Brückenkurs Elementarmathematik
|
|
- Susanne Günther
- vor 1 Jahren
- Abrufe
Transkript
1 Brückenkurs Elementarmathematik IV. Ungleichungen November 13, 2013
2 Inhalt 1 Ungleichungen 2 Umformungen von Ungleichungen 2.1 Äquivalenzumformungen 2.2 Addition und Multiplikation von Ungleichungen 3 Beispiele 3.1 Lineare Ungleichungen 3.2 Quadratische Ungleichungen 4 Punktmengen in der Ebene
3 1.1 Ungleichungen und ihre Lösungsmengen Ersetzt man in einer Gleichung oder einem Gleichungssystem die Gleichheitszeichen jeweils durch eines der folgenden Relationszeichen <,, >, (kleiner, kleiner gleich, größer, größer gleich), so erhält man Ungleichungen. Wieder ist es das Problem, aus einer gegebenen Grundgesamtheit (hier die reellen Zahlen) diejenigen Werte der Variablen zu bestimmen, für die die gegebenen Ungleichungen erfüllt sind.
4 1.2 Ungleichungen und ihre Lösungsmengen Eine Ungleichung in n Veränderlichen F 1 (x 1,..., x n ) 0, wobei anstatt des Relationszeichens auch >, oder < stehen kann hat als Lösungsmenge die Menge aller Zahlenkombinationen der Grundgesamtheit, für die die Ungleichung zu einer wahren Aussage wird, d.h. L := {(x 1,..., x n ) : F 1 (x 1,..., x n ) 0}.
5 Äquivalenzumformungen Äquivalenzumformungen einer Ungleichung sind Umformungen, die die Lösungsmenge der Ungleichung nicht verändern. Im Grunde genommen sind die einfachen Äquivalenzumformungen dieselben wie bei Gleichungen. Insbesondere ändern elementare Termumformungen von F nichts an der Lösungsmenge einer Ungleichung F (x 1,..., x n ) 0. Es gibt allerdings einen charakteristischen Unterschied bei der Multiplikation von Termen.
6 Addition von Termen Ist F (x 1,..., x n ) 0 eine Ungleichung, so ändern wir die Lösungsmenge der Gleichung nicht, wenn wir auf beiden Seiten der Ungleichung dieselben Terme addieren, d.h. F (x 1,..., x n ) + G(x 1,..., x n ) G(x 1,..., x n ) hat dieselben Lösungen wie die Ungleichung oben. Wenn wir anstelle von eines der Zeichen >, <, stehen haben, überträgt sich das Relationszeichen in der gleichen Weise.
7 Multiplikation von Termen Ist F (x 1,..., x n ) 0 eine Ungleichung, so können wir wie bei Gleichungen bestimmte Terme G(x 1,..., x n ) multiplizieren, ohne die Lösungsmenge zu ändern. Wir müssen allerdings aufpassen: Für eine Äquivalenzumformung darf G(x 1,..., x n ) entweder überall größer oder überall kleiner als Null sein. Ist der Term negativ, müssen wir das Relationszeichen umdrehen. Die Ungleichung G(x 1,..., x n )F (x 1,..., x n ) 0 falls G(x 1,..., x n ) > 0 für alle x 1,..., x n R, bzw. G(x 1,..., x n )F (x 1,..., x n ) 0 falls G(x 1,..., x n ) < 0 für alle x 1,..., x n R hat dieselben Lösungen wie die Gleichung oben.
8 Addition von Ungleichungen Wir haben folgendes System von Ungleichungen F (x 1,..., x n ) 0, G(x 1,..., x n ) 0. mit einer Lösungsmenge L. Aus diesen beiden Ungleichungen folgt (und dies ist keine Äquivalenzumformung) F (x 1,..., x n ) + G(x 1,..., x n ) 0, in dem Sinne, dass die Lösungsmenge des Systems von Ungleichungen in der Lösungsmenge der Summe enthalten ist. Wenn wir anstatt des Relationszeichens in beiden Gleichungen andere Relationszeichen zulassen, so können wir nicht für alle möglichen Kombinationen die Ungleichungen addieren bzw. müssen uns auch für die möglichen Kombinationen überlegen, welches Relationszeichen in der Summe herauskommt.
9 Addition von Ungleichungen Ist r F das Relationszeichen in der ersten und r G das Relationszeichen in der zweiten Ungleichung, so können wir in der Summe der beiden Ungleichungen das Relationszeichen r + nach der folgenden Tabelle verwenden: r F > < r G > > < < r + > > < < Die vorletzte Spalte in der Tabelle bedeutet zum Beispiel F (x 1,..., x n ) 0, G(x 1,..., x n ) < 0 F (x 1,..., x n )+G(x 1,..., x n ) < 0. Da F und G gleichberechtigt sind, kann man in der Tabelle die ersten beiden Zeilen vertauschen. In der zweiten und der vorletzten Spalte erhält man dann noch zwei weitere Kombinationen.
10 Multiplikation von Ungleichungen Wir haben folgendes System von Ungleichungen F (x 1,..., x n ) 0, G(x 1,..., x n ) 0. mit einer Lösungsmenge L. Aus diesen beiden Ungleichungen folgt F (x 1,..., x n ) G(x 1,..., x n ) 0, in dem Sinne, dass die Lösungsmenge des Systems von Ungleichungen in der Lösungsmenge der Summe enthalten ist. Wenn wir anstatt des Relationszeichens in beiden Gleichungen andere Relationszeichen zulassen, so können wir für alle möglichen Kombinationen die Ungleichungen multiplizieren und müssen uns auch wieder überlegen, welches Relationszeichen für das Produkt verwendet werden kann.
11 Multiplikation von Ungleichungen Ist r F das Relationszeichen in der ersten und r G das Relationszeichen in der zweiten Ungleichung, so können wir im Produkt der beiden Ungleichungen das Relationszeichen r nach der folgenden Tabelle verwenden: r F > > > > < < < r G > < < r > < > Die viertletzte Spalte in der Tabelle bedeutet zum Beispiel F (x 1,..., x n ) < 0, G(x 1,..., x n ) 0 F (x 1,..., x n ) G(x 1,..., x n ) 0. Auch hier kann man wegen der Symmetrie von F und G die ersten beiden Zeilen in der Tabelle vertauschen und erhält somit weitere Kombinationen.
12 Lineare Ungleichungen Eine lineare Ungleichung in einer Veränderlichen hat allgemein die Form ax + b 0 mit a, b R und damit x 1 wirklich vorkommt, nehmen wir noch an, dass tatsächlich a 0 ist. In diesem Fall gilt mit den üblichen Äquivalenzumformungen ax + b 0 ax b. Nun wirkt sich aus, ob a > 0 oder a < 0 ist. Im Fall a > 0 ergibt Multiplikation mit 1/a: x b/a, d.h. L = {x R : x b/a}. Im Fall a < 0 ergibt Multiplikation mit 1/a: x b/a, d.h. L = {x R : x b/a}.
13 Lineare Ungleichungen Zur Veranschaulichung: Lösungsmengen für negative und positive Steigung.
14 Quadratische Ungleichungen Die Lösung quadratischer Ungleichungen beruht auf folgenden beiden Beobachtungen: (i) Ist c 0, so ist die Menge der reellen Zahlen mit x 2 c gegeben durch diejenigen x mit x c oder x c. Ist c < 0, so erfüllen alle reellen Zahlen die Ungleichung. Kurz gesagt, die Lösungsmenge der Gleichung ist gegeben durch { {x R : x c} {x R : x c} falls c > 0 L = R falls c 0 Im Fall c = 0 bedeutet die obere Zeile auch schon, dass L = R.
15 Quadratische Ungleichungen (ii) Ist c 0, so ist die Menge der reellen Zahlen mit x 2 c gegeben durch diejenigen x mit x c und x c. Ist c < 0, so erfüllt keine reelle Zahl die Ungleichung. Kurz gesagt, die Lösungsmenge der Gleichung ist gegeben durch { {x R : x c} {x R : x c} falls c 0 L = falls c < 0 Im Fall c = 0 bedeutet die obere Zeile, dass L = {0} ist.
16 Quadratische Ungleichungen Zur Veranschaulichung: Lösungsmengen im Fall c > 0.
17 Quadratische Ungleichungen Eine quadratische Gleichung in einer Veränderlichen ist eine Gleichung in dem die Variable x quadratisch (d.h. als Potenz x 2 ) vorkommt. Sie hat allgemein die Form ax 2 + bx + c 0 mit a, b, c R und damit x 2 wirklich vorkommt, nehmen wir noch an, dass tatsächlich a 0 ist. In diesem Fall gilt nach Termumformungen der linken Seite der Ungleichung ( a x + b ) 2 + c 2a 2a b2 4a 2 = ax +2 +bx + c 0. Dies ist äquivalent zu ( a x + b ) 2 c 2a 2a + b2 4a 2. Wieder müssen wir die Fälle a > 0 und a < 0 unterscheiden.
18 Quadratische Ungleichungen Fall 1 a 0: Die Ungleichung ist äquivalent zu ( x + b ) 2 c 2a 2a 2 + b2 4a 3 = 1 ( ) b 2 4a 2 a 2c =: und wie gesehen gibt es nun zwei Möglichkeiten, abhängig davon, ob größer, kleiner, oder gleich Null ist.
19 Quadratische Ungleichungen Im Fall 1a ( 0) ist die Ungleichung äquivalent zu: x + b ( ) 2a 1 b 2 4a 2 a 2c ODER x + b2a ( ) 1 b 2 4a 2 a 2c. Damit ist die Lösungsmenge in diesem Fall L = L 1 L 2 mit L 1 = {x R : x b2a ( ) } + 1 b 2 4a 2 a 2c, L 2 = {x R : x b2a ( ) } 1 b 2 4a 2 a 2c. Im Fall 1b ( < 0) ist L = R.
20 Quadratische Ungleichungen Fall 2 a < 0: Die Ungleichung ist äquivalent zu ( x + b ) 2 c 2a 2a 2 + b2 4a 3 = 1 ( ) b 2 4a 2 a 2c =: und wieder gibt es nun zwei Möglichkeiten, abhängig davon, ob größer, kleiner, oder gleich Null ist.
21 Quadratische Ungleichungen Im Fall 2a ( 0) ist die Ungleichung äquivalent zu: x + b ( ) 2a 1 b 2 4a 2 a 2c UND x + b2a ( ) 1 b 2 4a 2 a 2c. Damit ist die Lösungsmenge in diesem Fall L = L 1 L 2 mit L 1 = {x R : x b2a ( ) } + 1 b 2 4a 2 a 2c, L 2 = {x R : x b2a ( ) } 1 b 2 4a 2 a 2c. Im Fall 2b ( < 0) ist L =.
22 Polytope Wir betrachten das System von Ungleichungen y 3x + 1 y 2x 2 y 5. Welche Punktmenge in der x-y-ebene wird durch dieses System von Ungleichungen beschrieben?
23 Polytope Die Lösungsmenge ist ein Dreieck in der Ebene
24 Vier andere Objekte Können Sie die Punktmengen in der x-y- Ebene zeichnen, die jeweils durch die folgenden Ungleichungen gegeben sind? {(x, y) R 2 : x 2 + y 2 1}, {(x, y) R 2 : x 2 + y 2 1}, {(x, y) R 2 : x 2 + y 2 < 1}, {(x, y) R 2 : x 2 + y 2 > 1}.
25 Vier andere Objekte Die vier Punktmengen und der Einheitskreis
Gleichungen und Ungleichungen
Gleichung Eine Gleichung erhalten wir durch Gleichsetzen zweier Terme. Kapitel 3 Gleichungen und Ungleichungen linke Seite = rechte Seite Grundmenge: Menge aller Zahlen, die wir als Lösung der Gleichung
Basistext Lineare Gleichungssysteme. Eine lineare Gleichung mit einer Unbekannten hat die allgemeine Form! #=%
Basistext Lineare Gleichungssysteme Eine lineare Gleichung mit einer Unbekannten hat die allgemeine Form! #=% Mit zwei Unbekannten gibt es die allgemeine Form:! #+% '=( Gelten mehrere dieser Gleichungen
Wiederholung von Äquivalenzumformungen (Lösen linearer Gleichungen): Wiederholung von Äquivalenzumformungen (Lösen von Ungleichungen):
Prof. U. Stephan WiIng 1. Wiederholung von Äquivalenzumformungen (Lösen linearer Gleichungen): Bitte lösen Sie die folgenden Aufgaben und prüfen Sie, ob Sie Lücken dabei haben. Bestimmen Sie jeweils die
Lineare Gleichungssysteme
Christian Serpé Universität Münster 14. September 2011 Christian Serpé (Universität Münster) 14. September 2011 1 / 56 Gliederung 1 Motivation Beispiele Allgemeines Vorgehen 2 Der Vektorraum R n 3 Lineare
Länge eines Vektors und Abstand von zwei Punkten 2. 4 = 6. Skalarprodukt und Winkel zwischen Vektoren
Länge eines Vektors und Abstand von zwei Punkten Aufgabe Bestimme die Länge des Vektors x. Die Länge beträgt: x ( ) =. Skalarprodukt und Winkel zwischen Vektoren Aufgabe Es sind die Eckpunkte A(; ), B(
Zahlen und Funktionen
Kapitel Zahlen und Funktionen. Mengen und etwas Logik Aufgabe. : Kreuzen Sie an, ob die Aussagen wahr oder falsch sind:. Alle ganzen Zahlen sind auch rationale Zahlen.. R beschreibt die Menge aller natürlichen
3 Elementare Umformung von linearen Gleichungssystemen und Matrizen
3 Elementare Umformung von linearen Gleichungssystemen und Matrizen Beispiel 1: Betrachte das Gleichungssystem x 1 + x 2 + x 3 = 2 2x 1 + 4x 2 + 3x 3 = 1 3x 1 x 2 + 4x 3 = 7 Wir formen das GLS so lange
Punkte, die auf der Symmetrieachse liegen und nur diese, sind von zueinander symmetrischen Punkten gleich weit entfernt.
M 7.1 Achsensymmetrie Punkte, die auf der Symmetrieachse liegen und nur diese, sind von zueinander symmetrischen Punkten gleich weit entfernt. Eigenschaften achsensymmetrischer Figuren Die Verbindungsstrecke
Gruber I Neumann. Erfolg in VERA-8. Vergleichsarbeit Mathematik Klasse 8 Gymnasium
Gruber I Neumann Erfolg in VERA-8 Vergleichsarbeit Mathematik Klasse 8 Gymnasium . Zahlen Zahlen Tipps ab Seite, Lösungen ab Seite 0. Zahlen und Zahlenmengen Es gibt verschiedene Zahlenarten, z.b. ganze
2. Spezielle anwendungsrelevante Funktionen
2. Spezielle anwendungsrelevante Funktionen (1) Affin-lineare Funktionen Eine Funktion f : R R heißt konstant, wenn ein c R mit f (x) = c für alle x R existiert linear, wenn es ein a R mit f (x) = ax für
1. Funktionen. 1.3 Steigung von Funktionsgraphen
Klasse 8 Algebra.3 Steigung von Funktionsgraphen. Funktionen y Ist jedem Element einer Menge A genau ein E- lement einer Menge B zugeordnet, so nennt man die Zuordnung eindeutig. 3 5 6 8 Dies ist eine
Lineare Gleichungssysteme
Poelchau-Oberschule Berlin A. Mentzendorff September 2007 Lineare Gleichungssysteme Inhaltsverzeichnis 1 Grundlagen 2 2 Das Lösungsverfahren von Gauß 4 3 Kurzschreibweise und Zeilensummenkontrolle 6 4
9.2 Invertierbare Matrizen
34 9.2 Invertierbare Matrizen Die Division ist als Umkehroperation der Multiplikation definiert. Das heisst, für reelle Zahlen a 0 und b gilt b = a genau dann, wenn a b =. Übertragen wir dies von den reellen
Kommentiertes Beispiel für das Gaußsche Eliminationsverfahren
Kommentiertes Beispiel für das Gaußsche Eliminationsverfahren oder: Wie rechnet eigentlich der TI 84, wenn lineare Gleichungssysteme gelöst werden? Hier wird an einem Beispiel das Gaußsche Verfahren zum
Wurzelgleichungen. 1.1 Was ist eine Wurzelgleichung? 1.2 Lösen einer Wurzelgleichung. 1.3 Zuerst die Wurzel isolieren
1.1 Was ist eine Wurzelgleichung? Wurzelgleichungen Beispiel für eine Wurzelgleichung Eine Wurzelgleichung ist eine Gleichung bei der in mindestens einem Radikanten (Term unter der Wurzel) die Unbekannte
gebrochene Zahl gekürzt mit 9 sind erweitert mit 8 sind
Vorbereitungsaufgaben Mathematik. Bruchrechnung.. Grundlagen: gebrochene Zahl gemeiner Bruch Zähler Nenner Dezimalbruch Ganze, Zehntel Hundertstel Tausendstel Kürzen: Zähler und Nenner durch dieselbe Zahl
Mathematik II für Studierende der Informatik. Wirtschaftsinformatik (Analysis und lineare Algebra) im Sommersemester 2015
und Wirtschaftsinformatik (Analysis und lineare Algebra) im Sommersemester 2015 4. April 2016 Zu der Vorlesung wird ein Skript erstellt, welches auf meiner Homepage veröffentlicht wird: http://www.math.uni-hamburg.de/home/geschke/lehre.html
1.9 Ungleichungen (Thema aus dem Gebiet Algebra)
1.9 Ungleichungen (Thema aus dem Gebiet Algebra) Inhaltsverzeichnis 1 Ungleichungen 2 2 Intervalle 2 3 Äquivalenzumformungen bei Ungleichungen 3 4 Doppelungleichungen 5 4.1 Verfahren, um Doppelungleichungen
Gleichungsarten. Quadratische Gleichungen
Gleichungsarten Quadratische Gleichungen Normalform: Dividiert man die allgemeine Form einer quadratischen Gleichung durch a, erhält man die Normalform der quadratischen Gleichung. x 2 +px+q=0 Lösungsformel:
Brückenkurs Mathematik
Brückenkurs Mathematik 6.10. - 17.10. Vorlesung 3 Geometrie Doris Bohnet Universität Hamburg - Department Mathematik Mi 8.10.2008 1 Geometrie des Dreiecks 2 Vektoren Länge eines Vektors Skalarprodukt Kreuzprodukt
Bevor lineare Gleichungen gelöst werden, ein paar wichtige Begriffe, die im Zusammenhang von linearen Gleichungen oft auftauchen.
R. Brinkmann http://brinkmann-du.de Seite 1 13.0.010 Lineare Gleichungen Werden zwei Terme durch ein Gleichheitszeichen miteinander verbunden, so entsteht eine Gleichung. Enthält die Gleichung die Variable
Mathematik II für Studierende der Informatik. Wirtschaftsinformatik (Analysis und lineare Algebra) im Sommersemester 2016
und Wirtschaftsinformatik (Analysis und lineare Algebra) im Sommersemester 2016 25. April 2016 Die Dimensionsformel Definition 3.9 Sei f : V W eine lineare Abbildung zwischen zwei K-Vektorräumen. Der Kern
Achsensymmetrie. Konstruktionen M 7.1
M 7.1 Achsensymmetrie Punkte, die auf der Symmetrieachse liegen und nur diese, sind von zueinander symmetrischen Punkten gleich weit entfernt. Eigenschaften achsensymmetrischer Figuren Die Verbindungsstrecke
Achsensymmetrie. Grundkonstruktionen
M 7.1 Achsensymmetrie Punkte, die auf der Symmetrieachse liegen und nur diese, sind von zueinander symmetrischen Punkten gleich weit entfernt. Eigenschaften achsensymmetrischer Figuren Die Verbindungsstrecke
Kapitel 7: Gleichungen
1. Allgemeines Gleichungen Setzt man zwischen zwei Terme T 1 und T 2 ein Gleichheitszeichen (=), so entsteht eine Gleichung! Ungleichung Setzt man zwischen zwei Terme T 1 und T 2 ein Ungleichheitszeichen
Download. Basics Mathe Gleichungen. Einfach und einprägsam mathematische Grundfertigkeiten wiederholen. Michael Franck
Download Michael Franck Basics Mathe Gleichungen Einfach und einprägsam mathematische Grundfertigkeiten wiederholen Downloadauszug aus dem Originaltitel: Basics Mathe Gleichungen Einfach und einprägsam
Gleichungen, Ungleichungen, Beträge
KAPITEL 2 Gleichungen, Ungleichungen, Beträge Man bestimme alle reellen Lösungen der Gleichung x + 2 x 2 4 = 1. Nach Multiplikation beider Seiten mit x 2 4 ergibt sich die quadratische Gleichung x + 2
Lineare Gleichungssysteme
Lineare Gleichungssysteme 1 Zwei Gleichungen mit zwei Unbekannten Es kommt häufig vor, dass man nicht mit einer Variablen alleine auskommt, um ein Problem zu lösen. Das folgende Beispiel soll dies verdeutlichen
Wirtschaftsmathematik für International Management (BA) und Betriebswirtschaft (BA)
Wirtschaftsmathematik für International Management (BA) und Betriebswirtschaft (BA) Wintersemester 2013/14 Hochschule Augsburg Spezialfälle und Rechenregeln Spezialfälle der Matrimultiplikation A = (m
2.3 Logarithmus. b). a n = b n = log a. b für a,b 0 ( : gesprochen genau dann bedeutet, dass beide Definitionen gleichwertig sind) Oder log a
2.3 Logarithmus Bsp. Seite 84 mitte: Wie lange muss man Fr. 10 000.- zu 5,1% anlegen, um Fr. 16 000.- zu erhalten? Lösen Sie die Zinseszinsformel nach q n auf Aus q n erfolgt die Berechnung von n mittels
Aufgaben zum Vorkurs Mathematik: Allgemeine Übungsaufgaben
Aufgaben zum Vorkurs Mathematik: Allgemeine Übungsaufgaben Fachbereich Mathematik Vorkurs Mathematik WS 2012/13 Dies ist eine Sammlung von Aufgaben, die hauptsächlich Mittelstufenstoff wiederholen. Dabei
Propädeutikum Mathematik
Propädeutikum Mathematik Sommersemester 2016 Carsten Krupp BBA Seite 1 Literaturhinweise Cramer, E., Neslehova, J.: Vorkurs Mathematik, Springer, 2004 Piehler, Sippel, Pfeiffer: Mathematik zum Studieneinstieg,
Analytische Geometrie
Analytische Geometrie Übungsaufgaben Lineare Gleichungssysteme Oberstufe Alexander Schwarz www.mathe-aufgaben.com Oktober 05 Pflichtteilaufgaben (ohne GTR) Aufgabe : Löse die folgenden linearen Gleichungssysteme:
Lineare Gleichungssysteme
Fakultät Grundlagen Juli 2015 Fakultät Grundlagen Übersicht Lineare Gleichungssystem mit 2 Variablen 1 Lineare Gleichungssystem mit 2 Variablen Beispiele 2 Fakultät Grundlagen Folie: 2 Beispiel I Lineare
Grundwissen Mathematik 6/1 1
Grundwissen Mathematik 6/ Formveränderung von Brüchen Erweitern heißt Zähler und Nenner eines Bruches mit der selben Zahl multiplizieren. a ac = b bc Kürzen heißt Zähler und Nenner eines Bruches durch
Download. Basics Mathe Gleichungen mit Klammern und Binomen. Einfach und einprägsam mathematische Grundfertigkeiten wiederholen.
Download Michael Franck Basics Mathe Gleichungen mit Klammern und Binomen Einfach und einprägsam mathematische Grundfertigkeiten wiederholen Downloadauszug aus dem Originaltitel: Basics Mathe Gleichungen
Einiges zu den Potenzfunktionen. Exponentialfunktionen
Einiges zu den Potenzfunktionen Es sind zunächst zwei Arten der Potenzfunktionen zu unterscheiden. Erstens die eigentlichen Potenzfunktionen, bei denen die Variable x als Basis von Potenzen vorkommt. Diese
Prof. Dr. G. Wagner Ingenieurmathematik Begleittext Seite 1
Prof. Dr. G. Wagner Ingenieurmathematik Begleittext Seite 1 Kapitel 3 Lineare Gleichungssysteme 3.1. Einleitung Beispiel 1 3 Kinder haben eingekauft. Franz hat 4 Lakritzen, 2 Schokoriegel und 5 Kaugummis
Unterrichtsmaterialien in digitaler und in gedruckter Form. Auszug aus: Kopiervorlagen Terme, Gleichungen, Ungleichungen
Unterrichtsmaterialien in digitaler und in gedruckter Form Auszug aus Kopiervorlagen Terme, Gleichungen, Ungleichungen Das komplette Material finden Sie hier School-Scout.de Autoren Kristina Hilgarth Dr.
Mathematischer Vorbereitungskurs für Ökonomen
Mathematischer Vorbereitungskurs für Ökonomen Dr. Thomas Zehrt Wirtschaftswissenschaftliches Zentrum Universität Basel Ungleichungen Inhalt: 1. Grundlegendes 2. Lineare Ungleichungen 3. Ungleichungen mit
Beispiele 1. Gegeben sei das lineare Gleichungssystem mit erweiterter Matrix (A
133 e 1. Gegeben sei das lineare Gleichungssystem mit erweiterter Matrix 1 3 2 1 1 2 3 0. 1 3 2 1 2. Gegeben sei das lineare Gleichungssystem mit erweiterter Matrix 1 3 2 1 1 2 3 0. 1 3 2 1 Schritte des
Reelle Zahlen, Gleichungen und Ungleichungen
9 2. Vorlesung Reelle Zahlen, Gleichungen und Ungleichungen 4 Zahlenmengen und der Körper der reellen Zahlen 4.1 Zahlenmengen * Die Menge der natürlichen Zahlen N = {0,1,2,3,...}. * Die Menge der ganzen
1. Vereinfache wie im Beispiel: 3. Vereinfache wie im Beispiel: 4. Schreibe ohne Wurzel wie im Beispiel:
1. Zahlenmengen Wissensgrundlage Aufgabenbeispiele Gib die jeweils kleinstmögliche Zahlenmenge an, welche die Zahl enthält? R Q Q oder All diejenigen Zahlen, die sich nicht mehr durch Brüche darstellen
Lineare Gleichungssysteme (Teschl/Teschl 11.1)
Lineare Gleichungssysteme (Teschl/Teschl.) Ein Lineares Gleichungssystem (LGS) besteht aus m Gleichungen mit n Unbekannten x,...,x n und hat die Form a x + a 2 x 2 +... + a n x n b a 2 x + a 22 x 2 +...
Vorbereitungskurs Mathematik zum Sommersemester 2011 Tag 7
Vorbereitungskurs Mathematik zum Sommersemester 2011 Tag 7 Timo Stöcker Erstsemestereinführung Informatik TU Dortmund 22. März 2011 Heute Themen Lineare Gleichungssysteme Matrizen Timo Stöcker https://fsinfo.cs.tu-dortmund.de/studis/ese/vorkurse/mathe
GLEICHUNGEN MIT PARAMETERN
Mathematik-Olympiaden in Rheinland-Pfalz GLEICHUNGEN MIT PARAMETERN Fortgeschrittene Die Aufgaben auf diesem Arbeitsblatt haben alle eine elegante Lösungsidee. Bei vielen Gleichungen ist nach Anwenden
Mathematik für Naturwissenschaftler I WS 2009/2010
Mathematik für Naturwissenschaftler I WS 2009/2010 Lektion 4 23. Oktober 2009 Kapitel 1. Mengen, Abbildungen und Funktionen (Fortsetzung) Berechnung der Umkehrfunktion 1. Man löst die vorgegebene Funktionsgleichung
Zahlen und elementares Rechnen
und elementares Rechnen Christian Serpé Universität Münster 7. September 2011 Christian Serpé (Universität Münster) und elementares Rechnen 7. September 2011 1 / 51 Gliederung 1 2 Elementares Rechnen 3
Direkte Proportionalität
M 8.1 Direkte Proportionalität Zwei einander zugeordnete Größen und sind (direkt) proportional, wenn zum -fachen Wert von der -fache Wert von gehört. der Quotient für alle Wertepaare gleich ist. ( Proportionaliätsfaktor
Aussagenlogik. Lehrstuhl für BWL, insb. Mathematik und Statistik Prof. Dr. Michael Merz Mathematik für Betriebswirte I Wintersemester 2015/2016
Aussagenlogik 1. Gegeben seien folgende Aussagen: A: 7 ist eine ungerade Zahl B: a + b < a + b, a, b R C: 2 ist eine Primzahl D: 7 7 E: a + 1 b, a, b R F: 3 ist Teiler von 9 Bestimmen Sie den Wahrheitswert
Mathematik-Dossier. Die lineare Funktion
Name: Mathematik-Dossier Die lineare Funktion Inhalt: Lineare Funktion Lösen von Gleichungssystemen und schneiden von Geraden Verwendung: Dieses Dossier dient der Repetition und Festigung innerhalb der
Online Vorlesung Wirtschaftswissenschaft. Gleichungen verstehen, umstellen und lösen. Fernstudium-Guide präsentiert. Mathe-Basics
Fernstudium-Guide präsentiert Online Vorlesung Wirtschaftswissenschaft Mathe-Basics Gleichungen verstehen, umstellen und lösen Dieses Werk ist urheberrechtlich geschützt. Jegliche unzulässige Form der
A2.3 Lineare Gleichungssysteme
A2.3 Lineare Gleichungssysteme Schnittpunkte von Graphen Bereits weiter oben wurden die Schnittpunkte von Funktionsgraphen mit den Koordinatenachsen besprochen. Wenn sich zwei Geraden schneiden, dann müssen
1.5 lineare Gleichungssysteme
1.5 lineare Gleichungssysteme Inhaltsverzeichnis 1 Was ist ein lineares Gleichungssystem mit zwei Gleichungen und zwei Unbekannten? 2 2 Wie lösen wir ein lineares Gleichungssystem mit zwei Unbekannten?
- G1 - Grundlagen der Mathematik - Bruchrechnen - MSS Böblingen. Einstiegsaufgaben: Merke: a) Addieren von Brüchen. b) Subtrahieren von Brüchen.
MSS Böblingen - Bruchrechnen - - G - Einstiegsaufgaben: a a a) + = 6x 4x a + a b) = 6x x a a c) = 6x 4x a a d) : = 6x 4x e) 7 = Merke: a) Addieren von Brüchen b) Subtrahieren von Brüchen c) Multiplizieren
Terme und Aussagen und
1 Grundlagen Dieses einführende Kapitel besteht aus den beiden Abschnitten Terme und Aussagen und Bruchrechnung. Die Erfahrung zeigt, dass diese Dinge zwar in der Schule gelehrt und gelernt werden, dass
Themen: Kubische Gleichungen, Ungleichungen, Induktion
Lo sungen zu U bungsblatt Mathematik fu r Ingenieure Maschinenbauer und Sicherheitstechniker), 1. Semester, bei Prof. Dr. G. Herbort im WiSe1/14 Dipl.-Math. T. Pawlaschyk, 05.11.1 Themen: Kubische Gleichungen,
Allgemeines Gleichungssystem mit zwei Gleichungen und zwei Variablen. Der erste Index bezeichnet die Nummer der Zeile, der zweite die der Spalte.
Lineare Gleichungssysteme. Einleitung Lineare Gleichungssysteme sind in der Theorie und in den Anwendungen ein wichtiges Thema. Theoretisch werden sie in der Linearen Algebra untersucht. Die Numerische
6 Gleichungen und Gleichungssysteme
03.05.0 6 Gleichungen und Gleichungssysteme Äquivalente Gleichungsumformungen ( ohne Änderung der Lösungsmenge ).) a = b a c = b c Addition eines beliebigen Summanden c.) a = b a - c = b - c Subtraktion
Lineare Funktionen Geraden zeichnen Lage von Geraden Geradengleichung aufstellen
Geradengleichungen und lineare Funktionen Lese- und Lerntext für Anfänger Lineare Funktionen Geraden zeichnen Lage von Geraden Geradengleichung aufstellen Geraden schneiden Auch über lineare Gleichungssystem
GRUNDKURS MATHEMATIK. Zahlenmengen. Natürliche Zahlen. Ganze Zahlen. Gebrochene Zahlen { } Rationale Zahlen { } Irrationale Zahlen { } Reelle Zahlen
GRUNDKURS MATHEMATIK Zahlenmengen Natürliche Zahlen Ganze Zahlen : 0, 1, 2, 3, Gebrochene Zahlen { } : 0, -1, 1, - Rationale Zahlen { } : 0,,, - Irrationale Zahlen { } : 0, -, Reelle Zahlen Addition und
Lineare Gleichungen mit 2 Variablen
Lineare Gleichungen mit 2 Variablen Lineare Gleichungen mit 2 Variablen sind sehr eng verwandt mit linearen Funktionen. Die Funktionsgleichung einer linearen Funktion f(x) = m x+q m: Steigung, q: y Achsenabschnitt
3. LINEARE GLEICHUNGSSYSTEME
176 3. LINEARE GLEICHUNGSSYSTEME 90 Vitamin-C-Gehalt verschiedener Säfte 18,0 mg 35,0 mg 12,5 mg 1. a) 100 ml + 50 ml + 50 ml = 41,75 mg 100 ml 100 ml 100 ml b) : Menge an Kirschsaft in ml y: Menge an
1. Daten und Diagramme Beispiele / Veranschaulichung
1. Daten und Diagramme / Veranschaulichung Zum Vergleich von Daten sind Säulen- und Balkendiagramme geeignet: Bei dieser Arbeit gab es zweimal die Note 1, siebenmal die Note 2, usw. Die Verteilung innerhalb
Polynome. David Willimzig. Wir beschäftigen uns zunächst mit Polynomen in einer Variablen x. Diese haben die Gestalt
Polynome David Willimzig 1 Grundlagen Wir beschäftigen uns zunächst mit Polynomen in einer Variablen x. Diese haben die Gestalt p(x) = a n x n +... + a 1 x + a 0 = Die Zahlen a 0, a 1,..., a n werden Koezienten
Direkte Proportionalität. Zwei einander zugeordnete Größen und sind (direkt) proportional, wenn
M 8.1 Direkte Proportionalität Zwei einander zugeordnete Größen und sind (direkt) proportional, wenn zum -fachen Wert von der -fache Wert von gehört. der Quotient für alle Wertepaare gleich ist. ( Quotientengleichheit
Lösen einer Gleichung
Zum Lösen von Gleichungen benötigen wir: mindestens einen Term eine Definition der in Frage kommenden Lösungen (Grundmenge) Die Grundmenge G enthält all jene Zahlen, die als Lösung für eine Gleichung in
J Quadratwurzeln Reelle Zahlen
J Quadratwurzeln Reelle Zahlen J Quadratwurzeln Reelle Zahlen 1 Quadratwurzeln Ein Quadrat habe einen Flächeninhalt von 64 cm. Will man wissen, wie lang die Seiten des Quadrates sind, so muss man herausfinden,
Diplom Mathematiker Wolfgang Kinzner. 17. Oktober Technische Universität München. Die abc-formel. W. Kinzner. Problemstellung.
Diplom Mathematiker Wolfgang Kinzner Technische Universität München 17. Oktober 2013 1 / 9 Inhaltsverzeichnis 1 2 / 9 Inhaltsverzeichnis 1 2 2 / 9 Inhaltsverzeichnis 1 2 3 2 / 9 Inhaltsverzeichnis 1 2
Aufgaben zu Kapitel 14
Aufgaben zu Kapitel 14 1 Aufgaben zu Kapitel 14 Verständnisfragen Aufgabe 14.1 Haben (reelle) lineare Gleichungssysteme mit zwei verschiedenen Lösungen stets unendlich viele Lösungen? Aufgabe 14.2 Gibt
Technische Universität München Zentrum Mathematik. Übungsblatt 7
Technische Universität München Zentrum Mathematik Mathematik (Elektrotechnik) Prof. Dr. Anusch Taraz Dr. Michael Ritter Übungsblatt 7 Hausaufgaben Aufgabe 7. Für n N ist die Matrix-Exponentialfunktion
Gleichungssysteme mit zwei Variablen
Gleichungssysteme mit zwei Variablen Eine alte chinesische Aufgabe lautet: In einem Stall befinden sich 5 Tiere, und zwar Hühner und Kaninchen. Die Tiere haben zusammen 9 Beine. Wie viele Hühner und wie
Corinne Schenka Vorkurs Mathematik WiSe 2012/13
4. Lineare Gleichungssysteme Ein lineares Gleichungssystem ist ein System aus Gleichungen mit Unbekannten, die nur linear vorkommen. Dieses kann abkürzend auch in Matrizenschreibweise 1 notiert werden:
Die Gleichung A x = a hat für A 0 die eindeutig bestimmte Lösung. Für A=0 und a 0 existiert keine Lösung.
Lineare Gleichungen mit einer Unbekannten Die Grundform der linearen Gleichung mit einer Unbekannten x lautet A x = a Dabei sind A, a reelle Zahlen. Die Gleichung lösen heißt, alle reellen Zahlen anzugeben,
Grundsätzliches zu Termen und Variablen
mathe online Skripten http://www.mathe-online.at/skripten/ Grundsätzliches zu Termen und Variablen Franz Embacher Fakultät für Mathematik der Universität Wien E-mail: franz.embacher@univie.ac.at WWW: http://homepage.univie.ac.at/franz.embacher/
Besteht eine Matrix nur aus einer Spalte (Zeile), so spricht man auch von einem Spaltenvektor (Zeilenvektor)
Matrizenrechnung. Matrizen Matrizen sind bereits im Kapitel Lineare Gleichungssysteme aufgetreten. Unter einer (m n) -Matrix A verstehen wir ein rechteckiges Zahlenschema mit m Zeilen und n Spalten. Der.
I. Symmetrie. II. Grundkonstruktionen
I. Symmetrie Achsensymmetrie Zwei Figuren, die bezüglich einer Achse symmetrisch zueinander sind, nennt man achsensymmetrisch. Punktsymmetrie Zwei Figuren, die bei einer Halbdrehung um einen Punkt ineinander
Vorkurs Mathematik Übungen zu Polynomgleichungen
Vorkurs Mathematik Übungen zu en 1 Aufgaben Lineare Gleichungen Aufgabe 1.1 Ein Freund von Ihnen möchte einen neuen Mobilfunkvertrag abschließen. Es gibt zwei verschiedene Angebote: Anbieter 1: monatl.
Matrizen, Determinanten, lineare Gleichungssysteme
Matrizen, Determinanten, lineare Gleichungssysteme 1 Matrizen Definition 1. Eine Matrix A vom Typ m n (oder eine m n Matrix, A R m n oder A C m n ) ist ein rechteckiges Zahlenschema mit m Zeilen und n
Schranken von Folgen
Schranken von Folgen W. Kippels 30. März 2011 Inhaltsverzeichnis 1 Definitionen 2 2 Übungsaufgaben 2 2.1 Aufgabe 1................................... 2 2.2 Aufgabe 2...................................
1 Übungen zu Mengen. Aufgaben zum Vorkurs B S. 1. Aufgabe 1: Geben Sie folgende Mengen durch Aufzählen ihrer Elemente an:
Aufgaben zum Vorkurs B S. 1 1 Übungen zu Mengen Geben Sie folgende Mengen durch Aufzählen ihrer Elemente an: A = {x N 0 < x < 4, 8} B = {t N t ist Teiler von 4} C = {z Z z ist positiv, durch 3 teilbar
LINEARE GLEICHUNGSSYSTEME. Wir besprechen hier, wie MathematikerInnen an das Lösen linearer Gleichungssysteme wie. x + y + z = 1
LINEARE GLEICHUNGSSYSTEME 1. Ein kurzes Vorwort Wir besprechen hier, wie MathematikerInnen an das Lösen linearer Gleichungssysteme wie 2 x 1 + 2 x 2 = 3 6 a + 4 b = 3 (a) (b) 4 x 1 + 3 x 2 = 8 3 a + 2
1.2 Rechnen mit Termen II
1.2 Rechnen mit Termen II Inhaltsverzeichnis 1 Ziele 2 2 Potenzen, bei denen der Exponent negativ oder 0 ist 2 3 Potenzregeln 3 4 Terme mit Wurzelausdrücken 4 5 Wurzelgesetze 4 6 Distributivgesetz 5 7
1. Funktionale Zusammenhänge
1. Funktionale Zusammenhänge Proportionalität Grundwissen 8 Eigenschaften direkt proportionaler Größen x und y: zum n-fachen Wert von x gehört der n-fache Wert von y die Wertepaare (x ; y) sind quotientengleich,
1. Algebra 1.1 Terme Man schreibt für einen Term T, der von den Variablen t und m abhängt: m (ausgesprochen: T von t und m)
Grundwissen Mathematik 7. Klasse 1. Algebra 1.1 Terme Man schreibt für einen Term T, der von den Variablen t und m abhängt: Ttm (, ) = ( t 5+ 6) 20+ m (ausgesprochen: T von t und m) Ein Term besteht aus
Quadratische Ungleichungen
Quadratische Ungleichungen W. Kippels 7. Oktober 014 Inhaltsverzeichnis 1 Einleitung 3 Lösungsprinzip 3 3 Verdeutlichung an zwei Beispielen 5 3.1 Beispiel 1................................... 5 3. Beispiel...................................
Repetitionsaufgaben: Lineare Gleichungen
Kantonale Fachschaft Mathematik Repetitionsaufgaben: Lineare Gleichungen Zusammengestellt von Hannes Ernst, KSR Lernziele: - Lineare Gleichungen von Hand auflösen können. - Lineare Gleichungen mit Parametern
Partialbruchzerlegung für Biologen
Partialbruchzerlegung für Biologen Rationale Funktionen sind Quotienten zweier Polynome, und sie tauchen auch in der Biologie auf. Die Partialbruchzerlegung bedeutet, einen einfacheren Ausdruck für eine
Aufgabensammlung Klasse 8
Aufgabensammlung Klasse 8 Inhaltsverzeichnis 1 Potenzen mit natürlichen Hochzahlen 3 1.1 Rechenregeln für das Rechnen mit Potenzen..................... 3 1.1.1 Addition und Subtraktion von Potenzen...................
Lineare Gleichungssysteme - Grundlagen
Lineare Gleichungssysteme - Grundlagen Betrachtet wird ein System linearer Gleichungen (im deutschen Sprachraum: lineares Gleichungssystem mit m Gleichungen für n Unbekannte, m, n N. Gegeben sind m n Elemente
OvTG Gauting, Grundwissen Mathematik 7. Klasse
1. Symmetrie (vgl. auch Grundwissen 5. Klasse) Achsensymmetrie Zwei Figuren, die bezüglich einer Achse symmetrisch zueinander sind, nennt man achsensymmetrisch. a Punktsymmetrie Zwei Figuren, die bei einer
Analytische Geometrie I
Analytische Geometrie I Rainer Hauser Januar 202 Einleitung. Geometrie und Algebra Geometrie und Algebra sind historisch zwei unabhängige Teilgebiete der Mathematik und werden bis heute von Laien weitgehend
x 2 2x + = 3 + Es gibt genau ein x R mit ax + b = 0, denn es gilt
- 17 - Die Frage ist hier also: Für welche x R gilt x = x + 1? Das ist eine quadratische Gleichung für x. Es gilt x = x + 1 x x 3 = 0, und man kann quadratische Ergänzung machen:... ( ) ( ) x x + = 3 +
Kurs über Lineare Gleichungssysteme. PD Dr. Karin Halupczok
Kurs über Lineare Gleichungssysteme PD Dr. Karin Halupczok Mathematisches Institut Albert-Ludwigs-Universität Freiburg http://home.mathematik.unifreiburg.de/halupczok/diverses.html karin.halupczok@math.uni-freiburg.de
Lineare Gleichungssysteme mit zwei Variablen
Lineare Gleichungssysteme mit zwei Variablen Anna Heynkes 4.11.2005, Aachen Enthält eine Gleichung mehr als eine Variable, dann gibt es unendlich viele mögliche Lösungen und jede Lösung besteht aus so
Berufliches Gymnasium Gelnhausen
Berufliches Gymnasium Gelnhausen Fachbereich Mathematik Die inhaltlichen Anforderungen für das Fach Mathematik für Schülerinnen und Schüler, die in die Einführungsphase (E) des Beruflichen Gymnasiums eintreten
Frage 8.3. Wozu dienen Beweise im Rahmen einer mathematischen (Lehramts-)Ausbildung?
8 Grundsätzliches zu Beweisen Frage 8.3. Wozu dienen Beweise im Rahmen einer mathematischen (Lehramts-)Ausbildung? ˆ Mathematik besteht nicht (nur) aus dem Anwenden auswendig gelernter Schemata. Stattdessen
37 Gauß-Algorithmus und lineare Gleichungssysteme
37 Gauß-Algorithmus und lineare Gleichungssysteme 37 Motivation Lineare Gleichungssysteme treten in einer Vielzahl von Anwendungen auf und müssen gelöst werden In Abschnitt 355 haben wir gesehen, dass
Mathematik 1, Teil B. Inhalt:
FH Emden-Leer Fachb. Technik, Abt. Elektrotechnik u. Informatik Prof. Dr. J. Wiebe www.et-inf.fho-emden.de/~wiebe Mathematik 1, Teil B Inhalt: 1.) Grundbegriffe der Mengenlehre 2.) Matrizen, Determinanten
Propädeutikum Mathematik
Propädeutikum Mathematik Wintersemester 2016/2017 Prof. Dr. Dieter Leitmann Abteilung WI WiSe 2016/17 Seite 1 Literaturhinweise Cramer, E., Neslehova, J.: Vorkurs Mathematik, Springer, 2004 Piehler, Sippel,