spiegelpunkt P aufeinanderfallen, wenn wir an der Spiegelachse knicken. Die Verbindungslinie von P und P steht dann senkrecht zu der Spiegelachse. 1. Von P aus greifen wir mit dem Zirkel auf der Spiegelachse zwei Punkte A und B ab, und verändern den Radius nicht. (A und B haben gleichen Abstand von P, weil sie auf einem Kreis um P liegen. Umgekehrt hat P den gleichen Abstand von A und B. Also muß P auf der Mittelsenkrechten von A und B liegen.) 2. Mit gleichem Radius zeichne ich auf der anderen Seite der Spiegelachse zwei Kreisbögen um A und B so, dass ich den zweiten Punkt P finde, der den gleichen Abstand von A und B hat. (P ist der Spiegelpunkt von P.) Abschließend wurden noch Linien und Dreiecke gespiegelt.

6

7

Inhaltsverzeichnis. Inhaltsverzeichnis

Inhaltsverzeichnis. Inhaltsverzeichnis Inhaltsverzeichnis Inhaltsverzeichnis Einleitung 5 1 Zahlen 7 1.1 Zahlen und Zahlenmengen....................................... 7 1.2 Rechnen mit Zahlen und Termen....................................

Mehr

Mathematik I - Prüfung für den Übertritt aus der 9. Klasse

Mathematik I - Prüfung für den Übertritt aus der 9. Klasse su» I MATUR Aufnahmeprüfung 2015 für den Eintritt in das 9. Schuljahr eines Gymnasiums des Kantons Bern Mathematik I - Prüfung für den Übertritt aus der 9. Klasse Bitte beachten: Bearbeitungsdauer: 60

Mehr

Basteln und Zeichnen

Basteln und Zeichnen Titel des Arbeitsblatts Seite Inhalt 1 Falte eine Hexentreppe 2 Falte eine Ziehharmonika 3 Die Schatzinsel 4 Das Quadrat und seine Winkel 5 Senkrechte und parallele Linien 6 Ein Scherenschnitt 7 Bastle

Mehr

Konstruktionen mit Zirkel und Lineal

Konstruktionen mit Zirkel und Lineal Konstruktionen mit Zirkel und Lineal Vor den eigentlichen Konstruktionen möchte ich einige emerkungen zu Faltungen machen, da sie leider in der Schule ein Stiefkind darstellen. Mit anderen Worten, sie

Mehr

Montessori-Diplomkurs Inzlingen Geometrische Mappe Die metallenen Dreiecke

Montessori-Diplomkurs Inzlingen Geometrische Mappe Die metallenen Dreiecke Geometrische Mappe Die metallenen Dreiecke 1 Material 4 metallene Rahmen (14 cm X 14 cm) mit gleichseitigen Dreiecken (Seitenlänge 10 cm). Die Dreiecke sind wie folgt unterteilt Ganze Halbe Drittel Viertel

Mehr

Wassily Kandinsky: Structure joyeuse. Beschreibe die Figuren und zeichne sie aus freier Hand in dein Heft.

Wassily Kandinsky: Structure joyeuse. Beschreibe die Figuren und zeichne sie aus freier Hand in dein Heft. 6 Flächen Wie heißen die Figuren? a) Dreiecke Viereck d) Quadrat b) Kreis Quadrate e) Dreiecke Rechteck c) Rechtecke Viereck f) Kreis Wassily Kandinsky: Structure joyeuse Lege Vierecke. a) Nimm vier gleich

Mehr

Dreiecke, Quadrate, Rechtecke, Kreise beschreiben S. 92 Würfel, Quader, Kugeln beschreiben S. 94

Dreiecke, Quadrate, Rechtecke, Kreise beschreiben S. 92 Würfel, Quader, Kugeln beschreiben S. 94 Geometrie Ich kann... 91 Figuren und Körper erkennen und beschreiben Dreiecke, Quadrate, Rechtecke, Kreise beschreiben S. 92 Würfel, Quader, Kugeln beschreiben S. 94 die Lage von Gegenständen im Raum erkennen

Mehr

Grundlegende Geometrie - Vorlesung mit integriertem Praxiskurs. 09.02. Klausur (08-10 Uhr Audimax, HS 1)

Grundlegende Geometrie - Vorlesung mit integriertem Praxiskurs. 09.02. Klausur (08-10 Uhr Audimax, HS 1) Vorlesungsübersicht Wintersemester 2015/16 Di 08-10 Audimax Grundlegende Geometrie - Vorlesung mit integriertem Praxiskurs Benötigte Materialien: Geometrieheft DIN-A-4 blanco weiß, quadratisches Faltpapier

Mehr

Geometrie Modul 4b WS 2015/16 Mi HS 1

Geometrie Modul 4b WS 2015/16 Mi HS 1 Geometrie Modul 4b WS 2015/16 Mi 10-12 HS 1 Benötigte Materialien: Geometrieheft DIN-A-4 blanco weiß, quadratisches Faltpapier/Zettelblock, rundes Faltpapier; Zirkel, Geometriedreieck, Klebstoff, Schere

Mehr

Aufgabe 1 Erstelle mit Hilfe von GEOGEBRA ein dynamisches Geometrie-Programm, das die Mittelsenkrechte

Aufgabe 1 Erstelle mit Hilfe von GEOGEBRA ein dynamisches Geometrie-Programm, das die Mittelsenkrechte AB Mathematik Experimentieren mit GeoGebra Merke Alle folgenden Aufgaben sind mit dem Programm GEOGEBRA auszuführen! Eine ausführliche Einführung in die Bedienung des Programmes erfolgt im Unterricht.

Mehr

Bei Konstruktionen dürfen nur die folgenden Schritte durchgeführt werden : Beliebigen Punkt auf einer Geraden, Strecke oder Kreislinie zeichnen.

Bei Konstruktionen dürfen nur die folgenden Schritte durchgeführt werden : Beliebigen Punkt auf einer Geraden, Strecke oder Kreislinie zeichnen. Geometrie I. Zeichnen und Konstruieren ================================================================== 1.1 Der Unterschied zwischen Zeichnen und Konstruieren Bei der Konstruktion einer geometrischen

Mehr

Geometrie. in 15 Minuten. Geometrie. Klasse

Geometrie. in 15 Minuten. Geometrie. Klasse Klasse Geometrie Geometrie 6. Klasse in 5 Minuten Winkel und Kreis Zeichne und überprüfe in deinem Übungsheft: a) Wo liegen alle Punkte, die von einem Punkt A den Abstand cm haben? b) Färbe den Bereich,

Mehr

Konstruktion von Kreistangenten

Konstruktion von Kreistangenten Konstruktion von Kreistangenten 1 Gegeben sind die Punkte A und B mit AB = 5cm Konstruiere die Geraden durch B, die von A den Abstand 3cm haben! 2 Eine Ecke einer Rasenfläche, an der die geraden Ränder

Mehr

Unterrichtsreihe zur Parabel

Unterrichtsreihe zur Parabel Unterrichtsreihe zur Parabel Übersicht: 1. Einstieg: Satellitenschüssel. Konstruktion einer Parabel mit Leitgerade und Brennpunkt 3. Beschreibung dieser Punktmenge 4. Konstruktion von Tangenten 5. Beweis

Mehr

Mathematik I Prüfung für den Übertritt aus der 8. Klasse

Mathematik I Prüfung für den Übertritt aus der 8. Klasse Aufnahmeprüfung 016 für den Eintritt in das 9. Schuljahr eines Gymnasiums des Kantons Bern Mathematik I Prüfung für den Übertritt aus der 8. Klasse Bitte beachten: - Bearbeitungsdauer: 60 Minuten - Alle

Mehr

1. Schulaufgabe aus der Mathematik * Klasse 7c * * Gruppe A

1. Schulaufgabe aus der Mathematik * Klasse 7c * * Gruppe A 1. Schulaufgabe aus der Mathematik * Klasse 7c * 17.11.2014 * Gruppe A 1. Finde den Term a) Finde einen Term, der zur folgenden Tabelle passt: x 2 3 4 5 T(x) 82 76 70 64 b) Peter legt aus blauen und roten

Mehr

Wassily Kandinsky: Structure joyeuse. Eigene Lösungen Beschreibe die Figuren und zeichne sie aus freier Hand in dein Heft.

Wassily Kandinsky: Structure joyeuse. Eigene Lösungen Beschreibe die Figuren und zeichne sie aus freier Hand in dein Heft. 6 Flächen Wie heißen die Figuren? Dreiecke Viereck d) Quadrat b) Kreis Quadrate Dreiecke Rechteck c) Rechtecke f) Kreis Wassily Kandinsky: Structure joyeuse Lege Vierecke. Nimm vier gleich lange Stäbe.

Mehr

Mathematik I Prüfung für den Übertritt aus der 8. Klasse

Mathematik I Prüfung für den Übertritt aus der 8. Klasse Aufnahmeprüfung 015 für den Eintritt in das 9. Schuljahr eines Gymnasiums des Kantons Bern Mathematik I Prüfung für den Übertritt aus der 8. Klasse Bitte beachten: - Bearbeitungsdauer: 60 Minuten - Alle

Mehr

Mathematik I Prüfung für den Übertritt aus der 9. Klasse

Mathematik I Prüfung für den Übertritt aus der 9. Klasse Aufnahmeprüfung 015 für den Eintritt in das 9. Schuljahr eines Gymnasiums des Kantons Bern Mathematik I Prüfung für den Übertritt aus der 9. Klasse Bitte beachten: - Bearbeitungsdauer: 60 Minuten - Alle

Mehr

Mein Indianerheft: Geometrie 4. Lösungen

Mein Indianerheft: Geometrie 4. Lösungen Mein Indianerheft: Geometrie 4 Lösungen So lernst du mit dem Indianerheft Parallele Linien Flächen Kapitel: Flächen Flächen nicht? Prüfe mit dem Geodreieck. e parallele Linien. parallel nicht parallel

Mehr

DOWNLOAD. Arbeiten mit dem Zirkel. Einführung in die sachgerechte Handhabung des Zirkels. Inge Buggenthin. Downloadauszug aus dem Originaltitel:

DOWNLOAD. Arbeiten mit dem Zirkel. Einführung in die sachgerechte Handhabung des Zirkels. Inge Buggenthin. Downloadauszug aus dem Originaltitel: DOWNLOAD Inge Buggenthin Arbeiten mit dem Zirkel Einführung in die sachgerechte Handhabung des Zirkels Downloadauszug aus dem Originaltitel: Kreise 40 1 Den Abstand zwischen Mittelpunkt und Kreislinie

Mehr

Geometrie-Dossier Kreis 2

Geometrie-Dossier Kreis 2 Geometrie-Dossier Kreis 2 Name: Inhalt: Konstruktion im Kreis (mit Tangenten, Sekanten, Passanten und Sehnen) Grundaufgaben Verwendung: Dieses Geometriedossier orientiert sich am Unterricht und liefert

Mehr

Die Welt der Winkel Eine Anleitung zur Arbeit. Seite 1. Eine Anleitung zur Arbeit

Die Welt der Winkel Eine Anleitung zur Arbeit. Seite 1. Eine Anleitung zur Arbeit Seite 1 40 Seite 2 Seite 2 Seite 3 Seite 4 Seite 5 Seite 6 9 Seite 10 13 Seite 14 17 Seite 18 21 Seite 22 25 Seite 26 29 Seite 30 33 Seite 34 36 Seite 37 40 Seite 41 44 Seite 45 48 Seite 49 52 Seite 53

Mehr

Aufgaben 1. a) Male die Seite (Skala) des Geodreiecks, mit der Strecken gemessen werden, rot an. b) Markiere den Nullpunkt des Geodreiecks gelb.

Aufgaben 1. a) Male die Seite (Skala) des Geodreiecks, mit der Strecken gemessen werden, rot an. b) Markiere den Nullpunkt des Geodreiecks gelb. Station 2 Strecken Eine Strecke hat einen Anfangspunkt und einen Endpunkt. Diese Strecke ist 2 cm lang. 1. a) Male die Seite (Skala) des Geodreiecks, mit der Strecken gemessen werden, rot an. b) Markiere

Mehr

Das Lineal (Lernposter)

Das Lineal (Lernposter) Das Lineal (Lernposter) Das Lineal ist ein Zeichengerät. Es ist ein Hilfsmittel zum Zeichnen von geraden Linien und Strecken. Mithilfe der Skala kannst du Längen von Linien und Strecken messen. Der erste

Mehr

Mitten-Dreiund Vier-Ecke

Mitten-Dreiund Vier-Ecke Alle Ergebnisse - dazu gehören auch Kopiene der Zeichnungen - sind im Heft zu notieren Du wirst im Folgenden einiges selbst herausfinden müssen. Nutze dazu auch die Hilfen, dei dir kig liefert. 1 Mittendreieck

Mehr

Didaktik der Elementargeometrie

Didaktik der Elementargeometrie Humboldt-Universität zu Berlin Sommersemester 2014. Institut für Mathematik A. Filler Zusammenfassende Notizen zu der Vorlesung Didaktik der Elementargeometrie 2 Konstruieren im Geometrieunterricht Konstruieren

Mehr

Erwachsenenschule Bremen Abteilung I: Sekundarstufe Doventorscontrescarpe 172 A Bremen. Die Kursübersicht für das Fach Mathematik

Erwachsenenschule Bremen Abteilung I: Sekundarstufe Doventorscontrescarpe 172 A Bremen. Die Kursübersicht für das Fach Mathematik Erwachsenenschule Bremen Abteilung I: Sekundarstufe Doventorscontrescarpe 172 A 28195 Bremen Die Kursübersicht für das Fach Mathematik Erwachsenenschule Bremen Abteilung I: Sekundarstufe Doventorscontrescarpe

Mehr

Unterrichtsmaterialien in digitaler und in gedruckter Form. Auszug aus: Übungen zur Geometrie: Linie, Strecke, Fläche

Unterrichtsmaterialien in digitaler und in gedruckter Form. Auszug aus: Übungen zur Geometrie: Linie, Strecke, Fläche Unterrichtsmaterialien in digitaler und in gedruckter Form Auszug aus: Übungen zur Geometrie: Linie, Strecke, Fläche Das komplette Material finden Sie hier: School-Scout.de Lendersdorfer Qualität zum Lernen

Mehr

Darstellende Geometrie Übungen. Tutorial. Übungsblatt: Perspektive - Rekonstruktion

Darstellende Geometrie Übungen. Tutorial. Übungsblatt: Perspektive - Rekonstruktion Darstellende Geometrie Übungen Institut für Architektur und Medien Tutorial Übungsblatt: Perspektive - Rekonstruktion Gegeben sind ein Foto von einem quaderförmigen Objekt sowie die Abmessungen des Basisrechteckes.

Mehr

Integration von Schülerinnen und Schülern mit einer Sehschädigung an Regelschulen

Integration von Schülerinnen und Schülern mit einer Sehschädigung an Regelschulen Integration von Schülerinnen und Schülern mit einer Sehschädigung an Regelschulen Didaktikpool Falttechniken zum Einsatz im Mathematikunterricht mit sehgeschädigten Kindern Emmy Csocsán / Christina Blackert

Mehr

Viereck und Kreis Gibt es da etwas Besonderes zu entdecken?

Viereck und Kreis Gibt es da etwas Besonderes zu entdecken? Bekanntlich besitzt ein Dreieck einen Umkreis, dessen Mittelpunkt man konstruieren kann. 1) Zeichne in dein Heft ein beliebiges Dreieck und konstruiere den Außenkreis des Dreieckes nur mit Zirkel und Lineal.

Mehr

Definition und Begriffe

Definition und Begriffe Merkblatt: Das Dreieck Definition und Begriffe Das Dreieck ist ein Vieleck. In der Ebene ist es die einfachste Figur, die von geraden Linien begrenzt wird. Ecken: Jedes Dreieck hat drei Ecken, die meist

Mehr

Körper erkennen und beschreiben

Körper erkennen und beschreiben Vertiefen 1 Körper erkennen und beschreiben zu Aufgabe 6 Schulbuch, Seite 47 6 Passt, passt nicht Nenne zu jeder Aussage alle Formen, auf die die Aussage zutrifft. a) Die Form hat keine Ecken. b) Die Form

Mehr

mentor Lernhilfe: Mathematik 7. Klasse Baumann

mentor Lernhilfe: Mathematik 7. Klasse Baumann mentor Lernhilfen mentor Lernhilfe: Mathematik 7. Klasse Geometrie: Achsen- und Punktspiegelung, Drehung, Verschiebung, Winkelgesetze von Rolf Baumann 1. Auflage mentor Lernhilfe: Mathematik 7. Klasse

Mehr

2. Propädeutische Geometrie Klasse 5/6. Für den Geometrieunterricht ausnützen!

2. Propädeutische Geometrie Klasse 5/6. Für den Geometrieunterricht ausnützen! 2. Propädeutische Geometrie Klasse 5/6 2.1 Zur Entwicklung der Schüler Kinder im Alter von 10-12 Jahren sind wissbegierig neugierig leicht zu motivieren anhänglich (Lehrperson ist Autorität) zum Spielen

Mehr

7.5 Der Schwerpunkt im Dreieck und seine Konstruktion

7.5 Der Schwerpunkt im Dreieck und seine Konstruktion 7.5 Der Schwerpunkt im Dreieck und seine Konstruktion Thema der Unterrichtsstunde Der Schwerpunkt im Dreieck und seine Konstruktion Anmerkungen zur Lerngruppe Seit Beginn des Schuljahres unterrichte ich

Mehr

Download. Selbstkontrollaufgaben Mathematik für die Klasse. Geometrie. Sandra Sommer/Markus Sommer. Downloadauszug aus dem Originaltitel:

Download. Selbstkontrollaufgaben Mathematik für die Klasse. Geometrie. Sandra Sommer/Markus Sommer. Downloadauszug aus dem Originaltitel: Download Sandra Sommer/Markus Sommer Selbstkontrollaufgaben Mathematik für die 3.-4. Klasse Geometrie Selbstkontrollaufgaben Mathe 3. /4. Klasse Grundschule Sandra Sommer Markus Sommer 65 lehrplanrelevante

Mehr

MATHEMATIK ZUR VORBEREITUNG AUF DEN UNMITTELBAREN EINTRITT IN EINEN REALSCHULREIFELEHRGANG ODER FACHSCHULREIFELEHRGANG DER BUNDESWEHRFACHSCHULE

MATHEMATIK ZUR VORBEREITUNG AUF DEN UNMITTELBAREN EINTRITT IN EINEN REALSCHULREIFELEHRGANG ODER FACHSCHULREIFELEHRGANG DER BUNDESWEHRFACHSCHULE ZUR VORBEREITUNG AUF DEN UNMITTELBAREN EINTRITT IN EINEN REALSCHULREIFELEHRGANG ODER FACHSCHULREIFELEHRGANG DER BUNDESWEHRFACHSCHULE MATHEMATIK Lehreinheit 11 Geometrie: Dreiecke und Vierecke II GEOMETRIE:

Mehr

Mabu. Mamory. Matholino. Spielvarianten im Mathematikunterricht Silke Göttge Moll Gymnasium

Mabu. Mamory. Matholino. Spielvarianten im Mathematikunterricht Silke Göttge Moll Gymnasium Mabu Mamory Matholino Mamory Entweder man bastelt selbst oder man nimmt sich eine Doppelstunde Zeit und lässt die Schüler eigenständig ein Mamory basteln. Sehr schön ist hierbei, dass sie sich weitere

Mehr

2.5. Aufgaben zu Dreieckskonstruktionen

2.5. Aufgaben zu Dreieckskonstruktionen 2.5. Aufgaben zu Dreieckskonstruktionen Aufgabe 1 Zeichne das Dreieck AC mit A( 1 2), (5 0) und C(3 6) und konstruiere seinen Umkreis. Gib den Radius und den Mittelpunkt des Umkreises an. Aufgabe 2 Konstruiere

Mehr

Institut für Mathematik Geometrie und Lineare Algebra J. Schönenberger-Deuel

Institut für Mathematik Geometrie und Lineare Algebra J. Schönenberger-Deuel Lösungen Übung 7 Aufgabe 1. Skizze (mit zusätzlichen Punkten): Die Figur F wird begrenzt durch die Strecken AB und BC und den Kreisbogen CA auf l. Wir werden die Bilder von AB, BC und CA unter der Inversion

Mehr

Vorbereitung auf die Gymiprüfung 2017 im Kanton Zürich. Mathematik. Primarschule, Teil 2. Übungsheft

Vorbereitung auf die Gymiprüfung 2017 im Kanton Zürich. Mathematik. Primarschule, Teil 2. Übungsheft Vorbereitung auf die Gymiprüfung 2017 im Kanton Zürich Mathematik Primarschule, Teil 2 Übungsheft Lektion 7 Umfangberechnungen Lektion 7 Umfangberechnungen 4. Miss alle Seiten und schreibe sie an, berechne

Mehr

I. II. I. II. III. IV. I. II. III. I. II. III. IV. I. II. III. IV. V. I. II. III. IV. V. VI. I. II. I. II. III. I. II. I. II. I. II. I. II. III. I. II. III. IV. V. VI. VII. VIII.

Mehr

An alle Primarschulen des Kantons SH. Schaffhausen, Geometrie im Mathematiklehrmittel Neues Zahlenbuch Übersicht

An alle Primarschulen des Kantons SH. Schaffhausen, Geometrie im Mathematiklehrmittel Neues Zahlenbuch Übersicht Kanton Schaffhausen Abteilung Schulentwicklung und Aufsicht Herrenacker 3 CH-8200 Schaffhausen www.sh.ch An alle Primarschulen des Kantons SH Schaffhausen, 11.04.2012 Geometrie im Mathematiklehrmittel

Mehr

Falte den letzten Schritt wieder auseinander. Knick die linke Seite auseinander, sodass eine Öffnung entsteht.

Falte den letzten Schritt wieder auseinander. Knick die linke Seite auseinander, sodass eine Öffnung entsteht. MATERIAL 2 Blatt farbiges Papier (ideal Silber oder Weiß) Schere Lineal Stift Kleber Für das Einhorn benötigst du etwa 16 Minuten. SCHRITT 1, TEIL 1 Nimm ein einfarbiges, quadratisches Stück Papier. Bei

Mehr

Bezeichnungen am Dreieck

Bezeichnungen am Dreieck ezeichnungen am Dreieck Verbindet man drei Punkte, die nicht auf einer Geraden liegen, so entsteht ein Dreieck. llgemeine ezeichnungen: Die Eckpunkte des Dreiecks werden mit den uchstaben, und bezeichnet.

Mehr

Arbeiten mit dem Geometrieprogramm GeoGebra

Arbeiten mit dem Geometrieprogramm GeoGebra Fachdidaktik Modul 1, WS 2012/13 Didaktik der Geometrie III: Konstruieren Planarbeit Arbeiten mit dem Geometrieprogramm GeoGebra I. Erstes Erkunden der Programmoberfläche: Grund- und Standardkonstruktionen

Mehr

Die Konstruktion regulärer n-ecke

Die Konstruktion regulärer n-ecke Die Konstruktion regulärer n-ecke Axel Schüler Grimma, 14. September 2007 Gliederung I. Die Quadratur des Kreises und das Delische Problem II. Die zwei Konstruktionsaufgaben III. Geschichtliches zum regulären

Mehr

An alle Primarschulen des Kantons SH. Schaffhausen, Geometrie im Mathematiklehrmittel Logisch Übersicht. Liebe Kolleginnen und Kollegen

An alle Primarschulen des Kantons SH. Schaffhausen, Geometrie im Mathematiklehrmittel Logisch Übersicht. Liebe Kolleginnen und Kollegen Kanton Schaffhausen Abteilung Schulentwicklung und Aufsicht Herrenacker 3 CH-8200 Schaffhausen www.sh.ch An alle Primarschulen des Kantons SH Schaffhausen, 11.04.2012 Geometrie im Mathematiklehrmittel

Mehr

Vorbereitung auf die Gymiprüfung 2016 im Kanton Zürich. Mathematik. Primarschule, Teil 2. Übungsheft

Vorbereitung auf die Gymiprüfung 2016 im Kanton Zürich. Mathematik. Primarschule, Teil 2. Übungsheft Vorbereitung auf die Gymiprüfung 2016 im Kanton Zürich Mathematik Primarschule, Teil 2 Übungsheft Lektion 7 Umfangberechnungen Lektion 7 Umfangberechnungen 4. Miss alle Seiten und schreibe sie an, berechne

Mehr

Falten regelmäßiger Vielecke

Falten regelmäßiger Vielecke Blatt 1 Gleichseitige Dreiecke Ausgehend von einem quadratischen Stück Papier kann man ohne weiteres Werkzeug viele interessante geometrische Figuren nur mit den Mitteln des Papierfaltens (Origami) erzeugen.

Mehr

Dreiecke erkunden Rechter Winkel gesucht!

Dreiecke erkunden Rechter Winkel gesucht! Dreiecke erkunden Rechter Winkel gesucht! Jahrgangsstufe: 8-9 Zeitbedarf: Beschreibung: In einem Leserbrief wird ein rechter Winkel gesucht und die Schüler sollen sich mit dieser Realsituation auseinandersetzen.

Mehr

Lösungen Crashkurs 7. Jahrgangsstufe

Lösungen Crashkurs 7. Jahrgangsstufe Lösungen Crashkurs 7. Jahrgangsstufe I. Symmetrie und Grundkonstruktionen 1. 2. Jede Raute hat die Eigenschaften: a, b, d, e, g. 3. Der gesuchte Treffpunkt befindet sich dort, wo die Mittelsenkrechte der

Mehr

Geometrie der Polygone Zirkel und Lineal Markus Wurster 1

Geometrie der Polygone Zirkel und Lineal Markus Wurster 1 Geometrie der Polygone Teil 5 Zirkel und Lineal Geometrie der Polygone Zirkel und Lineal Markus Wurster 1 Die klassische Methode mit Zirkel und Lineal Wenn wir Geometrie treiben, verwenden wir dazu oft

Mehr

1. Mathematik Olympiade 1. Stufe (Schulolympiade) Klasse 8 Saison 1961/1962 Aufgaben und Lösungen

1. Mathematik Olympiade 1. Stufe (Schulolympiade) Klasse 8 Saison 1961/1962 Aufgaben und Lösungen . Mathematik Olympiade. Stufe (Schulolympiade) Saison 96/96 Aufgaben und Lösungen OJM. Mathematik-Olympiade. Stufe (Schulolympiade) Aufgaben Hinweis: Der Lösungsweg mit Begründungen und Nebenrechnungen

Mehr

Euklid ( v. Chr.) Markus Wurster

Euklid ( v. Chr.) Markus Wurster Geometrische Grundbegriffe Euklid (365 300 v. Chr.) Geometrische Grundbegriffe Euklid (365 300 v. Chr.) Punkte und Linien Zwei Linien Markus Wurster Markus Wurster Geometrische Grundbegriffe Winkel Euklid

Mehr

DOWNLOAD Geometrie: Umfang und Flächeninhalt

DOWNLOAD Geometrie: Umfang und Flächeninhalt DOWNLOAD Sabine Gutjahr Geometrie: Umfang und Flächeninhalt Differenzierte Übungsmaterialien Downloadauszug aus dem Originaltitel: Das Werk als Ganzes sowie in seinen Teilen unterliegt dem deutschen Urheberrecht.

Mehr

Grundwissen. Gymnasium Eckental Mathematisch-naturwissenschaftliches Gymnasium Neusprachliches Gymnasium. Jahrgangsstufe: 7(G8)

Grundwissen. Gymnasium Eckental Mathematisch-naturwissenschaftliches Gymnasium Neusprachliches Gymnasium. Jahrgangsstufe: 7(G8) Gymnasium Eckental Mathematisch-naturwissenschaftliches Gymnasium Neusprachliches Gymnasium Gymnasium Eckental Neunkirchener Straße 9042 Eckental Grundwissen Jahrgangsstufe: 7(G8) Vereinfachen von Summen

Mehr

Rechteck, Quadrat: Umfang

Rechteck, Quadrat: Umfang 12. KAPITEL Rechteck, Quadrat: Umfang mailto:miss.minus@1.klasse Liebste mm, Na, wie ist mein kleines Reimgedicht denn angekommen? Schon als ich ein Junge war, der schöne Friedrich Fies, haben meine Mitschüler

Mehr

Tag der Mathematik 2006

Tag der Mathematik 2006 Tag der Mathematik 2006 Gruppenwettbewerb Einzelwettbewerb Mathematische Hürden Lösungen Allgemeine Hinweise: Als Hilfsmittel dürfen nur Schreibzeug, Geodreieck und Zirkel benutzt werden. Taschenrechner

Mehr

DOWNLOAD. Geometrie: Zeichnen. und Zirkel Differenzierte Übungsmaterialien. Sabine Gutjahr. Downloadauszug aus dem Originaltitel:

DOWNLOAD. Geometrie: Zeichnen. und Zirkel Differenzierte Übungsmaterialien. Sabine Gutjahr. Downloadauszug aus dem Originaltitel: DOWNLOAD Sabine Gutjahr Geometrie: Zeichnen mit Geodreieck und Zirkel Differenzierte Übungsmaterialien Downloadauszug aus dem Originaltitel: Das Werk als Ganzes sowie in seinen Teilen unterliegt dem deutschen

Mehr

4. Jgst. 1. Tag. Name Vorname Note:

4. Jgst. 1. Tag. Name Vorname Note: Schulstempel Probeunterricht 008 Mathematik 4. Jgst. 1. Tag 1. Tag gesamt Name Vorname Note: Lies die Aufgaben genau durch! Arbeite sorgfältig und schreibe sauber! Deine Lösungen und Lösungswege müssen

Mehr

A] 40 % + 25 % + 12,5 % B] 30 % + 50 % + 16,6 %

A] 40 % + 25 % + 12,5 % B] 30 % + 50 % + 16,6 % 5 Prozentrechnen Übung 50 Der ganze Streifen entspricht 100 % = 1 000 = 1. Welche Prozent- und Promillesätze stellen die unterschiedlich getönten Flächen dar? Abb. 27 1. 2. 3. Übung 51 Der volle Winkel

Mehr

Thema: Ein Ausblick auf die Möglichkeiten durch den Software-Einsatz im Mathematikunterricht.

Thema: Ein Ausblick auf die Möglichkeiten durch den Software-Einsatz im Mathematikunterricht. Vorlesung 2 : Do. 10.04.08 Thema: Ein Ausblick auf die Möglichkeiten durch den Software-Einsatz im Mathematikunterricht. Einführung in GeoGebra: Zunächst eine kleine Einführung in die Benutzeroberfläche

Mehr

http://www.olympiade-mathematik.de 7. Mathematik Olympiade 1. Stufe (Schulolympiade) Klasse 12 Saison 1967/1968 Aufgaben und Lösungen

http://www.olympiade-mathematik.de 7. Mathematik Olympiade 1. Stufe (Schulolympiade) Klasse 12 Saison 1967/1968 Aufgaben und Lösungen 7. Mathematik Olympiade 1. Stufe (Schulolympiade) Klasse 12 Saison 1967/1968 Aufgaben und Lösungen 1 OJM 7. Mathematik-Olympiade 1. Stufe (Schulolympiade) Klasse 12 Aufgaben Hinweis: Der Lösungsweg mit

Mehr

Mathe an Stationen. Mathe an Stationen 3 Achsensymmetrie. Handlungsorientierte Materialien für Klasse 3. u Marco Bettner.

Mathe an Stationen. Mathe an Stationen 3 Achsensymmetrie. Handlungsorientierte Materialien für Klasse 3. u Marco Bettner. Marco Bettner Erik Dinges Mathe an Stationen 3 Achsensymmetrie Handlungsorientierte Materialien für Klasse 3 Downloadauszug aus dem Originaltitel: Grundschule u Marco Bettner Erik Dinges Mathe an Stationen

Mehr

M 3.1. Seite 1. Modul 3.1 Geometrie: Umgang mit dem Geodreieck. Thema. 1. Umgang mit dem Geodreieck. Datum

M 3.1. Seite 1. Modul 3.1 Geometrie: Umgang mit dem Geodreieck. Thema. 1. Umgang mit dem Geodreieck. Datum Seite. Wie zeichnet man zueinander senkrechte Geraden?. Zeichne zunächst mit deinem Geodreieck eine Gerade von 2 cm. 2. Nun drehst du dein Geodreieck wie rechts abgebildet. Achte darauf, dass die Gerade

Mehr

Bewegliche Geometrie mit dem Computer Was beobachtest Du? (Warum ist das so?)

Bewegliche Geometrie mit dem Computer Was beobachtest Du? (Warum ist das so?) Bewegliche Geometrie mit dem Computer Was beobachtest Du? (Warum ist das so?) 12.10.2009, Oliver Seif nach einer Vorlage von H.Hischer/A. Lambert 1 Das Werkzeug Computer (dynamische Geometriesoftware,

Mehr

Mathematik Aufnahmeprüfung 2013 Profile m,n,s

Mathematik Aufnahmeprüfung 2013 Profile m,n,s Mathematik Aufnahmeprüfung 2013 Profile m,n,s Zeit: 2 Stunden. Rechner: TI30/TI34 oder vergleichbare. Hinweis: Der Lösungsweg muss nachvollziehbar sein, ansonsten werden keine Teilpunkte vergeben. Aufgabe

Mehr

Digitale Typografie (SS 2016)

Digitale Typografie (SS 2016) Institut für Numerische Mathematik Dr. Andreas F. Borchert 9. April 06 Blatt 3 Digitale Typografie (SS 06) Abgabe bis zum 3. Mai 04, 0:00 Uhr Lernziele: Definition von Type-3-Schriftschnitten in PostScript

Mehr

Sekundarschulabschluss für Erwachsene

Sekundarschulabschluss für Erwachsene SAE Sekundarschulabschluss für Erwachsene Name: Nummer: Geometrie A 2011 Totalzeit: 60 Minuten Hilfsmittel: Nichtprogrammierbarer Taschenrechner und Geometriewerkzeug Maximal erreichbare Punktzahl: 60

Mehr

Peripheriewinkelsatz (auch Umfangswinkelsatz)

Peripheriewinkelsatz (auch Umfangswinkelsatz) Peripheriewinkelsatz (auch Umfangswinkelsatz) Für die Einführung des Peripheriewinkelsatzes (auch Umfangwinkelsatz) machen wir uns mit dem Satz des Thales vertraut. Der Satz des Thales besagt, dass Dreiecke,

Mehr

Unterrichtsmaterialien in digitaler und in gedruckter Form. Auszug aus: Grundwissen Ebene Geometrie. Das komplette Material finden Sie hier:

Unterrichtsmaterialien in digitaler und in gedruckter Form. Auszug aus: Grundwissen Ebene Geometrie. Das komplette Material finden Sie hier: Unterrichtsmaterialien in digitaler und in gedruckter Form Auszug aus: Grundwissen Ebene Geometrie Das komplette Material finden Sie hier: School-Scout.de Michael Körner Grundwissen Ebene Geometrie 5.

Mehr

Anwendungen in geometrischen Konstruktionen (Konstruktionen nur mit Zirkel)

Anwendungen in geometrischen Konstruktionen (Konstruktionen nur mit Zirkel) nwendungen in geometrischen Konstruktionen (Konstruktionen nur mit Zirkel) Frage,r, sind gegeben. Kann man I,r () mit Zirkel und Lineal konstruieren? ntwort Man kann I,r () sogar nur mit Zirkel konstruieren.

Mehr

1. Algebra 1.1 Terme Man schreibt für einen Term T, der von den Variablen t und m abhängt: m (ausgesprochen: T von t und m)

1. Algebra 1.1 Terme Man schreibt für einen Term T, der von den Variablen t und m abhängt: m (ausgesprochen: T von t und m) Grundwissen Mathematik 7. Klasse 1. Algebra 1.1 Terme Man schreibt für einen Term T, der von den Variablen t und m abhängt: Ttm (, ) = ( t 5+ 6) 20+ m (ausgesprochen: T von t und m) Ein Term besteht aus

Mehr

Grundlegende Geometrie - Vorlesung mit integriertem Praxiskurs. 09.02. Klausur (08-10 Uhr Audimax, HS 1)

Grundlegende Geometrie - Vorlesung mit integriertem Praxiskurs. 09.02. Klausur (08-10 Uhr Audimax, HS 1) Vorlesungsübersicht Wintersemester 2015/16 Di 08-10 Audimax Grundlegende Geometrie - Vorlesung mit integriertem Praxiskurs Benötigte Materialien: Geometrieheft DIN-A-4 blanco weiß, quadratisches Faltpapier

Mehr

DOWNLOAD. Achsensymmetrie. Grundwissen Mathematik. Michael Körner. Downloadauszug aus dem Originaltitel: Grundwissen Geometrische Abbildungen

DOWNLOAD. Achsensymmetrie. Grundwissen Mathematik. Michael Körner. Downloadauszug aus dem Originaltitel: Grundwissen Geometrische Abbildungen DOWNLOAD Michael Körner Achsensymmetrie Grundwissen Mathematik Michael Körner Grundwissen Geometrische Abbildungen 5. 10. Klasse Bergedorfer Kopiervorlagen Downloadauszug aus dem Originaltitel: Das Werk

Mehr

1 Grundwissen Pyramide

1 Grundwissen Pyramide 1 Grundwissen Pyramide 1 Definition und Volumen der Pyramide Eine Pyramide ist ein geradlinig begrenzter Körper im R 3. Dabei wird ein Punkt S außerhalb der Ebene eines Polygons (Vieleck) mit den Ecken

Mehr

Tag der Mathematik 2016

Tag der Mathematik 2016 Tag der Mathematik 016 Mathematischer Wettbewerb, Klassenstufe 9 10 30. April 016, 9.00 1.00 Uhr Aufgabe 1 Der Mittelwert von 016 (nicht unbedingt verschiedenen) natürlichen Zahlen zwischen 1 und 0 16

Mehr

Äquatoraufgabe. Der Äquator

Äquatoraufgabe. Der Äquator Humboldt Universität zu Berlin Datum: 06.01.09 Institut für Mathematik SE: Ausgewählte Kapitel der Didaktik der Mathematik (Computerunterstützter Mathematikunterricht) Dozent: I. Lehmann Autor: A. Gielsdorf

Mehr

GW Mathematik 5. Klasse

GW Mathematik 5. Klasse Begriffe zur Gliederung von Termen Term Rechenart a heißt b heißt a + b (Summe) Addition 1. Summand 2. Summand a b (Differenz) Subtraktion Minuend Subtrahend a b ( Produkt) Multiplikation 1. Faktor 2.

Mehr

ACG - Projekt. Konstruktion einer. E-Gitarre

ACG - Projekt. Konstruktion einer. E-Gitarre ACG - Projekt Konstruktion einer E-Gitarre 1. Grundriss des Gitarrenkörpers anfertigen Konstruktion des Grundrisses durch Hilfskreise und Linien: Maße der Kreise (Radius): A: 5,7 cm B: 2,7 cm C: 5,2 cm

Mehr

Schulinterner Lehrplan Mathematik G8 Klasse 5

Schulinterner Lehrplan Mathematik G8 Klasse 5 Schulinterner Lehrplan Heinrich-Böll-Gymnasium 1/7 Jg 5, Stand: 07.12.2008 Schulinterner Lehrplan Mathematik G8 Klasse 5 Verbindliche Inhalte zu Kapitel I Natürliche Zahlen 1 Zählen und 2 Große Zahlen

Mehr

ISSN Kreise und Tangenten. Ein Stundenprotokoll

ISSN Kreise und Tangenten. Ein Stundenprotokoll ISSN 2364-5520 Kreise und Tangenten Ein Stundenprotokoll 5 Herausgeber Universität Bayreuth Forschungsstelle für Mobiles Lernen mit digitalen Medien sketchometry Universitätsstraße 30 95447 Bayreuth Internet

Mehr

Basistext Geometrie Grundschule. Eine Strecke bezeichnet man einer direkte Verbindung zwischen zwei Punkten:

Basistext Geometrie Grundschule. Eine Strecke bezeichnet man einer direkte Verbindung zwischen zwei Punkten: Basistext Geometrie Grundschule Geometrische Figuren Strecke Eine Strecke bezeichnet man einer direkte Verbindung zwischen zwei Punkten: Gerade Eine Gerade ist eine Strecke ohne Endpunkte. Die Gerade geht

Mehr

MB 10. Seiten im Materialblock: Wissensspeicher ab Seite MB 11 Methodenspeicher Seite MB 14 Arbeitsmaterial ab Seite MB 15 Checkliste Seite MB 23

MB 10. Seiten im Materialblock: Wissensspeicher ab Seite MB 11 Methodenspeicher Seite MB 14 Arbeitsmaterial ab Seite MB 15 Checkliste Seite MB 23 MB 10 Seiten im Materialblock: Wissensspeicher ab Seite MB 11 Methodenspeicher Seite MB 14 ab Seite MB 15 Checkliste Seite MB 23 Wissensspeicher Körper und Flächen MB 11 Wissensspeicher Fachwörter zu Körpern

Mehr

Übertrittsprüfung 2015

Übertrittsprüfung 2015 Departement Bildung, Kultur und Sport Abteilung Volksschule Übertrittsprüfung 2015 Aufgaben Prüfung an die 3. Klasse Bezirksschule Prüfung Name und Vorname der Schülerin / des Schülers... Prüfende Schule...

Mehr

Unterrichtsmaterialien in digitaler und in gedruckter Form. Auszug aus: Unterrichtsreihe zum Thema "Kreise und Winkel"

Unterrichtsmaterialien in digitaler und in gedruckter Form. Auszug aus: Unterrichtsreihe zum Thema Kreise und Winkel Unterrichtsmaterialien in digitaler und in gedruckter Form Auszug aus: Unterrichtsreihe zum Thema "Kreise und Winkel" Das komplette Material finden Sie hier: School-Scout.de Titel: Unterrichtsreihe zum

Mehr

(3r) r 2 =? xy 3y a + 6b 14. ( xy

(3r) r 2 =? xy 3y a + 6b 14. ( xy Mathematik Aufnahmeprüfung 2014 Profile m,n,s Lösungen Aufgabe 1 (a) Vereinfache (schreibe als einen Bruch): 2 + a 2 + 3b 7 =? (b) (c) Vereinfache so weit wie möglich: Vereinfache so weit wie möglich:

Mehr

Aufgabe S 1 (4 Punkte)

Aufgabe S 1 (4 Punkte) Aufgabe S 1 (4 Punkte) In einem regelmäßigen Achteck wird das Dreieck ABC betrachtet, wobei C der Mittelpunkt der Seite ist, die der Seite AB gegenüberliegt Welchen Anteil am Flächeninhalt des Achtecks

Mehr

Bastelanleitung für ein Berni-Osternest. Hallo FCB KidsClub Mitglied!

Bastelanleitung für ein Berni-Osternest. Hallo FCB KidsClub Mitglied! Bastelanleitung für ein Berni-Osternest Hallo FCB KidsClub Mitglied! Jetzt ist ja bald schon wieder Ostern. Bestimmt versteckt der Osterhase auch dieses Jahr wieder ein tolles Osternest für dich, nach

Mehr

Geometrie. in 15 Minuten. Geometrie. Klasse

Geometrie. in 15 Minuten. Geometrie. Klasse Klasse Geometrie Geometrie 7. Klasse in 5 Minuten Grundbegriffe Wie viele äußere Begrenzungsflächen und ußenkanten haben die Körper? a) Würfel b) risma c) Zylinder d) uader e) yramide f) Kugel 4 M 5 Welche

Mehr

RabenWerkstatt Effektsystem Geometrie in Fläche und Raum. erarbeitet von Peter Herbert Maier. Lösungen

RabenWerkstatt Effektsystem Geometrie in Fläche und Raum. erarbeitet von Peter Herbert Maier. Lösungen RabenWerkstatt Effektsystem Geometrie in Fläche und Raum erarbeitet von Peter Herbert Maier Lösungen Muster legen Figuren legen Lege die Muster nach. Setze sie fort. Entwirf ein eigenes Muster. 2 Figuren

Mehr

Eine Einführung Hartmut Braun 2011

Eine Einführung Hartmut Braun 2011 Eine Einführung Hartmut Braun 2011 Inhaltsverzeichnis Inhaltsverzeichnis 1. Einleitung...4 2. Zeichenerklärung...4 3. Die GEONExT- Oberfläche...5 3.1. Menüleiste...6 3.2. Kopfleiste...6 3.3. Konstruktionselemente...7

Mehr

Download. Mathematik Üben Klasse 5 Geometrie. Differenzierte Materialien für das ganze Schuljahr. Martin Gehstein

Download. Mathematik Üben Klasse 5 Geometrie. Differenzierte Materialien für das ganze Schuljahr. Martin Gehstein Download Martin Gehstein Mathematik Üben Klasse 5 Geometrie Differenzierte Materialien für das ganze Schuljahr Downloadauszug aus dem Originaltitel: Mathematik üben Klasse 5 Geometrie Differenzierte Materialien

Mehr

Geometrische Grundkonstruktionen

Geometrische Grundkonstruktionen Geometrische Grundkonstruktionen Strecken...2 Halbierung einer Strecke und Mittelsenkrechte...2 Teilung einer Strecke in eine bestimmte Anzahl gleicher Teile...2 Halbierung eines Winkels...3 Tangente an

Mehr

Name Vorname Schuljahr 2005/2006 Datum der Durchführung Donnerstag, ORIENTIERUNGSARBEIT

Name Vorname Schuljahr 2005/2006 Datum der Durchführung Donnerstag, ORIENTIERUNGSARBEIT Sekundarschule 4. Klasse Niveau P Name Vorname Schuljahr 2005006 Datum der Durchführung Donnerstag, 17.11.05 ORIENTIERUNGSARBEIT Sekundarschule Mathematik Niveau P (M6) Lies zuerst Anleitung und Hinweise

Mehr

Herbst b) Bestimmen Sie die Gleichung der Tangente t und Ihren Schnittpunkte A mit der x-achse. t geht durch B(1/2) und hat die Steigung m=-6 :

Herbst b) Bestimmen Sie die Gleichung der Tangente t und Ihren Schnittpunkte A mit der x-achse. t geht durch B(1/2) und hat die Steigung m=-6 : Herbst 24 1. Gegeben ist eine Funktion f : mit den Parametern a und b. a) Bestimmen Sie a und b so, dass der Graph von f durch den Punkt B(1/2) verläuft und die Tangente t in B parallel ist zur Geraden

Mehr

ALGEBRA Der Lösungsweg muss klar ersichtlich sein Schreiben Sie Ihre Lösungswege direkt auf diese Aufgabenblätter

ALGEBRA Der Lösungsweg muss klar ersichtlich sein Schreiben Sie Ihre Lösungswege direkt auf diese Aufgabenblätter Berufsmaturitätsschule GIB Bern Aufnahmeprüfung 2005 Mathematik Teil A Zeit: 45 Minuten Name / Vorname:... ALGEBRA Der Lösungsweg muss klar ersichtlich sein Schreiben Sie Ihre Lösungswege direkt auf diese

Mehr