Entladung eines Kondensators

Save this PDF as:
 WORD  PNG  TXT  JPG

Größe: px
Ab Seite anzeigen:

Download "Entladung eines Kondensators"

Transkript

1 Entladung eines Kondensators Im Gegensatz zu einer Batterie kann mit einem Kondensator innerhalb von kurzer Zeit eine hohe Stromstärke erzeugt werden. Dies wird zum Beispiel beim Blitz eines Fotoapparates ausgenutzt. Die Stromstärke der Batterie reicht nicht aus um damit das helle Blitzlicht des Fotoapparates zu betreiben. Aus diesem Grund wird in einem Fotoapparat zunächst mit Hilfe der Batterie (in der Regel ein Akku) ein Kondensator aufgeladen. Wird der Auslöser betätigt so entlädt sich der Kondensator innerhalb von kürzester Zeit, sodass die Stromstärke ausreicht um den Blitz zu betreiben. Im Folgenden wird nun der Aufladevorgang und der Entladevorgang eines Kondensators näher untersucht. Hierzu wird ein Kondensator an einer Spannungsquelle mit der Spannung aufgeladen (Masche 1). Durch einen Kippschalter wird er von der Spannungsquelle getrennt und über ein Amperemeter mit dem Innenwiderstand entladen (Masche 2). Dabei fließt der Entladestrom,

2 dessen zeitlicher Verlauf mit dem Amperemeter gemessen werden kann. Es ist zu beobachten, dass die Ladung (Elektronen) vom Kondensator abfließt und ein Ladungsausgleich stattfindet. Hierbei ist zunächst anzumerken, dass die Ladung nicht auf einen Schlag vom Kondensator abfließt, sondern dieser Vorgang eine gewisse Zeit benötigt. Es wird nun zunächst der zeitliche Verlauf einer solchen Kondensatorentladung betrachtet, da der Aufladevorgang ohne Vorüberlegungen mathematisch anspruchsvoller und weniger zugänglich ist. Durch Umlegen des Kippschalters wird Masche 2 geschlossen. Die am Kondensator anliegende Spannung ist dann gleich der am Widerstand anliegenden Spannung: Dabei ist die am Kondensator anliegende Spannung und die am Widerstand abfallende Spannung. Beide Spannungen sind abhängig von der Zeit, da die Spannung sich während der Entladung ändert. Für die Spannung am Kondensator gilt: ( Kuh gleich CU ) Für die Spannung am Widerstand gilt: (ohmsches Gesetz URI ) Anmerkung: Die Spannung am Widerstand ist hier mit einem Minuszeichen versehen, da anschaulich der Widerstand der Entladung des Kondensators entgegenwirkt. Es ist eine analoge Herleitung mit Hilfe der Kirchhoffschen Gesetze möglich in der auf das Einfügen des Minuszeichens verzichtet werden kann. Diese ist jedoch weniger anschaulich und hier wird deshalb darauf verzichtet. Setzt man nun beide Formeln die obige Gleichung ein, so ergibt sich der Zusammenhang In dieser Gleichung kann die Stromstärke des Entladestroms durch die Formel werden, da der elektrischer Strom per Definition gleich der zeitlichen Änderung der Ladung ist. ersetzt Es ergibt sich somit eine Gleichung die neben den beiden Gerätekonstanten und nur noch von der Ladung und der Zeit abhängig ist. Ziel der nachfolgenden Rechnung ist es die Gleichung nach aufzulösen. Dies wird dadurch erschwert, dass es sich bei der Gleichung um eine sog. Differentialgleichung handelt. Eine Differentialgleichung ist dadurch gekennzeichnet, dass die gesuchte Größe (hier ) auch in abgeleiteter Form in der Gleichung vorkommt. Die Lösung einer solchen Gleichung erfolgt mit Hilfe der Integralrechnung. Die Gleichung wird zunächst rein algebraisch umgeformt (Trennung der Variablen):

3 Dabei wurden die beiden Variablen und so voneinander getrennt, dass eine der Variablen nur noch auf einer Seite der Gleichung und die andere nur noch auf der anderen Seite vorkommt (links, rechts ). Durch Integrieren auf beiden Seiten der Gleichung ergibt sich: Diese Gleichung kann nun mit Hilfe des zweiten Logarithmusgesetzes umgeformt werden: Durch Umdrehen der Gleichung und der Multiplikation mit Q 0 ergibt sich schließlich: Der zeitliche Verlauf der Entladung kann also mit Hilfe einer Exponentialfunktion beschrieben werden. Dabei ist die zum Zeitpunkt auf dem Kondensator befindliche Ladung. Diese nimmt mit der Zeit exponentiell ab. Eine exponentielle Abnahme ist dadurch gekennzeichnet, dass sich die Ladung in gleichen Zeitabständen halbiert. Die Zeit in der sich die Ladung halbiert wird Halbwertszeit genannt. Nach der Zeit hat sich die Ladung also halbiert. Nach zwei Halbwertszeiten halbiert sich die bereits halbierte Ladung erneut und es bleibt ein Viertel der Ausgangsladung übrig. Nach drei Halbwertszeiten beträgt die Ladung nur noch ein Achtel der Ausgangsladung, usw.

4 Die Halbwertszeit ist wiederum abhängig von den Gerätekonstanten und. So entlädt sich ein Kondensator mit der Kapazität über einen großen Widerstand langsamer als über einen kleinen Widerstand. Trägt man im Diagramm die Zeit t gegen die Ladung Q(t) auf, so ergibt sich der typische Verlauf einer Exponentialfunktion mit negativem Exponenten. Aus dem zeitlichen Verlauf der Ladung Q beim Entladevorgang kann nun relativ einfach der zeitliche Verlauf der Spannung und der Stromstärke während der Entladung des Kondensators berechnet werden: 1. Zeitlicher Verlauf der Spannung: Durch Einsetzen von und in obige Exponentialfunktion ergibt sich: kann gekürzt werden, so dass man für die Spannung eine analoge Exponential- Die Kapazität funktion erhält: Dies bedeutet, dass auch die Spannung mit der Zeit exponentiell abfällt. Auch hier gilt, dass sich die Spannung jeweils in gleichen Zeiten halbiert.

5 2. Zeitlicher Verlauf der Stromstärke: Durch Einsetzen von und in die Exponentialfunktion der Spannung ergibt sich: Der Widerstand kann gekürzt werden, so dass man auch für die Stromstärke eine analoge Exponentialfunktion erhält. Dies ist nicht überraschend, da der Strom direkt von der Ladung abhängig ist. Da sich die Ladung in gleichen Zeiten halbiert muss sich logischer Weise auch die Stromstärke in derselben Zeit halbieren. Berechnung der Halbwertszeit Die Ladung des Kondensators nimmt gemäß der Formel exponentiell mit der Zeit ab. Nach der Zeit ist nur noch die Hälfte der Ladung auf dem Kondensator übrig: Setzt man nun für die Exponentialfunktion zur Zeit ein, so ergibt sich die Gleichung Die Anfangsladung kann gekürzt werden und die Gleichung nach aufgelöst werden:

6 Die Halbwertszeit ist also, wie bereits vermutet abhängig vom Entladewiderstand und von der Kapazität des Kondensators. Dies kann man ausnutzen um die Kapazität von unbekannten Kondensatoren zu bestimmen. Hierzu entlädt man den Kondensator einfach über einen bekannten Widerstand und misst die Halbwertszeit des Entladevorgangs. Durch Umstellen erhält man dann die Kapazität. Abschließende Bemerkung: Den Faktor aus den Exponentialfunktionen bezeichnet man häufig mit Abklingkonstante. Wohingegen der Nenner Zeitkonstante genannt wird. Für die Halbwertszeit ergibt sich dann die Formel: Aufladung eines Kondensators Die Aufladung eines Kondensators verläuft genau umgekehrt wie der Entladevorgang. Aus diesem Grund wird hier auf größere mathematische Herleitungen wie im vorangegangenen Kapitel verzichtet. Im folgenden Diagramm ist der graphische Verlauf eines Aufladevorgangs mit direkt angeschlossenem Entladevorgang aufgetragen: Es ist zu erkennen, dass sich die Kurve des Aufladevorgangs aus der Kurve des Enladevorgangs durch Spiegelung an der x-achse und Verschiebung nach oben um Q 0 ergibt. Die Formel für den Aufladevorgang erhält man also durch Spiegelung und Verschiebung. Entladevorgang: Spiegelung an der x-achse:

7 Verschiebung um Q 0 nach oben: Die Formeln für Spannung und Stromstärke ergeben sich analog.

R C 1s =0, C T 1

R C 1s =0, C T 1 Aufgaben zum Themengebiet Aufladen und Entladen eines Kondensators Theorie und nummerierte Formeln auf den Seiten 5 bis 8 Ein Kondensator mit der Kapazität = 00μF wurde mit der Spannung U = 60V aufgeladen

Mehr

Entladen und Aufladen eines Kondensators über einen ohmschen Widerstand

Entladen und Aufladen eines Kondensators über einen ohmschen Widerstand Entladen und Aufladen eines Kondensators über einen ohmschen Widerstand Vorüberlegung In einem seriellen Stromkreis addieren sich die Teilspannungen zur Gesamtspannung Bei einer Gesamtspannung U ges, der

Mehr

6 Elektromagnetische Schwingungen und Wellen

6 Elektromagnetische Schwingungen und Wellen 6 Elektromagnetische Schwingungen und Wellen Gegen Ende des 19.Jahrhunterts gelang dem berühmten deutschen Physiker Heinrich Rudolph Hertz (1857-1894) zum ersten Mal in der Geschichte der Menschheit der

Mehr

Misst man die Ladung in Abhängigkeit von der angelegten Spannung, so ergibt sich ein proportionaler Zusammenhang zwischen Ladung und Spannung:

Misst man die Ladung in Abhängigkeit von der angelegten Spannung, so ergibt sich ein proportionaler Zusammenhang zwischen Ladung und Spannung: 3.11 Der Kondensator In den vorangegangenen Kapiteln wurden die physikalischen Eigenschaften von elektrischen Ladungen und Feldern näher untersucht. In vielen Experimenten kamen dabei bereits Kondensatoren

Mehr

Abiturprüfung Physik, Grundkurs

Abiturprüfung Physik, Grundkurs Seite 1 von 6 Abiturprüfung 2012 Physik, Grundkurs Aufgabenstellung: Aufgabe: Entladung eines Kondensators In dieser Aufgabe geht es um die Entladung eines Kondensators. Im ersten Teil (Teilaufgabe 1)

Mehr

Vorbereitung zum Versuch

Vorbereitung zum Versuch Vorbereitung zum Versuch elektrische Messverfahren Armin Burgmeier (347488) Gruppe 5 2. Dezember 2007 Messungen an Widerständen. Innenwiderstand eines µa-multizets Die Schaltung wird nach Schaltbild (siehe

Mehr

Grundlagen der Elektrotechnik: Wechselstromwiderstand Xc Seite 1 R =

Grundlagen der Elektrotechnik: Wechselstromwiderstand Xc Seite 1 R = Grundlagen der Elektrotechnik: Wechselstromwiderstand Xc Seite 1 Versuch zur Ermittlung der Formel für X C In der Erklärung des Ohmschen Gesetzes ergab sich die Formel: R = Durch die Versuche mit einem

Mehr

PHYSIK. 2. Klausur - Lösung

PHYSIK. 2. Klausur - Lösung EI PH3 2010-11 PHYSIK 2. Klausur - Lösung 1. Aufgabe (2 Punkte) Unten befindet sich ein Proton im elektrischen Feld zwischen einer ortsfesten positiven sowie einer ortsfesten negativen Ladung. a) Beschreibe,

Mehr

ELEKTRISCHE SPANNUNGSQUELLEN

ELEKTRISCHE SPANNUNGSQUELLEN Physikalisches Grundpraktikum I Versuch: (Versuch durchgeführt am 17.10.2000) ELEKTRISCHE SPANNUNGSQUELLEN Denk Adelheid 9955832 Ernst Dana Eva 9955579 Linz, am 22.10.2000 1 I. PHYSIKALISCHE GRUNDLAGEN

Mehr

Gegeben ist die dargestellte Schaltung mit nebenstehenden Werten. Daten: U AB. der Induktivität L! und I 2. , wenn Z L. = j40 Ω ist? an!

Gegeben ist die dargestellte Schaltung mit nebenstehenden Werten. Daten: U AB. der Induktivität L! und I 2. , wenn Z L. = j40 Ω ist? an! Grundlagen der Elektrotechnik I Aufgabe K4 Gegeben ist die dargestellte Schaltung mit nebenstehenden Werten. R 1 A R 2 Daten R 1 30 Ω R 3 L R 2 20 Ω B R 3 30 Ω L 40 mh 1500 V f 159,15 Hz 1. Berechnen Sie

Mehr

15. Elektromagnetische Schwingungen

15. Elektromagnetische Schwingungen 5. Elektromagnetische Schwingungen Elektromagnetischer Schwingkreis Ein Beispiel für eine mechanische harmonische Schwingung wäre eine schwingende Feder, die im Normalfall durch den uftwiderstand gedämpft

Mehr

Schalter. 2.3 Spannungsquellen. 2.3.1 Kondensatoren 112 KAPITEL 2. STROMFLUSS DURCH LEITER; EL. WIDERSTAND

Schalter. 2.3 Spannungsquellen. 2.3.1 Kondensatoren 112 KAPITEL 2. STROMFLUSS DURCH LEITER; EL. WIDERSTAND 112 KAPTEL 2. STROMFLSS DRCH LETER; EL. WDERSTAND 2.3 Spannungsquellen n diesem Abschnitt wollen wir näher besprechen, welche Arten von Spannungsquellen real verwendet werden können. 2.3.1 Kondensatoren

Mehr

Radioaktiver Zerfall

Radioaktiver Zerfall 11.3.2 Radioaktiver Zerfall Betrachtet man einen einzelnen instabilen Atomkern, so kann nicht vorhergesagt werden zu welchem Zeitpunkt der Atomkern zerfällt. So könnte der Atomkern im nächsten Moment,

Mehr

1. Ablesen eines Universalmessgerätes und Fehlerberechnung

1. Ablesen eines Universalmessgerätes und Fehlerberechnung Laborübung 1 1-1 1. Ablesen eines Universalmessgerätes und Fehlerberechnung Wie groß ist die angezeigte elektrische Größe in den Bildern 1 bis 6? Mit welchem relativen Messfehler muss in den sechs Ableseübungen

Mehr

1. Theorie: Kondensator:

1. Theorie: Kondensator: 1. Theorie: Aufgabe des heutigen Versuchstages war es, die charakteristische Größe eines Kondensators (Kapazität C) und einer Spule (Induktivität L) zu bestimmen, indem man per Oszilloskop Spannung und

Mehr

Klausur 2 Kurs 11Ph1e Physik. 2 Q U B m

Klausur 2 Kurs 11Ph1e Physik. 2 Q U B m 2010-11-24 Klausur 2 Kurs 11Ph1e Physik Lösung 1 α-teilchen (=2-fach geladene Heliumkerne) werden mit der Spannung U B beschleunigt und durchfliegen dann einen mit der Ladung geladenen Kondensator (siehe

Mehr

Gleichstromkreise. 1.Übung am 25 März 2006 Methoden der Physik SS2006 Prof. Wladyslaw Szymanski. Elisabeth Seibold Nathalie Tassotti Tobias Krieger

Gleichstromkreise. 1.Übung am 25 März 2006 Methoden der Physik SS2006 Prof. Wladyslaw Szymanski. Elisabeth Seibold Nathalie Tassotti Tobias Krieger Gleichstromkreise 1.Übung am 25 März 2006 Methoden der Physik SS2006 Prof. Wladyslaw Szymanski Elisabeth Seibold Nathalie Tassotti Tobias Krieger ALLGEMEIN Ein Gleichstromkreis zeichnet sich dadurch aus,

Mehr

EO Oszilloskop. Inhaltsverzeichnis. Moritz Stoll, Marcel Schmittfull (Gruppe 2) 25. April 2007. 1 Einführung 2

EO Oszilloskop. Inhaltsverzeichnis. Moritz Stoll, Marcel Schmittfull (Gruppe 2) 25. April 2007. 1 Einführung 2 EO Oszilloskop Blockpraktikum Frühjahr 2007 (Gruppe 2) 25. April 2007 Inhaltsverzeichnis 1 Einführung 2 2 Theoretische Grundlagen 2 2.1 Oszilloskop........................ 2 2.2 Auf- und Entladevorgang

Mehr

4 Kondensatoren und Widerstände

4 Kondensatoren und Widerstände 4 Kondensatoren und Widerstände 4. Ziel des Versuchs In diesem Praktikumsteil sollen die Wirkungsweise und die Frequenzabhängigkeit von Kondensatoren im Wechselstromkreis untersucht und verstanden werden.

Mehr

Übungen zu Wellen und Elektrodynamik für Chemie- und Bioingenieure und Verfahrenstechniker WS 11/12

Übungen zu Wellen und Elektrodynamik für Chemie- und Bioingenieure und Verfahrenstechniker WS 11/12 Institut für Experimentelle Kernphysik Übungen zu Wellen und Elektrodynamik für Chemie- und Bioingenieure und Verfahrenstechniker WS 11/12 Prof. Dr. T. Müller Dr. F. Hartmann Blatt 4 - letzte Übung in

Mehr

1. Klausur in K1 am

1. Klausur in K1 am Name: Punkte: Note: Ø: Kernfach Physik Abzüge für Darstellung: Rundung:. Klausur in K am 4. 0. 0 Achte auf die Darstellung und vergiss nicht Geg., Ges., Formeln, Einheiten, Rundung...! Angaben: e =,60

Mehr

2 Der elektrische Strom 2.1 Strom als Ladungstransport 2.1.1 Stromstärke PTB

2 Der elektrische Strom 2.1 Strom als Ladungstransport 2.1.1 Stromstärke PTB 2 Der elektrische Strom 2.1 Strom als Ladungstransport 2.1.1 Stromstärke PTB Auf dem Weg zum Quantennormal für die Stromstärke Doris III am DESY 1 Versuch zur Stromwirkung: Leuchtende Gurke 2 2.1.2 Stromdichte

Mehr

Physik für Mediziner im 1. Fachsemester

Physik für Mediziner im 1. Fachsemester Physik für Mediziner im 1. Fachsemester #17 19/11/2010 Vladimir Dyakonov dyakonov@physik.uni-wuerzburg.de Elektrizitätslehre Teil 2 Kondensator Kondensator Im einfachsten Fall besteht ein Kondensator aus

Mehr

Lösungen zum Aufgabenblatt 4:

Lösungen zum Aufgabenblatt 4: Lösungen zum Aufgabenblatt 4: $XIJDE Berechnen Sie die Kapazität eines Plattenkondensators mit der Fläche A 1cm, einem Abstand zwischen den Platten von d 5mm und einem Isoliermaterial mit der Dielektrizitätszahl

Mehr

Naturwissenschaftliche Fakultät II - Physik. Anleitung zum Anfängerpraktikum A2

Naturwissenschaftliche Fakultät II - Physik. Anleitung zum Anfängerpraktikum A2 U N I V E R S I T Ä T R E G E N S B U R G Naturwissenschaftliche Fakultät II - Physik Anleitung zum Anfängerpraktikum A2 Versuch 3 - Gedämpfte freie Schwingung des RLC-Kreises 23. überarbeitete Auflage

Mehr

PROTOKOLL ZUM ANFÄNGERPRAKTIKUM PHYSIK. Messung von Kapazitäten Auf- und Entladung von Kondensatoren. Sebastian Finkel Sebastian Wilken

PROTOKOLL ZUM ANFÄNGERPRAKTIKUM PHYSIK. Messung von Kapazitäten Auf- und Entladung von Kondensatoren. Sebastian Finkel Sebastian Wilken PROTOKOLL ZUM ANFÄNGERPRAKTIKUM PHYSIK Messung von Kapazitäten Auf- und Entladung von Kondensatoren Sebastian Finkel Sebastian Wilken Versuchsdurchführung: 23. November 2005 0. Inhalt 1. Einleitung 2.

Mehr

Aufgaben zum Thema Elektromagnetische Schwingungen

Aufgaben zum Thema Elektromagnetische Schwingungen Aufgaben zum Thema Elektromagnetische Schwingungen 10.03.2011 1.Aufgabe: a)an eine vertikal aufgehängte Schraubenfeder wird ein Körper mit der Masse m = 0,30 kg gehängt. Dadurch wird die Feder um x = 1,2

Mehr

Kondensator und Spule

Kondensator und Spule Hochschule für angewandte Wissenschaften Hamburg Naturwissenschaftliche Technik - Physiklabor http://www.haw-hamburg.de/?3430 Physikalisches Praktikum ----------------------------------------------------------------------------------------------------------------

Mehr

Projekt 2HEA 2005/06 Formelzettel Elektrotechnik

Projekt 2HEA 2005/06 Formelzettel Elektrotechnik Projekt 2HEA 2005/06 Formelzettel Elektrotechnik Teilübung: Kondensator im Wechselspannunskreis Gruppenteilnehmer: Jakic, Topka Abgabedatum: 24.02.2006 Jakic, Topka Inhaltsverzeichnis 2HEA INHALTSVERZEICHNIS

Mehr

6.2 Elektromagnetische Wellen

6.2 Elektromagnetische Wellen 6.2 Elektromagnetische Wellen Im vorigen Kapitel wurde die Erzeugung von elektromagnetischen Schwingungen und deren Eigenschaften untersucht. Mit diesem Wissen ist es nun möglich die Entstehung von elektromagnetischen

Mehr

Schaltungen mit mehreren Widerständen

Schaltungen mit mehreren Widerständen Grundlagen der Elektrotechnik: WIDERSTANDSSCHALTUNGEN Seite 1 Schaltungen mit mehreren Widerständen 1) Parallelschaltung von Widerständen In der rechten Schaltung ist eine Spannungsquelle mit U=22V und

Mehr

Elektrotechnische Grundlagen, WS 00/01. Musterlösung Übungsblatt 1. Hieraus läßt sich der Strom I 0 berechnen:

Elektrotechnische Grundlagen, WS 00/01. Musterlösung Übungsblatt 1. Hieraus läßt sich der Strom I 0 berechnen: Elektrotechnische Grundlagen, WS 00/0 Prof. aitinger / Lammert esprechung: 06..000 ufgabe Widerstandsnetzwerk estimmen Sie die Werte der Spannungen,, 3 und 4 sowie der Ströme, I, I, I 3 und I 4 in der

Mehr

Physik Klausur

Physik Klausur Physik Klausur 1.1 1 6. November 00 Aufgaben Aufgabe 1 a) Eine Kugel mit der Ladung q 3 nc und der Masse m 1 g hängt an einem Faden der Länge l 1 m. Der Kondersator hat den Plattenabstand d 0 10 cm und

Mehr

Laborversuche zur Physik I. Versuch 1-10 Wechselstrom und Schwingkreise. Versuchsleiter:

Laborversuche zur Physik I. Versuch 1-10 Wechselstrom und Schwingkreise. Versuchsleiter: Laborversuche zur Physik I Versuch - 0 Wechselstrom und Schwingkreise Versuchsleiter: Autoren: Kai Dinges Michael Beer Gruppe: 5 Versuchsdatum: 3. Oktober 2005 Inhaltsverzeichnis 2 Aufgaben und Hinweise

Mehr

Physik für Mediziner im 1. Fachsemester

Physik für Mediziner im 1. Fachsemester Physik für Mediziner im 1. Fachsemester #17 14/11/2008 Vladimir Dyakonov dyakonov@physik.uni-wuerzburg.de Laden eines Kondensators Aufladen erfolgt durch eine Spannungsquelle, z.b. Batterie, die dabei

Mehr

4.2 Gleichstromkreise

4.2 Gleichstromkreise 4.2 Gleichstromkreise Werden Ladungen transportiert, so fließt ein elektrischer Strom I dq C It () [] I A s dt Einfachster Fall: Gleichstrom; Strom fließt in gleicher ichtung mit konstanter Stärke. I()

Mehr

2. Klausur in K1 am

2. Klausur in K1 am Name: Punkte: Note: Ø: Physik Kursstufe Abzüge für Darstellung: Rundung:. Klausur in K am 7.. 00 Achte auf die Darstellung und vergiss nicht Geg., Ges., Formeln, Einheiten, Rundung...! Angaben: e =,60

Mehr

Wechselstromkreis mit verschiedenen Bauteilen

Wechselstromkreis mit verschiedenen Bauteilen Wechselstromkreis mit verschiedenen Bauteilen Im Folgenden werden nun die Auswirkungen eines ohmschen Widerstands, eines induktiven Widerstands (Spule) und eines kapazitiven Widerstands (Kondensator) auf

Mehr

EO - Oszilloskop Blockpraktikum Frühjahr 2005

EO - Oszilloskop Blockpraktikum Frühjahr 2005 EO - Oszilloskop, Blockpraktikum Frühjahr 25 28. März 25 EO - Oszilloskop Blockpraktikum Frühjahr 25 Alexander Seizinger, Tobias Müller Assistent René Rexer Tübingen, den 28. März 25 Einführung In diesem

Mehr

Physikpraktikum für Pharmazeuten Universität Regensburg Fakultät Physik. 6. Versuch: Kondensatorladung und e-funktion

Physikpraktikum für Pharmazeuten Universität Regensburg Fakultät Physik. 6. Versuch: Kondensatorladung und e-funktion Physikpraktikum für Pharmazeuten Universität Regensburg Fakultät Physik 6. Versuch: Kondensatorladung und e-funktion 1 Einführung Im letzten Experiment hatten wir es mit konstanten Strömen, die durch einen

Mehr

Brückenschaltung (BRÜ)

Brückenschaltung (BRÜ) TUM Anfängerpraktikum für Physiker II Wintersemester 2006/2007 Brückenschaltung (BRÜ) Inhaltsverzeichnis 9. Januar 2007 1. Einleitung... 2 2. Messung ohmscher und komplexer Widerstände... 2 3. Versuchsauswertung...

Mehr

2 Das elektrostatische Feld

2 Das elektrostatische Feld Das elektrostatische Feld Das elektrostatische Feld wird durch ruhende elektrische Ladungen verursacht, d.h. es fließt kein Strom. Auf die ruhenden Ladungen wirken Coulomb-Kräfte, die über das Coulombsche

Mehr

Hertzsche Wellen. Physik 9

Hertzsche Wellen. Physik 9 Hertzsche Wellen Physik 9 ohne Hertzsche Wellen geht nichts? Wie entstehen Hertzsche Wellen? Man braucht eine Spule mit Eisenkern und einen Kondensator Fließt durch eine Spule ein Strom, so wird ein magnetisches

Mehr

1. Laboreinheit - Hardwarepraktikum SS 2005

1. Laboreinheit - Hardwarepraktikum SS 2005 1. Versuch: Gleichstromnetzwerk Ohmsches Gesetz Kirchhoffsche Regeln Gleichspannungsnetzwerke Widerstand Spannungsquelle Maschen A B 82 Ohm Abbildung 1 A1 Berechnen Sie für die angegebene Schaltung alle

Mehr

Pfui Teufel, ein widerlicher Österreicherwitz! So etwas könnte sich tatsächlich zugetragen haben. Begründung: Antwort richtig nur mit Begründung!

Pfui Teufel, ein widerlicher Österreicherwitz! So etwas könnte sich tatsächlich zugetragen haben. Begründung: Antwort richtig nur mit Begründung! Musterprüfung: 1. Was ist ein Faradayscher Käfig? 2. Millikan fand auf einem Öltröpfchen eine Ladung Q von 8 10-19 C. Wie gross war die Ladung des Öltröpfchens wahrscheinlich auf vier signifikante Ziffern

Mehr

Elektrische Messverfahren Versuchsvorbereitung

Elektrische Messverfahren Versuchsvorbereitung Versuche P-70,7,8 Elektrische Messverfahren Versuchsvorbereitung Thomas Keck, Gruppe: Mo-3 Karlsruhe Institut für Technologie, Bachelor Physik Versuchstag: 6.2.200 Spannung, Strom und Widerstand Die Basiseinheit

Mehr

1. Klausur in K1 am

1. Klausur in K1 am Name: Punkte: Note: Ø: Kernfach Physik Abzüge für Darstellung: Rundung: 1. Klausur in K1 am 19. 10. 010 Achte auf die Darstellung und vergiss nicht Geg., Ges., Formeln, Einheiten, Rundung...! Angaben:

Mehr

PTC-Widerstand. Material. Thema. Aufbau. Experiment. Messergebnisse

PTC-Widerstand. Material. Thema. Aufbau. Experiment. Messergebnisse PTC-Widerstand 1 STE Leitung, unterbrochen, 4 Stecker 1 STE Widerstand 500 Ω 1 STE PTC-Widerstand 1 Amperemeter Zündhölzer Der Widerstand von Halbleitern kann von der Temperatur abhängen. Versorgungsspannung:

Mehr

Übungsaufgaben z. Th. Plattenkondensator

Übungsaufgaben z. Th. Plattenkondensator Übungsaufgaben z. Th. Plattenkondensator Aufgabe 1 Die Platten eines Kondensators haben den Radius r 18 cm. Der Abstand zwischen den Platten beträgt d 1,5 cm. An den Kondensator wird die Spannung U 8,

Mehr

Ferienkurs - Experimentalphysik 2 - Übungsblatt - Lösungen

Ferienkurs - Experimentalphysik 2 - Übungsblatt - Lösungen Technische Universität München Department of Physics Ferienkurs - Experimentalphysik 2 - Übungsblatt - Lösungen Montag Daniel Jost Datum 2/8/212 Aufgabe 1: (a) Betrachten Sie eine Ladung, die im Ursprung

Mehr

Kraft zwischen zwei Ladungen Q 1 und Q 2 / Coulomb'sches Gesetz

Kraft zwischen zwei Ladungen Q 1 und Q 2 / Coulomb'sches Gesetz KRG NW, Physik Klasse 10, Kräfte auf Ladungen, Kondensator, Fachlehrer Stahl Seite 1 Kraft zwischen zwei Ladungen Q 1 und Q 2 / Coulomb'sches Gesetz Kraft auf eine Probeladung q im elektrischen Feld (homogen,

Mehr

3 Elektrische Grundgrössen und Gesetze

3 Elektrische Grundgrössen und Gesetze 3 Elektrische Grundgrössen und Gesetze 3.1 Elektrische Spannung Die elektrische Spannung gibt den Unterschied der Ladungen zwischen zwei Polen an. Spannungsquellen besitzen immer zwei Pole. Ein einziger

Mehr

Aufgaben Wechselstromwiderstände

Aufgaben Wechselstromwiderstände Aufgaben Wechselstromwiderstände 69. Eine aus Übersee mitgebrachte Glühlampe (0 V/ 50 ma) soll mithilfe einer geeignet zu wählenden Spule mit vernachlässigbarem ohmschen Widerstand an der Netzsteckdose

Mehr

4.7 Magnetfelder von Strömen Magnetfeld eines geraden Leiters

4.7 Magnetfelder von Strömen Magnetfeld eines geraden Leiters 4.7 Magnetfelder von Strömen Aus den vorherigen Kapiteln ist bekannt, dass auf stromdurchflossene Leiter im Magnetfeld eine Kraft wirkt. Die betrachteten magnetischen Felder waren bisher homogene Felder

Mehr

Arbeitsbereich Technische Aspekte Multimodaler Systeme (TAMS) Praktikum der Technischen Informatik T2 2. Kapazität. Wechselspannung. Name:...

Arbeitsbereich Technische Aspekte Multimodaler Systeme (TAMS) Praktikum der Technischen Informatik T2 2. Kapazität. Wechselspannung. Name:... Universität Hamburg, Fachbereich Informatik Arbeitsbereich Technische Aspekte Multimodaler Systeme (TAMS) Praktikum der Technischen Informatik T2 2 Kapazität Wechselspannung Name:... Bogen erfolgreich

Mehr

Diplomvorprüfung SS 2010 Fach: Grundlagen der Elektrotechnik Dauer: 90 Minuten

Diplomvorprüfung SS 2010 Fach: Grundlagen der Elektrotechnik Dauer: 90 Minuten Diplomvorprüfung Grundlagen der Elektrotechnik Seite 1 von 8 Hochschule München FK 03 Zugelassene Hilfsmittel: Taschenrechner, zwei Blatt DIN A4 eigene Aufzeichnungen Diplomvorprüfung SS 2010 Fach: Grundlagen

Mehr

K l a u s u r N r. 2 Gk Ph 12

K l a u s u r N r. 2 Gk Ph 12 0.2.2009 K l a u s u r N r. 2 Gk Ph 2 ) Leiten Sie die Formel für die Gesamtkapazität von drei in Serie geschalteten Kondensatoren her. (Zeichnung, Formeln, begründender Text) 2) Berechnen Sie die Gesamtkapazität

Mehr

EL1 - Die Diode. E1 - Die Diode Simon Schlesinger Andreas Behrendt

EL1 - Die Diode. E1 - Die Diode Simon Schlesinger Andreas Behrendt EL1 - Die Diode Einleitung: In diesem Versuch beschäftigen wir uns mit der pn-halbleiterdiode. Im ersten Versuchsteil beschäftigen wir uns mit einer grundlegenden Eigenschaft, nämlich die Kennlinien einer

Mehr

Physikalisches Praktikum 3. Semester

Physikalisches Praktikum 3. Semester Torsten Leddig 16.November 2004 Mathias Arbeiter Betreuer: Dr.Hoppe Physikalisches Praktikum 3. Semester - Widerstandsmessung - 1 Aufgaben: 1. Brückenschaltungen 1.1 Bestimmen Sie mit der Wheatstone-Brücke

Mehr

3. Elektrische Felder

3. Elektrische Felder 3. Elektrische Felder Das dem Menschen wohl am längsten bekannte elektrische Phänomen ist der Blitz. Aufgrund der Urgewalt von Blitzen wurden diese in der Antike Gottheiten wie dem Donnergott Thor zugeschrieben.

Mehr

Vorbereitung zum Versuch

Vorbereitung zum Versuch Vorbereitung zum Versuch alvanometer Armin Burgmeier (347488) ruppe 5 3. Januar 008 0 Funktionsweise des alvanometers Das alvanometer ist ein hochempfindliches Strommessinstrument. Es basiert auf der Lorentzkraft,

Mehr

Versuchsprotokoll von Thomas Bauer und Patrick Fritzsch. Münster, den

Versuchsprotokoll von Thomas Bauer und Patrick Fritzsch. Münster, den E6 Elektrische Resonanz Versuchsprotokoll von Thomas Bauer und Patrick Fritzsch Münster, den.. INHALTSVERZEICHNIS. Einleitung. Theoretische Grundlagen. Serienschaltung von Widerstand R, Induktivität L

Mehr

Praktikumsbericht. Gruppe 6: Daniela Poppinga, Jan Christoph Bernack. Betreuerin: Natalia Podlaszewski 11. November 2008

Praktikumsbericht. Gruppe 6: Daniela Poppinga, Jan Christoph Bernack. Betreuerin: Natalia Podlaszewski 11. November 2008 Praktikumsbericht Gruppe 6: Daniela Poppinga, Jan Christoph Bernack Betreuerin: Natalia Podlaszewski 11. November 2008 1 Inhaltsverzeichnis 1 Theorieteil 3 1.1 Frage 7................................ 3

Mehr

AFu-Kurs nach DJ4UF. Technik Klasse E 05: Der Kondensator und seine Schaltungsarten. Amateurfunkgruppe der TU Berlin.

AFu-Kurs nach DJ4UF. Technik Klasse E 05: Der Kondensator und seine Schaltungsarten. Amateurfunkgruppe der TU Berlin. Technik Klasse E 05: Der Kondensator und seine Amateurfunkgruppe der TU Berlin http://www.dk0tu.de Stand 26.10.2015 This work is licensed under the Creative Commons Attribution-ShareAlike 3.0 License.

Mehr

Kondensatoren ( Verdichter, von lat.: condensus: dichtgedrängt, bezogen auf die elektrischen Ladungen)

Kondensatoren ( Verdichter, von lat.: condensus: dichtgedrängt, bezogen auf die elektrischen Ladungen) Der Kondensator Kondensatoren ( Verdichter, von lat.: condensus: dichtgedrängt, bezogen auf die elektrischen Ladungen) Kondensatoren sind Bauelemente, welche elektrische Ladungen bzw. elektrische Energie

Mehr

Der Bipolar-Transistor und die Emitterschaltung Gruppe B412

Der Bipolar-Transistor und die Emitterschaltung Gruppe B412 TECHNISCHE UNIVERSITÄT MÜNCHEN Der Bipolar-Transistor und die Emitterschaltung Gruppe B412 Patrick Christ und Daniel Biedermann 16.10.2009 1. INHALTSVERZEICHNIS 1. INHALTSVERZEICHNIS... 2 2. AUFGABE 1...

Mehr

Elektromagnetische Schwingkreise

Elektromagnetische Schwingkreise Grundpraktikum der Physik Versuch Nr. 28 Elektromagnetische Schwingkreise Versuchsziel: Bestimmung der Kenngrößen der Elemente im Schwingkreis 1 1. Einführung Ein elektromagnetischer Schwingkreis entsteht

Mehr

Fachhochschule Bielefeld Fachbereich Elektrotechnik. Versuchsbericht für das elektronische Praktikum. Praktikum Nr. 2. Thema: Widerstände und Dioden

Fachhochschule Bielefeld Fachbereich Elektrotechnik. Versuchsbericht für das elektronische Praktikum. Praktikum Nr. 2. Thema: Widerstände und Dioden Fachhochschule Bielefeld Fachbereich Elektrotechnik Versuchsbericht für das elektronische Praktikum Praktikum Nr. 2 Name: Pascal Hahulla Matrikelnr.: 207XXX Thema: Widerstände und Dioden Versuch durchgeführt

Mehr

Praktikum Grundlagen Elektrotechnik, Prof. Kern

Praktikum Grundlagen Elektrotechnik, Prof. Kern Praktikum Grundlagen Elektrotechnik, Prof. Kern Christoph Hansen, Christian Große Wörding, Sonya Salam chris@university-material.de Inhaltsverzeichnis Einführung 2 Auswertung und Interpretation 3 Teil

Mehr

Versuch P1-70,71,81 Elektrische Messverfahren. Auswertung. Von Ingo Medebach und Jan Oertlin. 26. Januar 2010

Versuch P1-70,71,81 Elektrische Messverfahren. Auswertung. Von Ingo Medebach und Jan Oertlin. 26. Januar 2010 Versuch P1-70,71,81 Elektrische Messverfahren Auswertung Von Ingo Medebach und Jan Oertlin 26. Januar 2010 Inhaltsverzeichnis 1. Aufgabe...2 I 1.1. Messung des Innenwiderstandes R i des µa-multizets im

Mehr

Nichtlineare Widerstände

Nichtlineare Widerstände Nichtlineare Widerstände 2.Übung am 31 März 2006 Methoden der Physik 2 SS2006 Prof. Wladyslaw Szymanski Tobias Krieger Elisabeth Seibold Nathalie Tassotti 1. Bestimmung des Innenwiderstands einer Spannungsquellen

Mehr

Inhalt der Vorlesung B2

Inhalt der Vorlesung B2 PHYSK B SS3 SS4 SS5 nhalt der Vorlesung B 3. Elektrizitätslehre, Elektrodynamik Einleitung Ladungen & Elektrostatische Felder Elektrischer Strom Magnetostatik Zeitlich veränderliche Felder - Elektrodynamik

Mehr

Auf- und Entladekurven von Kondensatoren

Auf- und Entladekurven von Kondensatoren Physik-Labor Versuchsprotokoll: Auf- und Entladekurven von Kondensatoren Inhalt - Einführung - Geräte, Arbeitsmaterialien - Schaltungsaufbau, Meßaufbau - Aufgabenstellung und Auswertung - Fehlerdiskussion

Mehr

9.3 Der Compton Effekt

9.3 Der Compton Effekt 9.3 Der Compton Effekt Im Kapitel Photoelektrischer Effekt wurde die Wechselwirkung von Licht mit Materie untersucht. Dabei wird Licht einer bestimmten Wellenlänge beim Auftreffen auf eine lichtempfindliche

Mehr

Robert-Bosch-Gymnasium Physik (2-/4-stÉndig), NGO

Robert-Bosch-Gymnasium Physik (2-/4-stÉndig), NGO Seite - 1 - Bestimmung des kapazitiven (Blind-)Widerstandes und (daraus) der KapazitÄt eines Kondensators, / Effektivwerte von WechselstromgrÅÇen 1. Theoretische Grundlagen Bei diesem Experiment soll zunächst

Mehr

Speicherung der elektrischen Energie einer Solarzelle mit einem Kondensator

Speicherung der elektrischen Energie einer Solarzelle mit einem Kondensator Speicherung der elektrischen Energie ENT Schlüsselworte Sonnenenergie, Fotovoltaik, Solarzelle, Kondensator, Speicherung, Sättigungsfunktion Prinzip Elektrische Energie lässt sich mit Hilfe von Kondensatoren

Mehr

Spule, Kondensator und Widerstände

Spule, Kondensator und Widerstände Spule, Kondensator und Widerstände Schulversuchspraktikum WS 00 / 003 Jetzinger Anamaria Mat.Nr.: 975576 Inhaltsverzeichnis. Vorwissen der Schüler. Lernziele 3. Theoretische Grundlagen 3. Der elektrische

Mehr

Versuch 14: Wechselstromwiderstände

Versuch 14: Wechselstromwiderstände Versuch 14: Wechselstromwiderstände Inhaltsverzeichnis 1 Einleitung 3 2 Theorie 3 2.1 Grundlagen................................... 3 2.2 Bauteile..................................... 3 2.3 Stromkreise...................................

Mehr

Schülerexperiment: Messen elektrischer Größen und Erstellen von Kennlinien

Schülerexperiment: Messen elektrischer Größen und Erstellen von Kennlinien Schülerexperiment: Messen elektrischer Größen und Erstellen von Kennlinien Stand: 26.08.2015 Jahrgangsstufen 7 Fach/Fächer Natur und Technik/ Schwerpunkt Physik Benötigtes Material Volt- und Amperemeter;

Mehr

[ Q] [ s] Das Ampere, benannt nach André Marie Ampère. ( ) bildet die Einheit des elektrischen Stromes und eine weitere SI Basiseinheit!

[ Q] [ s] Das Ampere, benannt nach André Marie Ampère. ( ) bildet die Einheit des elektrischen Stromes und eine weitere SI Basiseinheit! 11 Elektrodynamik Der elektrische Gleichstromkreis 11.1 Strom Schliesst man eine Spannungsquelle (z.b. Batterie), eine Lampe und zwei Kabel (leitfähiges Material) richtig zusammen, so beginnt die Lampe

Mehr

Wiederholung: Elektrisches Feld und Feldlinien I Feld zwischen zwei Punktladungen (pos. und neg.)

Wiederholung: Elektrisches Feld und Feldlinien I Feld zwischen zwei Punktladungen (pos. und neg.) Wiederholung: Elektrisches Feld und Feldlinien I Feld zwischen zwei Punktladungen (pos. und neg.) 1 Grieskörner schwimmen in Rhizinusöl. Weil sie kleine Dipole werden, richten sie sich entlang der Feldlinien

Mehr

V8 - Auf- und Entladung von Kondensatoren

V8 - Auf- und Entladung von Kondensatoren V8 - Auf- und Entladung von Kondensatoren Michael Baron, Frank Scholz 07.2.2005 Inhaltsverzeichnis Aufgabenstellung 2 Theoretischer Hintergrund 2 2. Elektrostatische Betrachtung von Kondensatoren.......

Mehr

Physik LK 12, Klausur 02 Elektrisches Feld und Kondensator Lösung

Physik LK 12, Klausur 02 Elektrisches Feld und Kondensator Lösung Konstanten: Elementarladung e=,602 0 9 2 As 2 C. Elektrische Feldkonstante: 8,8542 0 N m 2 Dielektrizitätszahl: r Luft = Aufgabe : Eine studentische Hilfskraft wurde eingestellt, um acht Stunden lang Ladungen

Mehr

Verbundstudiengang Wirtschaftsingenieurwesen (Bachelor) Praktikum Grundlagen der Elektrotechnik und Elektronik

Verbundstudiengang Wirtschaftsingenieurwesen (Bachelor) Praktikum Grundlagen der Elektrotechnik und Elektronik erbundstudiengang Wirtschaftsingenieurwesen (Bachelor) Praktikum Grundlagen der Elektrotechnik und Elektronik ersuch 3 Grundschaltungen der Wechselstromtechnik Teilnehmer: Name orname Matr.-Nr. Datum der

Mehr

A. Ein Kondensator differenziert Spannung

A. Ein Kondensator differenziert Spannung A. Ein Kondensator differenziert Spannung Wir legen eine Wechselspannung an einen Kondensator wie sieht die sich ergebende Stromstärke aus? U ~ ~ Abb 1: Prinzipschaltung Kondensator: Physiklehrbuch S.

Mehr

NF ist der Frequenzbereich den wir hören können. Er geht von 40 Hz (Herz) bis 18 khz (Kilo-Herz = Hz).

NF ist der Frequenzbereich den wir hören können. Er geht von 40 Hz (Herz) bis 18 khz (Kilo-Herz = Hz). 25.10.2014_Nachlese_DB6UV Wir haben diesmal einen NF-Verstärker (Niederfrequenz-Verstärker) gebaut. NF ist der Frequenzbereich den wir hören können. Er geht von 40 Hz (Herz) bis 18 khz (Kilo-Herz = 18000

Mehr

Versuchsprotokoll. Kondensator und Spule im Wechselstromkreis. Dennis S. Weiß & Christian Niederhöfer. zu Versuch 9

Versuchsprotokoll. Kondensator und Spule im Wechselstromkreis. Dennis S. Weiß & Christian Niederhöfer. zu Versuch 9 Montag, 17.11.1997 Dennis S. Weiß & Christian Niederhöfer Versuchsprotokoll (Physikalisches Anfängerpraktikum Teil II) zu Versuch 9 Kondensator und Spule im Wechselstromkreis 1 Inhaltsverzeichnis 1 Problemstellung

Mehr

6 Gleichstromkreis. 6.1 Gleichstromkreis

6 Gleichstromkreis. 6.1 Gleichstromkreis 6 Gleichstromkreis Alle elektrischen und elektronischen Geräte enthalten Schaltkreise in der einen oder anderen Form. Wir befassen uns zunächst nur mit Gleichstromkreisen und diskutieren Wechselstromkreise

Mehr

Laborpraktikum 5 Dynamische Schaltvorgänge bei Kondensatoren und Spulen

Laborpraktikum 5 Dynamische Schaltvorgänge bei Kondensatoren und Spulen 30 April 2014 Elektrizitätslehre II Martin Loeser Laborpraktikum 5 Dynamische Schaltvorgänge bei Kondensatoren und Spulen 1 Lernziele Bei diesem Versuch werden Einschaltvorgänge von Kondensatoren und Spulen

Mehr

= {} +{} = {} Widerstand Kondensator Induktivität

= {} +{} = {} Widerstand Kondensator Induktivität Bode-Diagramme Selten misst man ein vorhandenes Zweipolnetzwerk aus, um mit den Daten Amplituden- und Phasengang zu zeichnen. Das kommt meistens nur vor wenn Filter abgeglichen werden müssen oder man die

Mehr

1. Oszilloskop. Das Oszilloskop besitzt zwei Betriebsarten: Schaltsymbol Oszilloskop

1. Oszilloskop. Das Oszilloskop besitzt zwei Betriebsarten: Schaltsymbol Oszilloskop . Oszilloskop Grundlagen Ein Oszilloskop ist ein elektronisches Messmittel zur grafischen Darstellung von schnell veränderlichen elektrischen Signalen in einem kartesischen Koordinaten-System (X- Y- Darstellung)

Mehr

Aufgaben zum Kondensator - ausgegeben am

Aufgaben zum Kondensator - ausgegeben am Aufgaben zum Kondensator - ausgegeben am 17.09.2012 konden2_17_09_2012.doc 1.Aufgabe: Ein Kondensator hat die Plattenfläche A 1,2 10-2 m 2, den Plattenabstand d 0,5 mm und die Ladung Q 2,6 10-7 C. Berechnen

Mehr

Grundlagen. Stromkreisgesetze. Andreas Zbinden. Gewerblich- Industrielle Berufsschule Bern. 1 Ohmsches Gesetz 2. 2 Reihnenschaltung von Widerständen 6

Grundlagen. Stromkreisgesetze. Andreas Zbinden. Gewerblich- Industrielle Berufsschule Bern. 1 Ohmsches Gesetz 2. 2 Reihnenschaltung von Widerständen 6 Elektrotechnik Grundlagen Stromkreisgesetze Andreas Zbinden Gewerblich- Industrielle Berufsschule Bern Inhaltsverzeichnis 1 Ohmsches Gesetz 2 2 Reihnenschaltung von Widerständen 6 3 Parallelschaltung von

Mehr

Kondensatorentladung und astabiler Multivibrator (E6)

Kondensatorentladung und astabiler Multivibrator (E6) Kondensatorentladung und astabiler Multivibrator (E6) Ziel des Versuches Der zeitliche Verlauf der Entladung von Kondensatoren soll untersucht werden. Im ersten Versuchsteil wird daraus die Kapazität von

Mehr

Technische Grundlagen der Informatik

Technische Grundlagen der Informatik Technische Grundlagen der Informatik WS 2008/2009 3. Vorlesung Klaus Kasper WS 2008/2009 Technische Grundlagen der Informatik Inhalt Wiederholung Kapazität, Induktivität Halbleiter, Halbleiterdiode Wechselspannung

Mehr

Elektrotechnik für MB

Elektrotechnik für MB Elektrotechnik für MB Gleichstrom Elektrische und magnetische Felder Wechsel- und Drehstrom Grundlagen und Bauelemente der Elektronik Studium Plus // IW-MB WS 2015 Prof. Dr. Sergej Kovalev 1 Ziele 1. Gleichstrom:

Mehr

Wie funktioniert ein Relais?

Wie funktioniert ein Relais? 1 Wie funktioniert ein Relais? Ein Relais besteht im einfachsten Fall aus einer Spule, einem beweglichen Anker und einem Schaltkontakt (Bildquelle Wikipedia): Eine einfache Schaltung demonstriert die Funktion:

Mehr

Unter Kapazität versteht man die Eigenschaft von Kondensatoren, Ladung oder elektrische Energie zu speichern.

Unter Kapazität versteht man die Eigenschaft von Kondensatoren, Ladung oder elektrische Energie zu speichern. 16. Kapazität Unter Kapazität versteht man die Eigenschaft von Kondensatoren, Ladung oder elektrische Energie zu speichern. 16.1 Plattenkondensator Das einfachste Beispiel für einen Kondensator ist der

Mehr

Vorbereitung: elektrische Messverfahren

Vorbereitung: elektrische Messverfahren Vorbereitung: elektrische Messverfahren Marcel Köpke 29.10.2011 Inhaltsverzeichnis 1 Ohmscher Widerstand 3 1.1 Innenwiderstand des µa Multizets...................... 3 1.2 Innenwiderstand des AVΩ Multizets.....................

Mehr

Gleichstromnetzwerke

Gleichstromnetzwerke Gleichstromnetzwerke 1. Durchführung In diesem Experiment werden Spannungen und Ströme, eines auf einem Steckbrett aufgebauten Gleichstromnetzwerks, gemessen und mit den Berechnungen laut den Kirchhoff-Regelen

Mehr