Tomographie eines Zweiniveau-Systems

Save this PDF as:
 WORD  PNG  TXT  JPG

Größe: px
Ab Seite anzeigen:

Download "Tomographie eines Zweiniveau-Systems"

Transkript

1 Tomographie eines Zweiniveau-Systems Martin Ibrügger / 15

2 Übersicht Motivation Grundlagen Veranschaulichung mittels Bloch-Kugel Beispiel / 15

3 Motivation Warum Tomographie eines Zweiniveau-Systems? Einfachstes vorstellbares System Viele praktische Anwendungen: Spin-1/ Systeme Zwei-Niveau Atome Polarisation von Photonen Qubit für Quantencomputer Atomuhren 3 / 15

4 Reiner Zustand Gemischter Zustand Reiner Zustand Allgemeine Form eines Qubit: Ψ = α 0 + β 1 mit α, β C und α + β = 1 Mit impliziter Normierung: Ψ = cos ( ) ( ) θ θ 0 + sin e iφ 1 4 / 15

5 Reiner Zustand Gemischter Zustand Reiner Zustand Beispiel: Diagonal polarisiertes Licht als quantenmechanische Überlagerung aus horzontaler und vertikaler Polarisation 0 = H und 1 = V D = 1 ( H + V ) 5 / 15

6 Reiner Zustand Gemischter Zustand Reiner Zustand Beispiel: Diagonal polarisiertes Licht als quantenmechanische Überlagerung aus horzontaler und vertikaler Polarisation 0 = H und 1 = V D = 1 ( H + V ) Messung in H/V-Basis ergibt Messung in D/A Basis ergibt / 15

7 Reiner Zustand Gemischter Zustand Reiner Zustand Beispiel: Diagonal polarisiertes Licht als quantenmechanische Überlagerung aus horzontaler und vertikaler Polarisation 0 = H und 1 = V D = 1 ( H + V ) Messung in H/V-Basis ergibt Messung in D/A Basis ergibt / 15

8 Reiner Zustand Gemischter Zustand Gemischter Zustand Entsteht durch unbekannte Präparation des Zustandes Statistisch gewichtete Summe aus reinen Zuständen, beschrieben durch Dichtematrix ˆρ = i 0 1 ( ) 0 A Be p i ψ i ψ i = iϕ 1 Be iϕ 1 A Drei freie Parameter 3 Messungen mit i p i = 1 6 / 15

9 Reiner Zustand Gemischter Zustand Gemischter Zustand Beispiel: Ensemble aus Photonen, mit gleicher Wahrscheinlichkeit für horizontale und vertikale Polarisation H V ( ) 1 H ˆρ = 1/ ( H H + V V ) = 0 1 V 0 7 / 15

10 Reiner Zustand Gemischter Zustand Gemischter Zustand Beispiel: Ensemble aus Photonen, mit gleicher Wahrscheinlichkeit für horizontale und vertikale Polarisation H V ( ) 1 H ˆρ = 1/ ( H H + V V ) = 0 1 V 0 Messung in H/V-Basis ergibt Messung in D/A Basis ergibt / 15

11 Bloch-Kugel Stokes-Parameter Die Dichtematrix eines Qubits lässt sich nach den Pauli-Matrizen entwickeln ˆρ = 1 3 S i ˆσ i Mit den Pauli-Matrizen ( ) 1 0 ˆσ 0, ˆσ i=0 ( ) 0 1, ˆσ 1 0 und den Stokes-Parametern S i = Tr{ˆσ i ˆρ} ( ) ( ) 0 i 1 0, ˆσ i / 15

12 Bloch-Kugel Stokes-Parameter Physikalisch entsprechen die einzelnen Stokes-Parameter der Messung in den folgenden Basen: S 0 = P 0 + P 1 = 1 ( ) 0 1 S 1 = Tr{ 1 0 ˆρ} = P 1 ( ) P 1 ( 0 1 ) ( ) 0 i S = Tr{ i 0 ˆρ} = P 1 ( 0 +i 1 ) P 1 ( 0 i 1 ) ( ) 1 0 S 3 = Tr{ ˆρ} = P P 1 9 / 15

13 Bloch-Kugel Stokes-Parameter Physikalisch entsprechen die einzelnen Stokes-Parameter der Messung in den folgenden Basen: S 0 = P 0 + P 1 = 1 ( ) 0 1 S 1 = Tr{ 1 0 ˆρ} = P 1 ( ) P 1 ( 0 1 ) ( ) 0 i S = Tr{ i 0 ˆρ} = P 1 ( 0 +i 1 ) P 1 ( 0 i 1 ) ( ) 1 0 S 3 = Tr{ ˆρ} = P P 1 da P Ψ P Ψ = P Ψ 1 gilt, lassen sich die Stokes-Parameter mit ingesamt 3 Messungen messen 9 / 15

14 Bloch-Kugel Die Interpretation der Stokes Parameter als Koordinaten im Raum erlaubt die Darstellung eines Qubits auf der Einheitskugel. Reine Zustände befinden sich auf der Kugeloberfläche und gemischte innerhalb der Kugel 10 / 15

15 Tomographie Jede Messung eines Stoke-Paramenters schränkt den möglichen Ort des Zustands innerhalb der Blochkugel um eine Dimension weiter ein. 11 / 15

16 Tomographie Jede Messung eines Stoke-Paramenters schränkt den möglichen Ort des Zustands innerhalb der Blochkugel um eine Dimension weiter ein. 11 / 15

17 Tomographie Jede Messung eines Stoke-Paramenters schränkt den möglichen Ort des Zustands innerhalb der Blochkugel um eine Dimension weiter ein. 11 / 15

18 Tomographie Jede Messung eines Stoke-Paramenters schränkt den möglichen Ort des Zustands innerhalb der Blochkugel um eine Dimension weiter ein. 11 / 15

19 Zusammenfassung Beschreibung der Zustände durch Dichtematrizen Veranschaulichung durch Bloch-Kugel Rekonstruktion der Dichtematrix durch Messung in 3 Basen möglich Jede Messung schränkt den Freiheitsgrad in der Bloch-Kugel weiter ein 1 / 15

20 Ion als Qubit Yb + in einer Ionenfalle Hyperfeinstrukturniveaus bilden Zweiniveau-System Tomographie erfolgt über drittes Niveau, welches nur Verbindung zu einem der beiden Niveaus hat 13 / 15

21 Ion als Qubit Wie in anderen Basen messen? Einstrahlung von Mikrowellen ergibt Rabi-Oszillationen zwischen 0 und 1 14 / 15

22 Literatur J. B. Altepeter, E. R. Jeffrey, and P. G. Kwiat, Photonic State Tomography M. A. Nielsen, I. L. Chuang, Quantum Computation and Quantum Information S. Olmschenk et al., Manipulation and detection of a trapped Yb + hyperfine qubit Schwabl, Quantenmechanik 15 / 15

Teleportation mit Photonen und Ionen

Teleportation mit Photonen und Ionen Hauptseminar: Schlüsselexperimente der Quantenphysik und ihre Interpretation Teleportation mit Photonen und Ionen Stephan Kleinert Teleportation mit Photonen und Ionen - Allgemeines Prinzip der Teleportation

Mehr

Verschränkung. Kay-Sebastian Nikolaus

Verschränkung. Kay-Sebastian Nikolaus Verschränkung Kay-Sebastian Nikolaus 24.10.2014 Überblick 1. Definition und Allgemeines 2. Historische Hintergründe, Probleme 2.1 Einstein-Podolsky-Rosen-Paradoxon 2.2 Erklärung, Bell sche Ungleichungen

Mehr

Quanteninformation/ Quantencomputer

Quanteninformation/ Quantencomputer Quanteninformation/ Quantencomputer Jonas Heinze Proseminar SS 2013 Jonas Heinze (University of Bielefeld) Quanteninformation/ Quantencomputer 2013 1 / 20 Übersicht 1 Kurzer Einstieg in die Informatik

Mehr

Einführung in Quantencomputer

Einführung in Quantencomputer Einführung in Quantencomputer Literatur M. Homeister, (jetzt FB Informatik und Medien an der Fachhochschule Brandenburg) Quantum Computing verstehen, Springer Vieweg Verlag (25) E. Rieffel und W. Polak,

Mehr

Seminar zur Nanoelektronik 2008: Quantencomputer. Jan-Philip Gehrcke. Julius-Maximilians-Universität Würzburg. 17. Juli 2008

Seminar zur Nanoelektronik 2008: Quantencomputer. Jan-Philip Gehrcke. Julius-Maximilians-Universität Würzburg. 17. Juli 2008 Seminar zur Nanoelektronik 2008: Quantencomputer Jan-Philip Gehrcke Julius-Maximilians-Universität Würzburg 17. Juli 2008 Übersicht 1 Motivation Quantencomputer 2 Logische Operationen 3 Anforderungen bei

Mehr

Die Grundkonzepte der Quantenmechanik illustriert an der Polarisation von Photonen

Die Grundkonzepte der Quantenmechanik illustriert an der Polarisation von Photonen Die Grundkonzepte der Quantenmechanik illustriert an der Polarisation von Photonen Frank Wilhelm-Mauch February 5, 013 Fachrichtung Theoretische Physik, Universität des Saarlandes, Saarbrücken 0. Februar

Mehr

Spontaneos Parametric Down Conversion

Spontaneos Parametric Down Conversion Spontaneos Parametric Down Conversion (Parametric Fluorescence) Hauptseminar Atom trifft Photon MPQ München, 29. Juni 2011 Thomas Reimann Inhalt 1 Theoretische Beschreibung 2 Experimentelle Realisierung

Mehr

Schrödinger Katzen und Messung von Photonenfeldern

Schrödinger Katzen und Messung von Photonenfeldern Schrödinger Katzen und Messung von Photonenfeldern Universität Ulm 9. Juli 2009 Gliederung Was ist eine Schrödinger Katze? Realisierung von Schrödinger Katzen mit Ionen Realisierung von Schrödinger Katzen

Mehr

Grundlagen des Quantencomputers

Grundlagen des Quantencomputers Grundlagen des Quantencomputers KIT Karlsruher Institut für Technologie Christian Tesch Gliederung 1. Qubit und Quantenregister 2. Quantengatter 3. Mögliche Anwendungen für Quantencomputer 4. Praktische

Mehr

Modellierung und Simulation von Mischvorgängen in einem Rührer - Bachelorarbeit -

Modellierung und Simulation von Mischvorgängen in einem Rührer - Bachelorarbeit - Modellierung und Simulation von Mischvorgängen in einem Rührer - Bachelorarbeit - Dies Mathematicus 211 25. November 211 Gliederung 1 Motivation: Mischvorgänge in einem Rührer 2 Mathematische Modellierung

Mehr

Bellsche Ungleichungen

Bellsche Ungleichungen Bellsche Ungleichungen Christoph Meyer Seminar - Grundlagen der Quantenphysik Christoph Meyer Bellsche Ungleichungen 1 / 20 Inhaltsverzeichnis 1 Einführung Das EPR-Paradoxon Verborgene Variablen 2 Herleitung

Mehr

Verschränkte Photonenpaare

Verschränkte Photonenpaare Verschränkte Photonenpaare Michael Schug Autor, Johannes Gutenberg Universität Mainz Dr. Herwig Ott Betreuer, Johannes Gutenberg Universität Mainz, QUANTUM (Dated: 18. Juli 006) Die Untersuchung einer

Mehr

Polarimetrie. I p I u. teilweise polarisiert. Polarimetrie

Polarimetrie. I p I u. teilweise polarisiert. Polarimetrie E B z I I p I u I I p 2 I u teilweise polarisiert unpolarisiertes Licht: Licht transversale, elektromagnetische Welle Schwingung senkrecht zur Ausbreitungsrichtung elektr. Feldstärke E und magnet. Feldstärke

Mehr

Quantenlithographie. Scheinseminar: Optische Lithographie Wintersemester 2008/09 FAU Erlangen-Nürnberg

Quantenlithographie. Scheinseminar: Optische Lithographie Wintersemester 2008/09 FAU Erlangen-Nürnberg Scheinseminar: Optische Lithographie Wintersemester 2008/09 FAU Erlangen-Nürnberg Vortragender: Imran Khan Betreuer: Dr. Christine Silberhorn, Dipl. Phys. Andreas Eckstein Datum: Gliederung 1. Einführung

Mehr

Informationsübertragung mittels Photonen

Informationsübertragung mittels Photonen Informationsübertragung mittels Photonen Inhaltsverzeichnis 1 Einführung 1 Theoretischer Hintergrund 3 Experimentelle Umsetzung 3 4 Zusammenfassung 6 5 Literatur 7 1 Einführung Dadurch, daß Quantenzustände

Mehr

Theoretische Physik III Quantenmechanik I (SS09) Übungsblatt 08 (20 + π + eπ Punkte) 1 Ausgabe Abgabe Besprechung n.v.

Theoretische Physik III Quantenmechanik I (SS09) Übungsblatt 08 (20 + π + eπ Punkte) 1 Ausgabe Abgabe Besprechung n.v. Theoretische Physik III Quantenmechanik I (SS09) Übungsblatt 08 (20 + π + eπ Punkte) 1 Ausgabe 24.06.09 Abgabe 01.07.09 Besprechung n.v. Aufgabe 1 (Auswahlregeln) Die Wechselwirkung (engl. interaction)

Mehr

Gequetschte Zustände beim harmonischen Oszillator

Gequetschte Zustände beim harmonischen Oszillator Seminar zur Theorie der Atome, Kerne und kondensierten Materie Gequetschte Zustände beim harmonischen Oszillator Melanie Kämmerer 16. Oktober 011 1 1 Wiederholung Die Wellenfunktion eines kohärenten Zustandes

Mehr

Skript zur 19. Vorlesung Quantenmechanik, Freitag den 24. Juni, 2011.

Skript zur 19. Vorlesung Quantenmechanik, Freitag den 24. Juni, 2011. Skript ur 19. Vorlesung Quantenmechanik, Freitag den 4. Juni, 011. 13.5 Weitere Eigenschaften des Spin 1/ 1. Die Zustände und sind war Eigenustände der -Komponente ŝ des Spin- Operators s, sie stellen

Mehr

2.3.4 Drehungen in drei Dimensionen

2.3.4 Drehungen in drei Dimensionen 2.3.4 Drehungen in drei Dimensionen Wir verallgemeinern die bisherigen Betrachtungen nun auf den dreidimensionalen Fall. Für Drehungen des Koordinatensystems um die Koordinatenachsen ergibt sich 1 x 1

Mehr

Schrödingers Katze -oder- Wo ist der Übergang?

Schrödingers Katze -oder- Wo ist der Übergang? Schrödingers Katze -oder- Wo ist der Übergang? Themen Vergleich Quantenmechanik klassische Mechanik Das Gedankenexperiment Interpretationen des Messprozesses (Kopenhagener Deutung, Viele-Welten-Theorie,

Mehr

Quantenphysik aus klassischen Wahrscheinlichkeiten

Quantenphysik aus klassischen Wahrscheinlichkeiten Quantenphysik aus klassischen Wahrscheinlichkeiten Unterschiede zwischen Quantenphysik und klassischen Wahrscheinlichkeiten Quanten Teilchen und klassische Teilchen Quanten Teilchen klassische Teilchen

Mehr

Theoretische Physik II: Quantenmechanik

Theoretische Physik II: Quantenmechanik Theoretische Physik II: Quantenmechanik Hans-Werner Hammer Marcel Schmidt (mschmidt@theorie.ikp.physik.tu-darmstadt.de) Wintersemester 2016/17 Probeklausur 12./13. Januar 2017 Name: Matrikelnummer: Studiengang:

Mehr

Was man vom einzelnen Qubit über Quantenphysik lernen kann

Was man vom einzelnen Qubit über Quantenphysik lernen kann Physik und Didaktik in Schule und Hochschule PhyDid / (0) S. -6 Was man vom einzelnen Qubit über Quantenphysik lernen kann Wolfgang Dür*, Stefan Heusler + * Institut für Theoretische Physik, Universität

Mehr

1 Terminologie und Methodik

1 Terminologie und Methodik Terminologie und Methodik Wir befassen uns mit thermodynamischen Systemen (engl. thermodynamic system). Dies sind meist makroskopische physikalische Systeme mit vielen mikroskopischen Freiheitsgraden,

Mehr

Solare Neutrinos. Axel Winter RWTH-Aachen betreut von Prof. Flügge

Solare Neutrinos. Axel Winter RWTH-Aachen betreut von Prof. Flügge Solare Neutrinos Axel Winter RWTH-Aachen betreut von Prof. Flügge Übersicht Solare Neutrinos: Erzeugung und Problematik Darstellung der experimentellen Detektionsmöglichkeiten Neutrinooszillation Zusammenfassung

Mehr

Einführung in die Quantentheorie der Atome und Photonen

Einführung in die Quantentheorie der Atome und Photonen Einführung in die Quantentheorie der Atome und Photonen 23.04.2005 Jörg Evers Max-Planck-Institut für Kernphysik, Heidelberg Quantenmechanik Was ist das eigentlich? Physikalische Theorie Hauptsächlich

Mehr

Quantenkryptographie

Quantenkryptographie Quantenkryptographie Tobias Mühlbauer Technische Universität München Hauptseminar Kryptographische Protokolle 2009 Outline 1 Motivation Klassische Kryptographie Alternativen zur klassischen Kryptographie

Mehr

Den Quanten auf der Spur

Den Quanten auf der Spur Fakultät für Physik Universität Wien Institut für Quantenoptik und Quanteninformation Österreichische Akademie der Wissenschaften Den Quanten auf der Spur Johannes Kofler Internationale Akademie Traunkirchen

Mehr

Proseminar für Quanteninformation und Quantencomputer. Vorbesprechung

Proseminar für Quanteninformation und Quantencomputer. Vorbesprechung Proseminar für Quanteninformation und Quantencomputer Vorbesprechung Antonio Negretti Zentrum für Optische Quantentechnologien The Hamburg Centre for Ultrafast Imaging Universität Hamburg anegrett@physnet.uni-hamburg.de

Mehr

Quantentheorie. Über Rätsel, die uns die Natur aufgibt. Franz Embacher.

Quantentheorie. Über Rätsel, die uns die Natur aufgibt. Franz Embacher. Quantentheorie Über Rätsel, die uns die Natur aufgibt Franz Embacher http://homepage.univie.ac.at/franz.embacher/ franz.embacher@univie.ac.at Fakultät für Physik Universität Wien VHS Science, Planetarium

Mehr

Brewster-Winkel - Winkelabhängigkeit der Reflexion.

Brewster-Winkel - Winkelabhängigkeit der Reflexion. 5.9.30 ****** 1 Motivation Polarisiertes Licht wird an einem geschwärzten Glasrohr reflektiert, so dass auf der Hörsaalwand das Licht unter verschiedenen Relexionswinkeln auftrifft. Bei horizontaler Polarisation

Mehr

Die klassische Welt. Jochen Hub. Akademie Rot an der Rot, August Die klassische Welt p.1

Die klassische Welt. Jochen Hub. Akademie Rot an der Rot, August Die klassische Welt p.1 Die klassische Welt Akademie Rot an der Rot, August 2004. Jochen Hub Die klassische Welt p.1 Quantenphysik klassische Physik klassische Physik als Grenzfall der Quantenphysik? Analog zu Relativistische

Mehr

Normalengleichungen. Für eine beliebige m n Matrix A erfüllt jede Lösung x des Ausgleichsproblems Ax b min die Normalengleichungen A t Ax = A t b,

Normalengleichungen. Für eine beliebige m n Matrix A erfüllt jede Lösung x des Ausgleichsproblems Ax b min die Normalengleichungen A t Ax = A t b, Normalengleichungen Für eine beliebige m n Matrix A erfüllt jede Lösung x des Ausgleichsproblems Ax b min die Normalengleichungen A t Ax = A t b, Normalengleichungen 1-1 Normalengleichungen Für eine beliebige

Mehr

Kapitel 3 Schließende Statistik

Kapitel 3 Schließende Statistik Beispiel 3.4: (Fortsetzung Bsp. 3.) bekannt: 65 i=1 X i = 6, also ˆp = X = 6 65 = 0, 4 Überprüfen der Voraussetzungen: (1) n = 65 30 () n ˆp = 6 10 (3) n (1 ˆp) = 39 10 Dr. Karsten Webel 194 Beispiel 3.4:

Mehr

Die Macht und Ohnmacht der Quantenwelt

Die Macht und Ohnmacht der Quantenwelt Die Macht und Ohnmacht der Quantenwelt Prof. Dr. Sebastian Eggert Tag der Physik, TU Kaiserslautern, 5. Dezember 2015 Quantenmechanik heute Quanteninformatik Ultrakalte Quantengase Supraleitung und Vielteilchenphysik

Mehr

Mit Nano-Punkten auf dem Weg zum Doktorhut

Mit Nano-Punkten auf dem Weg zum Doktorhut Christian H. KINDEL Technische Universität Berlin Tokyo University Einleitung Nano ist klein. Sehr klein. In den Durchmesser eines Haares passen ca. 10.000 Nano-Punkte, an denen ich 4 Jahre an der Universität

Mehr

Zweiphotoneninterferenz

Zweiphotoneninterferenz Zweiphotoneninterferenz Patrick Bürckstümmer 11. Mai 2011 Einführung: Gewöhnliche Interferometrie Übersicht Theorie der 2PHI für monochromatische Photonen Das Experiment von Hong,Ou und Mandel (1987) Versuchsaufbau

Mehr

Kinematik des starren Körpers

Kinematik des starren Körpers Technische Mechanik II Kinematik des starren Körpers Prof. Dr.-Ing. Ulrike Zwiers, M.Sc. Fachbereich Mechatronik und Maschinenbau Hochschule Bochum WS 2009/2010 Übersicht 1. Kinematik des Massenpunktes

Mehr

Das quantenmechanische Atommodell

Das quantenmechanische Atommodell Ende 93 konzipierte de Broglie seine grundlegenden Ideen über die Dualität von Welle und Korpuskel. Albert Einstein hatte schon 905 von den korpuskularen Eigenschaften des Lichtes gesprochen; de Broglie

Mehr

Hauptseminar Quantencomputing Qubits - Interferenz - Verschränkung - Messung. Christoph Mühlich

Hauptseminar Quantencomputing Qubits - Interferenz - Verschränkung - Messung. Christoph Mühlich Hauptseminar Quantencomputing Qubits - Interferenz - Verschränkung - Messung Christoph Mühlich 7. Februar 2003 Einführung In der vorliegenden Seminararbeit soll eine Einführung in einige interessante Aspekte

Mehr

Das von Neumannsche Theorem. von Martin Fiedler

Das von Neumannsche Theorem. von Martin Fiedler Das von eumannsche Theorem von Martin Fiedler Einleitung In der Mitte des letzten Jahrhunderts beschäftigten sich viele Physiker mit der Frage nach der Vollständigkeit der Quantentheorie. Einige Physiker,

Mehr

Interpretation der Quantenmechanik

Interpretation der Quantenmechanik Interpretation der Quantenmechanik Literatur Mi 28.04.2010 1 Allgemeine Einführungen in die QM Zeilinger [24]: S. 9-65. Hey, Walters [10]: S. 15-32. Sprachliche Aspekte der Erkenntnis Schrödinger [17]:

Mehr

Linear Optics Quantum Computation (LOQC)

Linear Optics Quantum Computation (LOQC) Linear Optics Quantum Computation LOQC Handout zum Hauptseminar Quanteninformation, WS 006/007, TU Kaiserslautern Dominik Muth 30. Januar 007 Zusammenfassung Neben den anderen Realisierungsmöglichkeiten

Mehr

Herausforderung an die Zukun0. der Quantencomputer. Renato Renner Ins9tut für Theore9sche Physik ETH Zürich

Herausforderung an die Zukun0. der Quantencomputer. Renato Renner Ins9tut für Theore9sche Physik ETH Zürich Herausforderung an die Zukun0 der Quantencomputer Renato Renner Ins9tut für Theore9sche Physik ETH Zürich Was ist ein Quantencomputer? Was können wir damit tun? Können wir ihn bauen? Was ist ein Quantencomputer?

Mehr

Eine Einführung zum Thema Quantencomputer

Eine Einführung zum Thema Quantencomputer quantencomputer.de Eine Einführung zum Thema Quantencomputer Matthias Bezold. 6. Februar 2007 Vorwort 2 Einführung in die Quantenphysik 2 Anwendungen der Quantenmechanik 3 Ein Computer 5 Quantenalgorithmen

Mehr

Anmerkungen zu einem neuen Konzept zur Teleportation von Bewegungszuständen

Anmerkungen zu einem neuen Konzept zur Teleportation von Bewegungszuständen Quanten.de Newsletter Mai/Juni 2001, ISSN 1618-3770 Anmerkungen zu einem neuen Konzept zur Teleportation von Bewegungszuständen Birgit Bomfleur, ScienceUp Sturm und Bomfleur GbR, Camerloherstr. 19, D-85737

Mehr

Magnetresonanztomographie (MRT) * =

Magnetresonanztomographie (MRT) * = γ * γ π Beispiel: - Protonen ( H) Messung - konstantes B-Feld (T) in -Richtung - Gradientenfeld (3mT/m) in -Richtung - bei 0: f 00 4,6 MH Wie stark ist Frequenveränderung Df der Spins bei 0 mm? f (0mm)

Mehr

100 Jahre nach Boltzmann - wie steht es um die Grundlagen der Thermodynamik? Jochen Gemmer Osnabrück,

100 Jahre nach Boltzmann - wie steht es um die Grundlagen der Thermodynamik? Jochen Gemmer Osnabrück, 100 Jahre nach Boltzmann - wie steht es um die Grundlagen der Thermodynamik? Jochen Gemmer Osnabrück, 28.10.2004 Primäres Gesetz oder angepaßte Beschreibung? Quantenmechanik: Klassische Mechanik: i h h2

Mehr

Numerische Methoden und Algorithmen in der Physik

Numerische Methoden und Algorithmen in der Physik Numerische Methoden und Algorithmen in der Physik Hartmut Stadie, Christian Autermann 15.01.2009 Numerische Methoden und Algorithmen in der Physik Christian Autermann 1/ 47 Methode der kleinsten Quadrate

Mehr

STERNBURG BINGO STERNBURG BINGO UND SO FUNKTIONIERT S: MITMACHEN UND TOLLE PREISE GEWINNEN! RAUM FÜR EIGENE BEMERKUNGEN, GRÜSSE ETC.

STERNBURG BINGO STERNBURG BINGO UND SO FUNKTIONIERT S: MITMACHEN UND TOLLE PREISE GEWINNEN! RAUM FÜR EIGENE BEMERKUNGEN, GRÜSSE ETC. 85 61 19 27 78 52 90 45 03 39 54 88 89 76 21 69 15 94 22 10 24 18 62 79 53 Aufschrift befindet sich eine neue -Zahl. Wenn Sie eine -Zahl aus dem obigen Sobald Sie eine Reihe von 5 - -Zahlen horizontal,

Mehr

De Broglie und Dirac komplementäre Zugänge zur Quantenmechanik

De Broglie und Dirac komplementäre Zugänge zur Quantenmechanik Physikalisches Institut Albert- Ludwigs- Universität Freiburg De Broglie und Dirac komplementäre Zugänge zur Quantenmechanik Thomas Filk Physikalisches Institut, Universität Freiburg Parmenides Center

Mehr

Der Schlüssel muss mindestens so lange sein, wie die Nachricht. Der Schlüssel darf nur zwei Personen bekannt sein.

Der Schlüssel muss mindestens so lange sein, wie die Nachricht. Der Schlüssel darf nur zwei Personen bekannt sein. 1 Einleitung Bei der Quantenkryptographie handelt es sich um ein Verfahren zur sicheren Übermittlung von Daten. Dabei wird ein sogenanntes one-time pad Verfahren angewandt. Das bedeutet, dass vor den eigentlichen

Mehr

Die Bragg sche Beugungsbedingung. θ θ θ θ Ebene hkl

Die Bragg sche Beugungsbedingung. θ θ θ θ Ebene hkl Die Bragg sche Beugungsbedingung Eintr effender Strahl Austretender Str ahl Gebeugter Strahl θ θ θ θ Ebene hkl d hkl x x Ebene hkl Wegdifferenz: 2 x = 2 d hkl sin θ Konstruktive Interferenz: n λ = 2 d

Mehr

Der Welle-Teilchen-Dualismus

Der Welle-Teilchen-Dualismus Quantenphysik Der Welle-Teilchen-Dualismus Welle-Teilchen-Dualismus http://bluesky.blogg.de/2005/05/03/fachbegriffe-der-modernen-physik-ix/ Welle-Teilchen-Dualismus Alles ist gleichzeitig Welle und Teilchen.

Mehr

Physik auf grundlegendem Niveau. Kurs Ph

Physik auf grundlegendem Niveau. Kurs Ph Physik auf grundlegendem Niveau Kurs Ph2 2013-2015 Kurze Erinnerung Operatorenliste zu finden unter: http://www.nibis.de/nli1/gohrgs/operatoren/operatoren_ab_2012/op09_10n W.pdf Kerncurriculum zu finden

Mehr

Geometrie und Zahlentheorie. Ganzzahlige geometrische Objekte

Geometrie und Zahlentheorie. Ganzzahlige geometrische Objekte 1 Geometrie und Zahlentheorie. Ganzzahlige geometrische Objekte Holger Stephan Weierstraß Institut für Angewandte Analysis und Stochastik (WIAS), Berlin 19. Tag der Mathematik 17. Mai 014, TU Berlin Pythagoräische

Mehr

Grundfakten

Grundfakten WQPK: Würzburger QuantenphysikKonzept www.forphys.de Bild Didaktisches Konzept zur Quantenphysik an der Schule Grundfakten Lautrach 2015-1 A1 Un-be-stimmtheit Ein Q-Obj. ist Träger ( hat ) einiger weniger

Mehr

Das Goldhaber Experiment

Das Goldhaber Experiment ν e Das Goldhaber Experiment durchgeführt von : Maurice Goldhaber, Lee Grodzins und Andrew William Sunyar 19.12.2014 Goldhaber Experiment, Laura-Jo Klee 1 Gliederung Motivation Physikalische Grundlagen

Mehr

Quantenfehlerkorrekturcodes

Quantenfehlerkorrekturcodes Quantenfehlerkorrekturcodes Christian Hartler 2. Dezember 2009 Übersicht Unterschiede zwischen klassischem Computer und Quantencomputer Christian Hartler () Quantenfehlerkorrekturcodes Dezember 2009 2

Mehr

Mathematik = x 2 + x 2 = x + x 2 25x = 146 x =

Mathematik = x 2 + x 2 = x + x 2 25x = 146 x = 1 Prof. Dr. Matthias Gerdts Dr. Sven-Joachim Kimmerle Wintertrimester 014 Mathematik 1 + Übung 1 Gleichungen mit Wurzeln Bestimmen Sie alle Lösungen der folgenden Gleichungen. Beachten Sie dabei, dass

Mehr

Präsenzübungen zur Vorlesung Theoretische Physik für Lehramt 2

Präsenzübungen zur Vorlesung Theoretische Physik für Lehramt 2 Präsenzübungen zur Vorlesung Theoretische Physik für Lehramt 2 Fakultät für Physik, Universität Wien, WS15 Beatrix C. Hiesmayr Blatt 1/L2/WS15 Auf den folgenden Seiten finden Sie Beispiele, die Sie bitte

Mehr

Die seltsame Welt der Quanten

Die seltsame Welt der Quanten Saturday Morning Physics Die seltsame Welt der Quanten Wie spielt Gott sein Würfelspiel? 12. 11. 2005 Gernot Alber und Gerhard Birkl Institut für Angewandte Physik Technische Universität Darmstadt gernot.alber@physik.tu-darmstadt.de

Mehr

Verschränkte Photonen aus Halbleitern für die Quanteninformation

Verschränkte Photonen aus Halbleitern für die Quanteninformation Verschränkte Photonen aus Halbleitern für die Quanteninformation Vortrag zum Seminar Optik/Photonik Robert Riemann Institut für Physik der Humboldt-Universität zu Berlin 30. Mai 2011 Gliederung 1 Einführung

Mehr

Zufall, Determinismus und Chaos Wie viel ist vorhersehbar? Big Data Science in und außerhalb der Physik

Zufall, Determinismus und Chaos Wie viel ist vorhersehbar? Big Data Science in und außerhalb der Physik Zufall, Determinismus und Chaos Wie viel ist vorhersehbar? Ausarbeitung zum Vortrag im Rahmen des Hauptseminars Big Data Science in und außerhalb der Physik an der Fakultät für Physik am Karlsruher Institut

Mehr

Quantenchemie WS 2008/2009 Zusammenfassung 1. Teil

Quantenchemie WS 2008/2009 Zusammenfassung 1. Teil Quantenchemie WS 2008/2009 Zusammenfassung 1. Teil 1. Grundlagen der Quantenmechanik (a) Wellenfunktion: Die Wellenfunktion Ψ(x, t) beschreibt den quantenmechanischen Zustand eines Teilchens am Ort x zur

Mehr

Algorithmen für Quantencomputer II Der Shor Algorithmus

Algorithmen für Quantencomputer II Der Shor Algorithmus Der Shor Algorithmus Hauptseminar Theoretische Physik Universität Stuttgart, SS 2011 Inhalte des Vortrags Motivation: wie findet man Primfaktoren auf klassischem Wege? Zwei Sätze der Zahlentheorie und

Mehr

Analysis IV. Gruppenübungen

Analysis IV. Gruppenübungen Fachbereich Mathematik Prof. B. Farkas Martin Fuchssteiner Lisa Steiner TECHNISCHE UNIVESITÄT DAMSTADT ASS 6 7.7.26 Analysis IV 3. Übung mit Lösungshinweisen (G ) Berechnung einiger Volumina Gruppenübungen

Mehr

Übungsaufgaben Vektoren

Übungsaufgaben Vektoren Kallenrode, www.sotere.uos.de Übungsaufgaben Vektoren 1. Gegeben sind die Einheitsvektoren in Zylinderkoordinaten e ϱ = cos ϕ sin ϕ, e ϕ = sin ϕ cos ϕ und e z = 0 0 0 0 1 und Kugelkoordinaten: sin ϑ cos

Mehr

Vorlesung 21: Roter Faden: Das Elektron als Welle Heisenbergsche Unsicherheitsrelation. Versuch: Gasentladung

Vorlesung 21: Roter Faden: Das Elektron als Welle Heisenbergsche Unsicherheitsrelation. Versuch: Gasentladung Vorlesung 21: Roter Faden: Das Elektron als Welle Heisenbergsche Unsicherheitsrelation Versuch: Gasentladung Juli 7, 2006 Ausgewählte Kapitel der Physik, Prof. W. de Boer 1 Erste Experimente mit Elektronen

Mehr

Vorbereitung zur Klausur Elektromagnetische Felder und Wellen

Vorbereitung zur Klausur Elektromagnetische Felder und Wellen Vorbereitung zur Klausur Elektromagnetische Felder und Wellen 1/50 J. Mähnß Stand: 9. August 2016 c J. Mähnß 2/50 Maxwellgleichungen Maxwellgleichungen allgemein 3/50 ( B = µ 0 j V + ε ) E 0 t E = B t

Mehr

Remote-State Präparation eines einzelnen Atoms

Remote-State Präparation eines einzelnen Atoms Remote-State Präparation eines einzelnen Atoms Diplomarbeit am Department für Physik der Ludwig-Maximilians-Universität München Arbeitsgruppe Prof. Dr. Harald Weinfurter Stefan Berner München, den 13.

Mehr

Ferienkurs Experimentalphysik 4

Ferienkurs Experimentalphysik 4 Ferienkurs Experimentalphysik 4 Probeklausur Markus Perner, Markus Kotulla, Jonas Funke Aufgabe 1 (Allgemeine Fragen). : (a) Welche Relation muss ein Operator erfüllen damit die dazugehörige Observable

Mehr

Einführung in die Physikalische Chemie Teil 1: Mikrostruktur der Materie

Einführung in die Physikalische Chemie Teil 1: Mikrostruktur der Materie Einführung in die Physikalische Chemie Teil 1: Mikrostruktur der Materie Kapitel 1: Quantenmechanik Kapitel 2: Atome Kapitel 3: Moleküle Mathematische Grundlagen Schrödingergleichung Einfache Beispiele

Mehr

Betrachtet man einen starren Körper so stellt man insgesamt sechs Freiheitsgrade der Bewegung

Betrachtet man einen starren Körper so stellt man insgesamt sechs Freiheitsgrade der Bewegung Die Mechanik besteht aus drei Teilgebieten: Kinetik: Bewegungsvorgänge (Translation, Rotation) Statik: Zusammensetzung und Gleichgewicht von Kräften Dynamik: Kräfte als Ursache von Bewegungen Die Mechanik

Mehr

Experimente zum EPR-Paradoxon

Experimente zum EPR-Paradoxon Interpretation der QM EXPERIMENTE ZUM EPR-PARADOXON WS 004/05 Experimente zum EPR-Paradoxon EPR-Paradoxon [8]: Nach A. Einstein, B. Podolski und N. Rosen benanntes Gedankenexperiment (935) zur Frage der

Mehr

Arbeitsblatt 1 Einführung in die Vektorrechnung

Arbeitsblatt 1 Einführung in die Vektorrechnung Arbeitsblatt Einführung in die Vektorrechnung Allgemein Vektoren sind physikalische Größen und durch ihre Richtung und ihren Betrag festgelegt. Geometrisch wird ein Vektor durch einen Pfeil dargestellt,

Mehr

Abbildung 10.1: Das Bild zu Beispiel 10.1

Abbildung 10.1: Das Bild zu Beispiel 10.1 Analysis 3, Woche Mannigfaltigkeiten I. Definition einer Mannigfaltigkeit Die Definition einer Mannigfaltigkeit braucht den Begriff Diffeomorphismus, den wir in Definition 9.5 festgelegt haben. Seien U,

Mehr

Quantencomputer. von Johannes Vrana. Tutorial Halbleiterphysik SS Seite 1

Quantencomputer. von Johannes Vrana. Tutorial Halbleiterphysik SS Seite 1 Quantencomputer Vortrag von Johannes Vrana Tutorial Halbleiterphysik SS 2002 Seite 1 Inhalt I Klassischer Computer...3 1. Nichtreversibler Computer...3 2. Reversibler Computer...3 3. Geschwindigkeit von

Mehr

Ultrakalte Quantengase. Prof. T. W. Hänsch Dr. Th. Becker, Dr. K. Dieckmann

Ultrakalte Quantengase. Prof. T. W. Hänsch Dr. Th. Becker, Dr. K. Dieckmann Ultrakalte Quantengase Prof. T. W. Hänsch Dr. Th. Becker, Dr. K. Dieckmann Zeit, Ort Zeit: Dienstag, Freitag 9 15 Uhr bis 10 23 Uhr Ort: Schellingstrasse 4, Seminarraum 4/16 Persönliche Koordinaten Dr.

Mehr

Linien- und Oberflächenintegrale

Linien- und Oberflächenintegrale Linien- und berflächenintegrale Bei den früheren eindimensionalen Integralen wurde in der Regel entlang eines Intervalls einer Koordinatenachse integriert. Bei einem Linienintegral wird der Integrationsweg

Mehr

Fazit: Wellen haben Teilchencharakter

Fazit: Wellen haben Teilchencharakter Die Vorgeschichte Maxwell 1865 sagt elektromagnetische Wellen vorher Hertz 1886 beobachtet verstärkten Funkenüberschlag unter Lichteinstrahlung Hallwachs 1888 studiert den photoelektrischen Effekt systematisch

Mehr

Einführung in Quantenalgorithmen

Einführung in Quantenalgorithmen Einführung in Quantenalgorithmen Inhalt: 1. Einleitung 2. Einteilung der Quantenalgorithmen 3. Vorteile von Quantenalgorithmen 4. Funktionsweise bzw. Aufbau von Quantenalgorithmen 5. Erste Beispiele: a.

Mehr

Klausur zur Vorlesung Physikalische Chemie V Elektrochemie 6. bzw. 8. Fachsemester am , 10:00 bis 12:00 Uhr

Klausur zur Vorlesung Physikalische Chemie V Elektrochemie 6. bzw. 8. Fachsemester am , 10:00 bis 12:00 Uhr Universität Regensburg Institut für Physikalische und Theoretische Chemie Prof. Dr. G. Schmeer 18. Juli 27 Bitte füllen Sie zuerst dieses Deckblatt aus, das mit Ihren Lösungen abgegeben werden muss....

Mehr

1 Vektoralgebra (3D euklidischer Raum R 3 )

1 Vektoralgebra (3D euklidischer Raum R 3 ) Institut für Physik der Martin-Luther-Universität Halle-Wittenberg WS 202/203 Vorlesung Elektrodynamik LAG PD Dr. Angelika Chassé) Vektoralgebra 3D euklidischer Raum R 3 ). Grundbegriffe = Vektordefinition

Mehr

1 Einleitung. 1 Einleitung 1

1 Einleitung. 1 Einleitung 1 Prof. Dieter Suter Quantenmechanische Paradoxa WS 98/99 1 Einleitung 1 Einleitung 1 1.1 Allgemeines und Organisation 2 1.1.1 Inhalt 2 1.1.2 Publikum 2 1.1.3 Ziele 2 1.2 Mögliche Inhalte 4 1.2.1 Geschichtliches

Mehr

Matthias Hauck. Polarisationsanalyse mit Hilfe von Flüssigkristall Phasenschiebern

Matthias Hauck. Polarisationsanalyse mit Hilfe von Flüssigkristall Phasenschiebern Matthias Hauck Polarisationsanalyse mit Hilfe von Flüssigkristall Phasenschiebern Bachelorarbeit Polarisationsanalyse mit Hilfe von Flüssigkristall Phasenschiebern an der Fakultät für Physik der Ludwig-Maximilians-Universität

Mehr

Elektron-Proton Streuung

Elektron-Proton Streuung Elektron-Proton Streuung Seminar Präzessionsexperimente er Teilchenphysik Sommersemester 014 0.06.014 SIMON SCHMIDT ELEKTRON-PROTON STREUUNG 1 Übersicht Theorie I Kinematik Wirkungsquerschnitte Experiment

Mehr

Mikroskopie II. Szilvia Barkó 2016

Mikroskopie II. Szilvia Barkó 2016 Mikroskopie II. Szilvia Barkó 2016 Zusammenfassung der Vorlesung Fluoreszenzmikroskopie Fluorophoren Aufbau eines Epifluoreszenzmikroskops Konfokalmikroskopie Evaneszentfeldmikroskopie Multiphotonenmikroskopie

Mehr

allgemeiner Josephson Kontakt Magnetfeldmessung superfluides Helium Zusammenfassung Josephson Effekt Paul Seyfert 5. Dezember 2008

allgemeiner Josephson Kontakt Magnetfeldmessung superfluides Helium Zusammenfassung Josephson Effekt Paul Seyfert 5. Dezember 2008 Josephson Effekt Paul Seyfert 5. Dezember 2008 1 allgemeiner Josephson Kontakt Motivation Theorie Standardbeispiel 2 Magnetfeldmessung SQUID 3 superfluides Helium Aufbau Ergebnis 4 Zusammenfassung Zusammenfassung

Mehr

Name: Gruppe: Matrikel-Nummer:

Name: Gruppe: Matrikel-Nummer: Theoretische Physik 1 (Theoretische Mechanik) SS08, Studienziel Bachelor (170 12/13/14) Dozent: J. von Delft Übungen: B. Kubala Nachklausur zur Vorlesung T1: Theoretische Mechanik, SoSe 2008 (1. Oktober

Mehr

Grundlagen der Quanteninformatik

Grundlagen der Quanteninformatik Grundlagen der Quanteninformatik Vortrag vor dem Arbeitskreis Informatik an Schulen Prof. Dr. Thomas Canzler HAW Hamburg Information is physical R. Landauer [Lan91] Ist Information ein Baustein des Universums?

Mehr

Trigonometrie. 3. Kapitel aus meinem Lehrgang Geometrie. Ronald Balestra CH St. Peter

Trigonometrie. 3. Kapitel aus meinem Lehrgang Geometrie. Ronald Balestra CH St. Peter Trigonometrie 3. Kapitel aus meinem Lehrgang Geometrie Ronald Balestra CH - 7028 St. Peter www.ronaldbalestra.ch 17. August 2008 Inhaltsverzeichnis 3 Trigonometrie 46 3.1 Warum Trigonometrie........................

Mehr

Grundlagen der elektromagnetisch induzierten Transparenz Im Rahmen des Seminars: Quanten- und nichtlineare Optik

Grundlagen der elektromagnetisch induzierten Transparenz Im Rahmen des Seminars: Quanten- und nichtlineare Optik Grundlagen der elektromagnetisch induzierten Transparenz Im Rahmen des Seminars: Quanten und nichtlineare Optik 1. Dezember 2010 Institut für Angewandte Physik Seminar Quanten und nichtlineare Optik Christian

Mehr

Physikalisches Grundpraktikum Technische Universität Chemnitz

Physikalisches Grundpraktikum Technische Universität Chemnitz Physikalisches Grundpraktikum Technische Universität Chemnitz Protokoll «A10 - AVOGADRO-Konstante» Martin Wolf Betreuer: Herr Decker Mitarbeiter: Martin Helfrich Datum:

Mehr

Die Wellenfunktion ψ(r,t) ist eine komplexe skalare Größe, da keine Polarisation wie bei elektromagnetischen Wellen beobachtet wurde.

Die Wellenfunktion ψ(r,t) ist eine komplexe skalare Größe, da keine Polarisation wie bei elektromagnetischen Wellen beobachtet wurde. 2. Materiewellen und Wellengleichung für freie Teilchen 2.1 Begriff Wellenfunktion Auf Grund des Wellencharakters der Materie können wir den Zustand eines physikalischen Systemes durch eine Wellenfunktion

Mehr

LASER-OPTIK-KIT "SNELLIUS Ein Versuchsaufbau zum Erlernen der Optik im Zeitalter der Photonik in Gymnasien, Schülerlaboren und physikalischen Praktika

LASER-OPTIK-KIT SNELLIUS Ein Versuchsaufbau zum Erlernen der Optik im Zeitalter der Photonik in Gymnasien, Schülerlaboren und physikalischen Praktika LASER-OPTIK-KIT "SNELLIUS Ein Versuchsaufbau zum Erlernen der Optik im Zeitalter der Photonik in Gymnasien, Schülerlaboren und physikalischen Praktika Alle gleichzeitig stattfindenden Phänomene werden

Mehr

Klausur Bachelorstudiengang / Diplomstudiengang, Prüfung Modul Physikalische Chemie und Thermodynamik. Teil 1: Physikalische Chemie

Klausur Bachelorstudiengang / Diplomstudiengang, Prüfung Modul Physikalische Chemie und Thermodynamik. Teil 1: Physikalische Chemie Bachelorstudiengang / Diplomstudiengang CBI - Teil Physikalische Chemie - SS07 - Blatt 1 / 16 Klausur Bachelorstudiengang / Diplomstudiengang, Prüfung Modul Physikalische Chemie und Thermodynamik Teil

Mehr

4. Aufbau der Elektronenhülle 4.1. Grundlagen 4.2. Bohrsches Atommodell 4.3. Grundlagen der Quantenmechanik 4.4. Quantenzahlen 4.5.

4. Aufbau der Elektronenhülle 4.1. Grundlagen 4.2. Bohrsches Atommodell 4.3. Grundlagen der Quantenmechanik 4.4. Quantenzahlen 4.5. 4. Aufbau der Elektronenhülle 4.. Grundlagen 4.. Bohrsches Atommodell 4.3. Grundlagen der Quantenmechanik 4.4. Quantenzahlen 4.5. Atomorbitale 4. Aufbau der Elektronenhülle 4.. Grundlagen 4.. Bohrsches

Mehr

7 Die Hamilton-Jacobi-Theorie

7 Die Hamilton-Jacobi-Theorie 7 Die Hamilton-Jacobi-Theorie Ausgearbeitet von Rolf Horn und Bernhard Schmitz 7.1 Einleitung Um die Hamilton schen Bewegungsgleichungen q k = H(q, p) p k ṗ k = H(p, q) q k zu vereinfachen, führten wir

Mehr

Quantencomputer mit supraleitenden Systemen

Quantencomputer mit supraleitenden Systemen Quantencomputer mit supraleitenden Systemen von Steven Weitemeyer E KIT Universität des Landes Baden-Württemberg und nationales Forschungszentrum in der Helmholtz Gemeinschaft www.kit.edu Gliederung Supraleitung

Mehr