Reise nach Rio Klimadiagramme lesen

Größe: px
Ab Seite anzeigen:

Download "Reise nach Rio Klimadiagramme lesen"

Transkript

1 Reise nac Rio Klimadiagramme lesen Maria will im Juli nac Brasilien fliegen und dort Urlaub macen. Um iren Koffer passend zu packen und Unternemungen planen zu können, suct sie im Internet zunäcst nac Klimainformationen zu Rio de Janeiro. Dabei stößt sie auf zwei untersciedlice Klimadiagramme: Rio de Janeiro / Brasilien 22 5'S / 3 1'W 31 m mm J A S O N D J F M A M J RIO DE JANEIRO (31 m) K Aw BRAZIL L 3,1 B 22,5 11 mm J F M A M J J A S O N D erunsicert durc die zwei untersciedlicen Diagramme, bittet Maria ire Freunde um Hilfe. Prüfe deren Aussagen und entsceide, ob sie rictig oder falsc liegen. Ann-Katrin Sueck: Selbstkontrollaufgaben Matematik Klasse 7 Auer erlag AAP Lererfacverlage GmbH, Donauwört Name Aussage Rictig Falsc Teo Das ist doc komisc, links siet das Diagramm aus wie ein krakeliger Berg und rects wie ein Tal. Desalb muss ein Diagramm K Z falsc sein. Lisa Scau genau in, das könnte das gleice Klimadiagramm sein. Beispielsweise sind im Januar jeweils ungefär 25 Grad. U A Anne Nein, im linken sind es 2 Grad im Januar und im recten 25. R C Lisa Auc der Niedersclag im Januar ist ungefär gleic, nämlic ca. 15 mm. K N Siggi Ic weiß, dass in den Monaten Mai bis September in Brasilien weniger Regen fällt als sonst. Desalb ist kein Diagramm rictig. A E Ulla In beide Diagramme sind die gleicen Werte eingetragen. Das linke Diagramm ist doc nur versetzt und at untersciedlice Skalen. R Walter Wenn du dir rects die Skala zum Niedersclag anscaust, kannst du feststellen, dass 11 mm Niedersclag einfac unmöglic ist, A H desalb ist das recte Diagramm falsc. Felix Ic versuce mal, das Diagramm umzuzeicnen, sodass in die Skala des recten Diagramms die Werte des linken übergetragen U L werden. Jetzt siet das neue Diagramm genauso aus, wie das alte. Lisa Ic glaube, dass beide rictig sind. Da die Skaleneinteilungen untersciedlic sind, seen sie nur anders aus. T L Liest du die Kontrollbucstaben von oben nac unten, erfärst du, welces Warzeicen Rio de Janeiros Maria gerne besucen möcte. Lösungswort: Grapen 5 Aus dem Werk 75 "Selbstkontrollaufgaben Matematik Klasse 7" BN: 75 Auer erlag - AAP Lererfacverlage GmbH, Donauwört

2 Eine Fieberkurve zeicnen und interpretieren Jan at bei seiner letzten Grippe seine Temperatur dokumentiert: Urzeit 8: 1: 12: 1: 16: 18: 2: 22: 2: Temperatur 36,6 37,2 38, 38,9 39,6 39,8 39,5 39,3 39, Trage die Werte in beide Diagramme ein und verbinde die Punkte : 1: 12: 1: 16: 18: 2: 22: 2: Ur 8: 1: 12: 1: 16: 18: 2: 22: 2: Ur Stimmen die Aussagen? 1 Aussage Rictig Falsc Beide Diagramme seen anders aus, bilden aber das Gleice ab Das Fieber steigt von 8 bis 22 Ur Das eine Diagramm siet so aus, als würde die Körpertemperatur gar nict so viel steigen. Das Fieber sinkt besonders stark in der Zeit von 1 bis 16 Ur Das Fieber sinkt ab 16 Ur Der Hocpunkt der Fieberkurve ist um 18 Ur erreict Bis zum Hocpunkt steigt die Kurve stark, danac sinkt sie scwac ab. 1 1 Trage die Kontrollzalen der Reie nac in folgende Recenmaske ein. Hast du alles rictig gemact, ergibt dein Ergebnis. ( 1) : = 5 5 ( ) = 5 (5 ) : = Ann-Katrin Sueck: Selbstkontrollaufgaben Matematik Klasse 7 Auer erlag AAP Lererfacverlage GmbH, Donauwört 6 Grapen Aus dem Werk 75 "Selbstkontrollaufgaben Matematik Klasse 7" BN: 75 Auer erlag - AAP Lererfacverlage GmbH, Donauwört

3 Füllkurven-Puzzle Erklärung des Begriffs Füllkurve : Füllkurven stellen das erältnis zwiscen Wasserstandsöe und Füllmenge in einem Gefäß dar. Du kannst also den Zusammenang ablesen, bei welcer Wasserstandsöe, wie viel Wasser eingefüllt wurde. Der Zeicner des Diagramms gibt versciedene Wassermengen (untersciedlic viel Wasser) in die Gefäße und liest dann ab, wie oc das Wasser im Gefäß stet. Scneide die Puzzleteile aus. Ordne danac den Abbildungen die entsprecende geometrisce Figur und die passende Füllkurve zu. Wenn die Puzzleteile passen, ast du alles rictig gemact. Eine Füllkurve bleibt übrig sie wird der geometriscen Figur Kegelstumpf zugeordnet. liegender Quader steender Quader Ann-Katrin Sueck: Selbstkontrollaufgaben Matematik Klasse 7 Auer erlag AAP Lererfacverlage GmbH, Donauwört umgedreter Kegelstumpf Kugel Grapen 7 Aus dem Werk 75 "Selbstkontrollaufgaben Matematik Klasse 7" BN: 75 Auer erlag - AAP Lererfacverlage GmbH, Donauwört

4 Zalenmengen I Male die Felder mit natürlicen Zalen rot, die Felder mit Bruczalen grün und die Felder mit ganzen negativen Zalen blau an. Ann-Katrin Sueck: Selbstkontrollaufgaben Matematik Klasse 7 Auer erlag AAP Lererfacverlage GmbH, Donauwört Prüfe folgende Aussagen Es gibt rationale Zalen, die aber keine natürlicen Zalen sind. Die Menge der natürlicen Zalen ist größer als die Menge der rationalen Zalen. Die Menge der negativen Zalen ist größer als die Menge der positiven Zalen. Die Menge der Bruczalen ist größer als die Menge der ganzen Zalen. Rictig Lies die Kontrollbucstaben von unten nac oben und du erältst das Lösungswort: L O R T Falsc T L O D Ganze und rationale Zalen 37 Aus dem Werk 75 "Selbstkontrollaufgaben Matematik Klasse 7" BN: 75 Auer erlag - AAP Lererfacverlage GmbH, Donauwört

5 Lösungen Grapen Seite 7 Füllkurven-Puzzle steender Quader Seite 5 Reise nac Rio Klimadiagramme lesen Lösungswort: ZUCKERHUT Seite 6 Eine Fieberkurve zeicnen und interpretieren Kugel umgedreter Kegelstumpf : 1: 12: 1: 16: 18: 2: 22: 2: Ur liegender Quader : 2. Kontrolle: 1: 12: 1: 16: 18: 2: 22: 2: Ur ( 81 1) : 8 = 5 5 ( ) = 5 (5 5 ) : 1 = Ann-Katrin Sueck: Selbstkontrollaufgaben Matematik Klasse 7 Auer erlag AAP Lererfacverlage GmbH, Donauwört 5 Lösungen Aus dem Werk 75 "Selbstkontrollaufgaben Matematik Klasse 7" BN: 75 Auer erlag - AAP Lererfacverlage GmbH, Donauwört

6 Lösungen 1. Seite Koordinaten Konstruktionsprotokolle überprüfen und Koordinatenbilder zeicnen Die Koordinaten links unten nenne ic (/ ). on da aus bin ic secs Kästcen oc gegangen, dann zum Punkt (6/ 6), danac zum Punkt (/ 3) und dann zum Punkt (6/ ) und wieder zurück zum Ausgangspunkt. Der Punkt oben rects liegt bei (/ ). Dann get es 2 Scritte nac links und 2 Scritte nac ( 2/ 2) unten und dann drei Scritte nac links. om Punkt ( 5/ 2) get es zum Punkt ( 7/ ) und von da zurück zum Ausgangspunkt. Der Ausgangspunkt liegt oben links bei (/ ). on dem get es Scritte nac rects zum näcsten Punkt (/ ). on dem aus get es drei Scritte nac rects und vier nac unten zu Punkt (7/ ). Dann get es zu Punkt (3/ 5) und von da zurück zum Ausgangspunkt. Seite 36 Scatzsuce 1. Ursula: P 1 (5 / 6) 2. Harald: P 2 (5 / 6) 3. Teresa: P 3 ( 7 / 6). Peter: P ( 7 / 6) 1. Seite 37 Zalenmengen I Kontrolle: ( 7) ( 5 ) = y 6 2. Lösungswort: TOLL 5 3 E B D 2 F 1 K G C H I x A J Ann-Katrin Sueck: Selbstkontrollaufgaben Matematik Klasse 7 Auer erlag AAP Lererfacverlage GmbH, Donauwört 6 Lösungen Aus dem Werk 75 "Selbstkontrollaufgaben Matematik Klasse 7" BN: 75 Auer erlag - AAP Lererfacverlage GmbH, Donauwört

Unterrichtsmaterialien in digitaler und in gedruckter Form. Auszug aus: Selbstkontrollaufgaben Mathematik Klasse 7

Unterrichtsmaterialien in digitaler und in gedruckter Form. Auszug aus: Selbstkontrollaufgaben Mathematik Klasse 7 Unterrichtsmaterialien in digitaler und in gedruckter Form Auszug aus: Selbstkontrollaufgaben Mathematik Klasse 7 Das komplette Material finden Sie hier: School-Scout.de Sekundarstufe I Ann-Kathrin Sueck

Mehr

Selbstkontrollaufgaben

Selbstkontrollaufgaben Sekundarstufe I Ann-Kathrin Sueck Selbstkontrollaufgaben Mathe 7. Klasse Lehrplanrelevante Arbeitsblätter mit integrierter Lösung Ideal für die Freiarbeit 214 Auer Verlag, Donauwörth AAP Lehrerfachverlage

Mehr

Linear. Halbkreis. Parabel

Linear. Halbkreis. Parabel Vom Parabolspiegel zur Ableitungsfunktion Im Folgenden get es darum erauszufinden, was ein Parabolspiegel ist und wie er funktioniert. Das fürt uns auf wictige Fragen eines Teilgebietes der Matematik,

Mehr

Zentrale schriftliche Abiturprüfungen im Fach Mathematik

Zentrale schriftliche Abiturprüfungen im Fach Mathematik Aufgabe 2 Wetterstation Aufgabe aus der scriftlicen Abiturprüfung Hamburg 05. In einer Wetterstation wird die Aufzeicnung eines Niedersclagmessgeräts vom Vortag (im Zeitraum von 0 Ur bis Ur) ausgewertet.

Mehr

PACKAGING DESIGN LIMBIC SCHMIDT SPIELE KNIFFEL MASTER

PACKAGING DESIGN LIMBIC SCHMIDT SPIELE KNIFFEL MASTER PAKAGING DESIGN LIMBI SHMIDT SPIELE KNIFFEL MASTER 16. Präsentation 03. Dezember 2014 Für alle Kniffel-Fans dürfte Einiges bei Kniffel Master scon bekannt sein. Der blaue Text kann daer von allen überspruen

Mehr

ANALYSIS Differenzialrechnung Kapitel 1 5

ANALYSIS Differenzialrechnung Kapitel 1 5 TELEKOLLEG MULTIMEDIAL ANALYSIS Differenzialrecnung Kapitel 5 Ferdinand Weber BRmedia Service GmbH Inaltsverzeicnis Jedes Kapitel beginnt mit der Seitenzal.. Das Tangentenproblem. Steigung einer Geraden

Mehr

Kantonale Prüfungen Mathematik II Prüfung für den Übertritt aus der 9. Klasse

Kantonale Prüfungen Mathematik II Prüfung für den Übertritt aus der 9. Klasse Kantonale Prüfungen 2013 für die Zulassung zum gymnasialen Unterrict im 9. Sculjar Matematik II Serie H9 Gymnasien des Kantons Bern Matematik II Prüfung für den Übertritt aus der 9. Klasse Bitte beacten:

Mehr

Heizung Pumpen-Auslegung Seite 1 von 5

Heizung Pumpen-Auslegung Seite 1 von 5 Heizung Pumpen-Auslegung Seite 1 von 5 Aus der Heizlastberecnung ergab sic für das gesamte Gebäude ein Wert von 25 kw. Die Vorlauftemperatur ist mit 70 C und die Rücklauftemperatur mit 50 C geplant. Die

Mehr

Tangentensteigung. Gegeben ist die Funktion f(x) = x 2.

Tangentensteigung. Gegeben ist die Funktion f(x) = x 2. Tangentensteigung Gegeben ist die Funktion () =. Um die Steigung der Tangente im Punkt P( ) zu bestimmen, ermitteln wir zunäcst die Steigung der Sekante durc P( ) und Q( ). Q soll so beweglic sein, dass

Mehr

Á 4. Differenzierbarkeit, Stetigkeit

Á 4. Differenzierbarkeit, Stetigkeit Á 4. Differenzierbarkeit, Stetigkeit Historisc ist der Begriff der Differenzierbarkeit lange vor dem der Stetigkeit entwickelt worden. Untersciedlice Definitionen der Differenzierbarkeit werden von Gottfried

Mehr

Physik I Übung 7, Teil 2 - Lösungshinweise

Physik I Übung 7, Teil 2 - Lösungshinweise Pysik I Übung 7, Teil - Lösungsinweise Stefan Reutter SoSe 0 Moritz Kütt Stand:.06.0 Franz Fujara Aufgabe Clausius- Klappermann Clapeyron Revisited (Vorsict, Aufgabe vom Cef!) Da sic Prof. Fujara wie immer

Mehr

6. Die Exponentialfunktionen (und Logarithmen).

6. Die Exponentialfunktionen (und Logarithmen). 6- Funktionen 6 Die Eponentialfunktionen (und Logaritmen) Eine ganz wictige Klasse von Funktionen f : R R bilden die Eponentialfunktionen f() = c ep( ) = c e, ier sind, c feste reelle Zalen (um Trivialfälle

Mehr

Schriftliche Prüfung Schuljahr: 2008/2009 Schulform: Gymnasium. Mathematik

Schriftliche Prüfung Schuljahr: 2008/2009 Schulform: Gymnasium. Mathematik Ministerium für Bildung, Jugend und Sport Prüfungen am Ende der Jargangsstufe 10 Scriftlice Prüfung Sculjar: 2008/2009 Sculform: Matematik Allgemeine Arbeitsinweise Die Prüfungszeit beträgt 160 Minuten.

Mehr

Hilfe zum neuen Online-Shop

Hilfe zum neuen Online-Shop Hilfe zum neuen Online-Sop Hier finden Sie umfassend bescrieben, wie Sie sic in unserem neuen Sop zurectfinden. Wenn Sie Fragen zur Kunden-Nr., Kunden-ID oder zum Passwort aben, rufen Sie uns bitte an:

Mehr

Analysis: Klausur Analysis

Analysis: Klausur Analysis Analysis Klausur zu Ableitung, Extrem- und Wendepunkten, Interpretation von Grapen von Ableitungsfunktionen, Tangenten und Normalen (Bearbeitungszeit: 90 Minuten) Gymnasium J Alexander Scwarz www.mate-aufgaben.com

Mehr

Einstieg in die Differenzialrechnung

Einstieg in die Differenzialrechnung Lern-Online.net Matematikportal Dierenzialrecnung (Einstieg) Einstieg in die Dierenzialrecnung Einstiegsbeispiel: Der ideale Kasten Augabenstellung: Ein DIN-A4-Blatt soll zu einem (deckellosen) Kasten

Mehr

e-funktion und natürlicher Logarithmus

e-funktion und natürlicher Logarithmus e-funktion und natürlicer Logaritmus. Die Differentialgleicung y=y' Gibt es eine Funktion, die mit irer Ableitung identisc ist, d.. dass f = f ' für alle gilt? Wenn die Ableitung trigonometriscer Funktionen

Mehr

Manfred Burghardt. Allgemeine Hochschulreife und Fachhochschulreife in den Bereichen Erziehung, Gesundheit und Soziales

Manfred Burghardt. Allgemeine Hochschulreife und Fachhochschulreife in den Bereichen Erziehung, Gesundheit und Soziales Manfred Burgardt Allgemeine Hocsculreife und Facocsculreife in den Bereicen Erzieung, Gesundeit und Soziales Version /4 Inaltsverzeicnis I Inaltsverzeicnis Inaltsverzeicnis... I Die Ableitungsfunktion

Mehr

= 4. = 2 π. s t. Lösung: Aufgabe 1.a) Der Erdradius beträgt 6.371km. Aufgabe 1.b) Das Meer nimmt 71% der Erdoberfläche ein.

= 4. = 2 π. s t. Lösung: Aufgabe 1.a) Der Erdradius beträgt 6.371km. Aufgabe 1.b) Das Meer nimmt 71% der Erdoberfläche ein. Aufgabe : Die Die ist der fünftgrößte der neun Planeten unseres Sonnensystems und wiegt 5,98* 0 4 kg. Sie ist zwiscen 4 und 4,5 Millionen Jaren alt und bewegt sic auf einer elliptiscen Ban in einem durcscnittlicen

Mehr

Skulptur. 0,25 m. 1,65 m 1,7 m Sockel. 0,6 m 0,6 m 10 m. Aufgabe 1: Die Skulptur

Skulptur. 0,25 m. 1,65 m 1,7 m Sockel. 0,6 m 0,6 m 10 m. Aufgabe 1: Die Skulptur Aufgabe 1: Die Skulptur Um die Höe einer Skulptur zu bestimmen, die auf einem Sockel stet, stellt sic eine Person (Augenöe 1,70 m) in einer Entfernung von 10 m mit dem Rücken zur Skulptur und ält sic einen

Mehr

Teil 1. 2 Gleichungen mit 2 Unbekannten mit Textaufgaben. und 3 Gleichungen mit 2 Unbekannten. Datei Nr. 12180. Friedrich Buckel. Stand 11.

Teil 1. 2 Gleichungen mit 2 Unbekannten mit Textaufgaben. und 3 Gleichungen mit 2 Unbekannten. Datei Nr. 12180. Friedrich Buckel. Stand 11. Teil Gleicungen mit Unbekannten mit Textaufgaben und 3 Gleicungen mit Unbekannten Datei Nr. 80 Stand. April 0 Lineare Gleicungssysteme INTERNETBIBLIOTHEK FÜR SCHULMATHEMATIK 80 Gleicungssysteme Vorwort

Mehr

Kraft F in N Dehnung s in m

Kraft F in N Dehnung s in m . Klausur Pysik Leistungskurs Klasse 7. 9. 00 Dauer: 90 in. Wilel T., ein junger, talentierter Bogenscütze darf sic einen neuen Bogen kaufen. Er kann den Bogen it axial 50 N spannen und seine Are reicen

Mehr

Was haben Beschleunigungs-Apps mit der Quadratur des Kreises zu tun?

Was haben Beschleunigungs-Apps mit der Quadratur des Kreises zu tun? Was aben Bescleunigungs-Apps mit der Quadratur des Kreises zu tun? Teilnemer: Jonatan Geuter Leonard Hackel Paul Hagemann Maximilian Kuc Amber Lucas Tobias Tieme Tobias Tiesse Niko Wolf Gruppenleiter:

Mehr

ZUKUNFT BILDEN. Die Bildungsinitiative der Region. Februar 2015. Journalistische Darstellungsformen. Teil 3

ZUKUNFT BILDEN. Die Bildungsinitiative der Region. Februar 2015. Journalistische Darstellungsformen. Teil 3 ZUKUNFT Februar 2015 Journalistisce Darstellungsformen Teil 3 Das Projekt zur Bildungsförderung für Auszubildende getragen von starken Partnern Initiatoren: Förderer und Stiftungspartner: INHALT Journalistisce

Mehr

Das Goethe-Barometer Luftdruckmessungen mit einem historischen Gerät von Helmut Jena

Das Goethe-Barometer Luftdruckmessungen mit einem historischen Gerät von Helmut Jena Das Goete-Barometer uftdruckmessungen mit einem istoriscen Gerät von Helmut Jena Das Goete-Barometer als attraktiver und istoriscer uftdruck- Anzeiger fasziniert besonders den naturwissenscaftlic interessierten

Mehr

7.2. Ableitungen und lineare Approximation

7.2. Ableitungen und lineare Approximation 7.. Ableitungen und lineare Approximation Eindimensionale Ableitungen und Differentialquotienten einer Funktion bekommt man bekanntlic als Limes von Differenzenquotienten f ( a) = f ( a + ) f( a ) = x

Mehr

Demo-Text für Geometrie Winkel und Dreiecke. Teil 1 INTERNETBIBLIOTHEK FÜR SCHULMATHEMATIK. Mit Index am Ende des Textes

Demo-Text für  Geometrie Winkel und Dreiecke. Teil 1 INTERNETBIBLIOTHEK FÜR SCHULMATHEMATIK. Mit Index am Ende des Textes Teil 1 it Index am Ende des Textes Stand: 22. Februar 212 Datei Nr. 1111 Friedric Buckel Geometrie Winkel und Dreiecke INTERNETBIBLITHEK FÜR SCHULTHETIK www.mate-cd.de Inalt 1. Dreunen durc Winkel messen

Mehr

Frau Lembke. Bisphenol A. Pfui Teufel: Eigenhufe & Brouët

Frau Lembke. Bisphenol A. Pfui Teufel: Eigenhufe & Brouët Fra Lembke Pfi Tefel: Bispenol A Eigenfe & Broët r g Die andelnden Personen ir #1 Fra Lembke ª #3 Der nee glaborant #5 Unsere Umwelt #2 Professor Stabmantel #4 Bispenol A #6 Elvira Lembke T 2 Im Hasflr:

Mehr

Medienmitteilung Rothenburg, 26. April 2013

Medienmitteilung Rothenburg, 26. April 2013 Pistor AG Medienmitteilung Rotenburg, 26. April 2013 Gescäftsjar 2012 Ausblick 2013 Pistor mit gutem Ergebnis Die Pistor ist gut unterwegs. Im Jar 2012 wurde mit dem Bau des neuen Tiefkülcenters erneut

Mehr

Musterlösung zu Übungsblatt 1

Musterlösung zu Übungsblatt 1 Prof. R. Pandaripande J. Scmitt, C. Scießl Funktionenteorie 23. September 16 HS 2016 Musterlösung zu Übungsblatt 1 Aufgabe 1. Sei F ein Körper, der R als einen Unterkörper entält. Das eisst R ist eine

Mehr

Heute schon gepoppt?

Heute schon gepoppt? Heute scon gepoppt? Benno Grabinger, Neustadt/Weinstraße, www.bennograbinger.de www.pringles.de Benno Grabinger: Pringles 1 Wie ann die Form eines Pringle matematisc bescrieben werden? Wo entsteen solce

Mehr

Landeswettbewerb Mathematik Baden-Württemberg Musterlösungen 1. Runde 2011/2012

Landeswettbewerb Mathematik Baden-Württemberg Musterlösungen 1. Runde 2011/2012 Landeswettbewerb Matematik aden-württemberg Musterlösungen. Runde 0/0 Aufgabe avid wirft einen besonderen Würfel und screibt jeweils die oben liegende Zal auf. ie Abbildung zeigt ein Netz seines Würfels.

Mehr

14. Landeswettbewerb Mathematik Bayern

14. Landeswettbewerb Mathematik Bayern 4. Landeswettbewerb Matematik Bayern Lösungsbeispiele für die Aufgaben der. Runde / Aufgabe David wirft einen besnderen Würfel und screibt jeweils die ben liegende Zal auf. Die Abbildung zeigt ein Netz

Mehr

Rudolphs Schlitten. Aufgabe. Autor: Jochen Ricker

Rudolphs Schlitten. Aufgabe. Autor: Jochen Ricker Rudolps Sclitten Autor: Jocen Ricker Aufgabe Endlic ist es wieder soweit: Weinacten stet vor der Tür! Diesmal at der Weinactsmann sic ein ganz besonderes Gescenk für seine Rentiere einfallen lassen. Sie

Mehr

2008-06-11 Klassenarbeit 5 Klasse 10c Mathematik

2008-06-11 Klassenarbeit 5 Klasse 10c Mathematik 2008-06- Klssenrbeit 5 Klsse 0c Mtemtik Lösung Version 2008-06-4 Cindy t 3000 geerbt. ) Den Betrg will sie so nlegen, dss sie in 20 Jren doppelt so viel Geld t. Berecne, zu welcem Zinsstz sie ds Geld nlegen

Mehr

Numerische Simulation von Differential-Gleichungen der Himmelsmechanik

Numerische Simulation von Differential-Gleichungen der Himmelsmechanik Numerisce Simulation von Differential-Gleicungen der Himmelsmecanik Teilnemer: Max Dubiel (Andreas-Oberscule) Frank Essenberger (Herder-Oberscule) Constantin Krüger (Andreas-Oberscule) Gabriel Preuß (Heinric-Hertz-Oberscule)

Mehr

Zeitplan Abitur. März/Mai des 13. Schuljahres: Mündliche Prüfungen zur besonderen Lernleistung und zur Präsentationsprüfung (jeweils P5).

Zeitplan Abitur. März/Mai des 13. Schuljahres: Mündliche Prüfungen zur besonderen Lernleistung und zur Präsentationsprüfung (jeweils P5). Zeitplan Abitur Nac jedem Halbjareszeugnis: Überprüfung der erbracten Halbjaresleistungen und der recneriscen Möglickeit das Abitur zu besteen durc Sculleitung bzw. APK (Abiturprüfungskommission). Ab April

Mehr

Mathematik 1 für Studierende der Biologie Teil II: Limes & Konvergenz

Mathematik 1 für Studierende der Biologie Teil II: Limes & Konvergenz Matematik 1 für Studierende der Biologie Teil II: Limes & Konvergenz Cristian Leibold 7. Oktober 2014 Folgen Allgemeines zu Folgen Monotonie und Bescränkteit Grenzwerte und Konvergenz Summen und Reien

Mehr

2.7. Aufgaben zu Ähnlichkeitsabbildungen

2.7. Aufgaben zu Ähnlichkeitsabbildungen .7. Aufaben zu Änlickeitsabbildunen Aufabe 1 Strecke das Dreieck AB mit A(3 1), B( 3) und ( ) an Z(1 1) um die Streckfaktoren k 1 =, k = 1, k 3 = 1, k 4 = und k =. Aufabe Strecke das Dreieck AB mit A(

Mehr

Vitamine auf Weltreise

Vitamine auf Weltreise Konzipiert vom Förderverein NaturGut Opoven Vitamine auf Weltreise Zielgruppe: Klasse 2-3 Fac: Dauer: Sacunterrict 90 Minuten Temenbereic: Zusammenang Ernärung und Klimawandel 20 % der Kinder sind zu dick,

Mehr

Übung zur Vorlesung Einführung in die Betriebswirtschaftliche Steuerlehre

Übung zur Vorlesung Einführung in die Betriebswirtschaftliche Steuerlehre Mercator Scool of Management Prof. Dr. Volker Breitecker, StB Dr. Marco Tönnes, StB SS 2007 Übung zur Vorlesung Einfürung in die Betriebswirtscaftlice Steuerlere Grundlagen: 1. Zur Erzielung von Einnamen

Mehr

CLUB APOLLO 13, 13. Wettbewerb Aufgabe 2

CLUB APOLLO 13, 13. Wettbewerb Aufgabe 2 Der Auftrieb Diese Aufgabe wird vom Facbereic Pysik der eibniz Universität annover gestellt. Weitere Informationen zum Studiengang der Pysik findet ir unter ttp://www.pysik.uniannover.de/ CUB APOO 13,

Mehr

5.2 Von der durchschnittlichen zur momentanen Änderungsrate

5.2 Von der durchschnittlichen zur momentanen Änderungsrate 5.2 Von der durcscnittlicen zur momentanen Änderungsrate Was dic erwartet Kommt Zeit, kommt Rat, Die Zeit eilt alle Wunden. Fast alles ändert sic mit der Zeit. Nict immer ist der gerade vorliegende Zustand

Mehr

Aufgaben zu den Newtonsche Gesetzen

Aufgaben zu den Newtonsche Gesetzen Aufgaben zu den ewtonce Geetzen. Zwei Maen von = 8 und = ängen an den Enden eine Seil, da über eine fete Rolle it vernacläigbarer Mae gefürt it. a) Wie groß it die Becleunigung de al reibungfrei angenoenen

Mehr

Download. Selbstkontrollaufgaben Mathe für die Klasse. Raum und Form. Sandra Sommer, Markus Sommer. Downloadauszug aus dem Originaltitel:

Download. Selbstkontrollaufgaben Mathe für die Klasse. Raum und Form. Sandra Sommer, Markus Sommer. Downloadauszug aus dem Originaltitel: Download Sandra Sommer, Markus Sommer Selbstkontrollaufgaben Mathe für die 1.-2. Klasse Raum und Form Selbstkontrollaufgaben Mathe 1. / 2. Klasse Grundschule Sandra Sommer Markus Sommer 63 lehrplanrelevante

Mehr

Nenne verschiedene Energieformen. Nenne zu einem Beispiel aus deiner Umgebung, welche Energieformen ineinander umgewandelt werden.

Nenne verschiedene Energieformen. Nenne zu einem Beispiel aus deiner Umgebung, welche Energieformen ineinander umgewandelt werden. Grundwissenskatalog zu Pysik 8.Jargangsstufe, Seite von 5 Carl-Friedric Gauß Gymnasium Scwandorf Stand: Sept. 0 Wissen Können Beispiele, Ergänzungen Energie Energie kann in versciedenen Formen vorkommen.

Mehr

Überholen mit konstanter Beschleunigung

Überholen mit konstanter Beschleunigung HTL Überolen mit konstanter Seite 1 von 7 Nietrost Bernard bernard.nietrost@tl-steyr.ac.at Überolen mit konstanter Bescleunigung Matematisce / Faclice Inalte in Sticworten: Modellieren kinematiscer Vorgänge;

Mehr

RWTH Aachen, Lehrstuhl für Informatik IX Kapitel 3: Suchen in Mengen - Datenstrukturen und Algorithmen - 51

RWTH Aachen, Lehrstuhl für Informatik IX Kapitel 3: Suchen in Mengen - Datenstrukturen und Algorithmen - 51 RWTH Aacen, Lerstul für Informatik IX Kapitel 3: Sucen in Mengen - Datenstrukturen und Algoritmen - 51 Sucbäume Biser betractete Algoritmen für Suce in Mengen Sortierte Arrays A B C D - Nur sinnvoll für

Mehr

mit der Anfangsbedingung y(a) = y0

mit der Anfangsbedingung y(a) = y0 Numersce Lösung von Dfferentalglecungen De n den naturwssenscaftlc-tecnscen Anwendungen auftretenden Dfferentalglecungen snd n den wengsten Fällen eplzt lösbar. Man st desalb auf Näerungsverfaren angewesen.

Mehr

4 Funktionen und Änderungsraten

4 Funktionen und Änderungsraten 4.1 Änderungsraten grafisc erfasst Was dic erwartet Mit Funktionen und Grapen lassen sic viele Situationen und Vorgänge bescreiben bzw. modellieren. Bei der Interpretation der Grapen spielt oft das Änderungsveralten

Mehr

Übungen zum Mathematik-Abitur. Geometrie 1

Übungen zum Mathematik-Abitur. Geometrie 1 Geometrie Übungen zum atematik-abitur -7/8 Übungen zum atematik-abitur Geometrie Gegeben sind die Punkte ( 4 ) und ( 5 6 4) P und die Gerade 7 4 g: x= + r 4 Aufgabe : Die Ebene E entält g und Bestimmen

Mehr

Tangenten an Funktionsgraphen (Differenzialrechnung) Aufgaben ab Seite 4

Tangenten an Funktionsgraphen (Differenzialrechnung) Aufgaben ab Seite 4 Klasse / Augaben ab Seite 4 rundlagen und Begrie der Dierenzialrecnung Die Zeicnungen und Erklärungen sind etwas ausürlicer als notwendig u versciedene Screibweisen und Darstellungen auzuzeigen. Steigung

Mehr

Lösungen. 68b3np Lösungen. 68b3np. Name: Klasse: Datum: 1, 10, 6, -2, 8, -4, -5, -1, 0, 3

Lösungen. 68b3np Lösungen. 68b3np. Name: Klasse: Datum: 1, 10, 6, -2, 8, -4, -5, -1, 0, 3 Testen und Fördern Name: Klasse: Datum: 1) Ordne die Zahlen. Beginne mit der kleinsten Zahl. 1, 10, 6, -2, 8, -4, -5, -1, 0, 3 2) Berechne und verbinde das Ergebnis mit dem richtigen Kasten. (-1) + (-6)

Mehr

Mechanik 1.Gleichförmige Bewegung 1

Mechanik 1.Gleichförmige Bewegung 1 Mecanik 1.Gleicförige Bewegung 1 1. Geradlinige, gleicförige Bewegung (Bewegung it kontanter Gecwindigkeit) Zeit: 1 Unterricttunde 45 Minuten 2700 Sekunden 1 Sculjar entält etwa 34 Doppeltunden 68 Unterricttunden

Mehr

2 Ein Beispiel und der Haken an der Sache

2 Ein Beispiel und der Haken an der Sache Numerik I. Version: 9.02.08 2 Ein Beispiel und der Haken an der Sace In lineare Algebra I-II wurde gezeigt, wie durc das Gaußsce Verfaren lineare Gleicungssysteme gelöst werden. Das folgende einface Beispiel

Mehr

Download. Selbstkontrollaufgaben Mathematik für die Klasse. Raum und Form. Sandra Sommer/Markus Sommer. Downloadauszug aus dem Originaltitel:

Download. Selbstkontrollaufgaben Mathematik für die Klasse. Raum und Form. Sandra Sommer/Markus Sommer. Downloadauszug aus dem Originaltitel: Download Sandra Sommer/Markus Sommer Selbstkontrollaufgaben Mathematik für die 3.-4. Klasse Raum und Form Selbstkontrollaufgaben Mathe 3. /4. Klasse Grundschule Sandra Sommer Markus Sommer 65 lehrplanrelevante

Mehr

DOWNLOAD. Der Buchstabe H/h. Material zum Hören, Erkennen, Stempeln, Schreiben und ersten Lesen sonderpädagogische Förderung.

DOWNLOAD. Der Buchstabe H/h. Material zum Hören, Erkennen, Stempeln, Schreiben und ersten Lesen sonderpädagogische Förderung. DOWNLOAD Romy Blume Der Bucstabe H/ Material zum Hören, Erkennen, Stempeln, Screiben und ersten Lesen sonderpädagogisce Förderung Downloadauszug aus dem Originaltitel: Das Werk als Ganzes sowie in seinen

Mehr

Download. Selbstkontrollaufgaben Mathematik Klasse 5. Grundrechtenarten vermischt. Kerstin-Andrea Schmidt. Downloadauszug aus dem Originaltitel:

Download. Selbstkontrollaufgaben Mathematik Klasse 5. Grundrechtenarten vermischt. Kerstin-Andrea Schmidt. Downloadauszug aus dem Originaltitel: Download Kerstin-Andrea Schmidt Selbstkontrollaufgaben Mathematik Klasse Grundrechtenarten vermischt Kerstin-Andrea Schmidt Selbstkontrollaufgaben Mathe. Klasse Sekundarstufe I Lehrplanrelevante Arbeitsblätter

Mehr

Mathematik für Molekulare Biologen

Mathematik für Molekulare Biologen Skriptum zur Vorlesung Matematik für Molekulare Biologen Cristian Scmeiser 1 Contents 1 Einleitung 1 2 Zalensysteme, Grundrecnungsarten 2 3 Komplexe Zalen, Polynome 5 4 Die Polardarstellung, Winkelfunktionen

Mehr

Luisenburg-Gymnasium Wunsiedel

Luisenburg-Gymnasium Wunsiedel Luisenbur-Gymnasium Wunsiedel Grundwissen für das Fac Matematik Jaransstufe 5 Natürlice und anze Zalen 1;2;3;4;5;6; ist die Mene der natürlicen Zalen. ; 4; 3; 2; 1;0;1;2;3;4; ist die Mene der anzen Zalen.

Mehr

14 B Steigung. 1 Miss bei den drei Keilen die Winkel und Strecken und übertrage sie in die Tabelle. Berechne die Steigung.

14 B Steigung. 1 Miss bei den drei Keilen die Winkel und Strecken und übertrage sie in die Tabelle. Berechne die Steigung. Steigung 4 6 Arbeitseft+ Teste dic selbst Miss bei den drei Keilen die Winkel und Strecken und übertrage sie in die Tabelle. Berecne die Steigung. a a a Keil Keil 2 Keil 3 Keil Keil 2 Keil 3 Horizontale

Mehr

Grundwissen Ebene Geometrie

Grundwissen Ebene Geometrie Micael Körner Grundwissen bene Geometrie 5.0. Klasse eredorfer Kopiervorlaen Zu diesem Material: Was ist ein Stufenwinkel? Wie findet man die Höen von reiecken eraus? Wie werden Fläceninalt und Umfan bei

Mehr

Der einfache Dampfprozess Clausius Rankine Prozess Seite 1 von 8

Der einfache Dampfprozess Clausius Rankine Prozess Seite 1 von 8 Der einface Dapfproze Clauiu Rankine Proze Seite von 8 darin ind e die Exergie, b die Anergie und U die Ugebungteperatur Wie vergleicen zunäct den Carnot cen η C Prozewirkunggrad it de Clauiu-Rankine Prozewirkunggrad

Mehr

Üben. Lineare Funktionen. Lösung. Lineare Funktionen

Üben. Lineare Funktionen. Lösung. Lineare Funktionen Zeichne die drei Graphen jeweils in dasselbe Koordinatensstem und beschreibe, worin sich die Graphen jeweils gleichen und worin sie sich unterscheiden. a) b) f : x x f : x x f f f : x : x : x x x x 0,

Mehr

Liebe Lehrerin, lieber Lehrer, dieses Unterrichtsmaterial ist speziell auf die Boardstory und das Buch "Als. hnsuch. ferd. das Nilpfe.

Liebe Lehrerin, lieber Lehrer, dieses Unterrichtsmaterial ist speziell auf die Boardstory und das Buch Als. hnsuch. ferd. das Nilpfe. i Liebe Lererin, lieber Lerer, dieses Unterrictsmaterial ist speziell auf die Boardstory und das Buc "Als fe Sen nsuc suct t atte te" von Iri ris Wewe wer ausgelegt. Die Arbeitsblätter unterstützen Lesekompetenz

Mehr

Spezialgewebe für: Industrie Feuerwehr Rettungsdienste Polizei Sicherheitsdienste Militär Motorsport Sachschutz

Spezialgewebe für: Industrie Feuerwehr Rettungsdienste Polizei Sicherheitsdienste Militär Motorsport Sachschutz Spezialgewebe für: Industrie Feuerwer Rettungsdienste Polizei Sicereitsdienste Militär Motorsport Sacscutz IBENA Soft & Dry das Besondere in Sacen Tragekomfort Oberfläce one Vakuum-Plasmabeandlung Zum

Mehr

Fertigungstechnik Technische Kommunikation - Technisches Zeichnen

Fertigungstechnik Technische Kommunikation - Technisches Zeichnen Uwe Rat Eckleinjarten 13a. 7580 Bremeraven 0471 3416 rat-u@t-online.de Fertigungstecnik Tecnisce Kommunikation - Tecnisces Zeicnen 11 Projektionszeicnen 11. Körperscnitte und bwicklungen 11..4 Kegelige

Mehr

Feng Shui. mehr Harmonie am Arbeitsplatz. Counterlife

Feng Shui. mehr Harmonie am Arbeitsplatz. Counterlife Counterlife STORY OF THE MONTH TEXT ALEXANDRA CHRISTEN BILDER ALEXANDRA CHRISTEN / ZVG WEBCODE 7106 An der Dorfstrasse 16 im zugeriscen Baar stet ein kleines Inselparadies. Mit einem Ceck-In- Scalter,

Mehr

2.2 Quadratwurzeln. e) f) 8

2.2 Quadratwurzeln. e) f) 8 I. Quadratwurzeln Rechne im Kopf und erkläre, wie du vorgegangen bist!, H a) 7 8 b) 5 6 c) 9 d) 6 9 e) 0 _ f) 8 _ g) 7 _ 00 h) 5 _ 69 Teilweises Wurzelziehen ist dann möglich, wenn sich eine Zahl so zerlegen

Mehr

20 REAKTIONSKINETIK 2: ARRHENIUS-GLEICHUNG UND THEORIE DES ÜBERGANGSZUSTANDS

20 REAKTIONSKINETIK 2: ARRHENIUS-GLEICHUNG UND THEORIE DES ÜBERGANGSZUSTANDS -- 0 REKIONSKINEIK : RRHENIUS-GLEICHUNG UND HEORIE DES ÜERGNGSZUSNDS 0. Die rrenius-gleicung Die rrenius-gleicung bescreibt, wie Gescwindigeitsonstanten von der eperatur abängen. rrenius selbst atte 889

Mehr

Neue GuideLed Sicherheitsleuchten

Neue GuideLed Sicherheitsleuchten CEAG GuideLed Sicereitsleucten Neue GuideLed Sicereitsleucten Geradliniges Design kombiniert mit oer Wirtscaftlickeit C-C8 C-C GuideLed SL., 2. CG-S Deckeneinbau EN 838 LED * GuideLed SL. CG-S IP GuideLed

Mehr

Arbeit = Kraft Weg. Formelzeichen: W Einheit: 1 N 1 m = 1 Nm = 1 J Joule ( dschul ) Beispiel: Flaschenzug. F zeigt.

Arbeit = Kraft Weg. Formelzeichen: W Einheit: 1 N 1 m = 1 Nm = 1 J Joule ( dschul ) Beispiel: Flaschenzug. F zeigt. Kraftwandler Die Energie al Eraltunggröße Ein Kraftwandler it eine mecanice Anordnung, die eine Kraft wirken lät, welce größer it al die Kraft, die aufgewendet wird (oder umgekert). Beipiel: lacenzug Aufgewendete

Mehr

ma t 4 u GITARREN- UND LAUTENBÜNDE GRUNDLEGENDES DAS MONOCHORD

ma t 4 u GITARREN- UND LAUTENBÜNDE GRUNDLEGENDES DAS MONOCHORD GRUNDLEGENDES DAS MONOCHORD Scon in der Antike war es üblic, Intervalle durc Streckenteilung auf einer gespannten Saite geometrisc darzustellen. Das dabei benützte Instrument eißt Kanon oder Monocordon

Mehr

5. PLANIMETRIE, STEREOMETRIE

5. PLANIMETRIE, STEREOMETRIE 5. PLANIMETRIE, STEREOMETRIE 5.1. Planimetrie Die Planimetrie oder auc ebene Geometrie bescäftigt sic mit den in einer Ebene liegenden geometriscen Figuren. Im folgenden Abscnitt sollen die wictigsten

Mehr

Numerische Simulation in der Luft- und Raumfahrttechnik

Numerische Simulation in der Luft- und Raumfahrttechnik Numerisce Simulation in der Luft- und Raumfarttecnik Dr. Felix Jägle, Prof. Dr. Claus-Dieter Munz (IAG) Universität Stuttgart Pfaffenwaldring, 70569 Stuttgart Email: felix.jaegle@iag.uni-stuttgart.de Inalt

Mehr

C(5 1) 1 Ballmaschine Netzhöhe 0,91 m Netz Spieler

C(5 1) 1 Ballmaschine Netzhöhe 0,91 m Netz Spieler Aufträge Modellieren mitilfe der Ableitung. Modellieren mit Parabeln Auftrag Tennis Ein Spieler stet beim Training 5 m inter dem Netz. Er muss einscätzen, ob er den von einer Ballmascine gescossenen Ball

Mehr

Sterbetafeln für die Schweiz 1998/2003

Sterbetafeln für die Schweiz 1998/2003 Sterbetafeln für die Scweiz 1998/2003 Neucâtel, 2005 Die vom Bundesamt für Statistik (BFS) erausgegebene Reie «Statistik der Scweiz» gliedert sic in folgende Facbereice: 0 Statistisce Grundlagen und Übersicten

Mehr

6. In einem Experiment wurden für die Bewegung eines Spielzeugautos folgende Messwerte aufgenommen:

6. In einem Experiment wurden für die Bewegung eines Spielzeugautos folgende Messwerte aufgenommen: Aufgaben zur gleicförigen Bewegung Aufgaben. Ein Radfarer are u 7.00 Ur in Leipzig und fär i der ileren Gecwindigkei 0 / nac Berlin. U 9.00 Ur fär ein Auo on deelben Punk in dieelbe Ricung ab. E beiz die

Mehr

Steuerliche Spendenanreize: Ein Reformvorschlag. Ludwig von Auer Andreas Kalusche. Research Papers in Economics No. 7/10

Steuerliche Spendenanreize: Ein Reformvorschlag. Ludwig von Auer Andreas Kalusche. Research Papers in Economics No. 7/10 Steuerlice Spendenanreize: Ein Reformvorsclag Ludwig von Auer Andreas Kalusce Researc Papers in Economics No. 7/10 Steuerlice Spendenanreize: Ein Reformvorsclag Ludwig von Auer 1 Universität Trier Andreas

Mehr

Übungsaufgaben zu Analysis 2 Lösungen von Blatt V vom 07.05.15. f(x, y) = 2(x + y) + xy + 3x 2, g(x, y) = xy + e xy.

Übungsaufgaben zu Analysis 2 Lösungen von Blatt V vom 07.05.15. f(x, y) = 2(x + y) + xy + 3x 2, g(x, y) = xy + e xy. Prof. Dr. Moritz Kaßmann Fakultät für Matematik Sommersemester 015 Universität Bielefeld Übungsaufgaben zu Analysis Lösungen von Blatt V vom 07.05.15 Aufgabe V.1 + Punkte) Gegeben seien die Funktionen

Mehr

Herleitungen von elementaren Ableitungsregeln

Herleitungen von elementaren Ableitungsregeln Herleitungen von elementaren Ableitungsregeln by Nictnäerdefiniert 5..003-6..003 Index. Differenzenquotient. Faktorregel 3. Konstantenregel 4. Summenregel 5. Produktregel 6. Quotientenregel 7. Potenzregel

Mehr

Mathematik - Oberstufe

Mathematik - Oberstufe www.mate-aufgaben.com Matematik - Oberstufe Aufgaben und Musterlösungen zu Ableitungen, Tangenten, Normalen Zielgruppe: Oberstufe Gymnasium Scwerpunkt: Differenzenquotient, Differenzialquotient, Ableitung,

Mehr

Download. Selbstkontrollaufgaben Mathematik für die Klasse. Geometrie. Sandra Sommer/Markus Sommer. Downloadauszug aus dem Originaltitel:

Download. Selbstkontrollaufgaben Mathematik für die Klasse. Geometrie. Sandra Sommer/Markus Sommer. Downloadauszug aus dem Originaltitel: Download Sandra Sommer/Markus Sommer Selbstkontrollaufgaben Mathematik für die 3.-4. Klasse Geometrie Selbstkontrollaufgaben Mathe 3. /4. Klasse Grundschule Sandra Sommer Markus Sommer 65 lehrplanrelevante

Mehr

1. Zulassungsklausur in "Technischer Thermodynamik 2" am im Sommersemester Teil

1. Zulassungsklausur in Technischer Thermodynamik 2 am im Sommersemester Teil Zulassungsklausur in "Tecniscer Termodynamik " am 6998 im Sommersemester 98 Teil Es sind keine Hilfsmittel zugelassen Rictige Antworten sind mit dokumentenectem Stift anzukreuzen Falsc beantwortete Aufgaben

Mehr

Übungen zur Vorlesung Differential und Integralrechnung II (Unterrichtsfach) -Bearbeitungsvorschlag-

Übungen zur Vorlesung Differential und Integralrechnung II (Unterrichtsfach) -Bearbeitungsvorschlag- MATHEMATISCHES INSTITUT DER UNIVERSITÄT MÜNCHEN D. Rost, M. Gebert SS 015 Blatt 9 19.6.015 Übungen zur Vorlesung Differential und Integralrecnung II (Unterrictsfac) -Bearbeitungsvorsclag- 1. Sei n N 0.

Mehr

Steuerliche Spendenanreize in Deutschland Eine empirische Analyse ihrer fiskalischen Effekte

Steuerliche Spendenanreize in Deutschland Eine empirische Analyse ihrer fiskalischen Effekte Steuerlice Spendenanreize in Deutscland Eine empirisce Analyse irer fiskaliscen Effekte Inauguraldissertation zur Erlangung des akademiscen Grades Doctor rerum politicarum vorgelegt und angenommen an der

Mehr

3.0 Im folgenden Weg-Zeit-Diagramm ist der Bewegungsablauf eines Mountainbikers dargestellt. s in km 30

3.0 Im folgenden Weg-Zeit-Diagramm ist der Bewegungsablauf eines Mountainbikers dargestellt. s in km 30 Anwendungsaufgaben - Bewegungen 1 I nebensteenden Gescwindigkeits-Zeit- Diagra sind vier versciedene Bewegungsabläufe dargestellt. Welcer Grap geört zu welcer Bewegung? Begründe. A: Ein Farzeug färt it

Mehr

Dienstleistungsangebot für Besitzer von Ferienwohnungen

Dienstleistungsangebot für Besitzer von Ferienwohnungen I errlices Arosa GmbH I Haus Mittagsarve I 7050 Arosa I 19. April 2013 Seite 1 von 6 Dienstleistungsangebot für Besitzer von Ferienwonungen errlices Arosa GmbH ist der kompetente Partner für Besitzer von

Mehr

Dauerhaftzurück insberufsleben

Dauerhaftzurück insberufsleben Die Zeitung für KMU und UnternemerInnen > www.zuercer-wirtscaft.c 14. August 2014 8/2014 Kauflustwecken DasHirn istsculd! GabrielaMeissner, Cefredaktorin «Zürcer Wirtscaft» NacaltigeWiedereingliederung

Mehr

Musteraufgabe: Bestimme mit einem Strommessgerät, Kabeln und einer 4,5 V Batterie den Widerstand eines Glühlämpchens.

Musteraufgabe: Bestimme mit einem Strommessgerät, Kabeln und einer 4,5 V Batterie den Widerstand eines Glühlämpchens. ut-physik: GRUDWISSE 7. KLASSE METHODIK METHODE BEISPIEL Modellvorstellungen: aturwissenscaft benutzt Modelle, um Vorgänge in der atur quantitativ zu bescreiben und vorerzusagen. Lictstralen gedact als

Mehr

Energieformeln. Mechanische Energieformen (Kurzüberblick) Energie. Energieformen (auch nicht-mechanische) Energieumwandlung

Energieformeln. Mechanische Energieformen (Kurzüberblick) Energie. Energieformen (auch nicht-mechanische) Energieumwandlung Mecanice nergieforen (Kurzüberblick) nergie it augeprocen cwierig, den Begriff nergie in allgeeiner For zu erklären. Tatäclic it e ein Kuntbegriff, den ic die Pyiker augedact aben, u ein Syte in die unübercaubare

Mehr

T H E R M O H A L I N E S A U F T R I E B S K R A F T W E R K. Ein neuer Kraftwerkstyp. von. Sabrina Berens. Alice Knauf WEIRD SCIENCE CLUB DARMSTADT

T H E R M O H A L I N E S A U F T R I E B S K R A F T W E R K. Ein neuer Kraftwerkstyp. von. Sabrina Berens. Alice Knauf WEIRD SCIENCE CLUB DARMSTADT T H E R M O H A L I N E S A U F T R I E B S K R A F T W E R K Ein neuer Kraftwerkstyp von Sabrina Berens Alice Knauf WEIRD SCIENCE CLUB DARMSTADT an der Lictenbergscule Europascule, MINT-Excellence Center,

Mehr

Schnellübung Lösungen, Physik 2. Füllen Sie als erstes den untenstehenden Kopf mit Name und Legi-Nummer aus.

Schnellübung Lösungen, Physik 2. Füllen Sie als erstes den untenstehenden Kopf mit Name und Legi-Nummer aus. D-MATH/D-PHYS Prof. G. Dissertori Scnellübung Lösungen, Pysik 2 Studienjar SS2007 ETH Züric Füllen Sie als erstes den untensteenden Kopf mit Name und Legi-Nummer aus. Wenn Sie bei einer Aufgabe nict sofort

Mehr

Differenzieren kurz und bündig

Differenzieren kurz und bündig mate online Skripten ttp://www.mate-online.at/skripten/ Differenzieren kurz und bündig Franz Embacer Fakultät für Matematik der Universität Wien E-mail: franz.embacer@univie.ac.at WWW: ttp://omepage.univie.ac.at/franz.embacer/

Mehr

GRUNDVORSTELLUNGEN BEI DER EINFÜHRUNG DER BEIDEN BEGRIFFE DIFFERENZENQUOTIENT UND DIFFERENTIALQUOTIENT

GRUNDVORSTELLUNGEN BEI DER EINFÜHRUNG DER BEIDEN BEGRIFFE DIFFERENZENQUOTIENT UND DIFFERENTIALQUOTIENT GRUNDVORSTELLUNGEN BEI DER EINFÜHRUNG DER BEIDEN BEGRIFFE DIFFERENZENQUOTIENT UND DIFFERENTIALQUOTIENT Dr. Bernard Salzger Don Bosco-Gymnasium, Ebreicsdorf-Unterwalterdorf Ebreicsdorf-Unterwaltersdorf,

Mehr

Zuordnungen. 2 x g: y = x + 2 h: y = x 1 4

Zuordnungen. 2 x g: y = x + 2 h: y = x 1 4 Zuordnungen Bei Zuordnungen wird jedem vorgegebenen Wert aus einem Bereich ein Wert aus einem anderen Bereich zugeordnet. Zuordnungen können z.b. durch Wertetabellen, Diagramme oder Rechenvorschriften

Mehr

Arbeit - Energie - Reibung

Arbeit - Energie - Reibung Arbeit - nergie - eibung Die ncfolgenden Aufgben und Definitionen sind ein erster instieg in dieses Tem. Hier wird unterscieden zwiscen den Begriffen Arbeit und nergie. Verwendete ormelzeicen sind in der

Mehr

ges.: Der erste Treffpunkt ist zum Zeitpunkt 0 am Start. Danach fährt der Fahrer 1 45 min und legt dabei

ges.: Der erste Treffpunkt ist zum Zeitpunkt 0 am Start. Danach fährt der Fahrer 1 45 min und legt dabei 859. Zwei Auo faren mi erciedenen Gecwindigkeien 1 = 160 / bzw. 2 = 125 / dieelbe Srecke on 200 Länge. Beide Wagen aren gleiczeiig in derelben Ricung. Der arer de cnelleren Wagen mac nac 45min arzei 15min

Mehr

Formelsammlung. Fachangestellte für Bäderbetriebe Meister für Bäderbetriebe. Inhalt

Formelsammlung. Fachangestellte für Bäderbetriebe Meister für Bäderbetriebe. Inhalt Forelsalung Facangestellte für Bäderbetriebe Meister für Bäderbetriebe Erstellt von Dipl.-Ing. (FH) Wolfgang Hetteric, BVS it Ergänzungen von Dipl.-Ing. (FH) Peter Vltavsky, BS Lindau Inalt llgeeine Mecanik...

Mehr

(Pi 1 otprogramm) 18. bis 21.11.1980. Veranstalter: Städtisches Arbeitsamt Zürich Kursleitung: Marco Siegrict Betreuung: Hans Jörg von Buren

(Pi 1 otprogramm) 18. bis 21.11.1980. Veranstalter: Städtisches Arbeitsamt Zürich Kursleitung: Marco Siegrict Betreuung: Hans Jörg von Buren Städtisces Arbeitsamt Züric Birmensdorferstracse 83 8036 Züric Scl ussber i ct I M P U L S P R O G R A M M ip1/80 (Pi 1 otprogramm) 18. bis 21.11.1980 INFO-PARTNER Veranstalter: Städtisces Arbeitsamt Züric

Mehr