Statistik II Übung 2: Multivariate lineare Regression

Save this PDF as:
 WORD  PNG  TXT  JPG

Größe: px
Ab Seite anzeigen:

Download "Statistik II Übung 2: Multivariate lineare Regression"

Transkript

1 Statistik II Übung 2: Multivariate lineare Regression Diese Übung beschäftigt sich mit dem Zusammenhang zwischen Flugpreisen und der Flugdistanz, dem Passagieraufkommen und der Marktkonzentration. Verwenden Sie dazu den Datensatz Flugpreise.sav. Die abhängige Variable Preis misst den durchschnittlichen Flugpreis einer bestimmten Strecke in den USA im Jahr 2000, die unabhängigen Variablen Passagiere, Distanz und Konzentration messen das durchschnittliche Passagieraufkommen pro Tag, die Distanz in Meilen bzw. die Marktkonzentration (d.h. Marktanteil des grössten Anbieters, vobei 0=0% und 1=100%) für eine bestimmte Strecke. Bitte bearbeiten Sie Aufgaben 1-5 in Gruppen von bis zu 4 Studierenden (vergessen Sie nicht die Namen!) und reichen Sie die Lösungen VOR der 2. PC Übung ein. 1. Argumentieren Sie, warum die unabhängigen Variablen einen Einfluss auf den Flugpreis haben könnten. (Hinweis: es gibt hier keine strikt richtigen oder falschen Antworten.) Die zurückgelegte Distanz hat einen positiven Einfluss auf den Flugpreis, weil für längere Strecken der Kerosinverbrauch höher ist. Eine Fluggesellschaft muss vermutlich auch den Piloten mehr für längere Arbeitsstunden bezahlen. Diese (flexiblen) Kosten sind vermutlich im Flugpreis berücksichtigt. Das Passagieraufkommen könnte einen positiven Zusammenhang mit dem Flugpreis haben. Die Fluggesellschaften setzen die Preise für bestimmten Flüge wie folgt an: wenn viele Passagiere zur selben Zeit reisen wollen, erhöht eine Fluggesellschaft den Preis. Sobald eine bestimmte Anzahl der Plätze in einem Flugzeug verkauft worden sein, wird der Preis jedes zusätzlichen Platzes erhöht. Andererseits könnte ein hohes Passagieraufkommen auch dazu führen, dass mehr Fluggesellschaften Flüge auf dieser Strecke anbieten. Dadurch steigt die Konkurrenz und der Preis sinkt. Somit ist unklar, ob sich ein hohes Passagieraufkommen positiv oder negativ auf den Preis auswirkt. Die Konzentration in unserem Datensatz ist eine Kennzahl, die den Marktanteil des grössten Anbieters angibt (wobei 0=0% und 1=100%). Je höher diese Kennzahl, desto weniger Wettbewerb gibt es auf einer bestimmten Flugstrecke. Die mikroökonomische (Standard-)Theorie legt nahe, dass ein positiver Einfluss von Konzentration auf die Flugpreise besteht, weil Monopole (oder auch Oligopole) mehr Marktmacht besitzen, als Unternehmen auf einem (vollständigen) Wettbewerbsmarkt, und deshalb leichter höhere Preise durchsetzen können. 2. Generieren Sie deskriptive Statistiken (Mittelwert, Standardabweichung) für Preis, Passagiere, Distanz und Konzentration und kommentieren Sie diese kurz. Analyze > Descriptive Statistics > Descriptives Descriptive Statistics N Minimum Maximum Mean Std. Deviation Distanz Passagiere Preis Konzentration Valid N (listwise)

2 Die Distanz variiert zwischen 95 und 2724 Meilen, mit dem Mittelwert von fast 990 Meilen und einer Standartabweichung von ca. 600 Meilen. Das Passagieraufkommen misst das durchschnittliche Passagieraufkommen auf einer Flugstrecke pro Tag. Der Mittelwert beträgt 670 Passagiere. Es besteht viel Variation im Passagieraufkommen: die Standartabweichung beträgt 847 Passagiere. Der Preis variiert zwischen 62 und 522 US Dollar. Der Mittelwert des Preises beträgt 188 Dollar mit einer Standartabweichung von fast 77 Dollar. Die Marktkonzentration liegt zwischen 0 und 1, wobei 1 einem reinen Monopol entspricht (d.h. alle Flüge werden nur von einer einzigen Fluggesellschaft durchgeführt) und 0 einem perfekten Wettbewerbsmarkt entspricht. Der Mittelwert der Konzentration ist 0,6. Im Durchschnitt führt die grösste Fluggesellschaft einer Strecke 60% der Flüge durch. Die Standartabweichung beträgt ungefähr 0,2. 3. Untersuchen Sie den Zusammenhang zwischen Preis und Distanz visuell anhand eines Streudiagramms (mit Preis auf der Y-Achse und Distanz auf der X-Achse). Fügen Sie auch eine lineare Regressionslinie zu Ihrem Streudiagramm hinzu. Welchen Zusammenhang können Sie erkennen? Graphs > Legacy Dialogs > Scatter/Dot > Simple Scatter > Y Axis: Preis > X Axis: Distanz Doppelklick auf die Grafik, passendes Icon wählen und eine Regressionsgerade hinzufügen Es besteht ein positiver Zusammenhang zwischen der Distanz und dem Preis. Je höher die Distanz, umso höher der Flugpreis. 2

3 4. Regressieren Sie Preis (linear) auf Distanz und interpretieren Sie die Regressionskoeffizienten. Analyze > regression > linear > Dependent: Preis > Independent: Distanz Mit einer zusätzlichen Meile der Flugdistanz steigt der Flugpreis um 0,075 US Dollar. Der geschätzte Koeffizient ist statistisch signifikant auf dem 1% Niveau. Im Regressionsmodell erklärt die unabhängige Variable Distanz 36% der Variation in der abhängigen Variable Flugpreis. Für ein univariates Regressionsmodell (d.h. mit nur einer erklärenden Variable) ist das R-Quadrat ziemlich hoch. Coefficients a Unstandardized Coefficients Standardized Coefficients Model B Std. Error Beta t Sig. 1 (Constant) Distanz a. Dependent Variable: Preis ; b. Predictors: (Constant), Distanz Model Summary Model R R Square Adjusted R Square Std. Error of the Estimate a a. Predictors: (Constant), Distanz 5. Regressieren Sie Preis (linear) auf Passagiere, Distanz und Konzentration und interpretieren Sie die Regressionskoeffizienten. Kommentieren Sie das R 2. Coefficients a Unstandardized Coefficients Standardized Coefficients Model B Std. Error Beta t Sig. 1 (Constant) Distanz Passagiere Konzentration a. Dependent Variable: Preis Model Summary 3

4 Model R R Square Adjusted R Square Std. Error of the Estimate a a. Predictors: (Constant), Konzentration, Passagiere, Distanz Mit jeder zusätzlichen Meile steigt der Flugpreis ceteris paribus um 0,085 US Dollar. Der geschätzte Koeffizient ist statistisch signifikant auf dem 1% Niveau. Mit jenem zusätzlichen Passagier geht der Flugpreis ceteris paribus um 0,005 US Dollar zurück. Der Beta-Koeffizient ist auf 5% Niveau signifikant. Wenn das Konzentrationsmass um 0.01 (oder um 1% Punkt) steigt, geht der Flugpreis ceteris paribus um 0,61 US Dollar nach oben. Nach der Aufnahme der zusätzlichen Regressoren steigt das R-Quadrat ein wenig. Es beträgt jetzt 38%. Das impliziert, dass die zusätzlichen Variablen nicht wesentlich mehr Variation im Preis erklären, als Distanz alleine. 6. Wie erklären Sie sich die Veränderung im Koeffizienten von Distanz zwischen Aufgaben 4 und 5? Durch die partielle Korrelation von Distanz mit den anderen erklärenden Variablen. Siehe Folie 5 im Foliensatz Diskutieren Sie die Annahmen des multivariaten linearen Regressionsmodells. Diskutiere Annahme 1 (lineares Modell); 2 (zufällige Stichprobe); 3 ( E(u x)=0 - Exogenität); 4 keine perfekte Multikollinearität. Die erste Annahme besagt, dass die abhängige Variable linear in den erklärenden Variablen ist (also y steigt immer um die gleiche Menge an, wenn eine bestimmte Variable x um eine Einheit erhöht wird, egal welchen Wert x aufweist). Die zweite Annahme besagt, dass die Stichprobe zufällig gezogen wurde. D.h. die Beobachtungen wurden zufällig aus der Population ausgewählt. Es gibt keine systematische Selektion (z.b. hinsichtlich Bildung etc.) in die Stichprobe. Die dritte Annahme unterstellt Exogenität. Unter dieser Annahme ist der bedingte Erwartungswert des Fehlerterms (d.h. der Mittelwert des Fehlerterms für jeden Wert/jede mögliche Kombination von Werten der Regressoren) gleich Null. Man kann dies auch wie folgt interpretieren: es gibt keinen Zusammenhang zwischen den Regressoren und den unberücksichtigten/unbeobachteten Faktoren, die einen Einfluss auf die abhängige Variable haben. Die letzte Annahme schliesst perfekte Multikollinearität aus. Das heisst, es gibt Variation in allen Regressoren und letztere sind keine exakte lineare Kombination voneinander (z.b. x1=2*x2), sodass es keine perfekte Korrelation (Korrelationkoeffizient=1 oder =-1) zwischen den Regressoren gibt. 4

5 Unter diesen vier Annahmen ist der OLS Schätzer unverzerrt (auch erwartungstreu genannt). Es gibt noch eine fünfte Annahme: Homoskedastizität. Letzteres bedeutet, dass die Varianz des Fehlerterms konstant ist, d.h. für jeden Wert der Regressoren gleich: var(u x) = σ 2. Unter der Annahme der Homoskedastizität ist der OLS Schätzer effizient, d.h. er hat die kleinstmögliche Varianz. Unter Annahmen 1-5 entspricht die Varianz der Koeffizienten der Formel wie in Folie 9 von Foliensatz 6 dargestellt. 8. Generieren Sie eine neue Variable Distanz 2 Transform > compute variable > Target variable: Distanz2 > Numeric expression: Distanz*Distanz Transform > compute variable > Target variable: Distanz2 > Numeric expression: Distanz**2 9. Regressieren Sie Preis auf Passagiere, Distanz, Distanz 2 und Konzentration. Berechnen Sie den partiellen Effekt von Distanz. Inwiefern unterscheidet sich Ihr Modell von jenem in Aufgabe 5? Coefficients a Unstandardized Coefficients Standardized Coefficients Model B Std. Error Beta t Sig. 1 (Constant) Distanz Passagiere Konzentration Distanz E a. Dependent Variable: Preis Model Summary Model R R Square Adjusted R Square Std. Error of the Estimate a a. Predictors: (Constant), D2, Passagiere, Konzentration, Distanz In diesem Regressionsmodell wird ein nichtlinearer Zusammenhang zwischen Preis und Distanz angenommen. Der Koeffizient von Distanz entspricht nicht mehr dem Partialeffekt (d.h. ceteris paribus Effekt). Um den Partialeffekt von Distanz auf den Preis zu berechnen, muss man die partielle Ableitung vom Preis (y) nach der Distanz (x 1 ) berechnen. Regressionsgleichung: y = β 0 + β 1 x 1 + β 2 x 2 + β 3 x 3 + β 4 x 1 2 Wir berechnen: y x 1 = β 1 + 2β 4 x 1 =, *(7,929E-6) x 1 =0,064+0, x 1 5

6 Dazu verwenden wir folgende Ableitungsregeln: Potenzregel Faktorregel Die Ableitung der Konstanten β 0 nach x 1 ist null (weil x 1 nicht vorkommt); ebenso für β 2 x 2 + β 3 x 3. Die Ableitung von β 1 x 1 nach x 1 ist β 1. Die Ableitung von β 4 x 1 2 ist 2β 4 x 1. Die Koeffizienten der anderen unabhängigen Variablen haben sich wegen ihrer Korrelation mit Distanz 2 ein wenig verändert. Das R 2 bleibt aber fast gleich wie davor. 10. Ist der Koeffizient von Distanz 2 signifikant auf (a) dem 5% Niveau und (b) dem 10% Niveau? Was schliessen Sie daraus hinsichtlich des nichtlinearen Zusammenhangs zwischen Preis und Distanz? Auf dem 5% Niveau ist der Koeffizient von Distanz 2 nicht signifikant (P-Wert höher als 5% bzw. 0,05). Auf dem 10% Niveau ist der Koeffizient von Distanz 2 statistisch signifikant (P-Wert 0,074<0,1 bzw. 7,4%< 10%). Diese Ergebnisse können wir wie folgt interpretieren: Auf dem 5% Niveau kann die Nullhypothese eines linearen Zusammenhangs nicht verworfen werden. Auf dem 10% Niveau kann ein linearer Zusammenhang verworfen werden. 11. Was besagt das Gauss-Markov-Theorem? Gauss-Markov-Theorem: unter den Annahmen 1) eines linearen Modells, 2) einer zufälligen Stichprobe, 3) Exogenität, 4) von keiner perfekten Multikollinearität und 5) Homoskedastizität ist OLS der beste unverzerrte lineare Schätzer unter allen möglichen unverzerrten Schätzern (auf Englisch BLUE= best linear unbiased estimator). Der beste: höchste Effizienz, d.h. der Schätzer mit kleinstmöglicher Varianz unter allen unverzerrten Schätzern Linear: der Effekt von x auf y ist immer der gleiche für verschiedene Werte von x Unverzerrt: es gibt keine Verzerrung. Wenn wir viele, z.b Stichproben aus der Population ziehen, den B-Koeffizient von x in jeder Stichprobe schätzen und den Mittelwert von allen geschätzten B-Koeffizienten berechnen, trifft dieser Mittelwert den B-Koeffizient in der Population. 12. Warum kann das R 2 nie fallen, wenn in ein bestehendes Regressionsmodell eine zusätzliche Variable aufgenommen wird (z.b. Distanz 2 zusätzlich zu Distanz )? Das R-Quadrat gibt den Teil der Variation in y an, der durch die Variation in x erklärt wird. Mit mehreren in der Regression aufgenommenen erklärenden Variablen können wir nur etnweder mehr oder zumindest gleich viel, aber nie weniger Variation in y erklären als mit weniger erklärenden Variablen. (Das bedeutet, dass die Summe der quadrierten Residuen kleiner wird 6

7 oder maximal gleich bleibt, wenn wir zusätzliche Regressoren verwenden, aber nicht steigen kann.) 13. Erklären Sie die Begriffe Unter- und Überspezifikation. Unterspezifikation: 1 oder mehrere erklärende Variablen wurden im Modell nicht berücksichtigt (vergessen, nicht beobachtet etc.); Überspezifikation: Variablen ohne Erklärungsgehalt werden im Modell inkludiert. Überspezifikation ist im Prinzip weniger problematisch als Unterspezifikation. Die Konsequenz der Überspezifikation ist eine mögliche höhere Varianz des Schätzers. var(β j) = σ SST j (1 R j 2 ) wobei R j 2 = R 2 der Regression von x j auf alle anderen Regressoren und Konstante. Mit zusätzlichen Regressoren ohne Erklärungsgehalt steigt unter Umständen das R j 2 und deshalb auch var(β j), nämlich dann wenn x j mit den Regressoren ohne Erklärungsgehalt korreliert ist. 14. Welche Probleme kann Unterspezifikation hinsichtlich der Unverzerrtheit der erklärenden Variable(n) mit sich bringen? Der Koeffizient der erklärenden Variable ist verzerrt, falls die unberücksichtigte Variable mit der erklärenden Variable und der abhängigen Variable korreliert ist. Siehe die Formel für die Verzerrung auf Folie 5 von Foliensatz 6. 7

Statistik II Übung 2: Multivariate lineare Regression

Statistik II Übung 2: Multivariate lineare Regression Statistik II Übung 2: Multivariate lineare Regression Diese Übung beschäftigt sich mit dem Zusammenhang zwischen Flugpreisen und der Flugdistanz, dem Passagieraufkommen und der Marktkonzentration. Verwenden

Mehr

Statistik II Übung 1: Einfache lineare Regression

Statistik II Übung 1: Einfache lineare Regression Statistik II Übung 1: Einfache lineare Regression Diese Übung beschäftigt sich mit dem Zusammenhang zwischen dem Lohneinkommen von sozial benachteiligten Individuen (16-24 Jahre alt) und der Anzahl der

Mehr

1. Erklären Sie den Unterschied zwischen einem einseitigen und zweiseitigen Hypothesentest.

1. Erklären Sie den Unterschied zwischen einem einseitigen und zweiseitigen Hypothesentest. Statistik II Übung 3: Hypothesentests Diese Übung beschäftigt sich mit der Anwendung diverser Hypothesentests (zum Beispiel zum Vergleich der Mittelwerte und Verteilungen zweier Stichproben). Verwenden

Mehr

Analyse von Querschnittsdaten. Spezifikation der unabhängigen Variablen

Analyse von Querschnittsdaten. Spezifikation der unabhängigen Variablen Analyse von Querschnittsdaten Spezifikation der unabhängigen Variablen Warum geht es in den folgenden Sitzungen? Kontinuierliche Variablen Annahmen gegeben? kategoriale Variablen Datum 3.0.004 0.0.004

Mehr

Teil: lineare Regression

Teil: lineare Regression Teil: lineare Regression 1 Einführung 2 Prüfung der Regressionsfunktion 3 Die Modellannahmen zur Durchführung einer linearen Regression 4 Dummyvariablen 1 Einführung o Eine statistische Methode um Zusammenhänge

Mehr

Übungsklausur Lineare Modelle. Prof. Dr. H. Toutenburg

Übungsklausur Lineare Modelle. Prof. Dr. H. Toutenburg Übungsklausur Lineare le Prof. Dr. H. Toutenburg Aufgabe Ein lineares Regressionsmodell mit der abhängigen Variablen Körpergröße und der unabhängigen Variablen Geschlecht wurde einmal mit der dummykodierten

Mehr

Kapitel 8. Einfache Regression. Anpassen des linearen Regressionsmodells, OLS. Eigenschaften der Schätzer für das Modell

Kapitel 8. Einfache Regression. Anpassen des linearen Regressionsmodells, OLS. Eigenschaften der Schätzer für das Modell Kapitel 8 Einfache Regression Josef Leydold c 2006 Mathematische Methoden VIII Einfache Regression 1 / 21 Lernziele Lineares Regressionsmodell Anpassen des linearen Regressionsmodells, OLS Eigenschaften

Mehr

Schätzen und Testen von Populationsparametern im linearen Regressionsmodell PE ΣO

Schätzen und Testen von Populationsparametern im linearen Regressionsmodell PE ΣO Schätzen und Testen von Populationsparametern im linearen Regressionsmodell PE ΣO 4. Dezember 2001 Generalisierung der aus Stichprobendaten berechneten Regressionsgeraden Voraussetzungen für die Generalisierung

Mehr

Statistik II. II. Univariates lineares Regressionsmodell. Martin Huber 1 / 27

Statistik II. II. Univariates lineares Regressionsmodell. Martin Huber 1 / 27 Statistik II II. Univariates lineares Regressionsmodell Martin Huber 1 / 27 Übersicht Definitionen (Wooldridge 2.1) Schätzmethode - Kleinste Quadrate Schätzer / Ordinary Least Squares (Wooldridge 2.2)

Mehr

Univariate Lineare Regression. (eine unabhängige Variable)

Univariate Lineare Regression. (eine unabhängige Variable) Univariate Lineare Regression (eine unabhängige Variable) Lineare Regression y=a+bx Präzise lineare Beziehung a.. Intercept b..anstieg y..abhängige Variable x..unabhängige Variable Lineare Regression y=a+bx+e

Mehr

Drittvariablenkontrolle in der linearen Regression: Trivariate Regression

Drittvariablenkontrolle in der linearen Regression: Trivariate Regression Drittvariablenkontrolle in der linearen Regression: Trivariate Regression 14. Januar 2002 In der Tabellenanalyse wird bei der Drittvariablenkontrolle für jede Ausprägung der Kontrollvariablen eine Partialtabelle

Mehr

Lineare Modelle in R: Klassische lineare Regression

Lineare Modelle in R: Klassische lineare Regression Lineare Modelle in R: Klassische lineare Regression Achim Zeileis 2009-02-20 1 Das Modell Das klassische lineare Regressionsmodell versucht den Zusammenhang zwischen einer abhängigen Variablen (oder Responsevariablen)

Mehr

1. Lösungen zu Kapitel 7

1. Lösungen zu Kapitel 7 1. Lösungen zu Kapitel 7 Übungsaufgabe 7.1 Um zu testen ob die Störterme ε i eine konstante Varianz haben, sprich die Homogenitätsannahme erfüllt ist, sind der Breusch-Pagan-Test und der White- Test zwei

Mehr

Statistische Eigenschaften der OLS-Schätzer, Residuen,

Statistische Eigenschaften der OLS-Schätzer, Residuen, Statistische Eigenschaften der OLS-Schätzer, Residuen, Bestimmtheitsmaß Stichwörter: Interpretation des OLS-Schätzers Momente des OLS-Schätzers Gauss-Markov Theorem Residuen Schätzung von σ 2 Bestimmtheitsmaß

Mehr

8. Keine Normalverteilung der Störgrößen (Verletzung der B4-Annahme)

8. Keine Normalverteilung der Störgrößen (Verletzung der B4-Annahme) 8. Keine Normalverteilung der Störgrößen (Verletzung der B4-Annahme) Annahme B4: Die Störgrößen u i sind normalverteilt, d.h. u i N(0, σ 2 ) Beispiel: [I] Neoklassisches Solow-Wachstumsmodell Annahme einer

Mehr

Übung zur Empirischen Wirtschaftsforschung V. Das Lineare Regressionsmodell

Übung zur Empirischen Wirtschaftsforschung V. Das Lineare Regressionsmodell Universität Ulm 89069 Ulm Germany Dipl.-WiWi Christian Peukert Institut für Wirtschaftspolitik Fakultät für Mathematik und Wirtschaftswissenschaften Ludwig-Erhard-Stiftungsprofessur Sommersemester 2010

Mehr

Modell (Konstante) 0,411 0,155 male 0,212 0,13 job 0,119 0,131 alcohol 0,255 0,05 a. Abhängige Variable: skipped

Modell (Konstante) 0,411 0,155 male 0,212 0,13 job 0,119 0,131 alcohol 0,255 0,05 a. Abhängige Variable: skipped Aufgabe 1 [14 Punkte] Sie möchten untersuchen, wovon die Abwesenheit der Studierenden in den Vorlesungen an einer Universität abhängt. Sie verfügen über einen Datensatz zu 282 Studierenden mit folgenden

Mehr

Analyse von Querschnittsdaten. Signifikanztests I Basics

Analyse von Querschnittsdaten. Signifikanztests I Basics Analyse von Querschnittsdaten Signifikanztests I Basics Warum geht es in den folgenden Sitzungen? Kontinuierliche Variablen Generalisierung kategoriale Variablen Datum 13.10.2004 20.10.2004 27.10.2004

Mehr

Datenanalyse mit Excel und Gretl

Datenanalyse mit Excel und Gretl Dozent: Christoph Hindermann christoph.hindermann@uni-erfurt.de Datenanalyse mit Excel und Gretl Teil Titel 2: Gretl 1 Teil 2: Gretl Datenanalyse mit Excel und Gretl Teil Titel 2: Gretl 2 Modellannahmen

Mehr

Fortgeschrittene Statistik Logistische Regression

Fortgeschrittene Statistik Logistische Regression Fortgeschrittene Statistik Logistische Regression O D D S, O D D S - R A T I O, L O G I T T R A N S F O R M A T I O N, I N T E R P R E T A T I O N V O N K O E F F I Z I E N T E N, L O G I S T I S C H E

Mehr

Lineare Regression mit einem Regressor: Einführung

Lineare Regression mit einem Regressor: Einführung Lineare Regression mit einem Regressor: Einführung Quantifizierung des linearen Zusammenhangs von zwei Variablen Beispiel Zusammenhang Klassengröße und Testergebnis o Wie verändern sich Testergebnisse,

Mehr

Regression ein kleiner Rückblick. Methodenseminar Dozent: Uwe Altmann Alexandra Kuhn, Melanie Spate

Regression ein kleiner Rückblick. Methodenseminar Dozent: Uwe Altmann Alexandra Kuhn, Melanie Spate Regression ein kleiner Rückblick Methodenseminar Dozent: Uwe Altmann Alexandra Kuhn, Melanie Spate 05.11.2009 Gliederung 1. Stochastische Abhängigkeit 2. Definition Zufallsvariable 3. Kennwerte 3.1 für

Mehr

1 Einfachregression 1.1In 10 Haushalten wurden Einkommen und Ausgaben für Luxusgüter erfragt:

1 Einfachregression 1.1In 10 Haushalten wurden Einkommen und Ausgaben für Luxusgüter erfragt: Beispiele zum Üben und Wiederholen zu Wirtschaftsstatistik 2 (Kurs 3) 1 Einfachregression 1.1In 10 Haushalten wurden Einkommen und Ausgaben für Luxusgüter erfragt: Haushaltseinkommen 12 24 30 40 80 60

Mehr

Institut für Soziologie. Methoden 2. Regressionsanalyse I: Einfache lineare Regression

Institut für Soziologie. Methoden 2. Regressionsanalyse I: Einfache lineare Regression Institut für Soziologie Methoden 2 Regressionsanalyse I: Einfache lineare Regression Programm Anwendungsbereich Vorgehensweise Interpretation Annahmen Zusammenfassung Übungsaufgabe Literatur # 2 Anwendungsbereich

Mehr

3. Das einfache lineare Regressionsmodell

3. Das einfache lineare Regressionsmodell 3. Das einfache lineare Regressionsmodell Ökonometrie: (I) Anwendung statistischer Methoden in der empirischen Forschung in den Wirtschaftswissenschaften Konfrontation ökonomischer Theorien mit Fakten

Mehr

Crashkurs Einführung Biostatistik

Crashkurs Einführung Biostatistik Crashkurs Einführung Biostatistik Prof. Burkhardt Seifert Abteilung Biostatistik, ISPM Universität Zürich Deskriptive Statistik Wahrscheinlichkeitsrechnung, ersuchsplanung Statistische Inferenz Prinzip

Mehr

Lösung Aufgabe 1 (Regression) Es wurden in einer Befragung zwei metrische Merkmale X und Y erhoben. Betrachten Sie dazu die

Lösung Aufgabe 1 (Regression) Es wurden in einer Befragung zwei metrische Merkmale X und Y erhoben. Betrachten Sie dazu die Statistik für Kommunikationswissenschaftler Wintersemester 2010/2011 Vorlesung Prof. Dr. Nicole Krämer Übung Nicole Krämer, Cornelia Oberhauser, Monia Mahling Lösung Thema 9 Homepage zur Veranstaltung:

Mehr

VS PLUS

VS PLUS VS PLUS Zusatzinformationen zu Medien des VS Verlags Statistik II Inferenzstatistik 2010 Übungsaufgaben und Lösungen Inferenzstatistik 2 [Übungsaufgaben und Lösungenn - Inferenzstatistik 2] ÜBUNGSAUFGABEN

Mehr

Eine zweidimensionale Stichprobe

Eine zweidimensionale Stichprobe Eine zweidimensionale Stichprobe liegt vor, wenn zwei qualitative Merkmale gleichzeitig betrachtet werden. Eine Urliste besteht dann aus Wertepaaren (x i, y i ) R 2 und hat die Form (x 1, y 1 ), (x 2,

Mehr

Seminar zur Energiewirtschaft:

Seminar zur Energiewirtschaft: Seminar zur Energiewirtschaft: Ermittlung der Zahlungsbereitschaft für erneuerbare Energien bzw. bessere Umwelt Vladimir Udalov 1 Modelle mit diskreten abhängigen Variablen 2 - Ausgangssituation Eine Dummy-Variable

Mehr

Statistischer Rückschluss und Testen von Hypothesen

Statistischer Rückschluss und Testen von Hypothesen Statistischer Rückschluss und Testen von Hypothesen Statistischer Rückschluss Lerne von der Stichprobe über Verhältnisse in der Grundgesamtheit Grundgesamtheit Statistischer Rückschluss lerne aus Analyse

Mehr

Sozialwissenschaftliche Fakultät der Universität Göttingen. Sommersemester Statistik mit SPSS

Sozialwissenschaftliche Fakultät der Universität Göttingen. Sommersemester Statistik mit SPSS Sommersemester 2009 Statistik mit SPSS 15. Mai 2009 15. Mai 2009 Statistik Dozentin: mit Esther SPSSOchoa Fernández 1 Überblick 1. Korrelation vs. Regression 2. Ziele der Regressionsanalyse 3. Syntax für

Mehr

Bachelorprüfung SS 2015

Bachelorprüfung SS 2015 Lehrstuhl für Statistik und empirische Wirtschaftsforschung Prof. Regina T. Riphahn, Ph.D. Fach: Praxis der empirischen Wirtschaftsforschung Prüfer: Prof. Regina T. Riphahn, Ph.D. Bachelorprüfung SS 205

Mehr

Ergänzung der Aufgabe "Mindestlöhne" zu einer multiplen Regression

Ergänzung der Aufgabe Mindestlöhne zu einer multiplen Regression Prof. Dr. Peter von der Lippe ( Übungsblatt E) Ergänzung der Aufgabe "Mindestlöhne" zu einer multiplen Regression Das Beispiel "Mindestlöhne" zur einfachen multiplen Regression ergab die folgenden Parameter

Mehr

Prof. Dr. Walter F. Tichy Dr. Matthias Müller Sommersemester 2006

Prof. Dr. Walter F. Tichy Dr. Matthias Müller Sommersemester 2006 Empirische Softwaretechnik Prof. Dr. Walter F. Tichy Dr. Matthias Müller Sommersemester 2006 1 Experiment zur Vererbungstiefe Softwaretechnik: die Vererbungstiefe ist kein guter Schätzer für den Wartungsaufwand

Mehr

Einführung in die Maximum Likelihood Methodik

Einführung in die Maximum Likelihood Methodik in die Maximum Likelihood Methodik Thushyanthan Baskaran thushyanthan.baskaran@awi.uni-heidelberg.de Alfred Weber Institut Ruprecht Karls Universität Heidelberg Gliederung 1 2 3 4 2 / 31 Maximum Likelihood

Mehr

Institut für Soziologie Dipl.-Soz. Benjamin Gedon. Methoden 2. Logistische Regression II

Institut für Soziologie Dipl.-Soz. Benjamin Gedon. Methoden 2. Logistische Regression II Institut für Soziologie Dipl.-Soz. Methoden 2 Logistische Regression II Bringen Sie zur nächsten Übung und in die Klausur einen (nicht programmierbaren) Taschenrechner mit! # 2 Programm Wiederholung der

Mehr

Wiederholung Qualitätssicherung Drittvariablen. Regression II. Statistik I. Sommersemester Statistik I Regression II (1/33) Wiederholung

Wiederholung Qualitätssicherung Drittvariablen. Regression II. Statistik I. Sommersemester Statistik I Regression II (1/33) Wiederholung Regression II Statistik I Sommersemester 2009 Statistik I Regression II (1/33) R 2 Root Mean Squared Error Statistik I Regression II (2/33) Zum Nachlesen Agresti: 9.1-9.4 Gehring/Weins: 8 Schumann: 8.1-8.2

Mehr

Korrelation - Regression. Berghold, IMI

Korrelation - Regression. Berghold, IMI Korrelation - Regression Zusammenhang zwischen Variablen Bivariate Datenanalyse - Zusammenhang zwischen 2 stetigen Variablen Korrelation Einfaches lineares Regressionsmodell 1. Schritt: Erstellung eines

Mehr

Interne und externe Modellvalidität

Interne und externe Modellvalidität Interne und externe Modellvalidität Interne Modellvalidität ist gegeben, o wenn statistische Inferenz bzgl. der untersuchten Grundgesamtheit zulässig ist o KQ-Schätzer der Modellparameter u. Varianzschätzer

Mehr

Bachelorprüfung SS MUSTERLÖSUNG

Bachelorprüfung SS MUSTERLÖSUNG Lehrstuhl für Statistik und empirische Wirtschaftsforschung Prof. Regina T. Riphahn, Ph.D. Fach: Praxis der empirischen Wirtschaftsforschung Prüfer: Prof. Regina T. Riphahn, Ph.D. Bachelorprüfung SS 2015

Mehr

Tutorial: Regression Output von R

Tutorial: Regression Output von R Tutorial: Regression Output von R Eine Firma erzeugt Autositze. Ihr Chef ist besorgt über die Anzahl und die Kosten von Maschinenausfällen. Das Problem ist, dass die Maschinen schon alt sind und deswegen

Mehr

Statistik II Übung 4: Skalierung und asymptotische Eigenschaften

Statistik II Übung 4: Skalierung und asymptotische Eigenschaften Saisik II Übung 4: Skalierung und asympoische Eigenschafen Diese Übung beschäfig sich mi der Skalierung von Variablen in Regressionsanalysen und mi asympoischen Eigenschafen von OLS. Verwenden Sie dazu

Mehr

Klausur zur Vorlesung Statistik III für Studenten mit Wahlfach Statistik. 7. Februar 2008

Klausur zur Vorlesung Statistik III für Studenten mit Wahlfach Statistik. 7. Februar 2008 L. Fahrmeir, G. Walter Department für Statistik Bitte für die Korrektur freilassen! Aufgabe 3 4 Punkte Klausur zur Vorlesung Statistik III für Studenten mit Wahlfach Statistik 7. Februar 8 Hinweise:. Überprüfen

Mehr

» S C H R I T T - F Ü R - S C H R I T T - A N L E I T U N G «M U L T I P L E L I N E A R E R E G R E S S I O N M I T S P S S / I B M Daniela Keller

» S C H R I T T - F Ü R - S C H R I T T - A N L E I T U N G «M U L T I P L E L I N E A R E R E G R E S S I O N M I T S P S S / I B M Daniela Keller » SCHRITT-FÜR-SCHRITTANLEITUNG«MULTIPLE LINEARE REGRESSION MIT SPSS/IBM Daniela Keller Daniela Keller - MULTIPLE LINEARE REGRESSION MIT SPSS/IBM Impressum 2016 Statistik und Beratung Dipl.-Math. Daniela

Mehr

Empirische Analysen mit dem SOEP

Empirische Analysen mit dem SOEP Empirische Analysen mit dem SOEP Methodisches Lineare Regressionsanalyse & Logit/Probit Modelle Kurs im Wintersemester 2007/08 Dipl.-Volksw. Paul Böhm Dipl.-Volksw. Dominik Hanglberger Dipl.-Volksw. Rafael

Mehr

Nachhol-Klausur - Schätzen und Testen - Wintersemester 2013/14

Nachhol-Klausur - Schätzen und Testen - Wintersemester 2013/14 Prof. Dr. Rainer Schwabe 08.07.2014 Otto-von-Guericke-Universität Magdeburg Institut für Mathematische Stochastik Nachhol-Klausur - Schätzen und Testen - Wintersemester 2013/14 Name:, Vorname: Matr.-Nr.

Mehr

Bachelorprüfung. Praxis der empirischen Wirtschaftsforschung Prof. Regina T. Riphahn, Ph.D. Name, Vorname. Matrikelnr. . Studiengang.

Bachelorprüfung. Praxis der empirischen Wirtschaftsforschung Prof. Regina T. Riphahn, Ph.D. Name, Vorname. Matrikelnr.  . Studiengang. Lehrstuhl für Statistik und empirische Wirtschaftsforschung Fach: Prüfer: Bachelorprüfung Praxis der empirischen Wirtschaftsforschung Prof. Regina T. Riphahn, Ph.D. Name, Vorname Matrikelnr. E-Mail Studiengang

Mehr

Empirical Banking and Finance

Empirical Banking and Finance Empirical Banking and Finance Vorlesung zur Volkswirtschaftspolitik Prof. Dr. Isabel Schnabel Lehrstuhl für Volkswirtschaftslehre, insb. Financial Economics Johannes Gutenberg-Universität Mainz Wintersemester

Mehr

Das klassische Regressionsmodell: Ein Beispiel

Das klassische Regressionsmodell: Ein Beispiel 1 / 43 Das klassische Regressionsmodell: Ein Beispiel Kapitel 2 Ökonometrie I Michael Hauser 2 / 43 Inhalt Ein Beispiel für das klassische, bivariate Regressionsmodell: Okun s Gesetz Das bivariate, lineare

Mehr

Kapitel 6: Zweifaktorielle Varianzanalyse

Kapitel 6: Zweifaktorielle Varianzanalyse Kapitel 6: Zweifaktorielle Varianzanalyse Durchführung einer zweifaktoriellen Varianzanalyse ohne Messwiederholung 1 Effektstärke und empirische Teststärke einer zweifaktoriellen Varianzanalyse ohne Messwiederholung

Mehr

1 Statistische Grundlagen

1 Statistische Grundlagen Konzepte in Empirische Ökonomie 1 (Winter) Hier findest Du ein paar Tipps zu den Konzepten in Empirische 1. Wenn Du aber noch etwas Unterstützung kurz vor der Klausur brauchst, schreib uns eine kurze Email.

Mehr

Institut für Soziologie Benjamin Gedon. Methoden 2. Regressionsanalyse IV: Transformation und Interaktion

Institut für Soziologie Benjamin Gedon. Methoden 2. Regressionsanalyse IV: Transformation und Interaktion Institut für Soziologie Methoden 2 Regressionsanalyse IV: Transformation und Interaktion Inhalt 1. Zusammenfassung letzte Sitzung 2. Weitere Annahmen und Diagnostik 3. Transformationen zur besseren Interpretierbarkeit

Mehr

Aufgabenstellung Aufgabe 1: Betrachten Sie das folgende ökonometrische Modell: y t = α + βx t + u t (1)

Aufgabenstellung Aufgabe 1: Betrachten Sie das folgende ökonometrische Modell: y t = α + βx t + u t (1) Klausur: Einführung in die Ökonometrie Prüfer: Prof. Dr. Karl-Heinz Paqué Dr.Ludwigv.Auer Semester: WS 1999/00 Als Hilfsmittel sind zugelassen: nicht-programmierbarer Taschenrechner Diese Klausur besteht

Mehr

Bachelorprüfung. Praxis der empirischen Wirtschaftsforschung Prof. Regina T. Riphahn, Ph.D. Name, Vorname. Matrikelnr. E-Mail. Studiengang.

Bachelorprüfung. Praxis der empirischen Wirtschaftsforschung Prof. Regina T. Riphahn, Ph.D. Name, Vorname. Matrikelnr. E-Mail. Studiengang. Lehrstuhl für Statistik und empirische Wirtschaftsforschung Fach: Prüfer: Bachelorprüfung Praxis der empirischen Wirtschaftsforschung Prof. Regina T. Riphahn, Ph.D. Name, Vorname Matrikelnr. E-Mail Studiengang

Mehr

Institut für Soziologie Christian Ganser. Methoden 2. Regressionsanalyse III: Diagnostik

Institut für Soziologie Christian Ganser. Methoden 2. Regressionsanalyse III: Diagnostik Institut für Soziologie Methoden 2 Regressionsanalyse III: Diagnostik Wiederholung Regressionsanalyse beruht auf verschiedenen Annahmen Sind Annahmen verletzt, sind bestimmte Eigenschaften der Schätzer

Mehr

2.3 Nichtlineare Regressionsfunktion

2.3 Nichtlineare Regressionsfunktion Nichtlineare Regressionsfunktion Bisher: lineares Regressionsmodell o Steigung d. Regressionsgerade ist konstant o Effekt einer Änderung von X auf Y hängt nicht vom Niveau von X oder von anderen Regressoren

Mehr

Übungsblatt 7: Schätzung eines Mietspiegels

Übungsblatt 7: Schätzung eines Mietspiegels Prof. Bernd Fitzenberger, Ph.D. Ute Leuschner Stefanie Schäfer Übung zur Veranstaltung Empirische Wirtschaftsforschung Albert-Ludwigs-Universität Freiburg Wintersemester 2010/11 Übungsblatt 7: Schätzung

Mehr

Kreuzvalidierung. 1. Schritt: Aufteilung der Stichprobe in ungefähr gleiche Hälften nach dem Zufall. SPSS:

Kreuzvalidierung. 1. Schritt: Aufteilung der Stichprobe in ungefähr gleiche Hälften nach dem Zufall. SPSS: Kreuzvalidierung. Schritt: Aufteilung der Stichprobe in ungefähr gleiche Hälften nach dem Zufall. SPSS: SPSS erzeugt eine neue Variable Filter_$. Die herausgefilterten Fälle werden im Datenfenster angezeigt

Mehr

Statistik Einführung // Lineare Regression 9 p.2/72

Statistik Einführung // Lineare Regression 9 p.2/72 Statistik Einführung Lineare Regression Kapitel 9 Statistik WU Wien Gerhard Derflinger Michael Hauser Jörg Lenneis Josef Ledold Günter Tirler Rosmarie Wakolbinger Statistik Einführung // Lineare Regression

Mehr

Eine Einführung in R: Das Lineare Modell

Eine Einführung in R: Das Lineare Modell Eine Einführung in R: Das Lineare Modell Bernd Klaus, Verena Zuber Institut für Medizinische Informatik, Statistik und Epidemiologie (IMISE), Universität Leipzig 6. Januar 2009 Bernd Klaus, Verena Zuber

Mehr

Multiple Regression. Ziel: Vorhersage der Werte einer Variable (Kriterium) bei Kenntnis der Werte von zwei oder mehr anderen Variablen (Prädiktoren)

Multiple Regression. Ziel: Vorhersage der Werte einer Variable (Kriterium) bei Kenntnis der Werte von zwei oder mehr anderen Variablen (Prädiktoren) Multiple Regression 1 Was ist multiple lineare Regression? Ziel: Vorhersage der Werte einer Variable (Kriterium) bei Kenntnis der Werte von zwei oder mehr anderen Variablen (Prädiktoren) Annahme: Der Zusammenhang

Mehr

Mehrebenenanalyse. Seminar: Multivariate Analysemethoden Referentinnen: Barbara Wulfken, Iris Koch & Laura Früh

Mehrebenenanalyse. Seminar: Multivariate Analysemethoden Referentinnen: Barbara Wulfken, Iris Koch & Laura Früh Mehrebenenanalyse Seminar: Multivariate Analysemethoden Referentinnen: Barbara Wulfken, Iris Koch & Laura Früh Inhalt } Einführung } Fragestellung } Das Programm HLM } Mögliche Modelle } Nullmodell } Random

Mehr

Inferenz im multiplen Regressionsmodell

Inferenz im multiplen Regressionsmodell 1 / 40 Inferenz im multiplen Regressionsmodell Kapitel 4, Teil 2 Ökonometrie I Michael Hauser 2 / 40 Inhalt ANOVA, analysis of variance korrigiertes R 2, R 2 F-Test F-Test bei linearen Restriktionen Erwartungstreue,

Mehr

EINFACHE LINEARE REGRESSION MODUL 13 PROSEMINAR DESKRIPTIVE STATISTIK ANALYSE UND DARSTELLUNG VON DATEN I GÜNTER HAIDER WS 1999/2000

EINFACHE LINEARE REGRESSION MODUL 13 PROSEMINAR DESKRIPTIVE STATISTIK ANALYSE UND DARSTELLUNG VON DATEN I GÜNTER HAIDER WS 1999/2000 INSTITUT FÜR ERZIEHUNGSWISSENSCHAFT - UNIVERSITÄT SALZBURG PROSEMINAR DESKRIPTIVE STATISTIK ANALYSE UND DARSTELLUNG VON DATEN I GÜNTER HAIDER WS 1999/2 MODUL 13 EINFACHE LINEARE REGRESSION Erziehungswissenschaft/Haider

Mehr

Ergänzungsmaterial zur Vorlesung. Statistik 2. Modelldiagnostik, Ausreißer, einflussreiche Beobachtungen

Ergänzungsmaterial zur Vorlesung. Statistik 2. Modelldiagnostik, Ausreißer, einflussreiche Beobachtungen Institut für Stochastik WS 2007/2008 Universität Karlsruhe JProf. Dr. H. Holzmann Dipl.-Math. oec. D. Engel Ergänzungsmaterial zur Vorlesung Statistik 2 Modelldiagnostik, Ausreißer, einflussreiche Beobachtungen

Mehr

1. Lösungen zu Kapitel 8

1. Lösungen zu Kapitel 8 1. Lösungen zu Kapitel 8 Übungsaufgabe 8.1 a) Falsch! Die Nichtberücksichtigung von unwichtigen Variablen für die Identifikation kausaler Effekte stellt kein Problem dar, sofern diese Variablen keinen

Mehr

b) Bestimmen Sie die Varianz der beiden Schätzer. c) Ist ein oder sind beide Schätzer konsistent? Begründen Sie!

b) Bestimmen Sie die Varianz der beiden Schätzer. c) Ist ein oder sind beide Schätzer konsistent? Begründen Sie! Aufgabe 1 (3 + 3 + 2 Punkte) Ein Landwirt möchte das durchschnittliche Gewicht von einjährigen Ferkeln bestimmen lassen. Dies möchte er aus seinem diesjährigen Bestand an n Tieren schätzen. Er kann dies

Mehr

Abschlussklausur zur Vorlesung Empirische Wirtschaftsforschung

Abschlussklausur zur Vorlesung Empirische Wirtschaftsforschung Dr Isabel Schnabel Johannes Gutenberg-Universität Mainz Abschlussklausur zur Vorlesung Empirische Wirtschaftsforschung Sommersemester 2007, 14082007, 16:30 18:30 Uhr Hinweise zur Klausur Die Klausur besteht

Mehr

Einführung in die Statistik für Politikwissenschaftler Sommersemester 2013

Einführung in die Statistik für Politikwissenschaftler Sommersemester 2013 Einführung in die Statistik für Politikwissenschaftler Sommersemester 2013 1. Welche Aussage zur Statistik (in den Sozialwissenschaften) sind richtig? (2 Punkte) ( ) Statistik ist die Lehre von Methoden

Mehr

Klausur zu Statistik II

Klausur zu Statistik II GOETHE-UNIVERSITÄT FRANKFURT FB Wirtschaftswissenschaften Statistik und Methoden der Ökonometrie Prof. Dr. Uwe Hassler Wintersemester 03/04 Klausur zu Statistik II Matrikelnummer: Hinweise Hilfsmittel

Mehr

Methodenlehre. Vorlesung 10. Prof. Dr. Björn Rasch, Cognitive Biopsychology and Methods University of Fribourg

Methodenlehre. Vorlesung 10. Prof. Dr. Björn Rasch, Cognitive Biopsychology and Methods University of Fribourg Methodenlehre Vorlesung 10 Prof. Dr., Cognitive Biopsychology and Methods University of Fribourg 1 Methodenlehre II Woche Datum Thema 1 FQ Einführung, Verteilung der Termine 1 18.2.15 Psychologie als Wissenschaft

Mehr

Projekt Kaffeemaschine Welche Faktoren beeinflussen das Geschmacksurteil?

Projekt Kaffeemaschine Welche Faktoren beeinflussen das Geschmacksurteil? AKULTÄT ANGEWANDTE SOZIALWISSENSCHATEN PRO. DR. SONJA HAUG Projekt Kaffeemaschine Welche aktoren beeinflussen das Geschmacksurteil? Ausgehend von der Verkostung an der Hochschule Regensburg und der dabei

Mehr

Literatur: Glantz, S.A. (2002). Primer of Biostatistics. New York: McGraw-Hill.

Literatur: Glantz, S.A. (2002). Primer of Biostatistics. New York: McGraw-Hill. Statistik Literatur: Glantz, S.A. (2002). Primer of Biostatistics. New York: McGraw-Hill. Maxwell, S.E. & Delaney, H.D. (2000). Designing Experiments and Analyzing Data. Mahwah, NJ: Erlbaum. Das Grundproblem

Mehr

Glossar Statistik 2. Bivariate Verfahren: zwei nummerische Merkmale

Glossar Statistik 2. Bivariate Verfahren: zwei nummerische Merkmale Glossar Statistik 2 Bivariate Verfahren: zwei nummerische Merkmale Streudiagramm - Datenpaare (X, Y) als Punkte auf einem zweidimensionale Diagramm (Ordinate: Y, Abszisse: X) Lineare Regression - Optimierungsproblem

Mehr

Analysen politikwissenschaftlicher Datensätze mit Stata. Sitzung 5: Lineare Regression

Analysen politikwissenschaftlicher Datensätze mit Stata. Sitzung 5: Lineare Regression Analysen politikwissenschaftlicher Datensätze mit Stata Sitzung 5: Lineare Regression 1 Vorbereitung Stata durch z:\profile.do starten Datensatz z:\daten\rpstrukt laden Achtung: Ab dieser Sitzung werden

Mehr

Inhaltsverzeichnis. Regressionsanalyse. http://mesosworld.ch - Stand vom: 20.1.2010 1

Inhaltsverzeichnis. Regressionsanalyse. http://mesosworld.ch - Stand vom: 20.1.2010 1 Inhaltsverzeichnis Regressionsanalyse... 2 Lernhinweise... 2 Einführung... 2 Theorie (1-8)... 2 1. Allgemeine Beziehungen... 3 2. 'Best Fit'... 3 3. 'Ordinary Least Squares'... 4 4. Formel der Regressionskoeffizienten...

Mehr

Mathematik in den Life Siences

Mathematik in den Life Siences Gerhard Keller Mathematik in den Life Siences Grundlagen der Modellbildung und Statistik mit einer Einführung in die Statistik-Software R 49 Abbildungen Verlag Eugen Ulmer Stuttgart Inhaltsverzeichnis

Mehr

Regressionsanalyse in R

Regressionsanalyse in R Regressionsanalyse in R Session 6 1 Einfache Regression Lineare Regression ist eines der nützlichsten Werkzeuge in der Statistik. Regressionsanalyse erlaubt es Zusammenhänge zwischen Parametern zu schätzen

Mehr

Vorlesung Wirtschaftsstatistik 2 (FK 040637) Multiple lineare Regression. Dipl.-Ing. Robin Ristl Wintersemester 2012/13

Vorlesung Wirtschaftsstatistik 2 (FK 040637) Multiple lineare Regression. Dipl.-Ing. Robin Ristl Wintersemester 2012/13 Vorlesung Wirtschaftsstatistik 2 (FK 040637) Multiple lineare Regression Dipl.-Ing. Robin Ristl Wintersemester 2012/13 1 Grundidee: Eine abhängige Variable soll als Linearkombination mehrerer unabhängiger

Mehr

I. Deskriptive Statistik 1

I. Deskriptive Statistik 1 I. Deskriptive Statistik 1 1. Einführung 3 1.1. Grundgesamtheit und Stichprobe.................. 5 1.2. Merkmale und Verteilungen..................... 6 1.3. Tabellen und Grafiken........................

Mehr

Kapitel 3. Inferenz bei OLS-Schätzung I (small sample, unter GM1,..., GM6)

Kapitel 3. Inferenz bei OLS-Schätzung I (small sample, unter GM1,..., GM6) 8 SMALL SAMPLE INFERENZ DER OLS-SCHÄTZUNG Damit wir die Verteilung von t (und anderen Teststatistiken) exakt angeben können, benötigen wir Verteilungsannahmen über die Störterme; Kapitel 3 Inferenz bei

Mehr

Konfidenzintervalle Grundlegendes Prinzip Erwartungswert Bekannte Varianz Unbekannte Varianz Anteilswert Differenzen von Erwartungswert Anteilswert

Konfidenzintervalle Grundlegendes Prinzip Erwartungswert Bekannte Varianz Unbekannte Varianz Anteilswert Differenzen von Erwartungswert Anteilswert Konfidenzintervalle Grundlegendes Prinzip Erwartungswert Bekannte Varianz Unbekannte Varianz Anteilswert Differenzen von Erwartungswert Anteilswert Beispiel für Konfidenzintervall Im Prinzip haben wir

Mehr

Weitere Fragestellungen im Zusammenhang mit einer linearen Einfachregression

Weitere Fragestellungen im Zusammenhang mit einer linearen Einfachregression Weitere Fragestellungen im Zusammenhang mit einer linearen Einfachregression Speziell im Zusammenhang mit der Ablehnung der Globalhypothese werden bei einer linearen Einfachregression weitere Fragestellungen

Mehr

4. Das multiple lineare Regressionsmodell

4. Das multiple lineare Regressionsmodell 4. Das multiple lineare Regressionsmodell Bisher: 1 endogene Variable y wurde zurückgeführt auf 1 exogene Variable x (einfaches lineares Regressionsmodell) Jetzt: Endogenes y wird regressiert auf mehrere

Mehr

Methodik der multiplen linearen Regression

Methodik der multiplen linearen Regression Methodik der multiplen linearen Regression Sibel Aydemir Statistisches Amt, Direktorium Landeshauptstadt München Name, Stadt Regressionsanalyse: Schritt für Schritt Schritt 1 Schritt 2 Schritt 3 Schritt

Mehr

Geschlecht + Anfangsgehalt. T-Test für das Anfangsgehalt Gruppenstatistiken. Der SPSS Output der aktuellen Computerübung zum Aufgabenblatt 3

Geschlecht + Anfangsgehalt. T-Test für das Anfangsgehalt Gruppenstatistiken. Der SPSS Output der aktuellen Computerübung zum Aufgabenblatt 3 Der SPSS Output der aktuellen Computerübung zum Aufgabenblatt 3 Geschlecht + Anfangsgehalt 14000 399 403 7000 12000 335 Anfangsgehalt 10000 8000 6000 4000 2000 N = 28 63 185 291 227 52 215 158 88 284 193

Mehr

Mehr-Ebenen-Analyse I. Regressionsmodelle für Politikwissenschaftler

Mehr-Ebenen-Analyse I. Regressionsmodelle für Politikwissenschaftler Mehr-Ebenen-Analyse I Regressionsmodelle für Politikwissenschaftler Was sind strukturierte Daten? Was ist Struktur? Probleme Bisher sind wir stets von einfachen Zufallsstichproben ausgegangen (Registerstichprobe)

Mehr

Statistik-Klausur vom

Statistik-Klausur vom Statistik-Klausur vom 27.09.2010 Bearbeitungszeit: 60 Minuten Aufgabe 1 Ein international tätiges Unternehmen mit mehreren Niederlassungen in Deutschland und dem übrigen Europa hat seine überfälligen Forderungen

Mehr

Statistik II Wahrscheinlichkeitsrechnung und induktive Statistik Erste Klausur zum Sommersemester 2005 26. Juli 2005

Statistik II Wahrscheinlichkeitsrechnung und induktive Statistik Erste Klausur zum Sommersemester 2005 26. Juli 2005 Statistik II Wahrscheinlichkeitsrechnung und induktive Statistik Erste Klausur zum Sommersemester 2005 26. Juli 2005 Aufgabe 1: Grundzüge der Wahrscheinlichkeitsrechnung 19 P. Als Manager eines großen

Mehr

Kapitel 4: Merkmalszusammenhänge

Kapitel 4: Merkmalszusammenhänge Kapitel 4: Merkmalszusammenhänge Streudiagramme 1 Korrelationen 3 Lineare Regression 6 Zusammenhang zwischen Korrelation, Regression und t-test 8 Streudiagramme SPSS bietet die Möglichkeit, verschiedene

Mehr

Lineare Regression: Grundlagen und BLUE-Annahmen

Lineare Regression: Grundlagen und BLUE-Annahmen Fakultät für Humanwissenschaften Sozialwissenschaftliche Methodenlehre Prof. Dr. Daniel Lois Lineare Regression: Grundlagen und BLUE-Annahmen Stand: Juni 2015 (V2.0) Inhaltsverzeichnis 1. Lineare Regression:

Mehr

Lineare Regression II

Lineare Regression II Lineare Regression II Varianzanalyse als multiple Regession auf Designvariablen Das lineare Regressionsmodell setzt implizit voraus, dass nicht nur die abhängige, sondern auch die erklärenden Variablen

Mehr

Statistiken deuten und erstellen

Statistiken deuten und erstellen Statistiken deuten und erstellen Dipl. Ök. Jens K. Perret, M.Sc. Evgenija Yushkova, M.A. Schumpeter School of Business and Economics Bergische Universität Wuppertal Gaußstraße 20 42097 Wuppertal Inhalt

Mehr

Bachelorabschlussseminar Dipl.-Kfm. Daniel Cracau

Bachelorabschlussseminar Dipl.-Kfm. Daniel Cracau 1 Einführung in die statistische Datenanalyse Bachelorabschlussseminar Dipl.-Kfm. Daniel Cracau 2 Gliederung 1.Grundlagen 2.Nicht-parametrische Tests a. Mann-Whitney-Wilcoxon-U Test b. Wilcoxon-Signed-Rank

Mehr

Fehlerfortpflanzung. M. Schlup. 27. Mai 2011

Fehlerfortpflanzung. M. Schlup. 27. Mai 2011 Fehlerfortpflanzung M. Schlup 7. Mai 0 Wird eine nicht direkt messbare physikalische Grösse durch das Messen anderer Grössen ermittelt, so stellt sich die Frage, wie die Unsicherheitsschranke dieser nicht-messbaren

Mehr

Hinweis: Es sind 4 aus 6 Aufgaben zu bearbeiten. Werden mehr als 4 Aufgaben bearbeitet, werden nur die ersten vier Aufgaben gewertet.

Hinweis: Es sind 4 aus 6 Aufgaben zu bearbeiten. Werden mehr als 4 Aufgaben bearbeitet, werden nur die ersten vier Aufgaben gewertet. 11.01.2012 Prof. Dr. Ingo Klein Klausur zur VWA-Statistik Hinweis: Es sind 4 aus 6 Aufgaben zu bearbeiten. Werden mehr als 4 Aufgaben bearbeitet, werden nur die ersten vier Aufgaben gewertet. Aufgabe 1:

Mehr

Bivariate lineare Regression. Statistik für SozialwissenschaftlerInnen II p.154

Bivariate lineare Regression. Statistik für SozialwissenschaftlerInnen II p.154 Bivariate lineare Regression Statistik für SozialwissenschaftlerInnen II p.154 Grundidee und Typen der Regression Die Regressionsanalyse dient zur Quantifizierung des Zusammenhangs und der statistisch

Mehr

Sozialwissenschaftliche Fakultät der Universität Göttingen. Sommersemester Statistik mit SPSS

Sozialwissenschaftliche Fakultät der Universität Göttingen. Sommersemester Statistik mit SPSS Sommersemester 2009 Statistik mit SPSS 09. Mai 2009 09. Mai 2009 Statistik Dozentin: mit Esther SPSSOchoa Fernández 1 Arbeitsschritte bei der Datenanalyse Datenmanagement (Einlesen von Daten, Teilen von

Mehr

Grundlegende Eigenschaften von Punktschätzern

Grundlegende Eigenschaften von Punktschätzern Grundlegende Eigenschaften von Punktschätzern Worum geht es in diesem Modul? Schätzer als Zufallsvariablen Vorbereitung einer Simulation Verteilung von P-Dach Empirische Lage- und Streuungsparameter zur

Mehr