Lösungen zum Aufgabenblatt 4:

Save this PDF as:
 WORD  PNG  TXT  JPG

Größe: px
Ab Seite anzeigen:

Download "Lösungen zum Aufgabenblatt 4:"

Transkript

1 Lösungen zum Aufgabenblatt 4: $XIJDE Berechnen Sie die Kapazität eines Plattenkondensators mit der Fläche A 1cm, einem Abstand zwischen den Platten von d 5mm und einem Isoliermaterial mit der Dielektrizitätszahl ε 3. Geben Sie den Wert in einer gängigen Form an. Lösung: 6FKULWW Aus der Angabe der Dielektrizitätszahl ε und der Dielektrizitätskonstante des Vakuums (ε.5 * 1 13 $V 9FP Materials bestimmt werden. ε ε *ε.5 * 1 13 * * 1 13 $V [ 9FP ) muß die Dielektrizitätskonstante des ] 6FKULWW Die Kapazität eines Kondensators hängt von der Dielektrizitätskonstante des Materials, seiner Fläche und dem Abstand der Platten ab. Es gilt: C ε * G $.655 * 1 13 * 1.5 FP $V [ FP 9FP ] 5.31 * 1-11 [ 9 $V ] [F] C 53.1 pf

2 $XIJDE Ein Kondensators mit der Kapazität C 1µF wird über einen Widerstand von R.kΩ entladen. Der Kondensator wurde mit einer Spannung von 1V aufgeladen. Wie groß ist die Spannung nach 1ms. Wie lange dauert es, bis die Spannung auf die älfte der Ausgangsspannung gesunken ist? 6FKULWW Die Werte sind: u c (t ) U 1V. t 1 1ms R.kΩ C 1 * 1-6 F 6FKULWW Zeitkonstante berechnen R * C * 1 * $V. [Ω * F] [ * ] [s] $ 9 6FKULWW Formel für den Entladevorgang u c (t 1 ) U *.1. U * [V* e -s/s ] [V] 1 * 6.4 [V] 6FKULWW Formel für den Entladevorgang nach t umformen. u c (t) U * X ( W) ln ( ( W) X W ) X ( W) X ( W) t - ln ( )* * t ln ( )* R * C 6FKULWW Werte einsetzen und Ergebnis berechnen. t ln ( )*..15 s 15

3 Dasselbe mit 1m 6FKULWW Die Werte sind: u c (t ) U 1V. t 1 1ms R.kΩ C 1 * 1-3 F 6FKULWW Zeitkonstante berechnen R * C * 1 * $V [Ω * F] [ * ] [s] $ 9 6FKULWW Formel für den Entladevorgang u c (t 1 ) U * U * [V* e -s/s ] [V].1 1 * 1 * [V] 6FKULWW Formel für den Entladevorgang nach t umformen. u c (t) U * X ( W) ln ( ( W) X W ) X ( W) X ( W) t - ln ( )* * t ln ( )* R * C 6FKULWW Werte einsetzen und Ergebnis berechnen. t ln ( )* 15.5 s 15

4 $XIJDE Gegeben ist ein Kondensator mit der Kapazität von C 47 nf. Dieser wird über einen Widerstand von R 7kR von einer Spannungsquelle mit U 6V aufgeladen. Der Ladevorgang wird nach 55ms abgebrochen. Daraufhin wird ein Entladevorgang eingeleitet, bei dem der Kondensator über einen Widerstand von kr entladen wird. Berechnen Sie den Entladestrom nach 4ms. Lösung: 6FKULWW Zeitkonstante für den Ladevorgang berechnen. R * C 47*1-9 * 7k.17 [Ω * F V/A * As/V s] 6FKULWW Spannung nach 55ms berechnen. u c (5ms) U o * (1- ) 6 * ( ) 6 * [V] 6FKULWW Zeitkonstante für den Entladevorgang berechnen. R * C 47*1-9 * k.35 [s] 6FKULWW Anfangsstromstärke berechnen. Da der Kondensator nicht komplett geladen wurde, gilt für den Entladevorgang U o 59.34V. I o [ma] 5 N 6FKULWW Strom nach 4 ms berechnen. 4 i c (4ms) -I o * * -.7 * [ma]

5 $XIJDE Gegeben sind die komplexen Zahlen Z j und Z * 3.65 a. Berechnen Sie die Summe und die Differenz der beiden Zahlen. 1 b. Berechnen Sie das Produkt und den Quotienten ( ) beider Zahlen. Wählen Sie für Aufgabe 3a und b den jeweils günstigsten Lösungsweg. 3 c. Bestimmen sie das Produkt und den Quotienten ( ) der beiden komplexen Zahlen Z 3 7-6j und Z 4 + 4j, ohne daß sich Rundungsfehler einschleichen. 4. Lösung: 6FKULWW Die Zahlen müssen entweder einheitlich im Komponentenform oder in polarer Darstellung vorliegen. a. Z 1 in die polare Darstellung umwandeln. Z ; Der Betrag Z 1 wird errechnet. Der Richtungswinkel ϕ wird berechnet. δ arc tan 5 ; + K wobei K für R > und K 1 o für K < K 1 o ist notwendig, weil die komplexe Zahl einen negativen Realteil besitzt und daher im. Quadranten angesiedelt ist. Die trigonometrischen Funktionen zur Bestimmung von δ beziehen sich auf den negativen Teil der x Achse, der Richtungswinkel jedoch auf den positiven Teil. δ arc tan Z 1 5 * 4 3 (16.7) + 1 o o + 1 o 16.7 o b. Z in Komponentendarstellung umwandeln. Imaginärteil: X Z * sin(δ) * sin(3.65 o ) *.4. Realteil: R Z * cos(δ) * cos(3.65 o ) * Z j

6 6FKULWW Addition und Subtraktion werden in Komponentenform durchgeführt. Z a Z 1 + Z j j j Z b Z 1 - Z j ( j) j 6FKULWW Multiplikation und Division werden in polarer Darstellung durchgeführt. (16.7) 3.65 ( 16.7 ) Z c Z 1 * Z (5 * ) * ( * ) 5 * * ( 15.5 ) 1 * Z d j16,7 1 5* e j 3.65 * e 5 * 16, *.5 * ( ) ( 13. 6FKULWW Damit keine Rundungsfehler auftreten, muß die Multiplikation bzw. Division in Komponentenform durchgeführt werden. ) Z e Z 3 * Z 4 (7-6j) * ( + 4j) 14 1j + j 4j Multiplikation j + 4 (da j -1) j Z f 3 4 (7-6j) ( + 4j) Quotient aus den beiden Zahlen (7-6j) ( + 4j) ( - 4j) * ( 4j) Erweiterung mit der konjugiert komplexen Zahl zu dem Nenner (Z 4 * 4j) 14 1 M M + 4 M 4 + M M 16 M Ausmultiplizieren der Brüche ( j -1) 1 4 M ±±M.5 j Kürzungen und Ergebnis

7 $XIJDE Erläutern Sie, warum man den Effektivwert benötigt und wie man ihn für eine sinusförmige Wechselgröße aus dem Spitzenwert errechnet. Warum ist der arithmetische Mittelwert für Sinusgrößen nur von geringer Aussagekraft und wann hat dieser seine Bedeutung. 1. Man benötigt den Effektivwert, damit man für den ständigen Spannungswechsel einer Wechselspannung eine aussagekräftige Größe besitzt, mit der man sie bezeichnen kann. Sinnvollerweise würde diejenige Spannung gewählt, die an einem ohmschen Verbraucher dieselbe Leistung umsetzt wie eine Gleichspannung gleicher Größe.. Der arithmetische Mittelwert ist für die Beschreibung von Wechselspannung von geringem Nutzen, weil sich die positive und die negative albwelle gegenseitig aufheben und deshalb der Wert des arithmetischen Mittels immer ist. Allerdings ändert sich das, wenn eine Schwingung nicht achsensymmetrisch zur x-achse (also zum O-Volt Bezugspotential) verläuft. Dann erhält man über den arithmetischen Mittelwert eine Größe, die die Abweichung von der Achsensymmetrie wiedergibt. Solche Abweichungen von der Achsensymmetrie zur x-achse können durch eine überlagerte Gleichspannung oder durch unsymmetrische Wellenformen hervorgerufen werden und werden Gleichanteil genannt.

+DXVDUEHLW $XIJDEH / VXQJ / VXQJ

+DXVDUEHLW $XIJDEH / VXQJ / VXQJ +DXVDUEHLW $XIJDEH Wie groß muß der Abstand der Platten eines Plattenkondensators sein, wenn seine Kapazität 100pF betragen soll. Gegeben ist der Durchmesser der runden Platten (d = 5 cm) und das Isoliermaterial

Mehr

R C 1s =0, C T 1

R C 1s =0, C T 1 Aufgaben zum Themengebiet Aufladen und Entladen eines Kondensators Theorie und nummerierte Formeln auf den Seiten 5 bis 8 Ein Kondensator mit der Kapazität = 00μF wurde mit der Spannung U = 60V aufgeladen

Mehr

Übungsaufgaben z. Th. Plattenkondensator

Übungsaufgaben z. Th. Plattenkondensator Übungsaufgaben z. Th. Plattenkondensator Aufgabe 1 Die Platten eines Kondensators haben den Radius r 18 cm. Der Abstand zwischen den Platten beträgt d 1,5 cm. An den Kondensator wird die Spannung U 8,

Mehr

Aufgabe Summe Note Mögliche Punkte Erreichte Punkte

Aufgabe Summe Note Mögliche Punkte Erreichte Punkte Universität Siegen Grundlagen der Elektrotechnik für Maschinenbauer Fachbereich 1 Prüfer : Dr.-Ing. Klaus Teichmann Datum : 7. April 005 Klausurdauer : Stunden Hilfsmittel : 5 Blätter Formelsammlung DIN

Mehr

Übungsbeispiele: 1) Auf eine Ladung von 20nClb wirkt eine Kraft von 8mN. Berechnen Sie die Feldstärke.

Übungsbeispiele: 1) Auf eine Ladung von 20nClb wirkt eine Kraft von 8mN. Berechnen Sie die Feldstärke. Übungsbeispiele: 1) Auf eine Ladung von 20nClb wirkt eine Kraft von 8mN. Berechnen Sie die Feldstärke. 2) Zwischen zwei Aluminum-Folien eines Wickelkondensators,der an einer Gleichspannung vo 60 V liegt,

Mehr

Aufgaben zur Wechselspannung

Aufgaben zur Wechselspannung Aufgaben zur Wechselspannung Aufgabe 1) Ein 30 cm langer Stab rotiert um eine horizontale, senkrecht zum Stab verlaufende Achse, wobei er in 10 s 2,5 Umdrehungen ausführt. Von der Seite scheint paralleles

Mehr

2 Das elektrostatische Feld

2 Das elektrostatische Feld Das elektrostatische Feld Das elektrostatische Feld wird durch ruhende elektrische Ladungen verursacht, d.h. es fließt kein Strom. Auf die ruhenden Ladungen wirken Coulomb-Kräfte, die über das Coulombsche

Mehr

Grundlagen der Elektrotechnik: Wechselstromwiderstand Xc Seite 1 R =

Grundlagen der Elektrotechnik: Wechselstromwiderstand Xc Seite 1 R = Grundlagen der Elektrotechnik: Wechselstromwiderstand Xc Seite 1 Versuch zur Ermittlung der Formel für X C In der Erklärung des Ohmschen Gesetzes ergab sich die Formel: R = Durch die Versuche mit einem

Mehr

Übungen zu ET1. 3. Berechnen Sie den Strom I der durch die Schaltung fließt!

Übungen zu ET1. 3. Berechnen Sie den Strom I der durch die Schaltung fließt! Aufgabe 1 An eine Reihenschaltung bestehend aus sechs Widerständen wird eine Spannung von U = 155V angelegt. Die Widerstandwerte betragen: R 1 = 390Ω R 2 = 270Ω R 3 = 560Ω R 4 = 220Ω R 5 = 680Ω R 6 = 180Ω

Mehr

Uebungsserie 1.1 Harmonische Signale und Ihre Darstellung

Uebungsserie 1.1 Harmonische Signale und Ihre Darstellung 28. September 2016 Elektrizitätslehre 3 Martin Weisenhorn Uebungsserie 1.1 Harmonische Signale und Ihre Darstellung Aufgabe 1. Die nachfolgende Grafik stellt das Oszillogramm zweier sinusförmiger Spannungen

Mehr

PROTOKOLL ZUM ANFÄNGERPRAKTIKUM PHYSIK. Messung von Kapazitäten Auf- und Entladung von Kondensatoren. Sebastian Finkel Sebastian Wilken

PROTOKOLL ZUM ANFÄNGERPRAKTIKUM PHYSIK. Messung von Kapazitäten Auf- und Entladung von Kondensatoren. Sebastian Finkel Sebastian Wilken PROTOKOLL ZUM ANFÄNGERPRAKTIKUM PHYSIK Messung von Kapazitäten Auf- und Entladung von Kondensatoren Sebastian Finkel Sebastian Wilken Versuchsdurchführung: 23. November 2005 0. Inhalt 1. Einleitung 2.

Mehr

K l a u s u r N r. 2 Gk Ph 12

K l a u s u r N r. 2 Gk Ph 12 0.2.2009 K l a u s u r N r. 2 Gk Ph 2 ) Leiten Sie die Formel für die Gesamtkapazität von drei in Serie geschalteten Kondensatoren her. (Zeichnung, Formeln, begründender Text) 2) Berechnen Sie die Gesamtkapazität

Mehr

3.2 Ohmscher Widerstand im Wechselstromkreis 12

3.2 Ohmscher Widerstand im Wechselstromkreis 12 3 WECHSELSPANNNG 3 3.1 Grundlagen der 3 3.1.1 Festlegung der Wechselstromgrößen 3 3.1.2 Sinusförmige Wechselgrößen 7 3.1.3 Graphische Darstellung von Wechselgrößen 9 3.2 Ohmscher Widerstand im Wechselstromkreis

Mehr

Addition, Subtraktion und Multiplikation von komplexen Zahlen z 1 = (a 1, b 1 ) und z 2 = (a 2, b 2 ):

Addition, Subtraktion und Multiplikation von komplexen Zahlen z 1 = (a 1, b 1 ) und z 2 = (a 2, b 2 ): Komplexe Zahlen Definition 1. Eine komplexe Zahl z ist ein geordnetes Paar reeller Zahlen (a, b). Wir nennen a den Realteil von z und b den Imaginärteil von z, geschrieben a = Re z, b = Im z. Komplexe

Mehr

1. Klausur in K1 am

1. Klausur in K1 am Name: Punkte: Note: Ø: Kernfach Physik Abzüge für Darstellung: Rundung: 1. Klausur in K1 am 19. 10. 010 Achte auf die Darstellung und vergiss nicht Geg., Ges., Formeln, Einheiten, Rundung...! Angaben:

Mehr

Aufgabensammlung zu Kapitel 2

Aufgabensammlung zu Kapitel 2 Aufgabensammlung zu Kapitel 2 Aufgabe 2.1: Ein Plattenkondensator (quadratische Platten der Kantenlänge a=15cm, Plattenabstand d=5mm) wird an eine Gleichspannungsquelle mit U=375V angeschlossen. Berechnen

Mehr

Komplexe Zahlen (Seite 1)

Komplexe Zahlen (Seite 1) (Seite 1) (i) Motivation: + 5 = 3 hat in N keine Lösung Erweiterung zu Z = 2 3 = 2 hat in Z keine Lösung Erweiterung zu Q = 2 / 3 ² = 2 hat in Q keine Lösung Erweiterung zu R = ± 2 ² + 1 = 0 hat in R keine

Mehr

NTB Druckdatum: ELA II. Zeitlicher Verlauf Wechselgrösse: Augenblickswert ändert sich periodisch und der zeitliche Mittelwert ist Null.

NTB Druckdatum: ELA II. Zeitlicher Verlauf Wechselgrösse: Augenblickswert ändert sich periodisch und der zeitliche Mittelwert ist Null. WECHSELSTROMLEHRE Wechselgrössen Zeitlicher Verlauf Wechselgrösse: Augenblickswert ändert sich periodisch und der zeitliche Mittelwert ist Null. Zeigerdarstellung Mittelwerte (Gleichwert, Gleichrichtwert

Mehr

5.5 Ortskurven höherer Ordnung

5.5 Ortskurven höherer Ordnung 2 5 Ortskurven 5.5 Ortskurven höherer Ordnung Ortskurve Parabel Die Ortskurvengleichung für die Parabel lautet P A + p B + p 2 C. (5.) Sie kann entweder aus der Geraden A + p B und dem Anteil p 2 C oder

Mehr

Institut für Informatik. Aufgaben zur Klausur Grundlagen der Technischen Informatik 1 und 2

Institut für Informatik. Aufgaben zur Klausur Grundlagen der Technischen Informatik 1 und 2 NIVERSITÄT LEIPZIG Institut für Informatik Prüfungsaufgaben Klausur Wintersemester 2/21 Abt. Technische Informatik Prof. Dr. do Kebschull Dr. Paul Herrmann Dr. Hans-Joachim Lieske Datum: 6. Februar 21

Mehr

Entladung eines Kondensators

Entladung eines Kondensators 3.11.5 Entladung eines Kondensators Im Gegensatz zu einer Batterie kann mit einem Kondensator innerhalb von kurzer Zeit eine hohe Stromstärke erzeugt werden. Dies wird zum Beispiel beim Blitz eines Fotoapparates

Mehr

Physik für Mediziner im 1. Fachsemester

Physik für Mediziner im 1. Fachsemester Physik für Mediziner im 1. Fachsemester #17 19/11/2010 Vladimir Dyakonov dyakonov@physik.uni-wuerzburg.de Elektrizitätslehre Teil 2 Kondensator Kondensator Im einfachsten Fall besteht ein Kondensator aus

Mehr

Entladen und Aufladen eines Kondensators über einen ohmschen Widerstand

Entladen und Aufladen eines Kondensators über einen ohmschen Widerstand Entladen und Aufladen eines Kondensators über einen ohmschen Widerstand Vorüberlegung In einem seriellen Stromkreis addieren sich die Teilspannungen zur Gesamtspannung Bei einer Gesamtspannung U ges, der

Mehr

Verbundstudiengang Wirtschaftsingenieurwesen (Bachelor) Praktikum Grundlagen der Elektrotechnik und Elektronik

Verbundstudiengang Wirtschaftsingenieurwesen (Bachelor) Praktikum Grundlagen der Elektrotechnik und Elektronik erbundstudiengang Wirtschaftsingenieurwesen (Bachelor) Praktikum Grundlagen der Elektrotechnik und Elektronik ersuch 3 Grundschaltungen der Wechselstromtechnik Teilnehmer: Name orname Matr.-Nr. Datum der

Mehr

Diplomvorprüfung SS 2010 Fach: Grundlagen der Elektrotechnik Dauer: 90 Minuten

Diplomvorprüfung SS 2010 Fach: Grundlagen der Elektrotechnik Dauer: 90 Minuten Diplomvorprüfung Grundlagen der Elektrotechnik Seite 1 von 8 Hochschule München FK 03 Zugelassene Hilfsmittel: Taschenrechner, zwei Blatt DIN A4 eigene Aufzeichnungen Diplomvorprüfung SS 2010 Fach: Grundlagen

Mehr

Elektrotechnik I MAVT

Elektrotechnik I MAVT Prof. Dr. Q. Huang Elektrotechnik MAVT Prüfung H07 BSc 23.08.2007 1. [30P] DC-Aufgaben (a) [9P] Betrachten Sie die Schaltung in Abbildung 1 und lösen Sie die nachfolgenden Aufgaben. Vereinfachen Sie die

Mehr

Wiederholung: Elektrisches Feld und Feldlinien I Feld zwischen zwei Punktladungen (pos. und neg.)

Wiederholung: Elektrisches Feld und Feldlinien I Feld zwischen zwei Punktladungen (pos. und neg.) Wiederholung: Elektrisches Feld und Feldlinien I Feld zwischen zwei Punktladungen (pos. und neg.) 1 Grieskörner schwimmen in Rhizinusöl. Weil sie kleine Dipole werden, richten sie sich entlang der Feldlinien

Mehr

Gegeben ist die dargestellte Schaltung mit nebenstehenden Werten. Daten: U AB. der Induktivität L! und I 2. , wenn Z L. = j40 Ω ist? an!

Gegeben ist die dargestellte Schaltung mit nebenstehenden Werten. Daten: U AB. der Induktivität L! und I 2. , wenn Z L. = j40 Ω ist? an! Grundlagen der Elektrotechnik I Aufgabe K4 Gegeben ist die dargestellte Schaltung mit nebenstehenden Werten. R 1 A R 2 Daten R 1 30 Ω R 3 L R 2 20 Ω B R 3 30 Ω L 40 mh 1500 V f 159,15 Hz 1. Berechnen Sie

Mehr

Musterlösungen zu Grundlagen der Wechselstromtechnik

Musterlösungen zu Grundlagen der Wechselstromtechnik Musterlösungen zu Grundlagen der Wechselstromtechnik W. Kippels 2. September 2016 Inhaltsverzeichnis 1 Grundgrößen der Wechselstromtechnik 2 1.1 Übungsfragen zu Grundgrößen der Wechselstromtechnik..........

Mehr

Elektrotechnik für Studierende Inhalt. Vorwort...11

Elektrotechnik für Studierende Inhalt. Vorwort...11 5 Inhalt Vorwort...11 1 Signale...13 1.1 Definitionen zu Signalen...13 1.2 Klassifizierung von Signalen...15 1.2.1 Klassifizierung nach dem Signalverlauf...15 1.2.1.1 Determinierte Signale...15 1.2.1.2

Mehr

Unter Kapazität versteht man die Eigenschaft von Kondensatoren, Ladung oder elektrische Energie zu speichern.

Unter Kapazität versteht man die Eigenschaft von Kondensatoren, Ladung oder elektrische Energie zu speichern. 16. Kapazität Unter Kapazität versteht man die Eigenschaft von Kondensatoren, Ladung oder elektrische Energie zu speichern. 16.1 Plattenkondensator Das einfachste Beispiel für einen Kondensator ist der

Mehr

AFu-Kurs nach DJ4UF. Technik Klasse E 05: Der Kondensator und seine Schaltungsarten. Amateurfunkgruppe der TU Berlin.

AFu-Kurs nach DJ4UF. Technik Klasse E 05: Der Kondensator und seine Schaltungsarten. Amateurfunkgruppe der TU Berlin. Technik Klasse E 05: Der Kondensator und seine Amateurfunkgruppe der TU Berlin http://www.dk0tu.de Stand 26.10.2015 This work is licensed under the Creative Commons Attribution-ShareAlike 3.0 License.

Mehr

Bearbeitungszeit: 30 Minuten

Bearbeitungszeit: 30 Minuten Vorname: Studiengang: Platz: Aufgabe: 1 2 3 Gesamt Punkte: Bearbeitungszeit: 30 Minuten Zugelassene Hilfsmittel: - eine selbsterstellte, handgeschriebene Formelsammlung (1 Blatt DIN A4, einseitig beschrieben,

Mehr

Komplexe Zahlen und Wechselstromwiderstände

Komplexe Zahlen und Wechselstromwiderstände Komplexe Zahlen und Wechselstromwiderstände Axel Tobias 22.2.2000 Ein besonderer Dank geht an Ingo Treunowski, der die Übertragung meines Manuskriptes in L A TEX durchgeführt hat tob skript komplex.tex.

Mehr

Der Verlauf der magnetischen Kraftwirkung um einen Magneten wird mit Hilfe von magnetischen Feldlinien beschrieben.

Der Verlauf der magnetischen Kraftwirkung um einen Magneten wird mit Hilfe von magnetischen Feldlinien beschrieben. Wechsel- und Drehstrom - KOMPAKT 1. Spannungserzeugung durch Induktion Das magnetische Feld Der Verlauf der magnetischen Kraftwirkung um einen Magneten wird mit Hilfe von magnetischen Feldlinien beschrieben.

Mehr

Messtechnische Ermittlung der Größen komplexer Bauelemente

Messtechnische Ermittlung der Größen komplexer Bauelemente TFH Berlin Messtechnik Labor Seite 1 von 9 Messtechnische Ermittlung der Größen komplexer Bauelemente Ort: TFH Berlin Datum: 08.12.03 Uhrzeit: Dozent: Arbeitsgruppe: von 8.00 bis 11.30 Uhr Prof. Dr.-Ing.

Mehr

Aufgaben zur Vorbereitung der Klausur zur Vorlesung Einführung in die Physik für Natur- und Umweltwissenschaftler v. Issendorff, WS2013/

Aufgaben zur Vorbereitung der Klausur zur Vorlesung Einführung in die Physik für Natur- und Umweltwissenschaftler v. Issendorff, WS2013/ Aufgaben zur Vorbereitung der Klausur zur Vorlesung inführung in die Physik für Natur- und Umweltwissenschaftler v. Issendorff, WS213/14 5.2.213 Aufgabe 1 Zwei Widerstände R 1 =1 Ω und R 2 =2 Ω sind in

Mehr

Klausurvorbereitung Elektrotechnik für Maschinenbau. Thema: Gleichstrom

Klausurvorbereitung Elektrotechnik für Maschinenbau. Thema: Gleichstrom Klausurvorbereitung Elektrotechnik für Maschinenbau 1. Grundbegriffe / Strom (5 Punkte) Thema: Gleichstrom Auf welchem Bild sind die technische Stromrichtung und die Bewegungsrichtung der geladenen Teilchen

Mehr

2. Klausur in K1 am

2. Klausur in K1 am Name: Punkte: Note: Ø: Physik Kursstufe Abzüge für Darstellung: Rundung:. Klausur in K am 7.. 00 Achte auf die Darstellung und vergiss nicht Geg., Ges., Formeln, Einheiten, Rundung...! Angaben: e =,60

Mehr

Nerreter, Grundlagen der Elektrotechnik Carl Hanser Verlag München. 8 Schaltvorgänge

Nerreter, Grundlagen der Elektrotechnik Carl Hanser Verlag München. 8 Schaltvorgänge Carl Hanser Verlag München 8 Schaltvorgänge Aufgabe 8.6 Wie lauten für R = 1 kω bei der Aufgabe 8.1 die Differenzialgleichungen und ihre Lösungen für die Spannungen u 1 und u 2 sowie für den Strom i? Aufgabe

Mehr

Ferienkurs - Experimentalphysik 2 - Übungsblatt - Lösungen

Ferienkurs - Experimentalphysik 2 - Übungsblatt - Lösungen Technische Universität München Department of Physics Ferienkurs - Experimentalphysik 2 - Übungsblatt - Lösungen Montag Daniel Jost Datum 2/8/212 Aufgabe 1: (a) Betrachten Sie eine Ladung, die im Ursprung

Mehr

Zusammenstellung der in TARGET 3001! simulierten Grundschaltungen

Zusammenstellung der in TARGET 3001! simulierten Grundschaltungen Simulieren mit TARGET 31! Seite 1 von 24 Zusammenstellung der in TARGET 31! simulierten Grundschaltungen Alle simulierten Schaltungen sind als TARGET 31!Schaltungen vorhanden und beginnen mit SIM LED Kennlinie...2

Mehr

Corinne Schenka Vorkurs Mathematik WiSe 2012/13. Die kleineren Zahlbereiche sind jeweils Teilmengen von größeren Zahlbereichen:

Corinne Schenka Vorkurs Mathematik WiSe 2012/13. Die kleineren Zahlbereiche sind jeweils Teilmengen von größeren Zahlbereichen: 2. Zahlbereiche Besonderheiten und Rechengesetze Die kleineren Zahlbereiche sind jeweils Teilmengen von größeren Zahlbereichen: 2.1. Die natürlichen Zahlen * + besitzt abzählbar unendlich viele Elemente

Mehr

Elektrotechnische Grundlagen, WS 00/01. Musterlösung Übungsblatt 1. Hieraus läßt sich der Strom I 0 berechnen:

Elektrotechnische Grundlagen, WS 00/01. Musterlösung Übungsblatt 1. Hieraus läßt sich der Strom I 0 berechnen: Elektrotechnische Grundlagen, WS 00/0 Prof. aitinger / Lammert esprechung: 06..000 ufgabe Widerstandsnetzwerk estimmen Sie die Werte der Spannungen,, 3 und 4 sowie der Ströme, I, I, I 3 und I 4 in der

Mehr

7. Wechselspannung und Wechselstrom

7. Wechselspannung und Wechselstrom Bisher wurden nur Gleichspannungen und Gleichströme und die zugehörigen Ein- und Ausschaltvorgänge behandelt. In diesem Kapitel werden Spannungen und Ströme eingeführt, die ihre Richtung zyklisch ändern.

Mehr

Lösungen zu Kapazitäten / Kondensatoren

Lösungen zu Kapazitäten / Kondensatoren Ein- und Ausschaltvorgänge mit Kapazitäten A47: (869, 870) Ein Kondensator von µf wird über einen Widerstand von 3 MΩ auf eine Spannung von 50 V geladen. Welche Werte hat der Ladestrom a) 0,3 s, b), s,

Mehr

Amateurfunkkurs. Themen Übersicht. Erstellt: Landesverband Wien im ÖVSV. 1 Widerstand R. 2 Kapazität C. 3 Induktivität L.

Amateurfunkkurs. Themen Übersicht. Erstellt: Landesverband Wien im ÖVSV. 1 Widerstand R. 2 Kapazität C. 3 Induktivität L. Amateurfunkkurs Landesverband Wien im ÖVSV Erstellt: 2010-2011 Letzte Bearbeitung: 20. Februar 2016 Themen 1 2 3 4 5 6 Zusammenhang zw. Strom und Spannung am Widerstand Ein Widerstand... u i Ohmsches Gesetz

Mehr

ax 2 + bx + c = 0, (4.1)

ax 2 + bx + c = 0, (4.1) Kapitel 4 Komplexe Zahlen Wenn wir uns auf die reellen Zahlen beschränken, ist die Operation des Wurzelziehens (also die Umkehrung der Potenzierung) nicht immer möglich. Zum Beispiel können wir nicht die

Mehr

4. Zusammenhang von elektrischer Feldstärke und Spannung eines Kondensators; Kapazität eines Kondensators

4. Zusammenhang von elektrischer Feldstärke und Spannung eines Kondensators; Kapazität eines Kondensators 4. Zusammenhang von elektrischer Felstärke un Spannung eines Konensators; Kapazität eines Konensators Zusammenhang von elektrischer Felstärke un Spannung eines Plattenkonensators Überlegung: Eine positive

Mehr

Abschlussprüfung an Fachoberschulen im Schuljahr 2004/2005

Abschlussprüfung an Fachoberschulen im Schuljahr 2004/2005 Abschlussprüfung an Fachoberschulen im Schuljahr 200/200 Haupttermin: Nach- bzw Wiederholtermin: 0909200 Fachrichtung: Technik Fach: Physik Prüfungsdauer: 210 Minuten Hilfsmittel: - Formelsammlung/Tafelwerk

Mehr

4. GV: Wechselstrom. Protokoll zum Praktikum. Physik Praktikum I: WS 2005/06. Protokollanten. Jörg Mönnich - Anton Friesen - Betreuer.

4. GV: Wechselstrom. Protokoll zum Praktikum. Physik Praktikum I: WS 2005/06. Protokollanten. Jörg Mönnich - Anton Friesen - Betreuer. Physik Praktikum I: WS 005/06 Protokoll zum Praktikum 4. GV: Wechselstrom Protokollanten Jörg Mönnich - Anton Friesen - Betreuer Marcel Müller Versuchstag Dienstag, 0.1.005 Wechselstrom Einleitung Wechselstrom

Mehr

Aufgaben zum Thema Elektromagnetische Schwingungen

Aufgaben zum Thema Elektromagnetische Schwingungen Aufgaben zum Thema Elektromagnetische Schwingungen 10.03.2011 1.Aufgabe: a)an eine vertikal aufgehängte Schraubenfeder wird ein Körper mit der Masse m = 0,30 kg gehängt. Dadurch wird die Feder um x = 1,2

Mehr

1.1.3 Bruchrechnung. Sätze: Produkte: a n b n = (a b) n n a n. b = n. a b Quotienten: a n : a m = a n m a n : b n = ( a _ b) n a :

1.1.3 Bruchrechnung. Sätze: Produkte: a n b n = (a b) n n a n. b = n. a b Quotienten: a n : a m = a n m a n : b n = ( a _ b) n a : Sätze: Produkte: a n a m = an + m a n n = (a ) n n a n = n a Quotienten: a n : a m = a n m a n : n = ( a _ ) n n n a : = n Klammern: (a n ) m = a nm = (a m ) n ( n a ) m = n a m = kn a km rationaler Eponent:

Mehr

6 Wechselstrom-Schaltungen

6 Wechselstrom-Schaltungen für Maschinenbau und Mechatronik Carl Hanser Verlag München 6 Wechselstrom-Schaltungen Aufgabe 6.1 Durch ein Grundeintor C = 0,47 µf an der Sinusspannung U = 42 V fließt ein Sinusstrom mit dem Effektivwert

Mehr

Institut für Mikrosystemtechnik. Prof. Dr. D. Ehrhardt. Bauelemente und Schaltungstechnik,

Institut für Mikrosystemtechnik. Prof. Dr. D. Ehrhardt. Bauelemente und Schaltungstechnik, Kondensatoren 1 Kondensator Kondensatorgrundformen 2 Kondensator Plattenkondensator C = ε r ε 0 A d (Farad) mit ε 0 = 8, 86 10 12 F m u C = 1 C i C dt bzw. 3 U = Q C mit Q = I t bzw. Q = idt gespeicherte

Mehr

Physik LK 12, Klausur 02 Elektrisches Feld und Kondensator Lösung

Physik LK 12, Klausur 02 Elektrisches Feld und Kondensator Lösung Konstanten: Elementarladung e=,602 0 9 2 As 2 C. Elektrische Feldkonstante: 8,8542 0 N m 2 Dielektrizitätszahl: r Luft = Aufgabe : Eine studentische Hilfskraft wurde eingestellt, um acht Stunden lang Ladungen

Mehr

1.Weiterentwicklung der Zahlvorstellung 1.1Die natürlichen Zahlen Mengenschreibweise: N = {1,2,3,...} N 0 = {0,1,2,3,...}

1.Weiterentwicklung der Zahlvorstellung 1.1Die natürlichen Zahlen Mengenschreibweise: N = {1,2,3,...} N 0 = {0,1,2,3,...} 1 Grundwissen Mathematik 5.Klasse Gymnasium SOB 1.Weiterentwicklung der Zahlvorstellung 1.1Die natürlichen Zahlen Mengenschreibweise: N = {1,2,3,...} N 0 = {0,1,2,3,...} Darstellung am Zahlenstrahl: Darstellung

Mehr

Übungen zu Wellen und Elektrodynamik für Chemie- und Bioingenieure und Verfahrenstechniker WS 11/12

Übungen zu Wellen und Elektrodynamik für Chemie- und Bioingenieure und Verfahrenstechniker WS 11/12 Institut für Experimentelle Kernphysik Übungen zu Wellen und Elektrodynamik für Chemie- und Bioingenieure und Verfahrenstechniker WS 11/12 Prof. Dr. T. Müller Dr. F. Hartmann Blatt 4 - letzte Übung in

Mehr

Vorbereitung: Vierpole und Leitungen

Vorbereitung: Vierpole und Leitungen Vorbereitung: Vierpole und Leitungen Marcel Köpke Gruppe 7 27..20 Inhaltsverzeichnis Aufgabe 3. Vierpole..................................... 3.2 RC-Spannungsteiler............................... 3.2.

Mehr

Technische Universität Kaiserslautern Lehrstuhl Entwurf Mikroelektronischer Systeme Prof. Dr.-Ing. N. Wehn. Probeklausur

Technische Universität Kaiserslautern Lehrstuhl Entwurf Mikroelektronischer Systeme Prof. Dr.-Ing. N. Wehn. Probeklausur Technische Universität Kaiserslautern Lehrstuhl Entwurf Mikroelektronischer Systeme Prof. Dr.-Ing. N. Wehn 22.02.200 Probeklausur Elektrotechnik I für Maschinenbauer Name: Vorname: Matr.-Nr.: Fachrichtung:

Mehr

Leistung bei Wechselströmen

Leistung bei Wechselströmen Einführung in die Physik II für Studierende der Naturwissenschaften und Zahnheilkunde Sommersemester 27 VL #4 am 6.7.27 Vladimir Dyakonov Leistung bei Wechselströmen I(t) I(t) Wechselspannung U Gleichspannung

Mehr

Aufgaben zum Kondensator - ausgegeben am

Aufgaben zum Kondensator - ausgegeben am Aufgaben zum Kondensator - ausgegeben am 17.09.2012 konden2_17_09_2012.doc 1.Aufgabe: Ein Kondensator hat die Plattenfläche A 1,2 10-2 m 2, den Plattenabstand d 0,5 mm und die Ladung Q 2,6 10-7 C. Berechnen

Mehr

Ergänzung zu komplexe Zahlen

Ergänzung zu komplexe Zahlen Juli 2015 Übersicht 1 Ortskurven 2 Wechselstromkreis mit ohmschem und kapazitivem Widerstand (Parallelschaltung) i(t) u(t) R C Bei festen Werten für den ohmschen Widerstand R und die Kapazität C ergibt

Mehr

A1 A2 A3 A4 A5 A6 Summe

A1 A2 A3 A4 A5 A6 Summe 2. Klausur Grundlagen der Elektrotechnik I-A 16. Februar 2004 Name:... Vorname:... Matr.-Nr.:... Bitte den Laborbeteuer ankreuzen Björn Eissing Karsten Gänger Christian Jung Andreas Schulz Jörg Schröder

Mehr

Kondensatoren ( Verdichter, von lat.: condensus: dichtgedrängt, bezogen auf die elektrischen Ladungen)

Kondensatoren ( Verdichter, von lat.: condensus: dichtgedrängt, bezogen auf die elektrischen Ladungen) Der Kondensator Kondensatoren ( Verdichter, von lat.: condensus: dichtgedrängt, bezogen auf die elektrischen Ladungen) Kondensatoren sind Bauelemente, welche elektrische Ladungen bzw. elektrische Energie

Mehr

Elektrische und Magnetische Felder

Elektrische und Magnetische Felder Q1 LK Physik s6dea Themen für Kursarbeit Nr.2 am 6.12.2016 Elektrische und Magnetische Felder Statische elektrische Felder, Kondensatoren Zusammenhang zwischen Ladung und Stromstärke elektrische Energie

Mehr

Klausur 2 Kurs 11Ph1e Physik. 2 Q U B m

Klausur 2 Kurs 11Ph1e Physik. 2 Q U B m 2010-11-24 Klausur 2 Kurs 11Ph1e Physik Lösung 1 α-teilchen (=2-fach geladene Heliumkerne) werden mit der Spannung U B beschleunigt und durchfliegen dann einen mit der Ladung geladenen Kondensator (siehe

Mehr

Klausur 06.09.2010 Grundlagen der Elektrotechnik II (MB, EUT, LUM) Seite 1 von 5

Klausur 06.09.2010 Grundlagen der Elektrotechnik II (MB, EUT, LUM) Seite 1 von 5 Klausur 06.09.2010 Grundlagen der Elektrotechnik II (M, EUT, LUM) Seite 1 von 5 Aufgabe 1 (4 Punkte) Name: Mit Matr.-Nr.: Lösung r = 30 cm d = 1 mm Q = 7,88 10-6 As ε 0 = 8,85 10-12 As/Vm ε r = 5 Der dargestellte

Mehr

Lk Physik in 12/1 1. Klausur aus der Physik Blatt 1 (von 2) C = 4πε o r

Lk Physik in 12/1 1. Klausur aus der Physik Blatt 1 (von 2) C = 4πε o r Blatt 1 (von 2) 1. Ladung der Erde 6 BE a) Leite aus dem oulombpotential die Beziehung = 4πε o r für die Kapazität einer leitenden Kugel mit Radius r her. In der Atmosphäre herrscht nahe der Erdoberfläche

Mehr

Grundwissen 5. Klasse

Grundwissen 5. Klasse Grundwissen 5. Klasse 1/5 1. Zahlenmengen Grundwissen 5. Klasse Natürliche Zahlen ohne Null: N 1;2;3;4;5;... mit der Null: N 0 0;1;2;3;4;... Ganze Zahlen: Z... 3; 2; 1;0;1;2;3;.... 2. Die Rechenarten a)

Mehr

1. Klausur in K2 am

1. Klausur in K2 am Name: Punkte: Note: Ø: Kernfach Physik Abzüge für Darstellung: Rundung:. Klausur in K am 0.0. Achte auf die Darstellung und vergiss nicht Geg., Ges., Formeln, Einheiten, Rundung...! Angaben: Schallgeschwindigkeit

Mehr

Grundlagen der Elektrotechnik für Maschinenbauer

Grundlagen der Elektrotechnik für Maschinenbauer Universität Siegen Grundlagen der Elektrotechnik für Maschinenbauer Fachbereich 12 Prüfer : Dr.-Ing. Klaus Teichmann Datum : 3. Februar 2005 Klausurdauer : 2 Stunden Hilfsmittel : 5 Blätter Formelsammlung

Mehr

R-C-Kreise. durchgeführt am 07.06.2010. von Matthias Dräger und Alexander Narweleit

R-C-Kreise. durchgeführt am 07.06.2010. von Matthias Dräger und Alexander Narweleit R-C-Kreise durchgeführt am 07.06.200 von Matthias Dräger und Alexander Narweleit PHYSIKALISCHE GRUNDLAGEN Physikalische Grundlagen. Kondensator Ein Kondensator ist ein passives elektrisches Bauelement,

Mehr

Marlene Marinescu. Elektrische und magnetische Felder

Marlene Marinescu. Elektrische und magnetische Felder Marlene Marinescu Zusätzliche Aufgaben mit ausführlichen Lösungen zu dem Buch Elektrische und magnetische Felder Eine praxisorientierte Einführung 2., bearbeitete Auflage Inhaltsverzeichnis 1 Elektrostatische

Mehr

Die Menge der reellen Zahlen vereinigt die Menge der rationalen Zahlen mit der Menge der irrationalen

Die Menge der reellen Zahlen vereinigt die Menge der rationalen Zahlen mit der Menge der irrationalen 9 Menge der natürlichen Zahlen Axiome von Peano: 1. 1 ist eine natürliche Zahl. 2. Jede Zahl a hat einen bestimmten Nachfolger a + in der Menge der natürlichen Zahlen.. Stets ist a + 1, d.h. es gibt keine

Mehr

Technische Universität Clausthal

Technische Universität Clausthal Technische Universität Clausthal Klausur im Sommersemester 2013 Grundlagen der Elektrotechnik I Datum: 09. September 2013 Prüfer: Prof. Dr.-Ing. Beck Institut für Elektrische Energietechnik Univ.-Prof.

Mehr

Elektrotechnik II Wechselstrom Magnetisches Feld

Elektrotechnik II Wechselstrom Magnetisches Feld Elektrotechnik II Wechselstrom Magnetisches Feld Studium Plus // WI-ET SS 2016 Prof. Dr. Sergej Kovalev 1 Ziele 1. Wechselstrom: 1. Einführende Grundlagen. 2. Widerstand, Kapazität und Induktivität in

Mehr

Laborprotokoll 2 Korrekturfassung

Laborprotokoll 2 Korrekturfassung Laborprotokoll Korrekturfassung Elektrotechnik / Elektrische Antriebstechnik Eigenschaften von Messgeräten und einfacher Leistungselektronik-schaltungen Dozent: Protokollführer: Versuchsteilnehmer: Prof.

Mehr

Filter und Schwingkreise

Filter und Schwingkreise FH-Pforzheim Studiengang Elektrotechnik Labor Elektrotechnik Laborübung 5: Filter und Schwingkreise 28..2000 Sven Bangha Martin Steppuhn Inhalt. Wechselstromlehre Seite 2.2 Eigenschaften von R, L und C

Mehr

Name:...Vorname:... Seite 1 von 7. Matrikelnr.:... Hörsaal:...Platz:... Stud. Gruppe:...

Name:...Vorname:... Seite 1 von 7. Matrikelnr.:... Hörsaal:...Platz:... Stud. Gruppe:... Name:...Vorname:... Seite 1 von 7 FH München, FB 03 Grundlagen der Elektrotechnik SS 2006 Matrikelnr.:... Hörsaal:...Platz:... Stud. Gruppe:... Zugelassene Hilfsmittel: beliebige eigene A 1 2 3 4 Σ N Aufgabensteller:

Mehr

Repetitionen. Widerstand, Drosseln und Kondensatoren

Repetitionen. Widerstand, Drosseln und Kondensatoren Kapitel 16.1 epetitionen Widerstand, Drosseln und Kondensatoren Verfasser: Hans-udolf Niederberger Elektroingenieur FH/HTL Vordergut 1, 8772 Nidfurn 055-654 12 87 Ausgabe: Oktober 2011 1 1.702 Serieschaltung

Mehr

1. Klausur in K1 am

1. Klausur in K1 am Name: Punkte: Note: Ø: Kernfach Physik Abzüge für Darstellung: Rundung:. Klausur in K am 4. 0. 0 Achte auf die Darstellung und vergiss nicht Geg., Ges., Formeln, Einheiten, Rundung...! Angaben: e =,60

Mehr

m kg b) Wie groß muss der Durchmesser der Aluminiumleitung sein, damit sie den gleichen Widerstand wie die Kupferleitung hat?

m kg b) Wie groß muss der Durchmesser der Aluminiumleitung sein, damit sie den gleichen Widerstand wie die Kupferleitung hat? Aufgabe 1: Widerstand einer Leitung In einem Flugzeug soll eine Leitung aus Kupfer gegen eine gleich lange Leitung aus Aluminium ausgetauscht werden. Die Länge der Kupferleitung beträgt 40 m, der Durchmesser

Mehr

RLC-Schaltungen Kompensation

RLC-Schaltungen Kompensation EST ELEKTRISCHE SYSTEMTECHNIK Kapitel 16 RLC-Schaltungen Kompensation Verfasser: Hans-Rudolf Niederberger Elektroingenieur FH/HTL Vordergut 1, 8772 Nidfurn 055-654 12 87 Ausgabe: Oktober 2011 Ich bin das

Mehr

Hochschule Bremerhaven

Hochschule Bremerhaven Hochschule Bremerhaven NSTTUT FÜ AUTOMATSEUNGS- UND EEKTOTEHNK Name: Matr Nr: ProfDr-ngKaiMüller Übungsklausur ETT2 / PT/VAT/SBT SS04 Bearbeitungszeit 20 Minuten --- Unterlagen gestattet --- Note: 2 3

Mehr

Multiplikation und Division in Polarform

Multiplikation und Division in Polarform Multiplikation und Division in Polarform 1-E1 1-E Multiplikation und Division in Polarform: Mathematisches Rüstzeug n m b b = b n+m bn bm = bn m ( b n )m = b n m Additionstheoreme: cos 1 = cos 1 cos sin

Mehr

Menge der natürlichen Zahlen = {1, 2, 3,...} Aber: a + x = b ist nur lösbar, falls b > a

Menge der natürlichen Zahlen = {1, 2, 3,...} Aber: a + x = b ist nur lösbar, falls b > a Komplexe Zahlen. Bedarfsfrage Menge der natürlichen Zahlen = {,, 3,...} Aber: a + x = b ist nur lösbar, falls b > a (Peano-Axiome). Erweiterung: Menge der ganen Zahlen = {..., -3, -, -, 0,,, 3,...} a +

Mehr

Übung 3: Oszilloskop

Übung 3: Oszilloskop Institut für Elektrische Meßtechnik und Meßsignalverarbeitung Institut für Grundlagen und Theorie der Elektrotechnik Institut für Elektrische Antriebstechnik und Maschinen Grundlagen der Elektrotechnik,

Mehr

Elektrotechnik. 16., verbesserte und aktualisierte Auflage

Elektrotechnik. 16., verbesserte und aktualisierte Auflage Dieter Zastrow Elektrotechnik Ein Grundlagenlehrbuch 16., verbesserte und aktualisierte Auflage Mit 526 Abbildungen, 142 Beispielen und 225 Übungsaufgaben mit Lösungen sowie 27 Übersichten als Wissensspeicher

Mehr

!!!! 2. Wechselstrom. 1. Einführende Grundlagen. 2. Widerstand, Kapazität und Induktivität in Wechselstromschaltkreisen

!!!! 2. Wechselstrom. 1. Einführende Grundlagen. 2. Widerstand, Kapazität und Induktivität in Wechselstromschaltkreisen 2. Wechselstrom 1. Einführende Grundlagen. 2. Widerstand, Kapazität und Induktivität in Wechselstromschaltkreisen 3. Theorie des sinusförmigen Wechselstroms. 4. Komplexe Schaltungsberechnung. 59 1.1 Einführende

Mehr

Vorkurs Mathematik Übungen zu Komplexen Zahlen

Vorkurs Mathematik Übungen zu Komplexen Zahlen Vorkurs Mathematik Übungen zu Komplexen Zahlen Komplexe Zahlen Koordinatenwechsel Aufgabe. Zeichnen Sie die folgende Zahlen zunächst in ein (kartesisches) Koordinatensystem. Bestimmen Sie dann die Polarkoordinaten

Mehr

Kraft zwischen zwei Ladungen Q 1 und Q 2 / Coulomb'sches Gesetz

Kraft zwischen zwei Ladungen Q 1 und Q 2 / Coulomb'sches Gesetz KRG NW, Physik Klasse 10, Kräfte auf Ladungen, Kondensator, Fachlehrer Stahl Seite 1 Kraft zwischen zwei Ladungen Q 1 und Q 2 / Coulomb'sches Gesetz Kraft auf eine Probeladung q im elektrischen Feld (homogen,

Mehr

Übung 3 - Musterlösung

Übung 3 - Musterlösung Experientalphysik 2 für Lehratskandidaten und Meteorologen 5. Mai 200 Übungsgruppenleiter: Heiko Dulich Übung 3 - Musterlösung Aufgabe 6: Wann funkt es? Eigene Koordinaten r 2, 2. Hohlkugel: Koordinaten

Mehr

Versuch E1: Elektrisches Feld

Versuch E1: Elektrisches Feld Versuch E1: Elektrisches Feld Aufgaben: 1. Untersuchen Sie die Abhängigkeit der räumlich konstanten elektrischen Feldstärke im Plattenkondensator von der Spannung und vom Plattenabstand. 2. Untersuchen

Mehr

Abitur 2009 Physik 1. Klausur Hannover, arei LK 2. Semester Bearbeitungszeit: 90 min

Abitur 2009 Physik 1. Klausur Hannover, arei LK 2. Semester Bearbeitungszeit: 90 min Abitur 009 hysik Klausur Hannover, 0403008 arei K Semester Bearbeitungszeit: 90 min Thema: Spule, Kondensator und Ohmscher Widerstand im Wechselstromkreis Aufgabe eite begründet her: Für den Gesamtwiderstand

Mehr

Versuch P1-70,71,81 Elektrische Messverfahren. Auswertung. Von Ingo Medebach und Jan Oertlin. 26. Januar 2010

Versuch P1-70,71,81 Elektrische Messverfahren. Auswertung. Von Ingo Medebach und Jan Oertlin. 26. Januar 2010 Versuch P1-70,71,81 Elektrische Messverfahren Auswertung Von Ingo Medebach und Jan Oertlin 26. Januar 2010 Inhaltsverzeichnis 1. Aufgabe...2 I 1.1. Messung des Innenwiderstandes R i des µa-multizets im

Mehr

Klausur 12/1 Physik LK Elsenbruch Di (4h) Thema: elektrische und magnetische Felder Hilfsmittel: Taschenrechner, Formelsammlung

Klausur 12/1 Physik LK Elsenbruch Di (4h) Thema: elektrische und magnetische Felder Hilfsmittel: Taschenrechner, Formelsammlung Klausur 12/1 Physik LK Elsenbruch Di 18.01.05 (4h) Thema: elektrische und magnetische Felder Hilfsmittel: Taschenrechner, Formelsammlung 1) Elektronen im elektrischen Querfeld. Die nebenstehende Skizze

Mehr

Klausur 12/1 Physik LK Elsenbruch Di (4h) Thema: elektrische und magnetische Felder Hilfsmittel: Taschenrechner, Formelsammlung

Klausur 12/1 Physik LK Elsenbruch Di (4h) Thema: elektrische und magnetische Felder Hilfsmittel: Taschenrechner, Formelsammlung Klausur 12/1 Physik LK Elsenbruch Di 18.01.05 (4h) Thema: elektrische und magnetische Felder Hilfsmittel: Taschenrechner, Formelsammlung 1) Ein Kondensator besteht aus zwei horizontal angeordneten, quadratischen

Mehr

Erfüllt eine Funktion f für eine feste positive Zahl p und sämtliche Werte t des Definitionsbereichs die Gleichung

Erfüllt eine Funktion f für eine feste positive Zahl p und sämtliche Werte t des Definitionsbereichs die Gleichung 34 Schwingungen Im Zusammenhang mit Polardarstellungen trifft man häufig auf Funktionen, die Schwingungen beschreiben und deshalb für den Ingenieur von besonderer Wichtigkeit sind Fast alle in der Praxis

Mehr