2 Mengen und Abbildungen

Größe: px
Ab Seite anzeigen:

Download "2 Mengen und Abbildungen"

Transkript

1 2.1 Mengen Unter einer Menge verstehen wir eine Zusammenfassung von Objekten zu einem Ganzen. Die Objekte heiÿen Elemente. Ist M eine Menge und x ein Element von M so schreiben wir x M. Wir sagen auch: x gehöre zu M oder x liegt in M. Ist x kein Element von M so schreiben wir x / M. Eine Menge kann durch Aufzählung ihrer Elemente, z.b. durch M = {a, b, c, d} oder durch Angabe einer Eigenschaft ( Aussageform) beschrieben werden M = {x x hat Eigenschaft E}. Beispiel 2.1 Zunächst benutzen wir Zahlenmengen als Beispiele. Im folgenden spendieren wir diesen die üblichen Bezeichnungen. (1) Die Menge der natürlichen Zahlen N := {1, 2, 3, 4, 5, 6,...}. N enthält mit jeder Zahl n auch die Zahl n + 1. (2) Die Menge der natürlichen Zahlen einschlieÿlich 0: (3) Die Menge der ganzen Zahlen N 0 := {0, 1, 2, 3, 4, 5, 6,...}. Z := {..., 5, 4, 3, 2, 1, 0, 1, 2, 3, 4, 5,...}. Z enthält 0 und mit jeder natürlichen Zahl n auch n. (4) Die Menge der Primzahlen P := {p N p = p 1 p 2 für p 1, p 2 N mit p 1 p 2 impliziert p 1 = 1 < p 2 }, 11

2 Mengen haben aber nicht unbedingt etwas mit Zahlen zu tun. In kürze werden wir auch mit Mengen aus Mengen, Mengen aus Abbildungen usw. arbeiten. Zwei Mengen M und N sind gleich, d.h. M = N, wenn sie dieselben Elemente haben. D.h. M = N bedeutet (x M x N). Eine Menge M heiÿt Teilmenge von N, d.h. M N, falls jedes Element von M zu N gehört. Hier sei betont, dass die Bezeichnung M N auch erlaubt, dass M = N ist 1. Will man ausdrücken, dass M eine echte Teilmenge von N ist, d.h. M N und M N gilt schreibt man M N. Um zu zeigen, dass eine Menge M Teilmenge einer anderen Menge M ist, muÿ man zeigen, dass für jedes Element x M auch x N gilt. Um zu zeigen, dass zwei Mengen M und N gleich sind, beweist man zunächst M N und dann N M. Die Menge := {x M x x} heiÿt leere Menge. Sie ist eindeutig bestimmt und hängt nicht von M ab. Die leere Menge M ist Teilmenge jeder Menge; enthält selbst kein Element. Die Potenzmenge 2 M von M ist die Menge aller Teilmengen von M : 2 M = {N N M}. Beispiel {0,1} = {, {0}, {1}, {0, 1}}, 2 = { }, 2 2 = {, { }}. Operationen mit Mengen Im folgenden stellen wir einige wichtige Operationen mit Mengen vor: Die Vereinigung Die Vereinigung M N := {x x M x N} zweier Mengen M, N besteht sowohl aus den Elementen von M als auch aus denen von N. Beispiel 2.3 Z = N 0 { n n N}. 1 das ist leider nicht einheiltlich in der Literatur. In manchen Büchern und Vorlesungen werden die Symbole (statt ) bzw. (statt und ) benutzt. 12

3 Sei allgemeiner S eine Menge, deren Elemente selbst Mengen sind. Die Vereinigung der Mengen aus S ist die Menge M S M := {x M S mit x M}. M S M ist also die Menge der Elemente, die mindestens einem M S angehören. Oft wird das Mengensystem indiziert, d.h., jedem Element von S wird ein eindeutiger Index i aus einer Indexmenge I zugeordnet, d.h., S = {s i i I}. Wir schreiben M i := {x i I mit x M i }. i I Beispiel 2.4 Sei I = N und M i := {i, i + 1,...,2i} für i N. Dann ist M i = N i I Beweis: Da jede der Mengen M i Teilmenge von N ist, gilt i I M i N. Wir müssen also noch zeigen, dass auch N i I M i gilt. Sei also n ein beliebiges Element aus N, dann ist n M n. Folglich ist n i I M i. Da n beliebig war, gilt N i I M i. Der Durchschnitt Der Durchschnitt zweier Mengen M und N M N := {x x M x N} ist die Menge aller Elemente, die sowohl zu M als auch zu N gehören. Allgemeiner ist M := {x M S giltx M} M S der Durchschnitt einer nichtleeren Menge S von Mengen. Er besteht aus den Elementen, die zu allen M S gehören. Oder mit Indexschreibweise M i := {x i I ist x M i }. i I Beispiel 2.5 Sei I die Indexmenge I = N und M i := {n N i < n < 4i}. Dann ist M i =. Beweisen Sie diese Gleichheit, ähnlich wie in Beispiel 2.4. i I 13

4 Das Komplement Das Komplement einer Menge N in M (oder die Dierenz von M und N) ist die Menge M\N := {x x M x / N}. M\N besteht aus allen Elementen von M, die nicht zu N gehören. Zum Beispiel ist Z\N = {0, 1, 2,...}. Wir halten nun folgende wichtige Zusammenhänge fest. (a) M\M =, M\ = M. (b) M M = M, M M = M. (c) Kommutativität: (d) Assoziativität: M N = N M, M N = N M. (M N) L = M (N L), (M N) L = M (N L). (e) Distributivität: (M N) L = (M L) (M L), (M N) L = (M L) (M L). (f) Für die Teilmengen M, N einer Menge X gilt: (1) (2) X\(X\M) = M. X\(M N) = (X\M) (X\N) X\(M N) = (X\M) (X\N) } de Morgansche Regel. (3) Allgemeiner gilt sogar X\ M S M = M S (X\M) X\ M S M = M S (X\M) } de Morgansche Regel. Wie beweist man solche Regeln? Wir führen dies am Beispiel der zweiten De Morganschen Regel einmal vor: Beweis von X\(M N) = (X\M) (X\N) (i) Zunächst zeigen wir X\(M N) (X\M) (X\N). Sei also x X\(M N). Dann ist x X aber x / M N. Demnach ist x weder Element von N noch 14

5 Element von M. Also ist x sowohl in X\M wie auch in X\N und damit auch im Schnitt dieser beiden. (ii) Nun zeigen wir X\(M N) (X\M) (X\N). Ist x (X\M) (X\N), dann ist x sowohl in X\M wie auch in X\N. damit ist x weder in M noch in N und damit in X\(M N). Kartesisches Produkt Das geordnete Paar (Tupel) zweier Objekte x, y ist das Objekt (x, y) mit der Eigenschaft (x, y) = (x, y ) x = x und y = y. Insbesondere ist (x, y) (y,x) falls x y. Formal kann man (x, y) als Menge denieren vermöge (x, y) := {{x}, {x, y}}. Man zeigt dann leicht (Übungsaufgabe), daÿ die obige Eigenschaft erfüllt ist. Das kartesische Produkt zweier Mengen M, N ist die Menge M N := {(x, y) x M und y N}. Beispiel 2.6 Die Menge N N besteht aus den Paaren (a, b) mit a N und b N. Also N N = {(1, 1), (1, 2), (2, 1),...}. Analog bildet man das n-fache Produkt M 1 M n := {(x 1,...,x n ) x 1 M 1 x n M n }. Dabei werden die n-tupel (x 1,...,x n ) rekursiv durch deniert mit der Eigenschaft (x 1,...,x n ) := ((x 1,...,x n 1 ), x n ) (x 1,...,x n ) = (y 1,...,y n ) x 1 = y 1,...,x n = y n. Eigenschaften des Produkts (a) (M 1 M 2 ) N = (M 1 N) (M 2 N). (b) (M 1 M 2 ) N = (M 1 N) (M 2 N). Versuchen Sie mal einer dieser beiden Eigenschaften zu beweisen. Zeigen Sie dazu, dass jedes Element aus (M 1 M 2 ) N auch in (M 1 N) (M 2 N) liegt, und das jedes Element aus (M 1 N) (M 2 N) auch in (M 1 M 2 ) N liegt. 15

6 Quotienten Sei M eine Menge. Eine Relation auf M ist eine Teilmenge R M M. Wir schreiben: x R y : (x, y) R. Eine Relation auf M heiÿt Äquivalenzrelation, wenn stets gilt: (a) x R x (Reexivität) (b) x R y y R x (Symmetrie) (c) x R y und y R z x R z (Transitivität) Wir lesen x R y als x ist äquivalent zu y bezüglich R. Beispiel 2.7 Betrachte M = N und R = {(a, b) N N a+b gerade}. Dann sind also a und b äquivalent genau dann wenn a und b gerade sind oder wenn a und b ungerade sind. Beispiel 2.8 Betrachte M = N N und die Relation R := {((a, b), (c, d)) a + d = c + b}. Dann sind zum Beispiel die Paare (1, 2) und (3, 4) äquivalent. Jede Äquivalenzrelation auf einer Menge M deniert eine zugehörige Zerlegung von M in disjunkte Teilmengen. Dazu ist für jedes x M die Äquivalenzklasse von x bezüglich R deniert als Teilmenge Kl(x) := {y M x R y}. Satz 2.9 Für jede Äquivalenzrelation R M M gilt: (a) x Kl(x) (b) x R y Kl(x) = Kl(y) (c) Kl(x) Kl(y) Kl(x) Kl(y) =. Beweis: (a) ist klar, wegen x R x. Ist Kl(x) = Kl(y), so gilt y Kl(y) = Kl(x), also y R x. Sei umgekehrt y R x und z Kl(y), so also z R y und y R x z R x. Daher z Kl(x). Da z beliebig war folgt Kl(y) Kl(x). 16

7 Die Symmetrie besagt y R x x R y. Also gilt ebenfalls Kl(x) Kl(y). Das beweist (b). Für z Kl(x) Kl(y) ist z R x und z R y also x R y Kl(x) = Kl(y). Ist Kl(x) = Kl(y), so gilt Kl(x) Kl(y) = Kl(x), da x Kl(x). Mit Hilfe einer Äquivalenzrelation kann man nun neue Mengen konstruieren. Denition 2.10 Sei R eine Äquivalenzrelation auf der Menge M. Der Quotient M/R von M bezüglich R ist deniert als die Menge der Äquivalenzklassen von R: M/R := {Kl(x) x M}. Beispiel 2.11 Sei wieder M = N und R = {(a, b) N N a + b gerade}. Dann besteht die Menge M/R aus zwei Elementen, nämlich zum einem aus der Menge der ungeraden Zahlen Kl(1) und der Menge der geraden Zahlen Kl(2). Beispiel 2.12 Gegeben sei M = N N und die Relation R := {((a, b), (c, d)) a + d = c + b}. Die Element des Quotienten M/R sind die Klassen...,Kl(1, 3), Kl(1, 2), Kl(1, 1), Kl(2, 1), Kl(3, 1),... Wir werden die Konstruktion aus Beispiel 2.12 in Kapitel 4 wiedersehen, wenn wir die ganzen Zahlen aus den natürlichen Zahlen konstruieren. 2.2 Abbildungen Eine Abbildung f einer Menge M in eine Menge N ist eine Vorschrift, die jedem Element x M jeweils ein eindeutig bestimmtes Element y = f(x) N zuordnet. y = f(x) heiÿt Wert von f an der Stelle x. M heiÿt Denitionsbereich, N der Wertebereich von f. Schreibweise: f : M N, x f(x) Beispiel 2.13 Oft werden Abbildungen durch Terme deniert, z.b.: f : Z Z, z z 2. 17

8 Ein anderes Beispiel ist g : N N n g(n) und g(n) sei die kleinste Primzahl gröÿer als n. Im zweiten Beispiel ist nicht unbedingt klar, ob die Abbildung g wohldeniert ist,d.h. ob jedem Wert aus dem Denitionsbereich auch ein eindeutiger Wert aus dem Bildbereich zugeordnet wird. Gibt es zu jedem n N immer eine eindeutige kleinste Primzahl die gröÿer ist alsn? Die Frage kann man bejahen, wenn man weiÿ, dass es unendlich viele Primzahlen gibt. Zwei Abbildungen f 1 : M 1 N 1, f 2 : M 2 N 2 heiÿen gleich wenn gilt (i)m 1 = M 2, N 1 = N 2 und (ii) f 1 (x) = f 2 (x) für alle x M 1 = M 2. Ist beides erfüllt schreiben wir f 1 = f 2. Beispiel 2.14 Betrachten Sie die Abbildungen f : Z Z, z z 2, g : N Z, z z 2 und h : N Z, h(z) :=gröÿte natürliche Zahle kleiner als z Obwohl f(z) = g(z) für alle z Z gilt, ist f g. Andererseits sind die Abbildungen g und h gleich. Wir führen nun eine Reihe wichtiger Bezeichnungen ein: a) Der Graph einer Abbildung f : M N ist die Teilmen- Denition 2.15 ge Γ f := {(x, f(x)) x M} M N. b) Das Bild einer Teilmenge A M unter f : M N ist die Teilmenge f(a) := {f(x) x A}. f(m) heiÿt Bildmenge von M. c) Das Urbild einer Teilmenge B N ist die Teilmenge f 1 (B) := {x M f(x) B}. d) Die Faser eines Elementes y N unter f ist das Urbild f 1 ({y}) := {x M f(x) = y}. Oft schreibt man auch f 1 (y) statt f 1 ({y}). e) Sei A eine Teilmenge von M. Dann nennt man f A : A N, x f(x) die Einschränkung von f auf A. 18

9 Beispiel 2.16 Es sei f : N N, n { 1 falls n 4, n 2 falls n < 4. Weiter sei P N die Menge der Primzahlen. Das Bild von P unter f ist f(p) = {1, 4, 9}, denn f(1) = 1, f(2) = 4, f(3) = 9 und f(n) = 1 für alle n 4. Das Urbild von P N unter f ist f 1 (P) =, denn f(n) ist für kein n N eine Primzahl. Die Faser des Elementes 4 ist f 1 ({4}) = {2}. Denition 2.17 Eine Abbildung f : M N heiÿt (a) injektiv, wenn für alle x 1, x 2 M gilt f(x 1 ) = f(x 2 ) x 1 = x 2. Eine äquivalente Denition ist, dass die Faser f 1 ({y}) für jedes y N höchstens ein Element hat. (b) surjektiv, wenn f(m) = N. Eine äquivalente Denition ist, dass die Faser f 1 ({y}) für jedes y N mindestens ein Element hat. (c) bijektiv, wenn f injektiv und surjektiv ist. Eine äquivalente Denition ist, daÿ die Faser f 1 ({y}) für jedes y N genau ein Element hat. Beispiel 2.18 Betrachten Sie die Abbildungen f : Z Z, z z 2 und g : N N, g(z) = z 2. f ist weder injektiv (denn f( 1) = f(1)) noch surjektiv (denn für alle z Z ist f(z) 1). Die Abbildung g ist injektiv, denn f(z 1 ) = f(z 2 ) impliziert z 1 = z 2. g ist aber nicht surjektiv, denn das Bild von f(n) ist echt kleiner als der Wertebereich N. Für alle z N gilt z.b. f(z) 3. Es gelten die folgenden Regeln für Bild- und Urbildmengen. Satz 2.19 Für jede Abbildung f : M N und Teilmengen A, A 1, A 2 M, B 1, B 2 N gilt: (a) (b) (c) (d) f 1 (B 1 B 2 ) = f 1 (B 1 ) f 1 (B 2 ) f 1 (B 1 B 2 ) = f 1 (B 1 ) f 1 (B 2 ) f(a 1 A 2 ) = f(a 1 ) f(a 2 ) f(a 1 A 2 ) f(a 1 ) f(a 2 ) 19

10 (e) A f 1 (f(a)) Beweis: Wir zeigen hier nur eine der Aussagen. Dafür sehr ausführlich. Der Rest ist Übung für Sie. Sei zunächst x f 1 (B 1 B 2 ), d.h. f(x) B 1 B 2. Ist f(x) B 1 so ist x f 1 (B 1 ). Ist f(x) B 2 so ist x f 1 (B 2 ). In beiden Fällen gilt x f 1 (B 1 ) f 1 (B 2 ) und damit f 1 (B 1 B 2 ) f 1 (B 1 ) f 1 (B 2 ). Wir müssen also noch f 1 (B 1 B 2 ) f 1 (B 1 ) f 1 (B 2 ) zeigen. Ist x f 1 (B 1 ) f 1 (B 2 ) dann ist f(x) entweder in B 1 oder in B 2. Es gilt also f(x) B 1 B 2 und damit x f 1 (B 1 B 2 ). Bemerkung: liest man die Aussagen (d) und (e), dann fragt man sich sofort, ob denn nicht auch Gleichheit anstelle der Inklusion gilt. Überlegen Sie sich Beispiele welche belegen, dass die Gleichheiten nicht gelten. Denition 2.20 Die Zusammensetzung oder Komposition der Abbildungen f : M N und g : N P ist die Abbildung g f : M P, x g(f(x)). (Lies: g nach f.) Falls Denitionsbereich und Wetrebereich gleich sind (also f : M M) schreiben wir auch f 2 statt f f. Die Abbildung id M : M M, x x ist die identische Abbildung (auf der Menge M). Regel 2.21 Kompositionen gehorchen den evidenten Gesetzen: (a) Für je drei Abbildungen f : M N, g : N P, h : P Q gilt h (g f) = (h g) f (b) Für jede Abbildung f : M N gilt: Assoziativität. id N f = f = f id M Einheitsgesetz Satz 2.22 Eine Abbildung f : M N ist genau dann bijektiv, wenn es eine Abbildung g : N M gibt mit g f = id M und f g = id N. Ein solches g ist eindeutig bestimmt durch f. g heiÿt auch Umkehrabbildung von f und man setzt g = f 1. Beweis: Ist f bijektiv, so gibt es für jedes y N genau ein x M mit f(x) = y. Man setzt dann g(y) := x und erhält eine Abbildung g : N M; mit den bekannten Eigenschaften. Zur Umkehrung sei g : N M Abbildung mit g f = id N, f g = id N. Aus f g = id N folgt f(g(n)) = id N (N) = N. Also N = f(g(n)) f(m) N und daher f(m) = N. Also ist f surjektiv. Aus g f = id N folgt analog die Injektivität von f. Denn sei f(x) = f(y) für x, y M. Dann ist x = g(f(x)) = g(f(y)) = y, was zu zeigen war. 20

11 Sind f : M N, g : N P bijektive Abbildungen, so ist auch das Kompositum g f : M P bijektiv und für die entsprechenden Umkehrabbildungen gilt: (g f) 1 = f 1 g 1. Man überzeuge sich davon, dass die vertauschte Reihenfolge richtig ist. 21

Kapitel 1. Grundlagen Mengen

Kapitel 1. Grundlagen Mengen Kapitel 1. Grundlagen 1.1. Mengen Georg Cantor 1895 Eine Menge ist die Zusammenfassung bestimmter, wohlunterschiedener Objekte unserer Anschauung oder unseres Denkens, wobei von jedem dieser Objekte eindeutig

Mehr

Kapitel 1. Grundlagen

Kapitel 1. Grundlagen Kapitel 1. Grundlagen 1.1. Mengen Georg Cantor 1895 Eine Menge ist die Zusammenfassung bestimmter, wohlunterschiedener Objekte unserer Anschauung oder unseres Denkens, wobei von jedem dieser Objekte eindeutig

Mehr

Lineare Algebra 1. Detlev W. Hoffmann. WS 2013/14, TU Dortmund

Lineare Algebra 1. Detlev W. Hoffmann. WS 2013/14, TU Dortmund Lineare Algebra 1 Detlev W. Hoffmann WS 2013/14, TU Dortmund 1 Mengen und Zahlen 1.1 Mengen und Abbildungen Eine Menge ist eine Zusammenfassung wohlunterscheidbarer Objekte unserer Anschauung/unseres Denkens/unserer

Mehr

Einführung in die Mathematik (Vorkurs 1 )

Einführung in die Mathematik (Vorkurs 1 ) Einführung in die Mathematik (Vorkurs 1 ) Wintersemester 2015/16 Dr. J. Jordan Institut für Mathematik Universität Würzburg Germany 1 Modulbezeichnung 10-M-VKM 1 Inhaltsverzeichnis 1 Aussagenlogik 4 2

Mehr

Mengen. Eigenschaften. Spezielle Mengen (1) Prominente Mengen. ! Mengenzugehörigkeit

Mengen. Eigenschaften. Spezielle Mengen (1) Prominente Mengen. ! Mengenzugehörigkeit Mengen! Definition (Intuitive Mengenlehre) Eine Menge ist die Zusammenfassung von Elementen unserer Anschauung zu einem wohldefinierten Ganzen. (Georg Cantor)! Notation 1. Aufzählung aller Elemente: {

Mehr

Mathematische Grundlagen der Computerlinguistik Relationen und Funktionen

Mathematische Grundlagen der Computerlinguistik Relationen und Funktionen Mathematische Grundlagen der Computerlinguistik Relationen und Funktionen Dozentin: Wiebke Petersen 2. Foliensatz Wiebke Petersen math. Grundlagen 25 n-tupel und Cartesisches Produkt Mengen sind ungeordnet,

Mehr

Kapitel 2 MENGENLEHRE

Kapitel 2 MENGENLEHRE Kapitel 2 MENGENLEHRE In diesem Kapitel geben wir eine kurze Einführung in die Mengenlehre, mit der man die ganze Mathematik begründen kann. Wir werden sehen, daßjedes mathematische Objekt eine Menge ist.

Mehr

Mengen und Abbildungen

Mengen und Abbildungen Mengen und Abbildungen Der Mengenbegriff Durchschnitt, Vereinigung, Differenzmenge Kartesisches Produkt Abbildungen Prinzip der kleinsten natürlichen Zahl Vollständige Induktion Mengen und Abbildungen

Mehr

1.1 Mengen und Abbildungen

1.1 Mengen und Abbildungen Lineare Algebra I WS 2015/16 c Rudolf Scharlau 3 1.1 Mengen und Abbildungen In diesem Abschnitt stellen wir die grundlegende mathematische Sprache und Notation zusammen, die für jede Art von heutiger Mathematik

Mehr

Einführung in die Informatik 2

Einführung in die Informatik 2 Einführung in die Informatik 2 Mathematische Grundbegriffe Sven Kosub AG Algorithmik/Theorie komplexer Systeme Universität Konstanz E 202 Sven.Kosub@uni-konstanz.de Sprechstunde: Freitag, 12:30-14:00 Uhr,

Mehr

Elementare Mengenlehre

Elementare Mengenlehre Vorkurs Mathematik, PD Dr. K. Halupczok WWU Münster Fachbereich Mathematik und Informatik 5.9.2013 Ÿ2 Elementare Mengenlehre Der grundlegendste Begri, mit dem Objekte und Strukturen der Mathematik (Zahlen,

Mehr

Mathematik für Ökonomen 1

Mathematik für Ökonomen 1 Mathematik für Ökonomen 1 Dr. Thomas Zehrt Wirtschaftswissenschaftliches Zentrum Universität Basel Herbstemester 2008 Mengen, Funktionen und Logik Inhalt: 1. Mengen 2. Funktionen 3. Logik Teil 1 Mengen

Mehr

Vorkurs Mathematik Abbildungen

Vorkurs Mathematik Abbildungen Vorkurs Mathematik Abbildungen Philip Bell 19. September 2016 Diese Arbeit beruht im Wesentlichen auf dem Vortrag Relationen, Partitionen und Abbildungen von Fabian Grünig aus den vorangehenden Jahren.

Mehr

Mengen und Abbildungen

Mengen und Abbildungen 1 Mengen und bbildungen sind Hilfsmittel ( Sprache ) zur Formulierung von Sachverhalten; naive Vorstellung gemäß Georg Cantor (1845-1918) (Begründer der Mengenlehre). Definition 1.1 Eine Menge M ist eine

Mehr

Lineare Algebra I. Auswahlaxiom befragen. (Wer schon im Internet danach sucht, sollte das auch mal mit dem Begriff

Lineare Algebra I. Auswahlaxiom befragen. (Wer schon im Internet danach sucht, sollte das auch mal mit dem Begriff Universität Konstanz Wintersemester 2009/2010 Fachbereich Mathematik und Statistik Lösungsblatt 2 Prof. Dr. Markus Schweighofer 11.11.2009 Aaron Kunert / Sven Wagner Lineare Algebra I Lösung 2.1: Behauptung:

Mehr

Lineare Algebra I. - 1.Vorlesung - Prof. Dr. Daniel Roggenkamp & Falko Gauß. Monday 12 September 16

Lineare Algebra I. - 1.Vorlesung - Prof. Dr. Daniel Roggenkamp & Falko Gauß. Monday 12 September 16 Lineare Algebra I - 1.Vorlesung - Prof. Dr. Daniel Roggenkamp & Falko Gauß 1. Mengen und Abbildungen: Mengen gehören zu den Grundlegendsten Objekten in der Mathematik Kurze Einführung in die (naive) Mengelehre

Mehr

Mengen, Funktionen und Logik

Mengen, Funktionen und Logik Wirtschaftswissenschaftliches Zentrum Universität Basel Mathematik für Ökonomen 1 Dr. Thomas Zehrt Mengen, Funktionen und Logik Literatur Referenz: Gauglhofer, M. und Müller, H.: Mathematik für Ökonomen,

Mehr

Vorbereitungskurs Mathematik zum Sommersemester 2015 Mengen und Relationen

Vorbereitungskurs Mathematik zum Sommersemester 2015 Mengen und Relationen Vorbereitungskurs Mathematik zum Sommersemester 2015 Mengen und Relationen Susanna Pohl Vorkurs Mathematik TU Dortmund 10.03.2015 Mengen und Relationen Mengen Motivation Beschreibung von Mengen Mengenoperationen

Mehr

Mengen (siehe Teschl/Teschl 1.2)

Mengen (siehe Teschl/Teschl 1.2) Mengen (siehe Teschl/Teschl 1.2) Denition nach Georg Cantor (1895): Eine Menge ist eine Zusammenfassung von bestimmten und wohlunterschiedenen Objekten unserer Anschauung oder unseres Denkens zu einem

Mehr

Surjektive, injektive und bijektive Funktionen.

Surjektive, injektive und bijektive Funktionen. Kapitel 1: Aussagen, Mengen, Funktionen Surjektive, injektive und bijektive Funktionen. Definition. Sei f : M N eine Funktion. Dann heißt f surjektiv, falls die Gleichung f(x) = y für jedes y N mindestens

Mehr

Vorlesung. Funktionen/Abbildungen

Vorlesung. Funktionen/Abbildungen Vorlesung Funktionen/Abbildungen 1 Grundlagen Hinweis: In dieser Vorlesung werden Funktionen und Abbildungen synonym verwendet. In der Schule wird eine Funktion häufig als eindeutige Zuordnung definiert.

Mehr

Konstruktion der reellen Zahlen 1 von Philipp Bischo

Konstruktion der reellen Zahlen 1 von Philipp Bischo Konstruktion der reellen Zahlen 1 von Philipp Bischo 1.Motivation 3 1.1. Konstruktion von R im allgemeine 3 2.Voraussetzung 3 2.1Die Menge Q zusammen mit den beiden Verknüpfungen 3 2.2Die Rationalen Zahlen

Mehr

Einführung in die Mengenlehre

Einführung in die Mengenlehre Einführung in die Mengenlehre D (Menge von Georg Cantor 845-98) Eine Menge ist eine Zusammenfassung bestimmter wohlunterschiedener Objekte unseres Denkens oder unserer Anschauung zu einem Ganzen wobei

Mehr

Mathematik 1 für Informatik Inhalt Grundbegrie

Mathematik 1 für Informatik Inhalt Grundbegrie Mathematik 1 für Informatik Inhalt Grundbegrie Mengen, speziell Zahlenmengen Aussagenlogik, Beweistechniken Funktionen, Relationen Kombinatorik Abzählverfahren Binomialkoezienten Komplexität von Algorithmen

Mehr

3. Die Definition einer Abbildung von A in B beinhaltet eigentlich zwei Bedingungen, nämlich

3. Die Definition einer Abbildung von A in B beinhaltet eigentlich zwei Bedingungen, nämlich Kapitel 3: Abbildungen Seite 32 Kap 3: Abbildungen Kap. 3.1: Abbildungen (Funktion), Bild und Urbild Der Begriff der Abbildung ist wie auch der Begriff der Menge von fundamentaler Bedeutung für die Mathematik.

Mehr

Abbildungen, Funktionen, Folgen, Summen und Grenzwerte

Abbildungen, Funktionen, Folgen, Summen und Grenzwerte Vorkurs Mathematik, PD Dr. K. Halupczok, WWU Münster Fachbereich Mathematik und Informatik 7.9.203 Ÿ5 Abbildungen, Funktionen, Folgen, Summen und Grenzwerte Ÿ5. Abbildungen und Funktionen Wir beginnen

Mehr

Kapitel 2 Mathematische Grundlagen

Kapitel 2 Mathematische Grundlagen Kapitel 2 Mathematische Grundlagen Ziel: Einführung/Auffrischung einiger mathematischer Grundlagen 2.1 Mengen, Relationen, Ordnungen Definition: Eine Menge ist eine Zusammenfassung von wohlbestimmten und

Mehr

1.4 Äquivalenzrelationen

1.4 Äquivalenzrelationen 8 1.4 Äquivalenzrelationen achdem nun die axiomatische Grundlage gelegt ist, können wir uns bis zur Einführung der Kategorien das Leben dadurch erleichtern, daß wir bis dorthin, also bis auf weiteres,

Mehr

Analysis I - Stetige Funktionen

Analysis I - Stetige Funktionen Kompaktheit und January 13, 2009 Kompaktheit und Funktionengrenzwert Definition Seien X, d X ) und Y, d Y ) metrische Räume. Desweiteren seien E eine Teilmenge von X, f : E Y eine Funktion und p ein Häufungspunkt

Mehr

R = {(1, 1), (2, 2), (3, 3)} K 1 = {1} K 2 = {2} K 3 = {3}

R = {(1, 1), (2, 2), (3, 3)} K 1 = {1} K 2 = {2} K 3 = {3} Äquivalenzrelationen Aufgabe 1. Lesen Sie im Skript nach was eine Äquivalenzrelation und eine Äquivalenzklasse ist. Gegeben ist die Menge A = {1, 2, 3. Finden Sie 3 Äquivalenzrelationen auf A und geben

Mehr

Warum Mathe? IG/StV-Mathematik der KFU-Graz. 1 Mengen Mengenoperationen Rechenregeln Mengen 4. Funktionen 7

Warum Mathe? IG/StV-Mathematik der KFU-Graz. 1 Mengen Mengenoperationen Rechenregeln Mengen 4. Funktionen 7 Warum Mathe? IG/StV-Mathematik der KFU-Graz März 2011 Inhalt 1 Mengen 1 1.1 Mengenoperationen.............................. 2 1.2 Rechenregeln.................................. 3 2 Übungsbeispiele zum

Mehr

Mathematische Grundlagen der Computerlinguistik

Mathematische Grundlagen der Computerlinguistik Centrum für Informations- und Sprachverarbeitung (CIS) 10. Juni 2014 Table of Contents 1 2 Äquivalenz Der Begriff der Äquivalenz verallgemeinert den Begriff der Gleichheit. Er beinhaltet in einem zu präzisierenden

Mehr

ELEMENTARE DISKRETE MATHEMATIK Kapitel 4: Mächtigkeit von Mengen

ELEMENTARE DISKRETE MATHEMATIK Kapitel 4: Mächtigkeit von Mengen ELEMENTARE DISKRETE MATHEMATIK Kapitel 4: Mächtigkeit von Mengen MAA.01011UB MAA.01011PH Vorlesung mit Übung im WS 2016/17 Christoph GRUBER Günter LETTL Institut für Mathematik und wissenschaftliches Rechnen

Mehr

A B A und B w w w w f f f w f f f f. A B A oder B (A B) w w w w f w f w w f f f

A B A und B w w w w f f f w f f f f. A B A oder B (A B) w w w w f w f w w f f f Kapitel 1 Zum Aufwärmen 1.1 Aussagen Eine Aussage im üblichen Sinn ist nicht unbedingt eine Aussage im mathematischen Sinn. Aussagen wie Mathe ist doof sind keine Aussagen im mathematischen Sinn, weil

Mehr

2. Vorlesung. Die Theorie der schwarz-weissen Ketten.

2. Vorlesung. Die Theorie der schwarz-weissen Ketten. 2. Vorlesung. Die Theorie der schwarz-weissen Ketten. Die Theorie der schwarzen Steinchen haben wir jetzt halbwegs vertanden. Statt mit schwarzen Steinen wie die Griechen, wollen wir jetzt mit schwarzen

Mehr

Naive Mengenlehre. ABER: Was ist eine Menge?

Naive Mengenlehre. ABER: Was ist eine Menge? Naive Mengenlehre Im Wörterbuch kann man unter dem Begriff Menge etwa die folgenden Bestimmungen finden : Ansammlung, Konglomerat, Haufen, Klasse, Quantität, Bündel,... usf. Die Mengenlehre ist der (gegenwärtig)

Mehr

Mathematik für Informatiker I. Musterlösungen zum Hausübungsblatt 3. Aufgabe 1. Christoph Eisinger Wintersemester 2010/11

Mathematik für Informatiker I. Musterlösungen zum Hausübungsblatt 3. Aufgabe 1. Christoph Eisinger Wintersemester 2010/11 Mathematik für Informatiker I Christoph Eisinger Wintersemester 2010/11 Musterlösungen zum Hausübungsblatt 3 Aufgabe 1 Zu überpüfen sind jeweils folgende Eigenschaften: 1. Reflexivität: x R x x S 2. Symmetrie:

Mehr

Analysis II (FS 2015): ZUSAMMENHÄNGENDE METRISCHE RÄUME

Analysis II (FS 2015): ZUSAMMENHÄNGENDE METRISCHE RÄUME Analysis II (FS 2015): ZUSAMMENHÄNGENDE METRISCHE RÄUME Dietmar A. Salamon ETH-Zürich 23. Februar 2015 1 Topologische Grundbegriffe Sei (X, d) ein metrischer Raum, d.h. X ist eine Menge und d : X X R ist

Mehr

Topologische Aspekte: Eine kurze Zusammenfassung

Topologische Aspekte: Eine kurze Zusammenfassung Kapitel 1 Topologische Aspekte: Eine kurze Zusammenfassung Wer das erste Knopfloch verfehlt, kommt mit dem Zuknöpfen nicht zu Rande J. W. Goethe In diesem Kapitel bringen wir die Begriffe Umgebung, Konvergenz,

Mehr

WS 2009/10. Diskrete Strukturen

WS 2009/10. Diskrete Strukturen WS 2009/10 Diskrete Strukturen Prof. Dr. J. Esparza Lehrstuhl für Grundlagen der Softwarezuverlässigkeit und theoretische Informatik Fakultät für Informatik Technische Universität München http://www7.in.tum.de/um/courses/ds/ws0910

Mehr

Mengenlehre gibt es seit den achtziger Jahren des 19. Jahrhunderts. Sie wurde von

Mengenlehre gibt es seit den achtziger Jahren des 19. Jahrhunderts. Sie wurde von Grundbegriffe der Mengenlehre 2 Mengenlehre gibt es seit den achtziger Jahren des 19. Jahrhunderts. Sie wurde von Georg Cantor begründet. Der Begriffsapparat der Mengenlehre hat sich als so nützlich für

Mehr

Diskrete Strukturen Kapitel 2: Grundlagen (Relationen)

Diskrete Strukturen Kapitel 2: Grundlagen (Relationen) WS 2016/17 Diskrete Strukturen Kapitel 2: Grundlagen (Relationen) Hans-Joachim Bungartz Lehrstuhl für wissenschaftliches Rechnen Fakultät für Informatik Technische Universität München http://www5.in.tum.de/wiki/index.php/diskrete_strukturen_-_winter_16

Mehr

1 Mengen. 1.1 Definition

1 Mengen. 1.1 Definition 1 Mengen 1.1 Definition Eine Menge M ist nach dem Begründer der Mengenlehre Georg Cantor eine Zusammenfassung von wohlunterschiedenen(verschiedenen) Elementen. Eine Menge lässt sich durch verschiedene

Mehr

Vorlesung 4. Tilman Bauer. 13. September Wir befassen uns in dieser Vorlesung noch einmal mit Mengen.

Vorlesung 4. Tilman Bauer. 13. September Wir befassen uns in dieser Vorlesung noch einmal mit Mengen. Vorlesung 4 Universität Münster 13. September 2007 1 Kartesische Wir befassen uns in dieser Vorlesung noch einmal mit Mengen. Seien M und N zwei Mengen. Dann bezeichnen wir mit M N das (kartesische) Produkt

Mehr

2. Machen Sie sich klar, dass jede denkbare Festsetzung fur die noch fehlenden\ Dierenzen durch Werte in N 0 unschone\ Konsequenzen hat.

2. Machen Sie sich klar, dass jede denkbare Festsetzung fur die noch fehlenden\ Dierenzen durch Werte in N 0 unschone\ Konsequenzen hat. 3 Die ganzen Zahlen 3.1 Historisches Die { bisher noch nicht erklarte { Subtraktion ist in N 0 nicht uneingeschrankt durchfuhrbar. Die negativen Zahlen wurden noch zu Zeiten von Rene Descartes als falsche\

Mehr

Übungen zu Einführung in die Lineare Algebra und Geometrie

Übungen zu Einführung in die Lineare Algebra und Geometrie Übungen zu Einführung in die Lineare Algebra und Geometrie Andreas Cap Sommersemester 2010 Kapitel 1: Einleitung (1) Für a, b Z diskutiere analog zur Vorlesung das Lösungsverhalten der Gleichung ax = b

Mehr

Formale Grundlagen 2008W. Vorlesung im 2008S Institut für Algebra Johannes Kepler Universität Linz

Formale Grundlagen 2008W. Vorlesung im 2008S  Institut für Algebra Johannes Kepler Universität Linz Formale Grundlagen Institut für Algebra Johannes Kepler Universität Linz Vorlesung im 2008S http://www.algebra.uni-linz.ac.at/students/win/fg Inhalt Definition Sei A eine Menge und ɛ A A A eine zweistellige

Mehr

1 Mengen. 1.1 Elementare Definitionen. Einige mathematische Konzepte

1 Mengen. 1.1 Elementare Definitionen. Einige mathematische Konzepte Einige mathematische Konzepte 1 Mengen 1.1 Elementare Definitionen Mengendefinition Die elementarsten mathematischen Objekte sind Mengen. Für unsere Zwecke ausreichend ist die ursprüngliche Mengendefinition

Mehr

3 Vollständige Induktion

3 Vollständige Induktion 3.1 Natürliche Zahlen In den vorherigen Kapiteln haben wir die Menge der natürlichen Zahlen schon mehrfach als Beispiel benutzt. Das Konzept der natürlichen Zahlen erscheint uns einfach, da wir es schon

Mehr

1 Sprechweisen und Symbole der Mathematik

1 Sprechweisen und Symbole der Mathematik 1 Sprechweisen und Symbole der Mathematik Übersicht 1.1 Junktoren......................................................... 1 1.2 Quantoren......................................................... 4 1.3

Mehr

Grundlagen der Mathematik

Grundlagen der Mathematik Grundlagen der Mathematik Übungsaufgaben zu Kapitel 1 Einführung 1.1.1 Für reelle Zahlen a und b gilt (a+b) (a-b) = a 2 -b 2. Was ist die Voraussetzung? Wie lautet die Behauptung? Beweisen Sie die Behauptung.

Mehr

Grundlagen der Mengenlehre

Grundlagen der Mengenlehre mathe plus Grundlagen der Mengenlehre Seite 1 1 Grundbegriffe Grundlagen der Mengenlehre Def 1 Mengenbegriff nach Georg Cantor (1845-1918) Eine Menge ist die Zusammenfassung bestimmter, wohlunterschiedener

Mehr

2 Die Menge der ganzen Zahlen. von Peter Franzke in Berlin

2 Die Menge der ganzen Zahlen. von Peter Franzke in Berlin Die Menge der ganzen Zahlen von Peter Franzke in Berlin Das System der natürlichen Zahlen weist einen schwerwiegenden Mangel auf: Es gibt Zahlen mn, derart, dass die lineare Gleichung der Form mx n keine

Mehr

Etwas Topologie. Handout zur Vorlesung Semi-Riemannsche Geometrie, SS 2004 Dr. Bernd Ammann

Etwas Topologie. Handout zur Vorlesung Semi-Riemannsche Geometrie, SS 2004 Dr. Bernd Ammann Etwas Topologie Handout zur Vorlesung Semi-Riemannsche Geometrie, SS 2004 Dr. Bernd Ammann Literatur Abraham, Marsden, Foundations of Mechanics, Addison Wesley 1978, Seiten 3 17 Definition. Ein topologischer

Mehr

Mathematische Grundlagen der Computerlinguistik Mengen und Mengenoperationen

Mathematische Grundlagen der Computerlinguistik Mengen und Mengenoperationen Mathematische Grundlagen der Computerlinguistik Mengen und Mengenoperationen Dozentin: Wiebke Petersen 1. Foliensatz Wiebke Petersen math. Grundlagen 6 Frage Was ist eine Menge? 1 Minute zum Nachdenken

Mehr

Mathematik-Vorkurs für Informatiker (Wintersemester 2012/13) Übungsblatt 8 (Relationen und Funktionen)

Mathematik-Vorkurs für Informatiker (Wintersemester 2012/13) Übungsblatt 8 (Relationen und Funktionen) DEPENDABLE SYSTEMS AND SOFTWARE Fachrichtung 6. Informatik Universität des Saarlandes Christian Eisentraut, M.Sc. Julia Krämer Mathematik-Vorkurs für Informatiker (Wintersemester 0/3) Übungsblatt 8 (Relationen

Mehr

Theoretische Informatik

Theoretische Informatik Mathematische Grundlagen Patrick Horster Universität Klagenfurt Informatik Systemsicherheit WS-2007-Anhang-1 Allgemeines In diesem einführenden Kapitel werden zunächst elementare Grundlagen kurz aufgezeigt,

Mehr

mathematische Grundlagen der Modelltheorie: Mengen, Relationen, Funktionen

mathematische Grundlagen der Modelltheorie: Mengen, Relationen, Funktionen Einführung in die Logik - 6 mathematische Grundlagen der Modelltheorie: Mengen, Relationen, Funktionen Modelltheoretische / Denotationelle Semantik der Prdikatenlogik Ein Modell ist ein künstlich geschaffenes

Mehr

DIE SPRACHE DER WAHRSCHEINLICHKEITEN

DIE SPRACHE DER WAHRSCHEINLICHKEITEN KAPITEL 1 DIE SPRACHE DER WAHRSCHEINLICHKEITEN Es ist die Aufgabe der ersten drei Kapitel, eine vollständige Beschreibung des grundlegenden Tripels (Ω, A, P) und seiner Eigenschaften zu geben, das heutzutage

Mehr

Einführung in die Mathematik (Vorkurs 1 )

Einführung in die Mathematik (Vorkurs 1 ) Einführung in die Mathematik (Vorkurs 1 ) Wintersemester 2008/09 Dr. J. Jordan Institut für Mathematik Universität Würzburg Germany 1 Modulbezeichnung 10-M-VKM 1 Inhaltsverzeichnis 1 Aussagen und Beweise

Mehr

(Man sagt dafür auch, dass die Teilmenge U bezüglich der Gruppenoperationen abgeschlossen sein muss.)

(Man sagt dafür auch, dass die Teilmenge U bezüglich der Gruppenoperationen abgeschlossen sein muss.) 3. Untergruppen 19 3. Untergruppen Nachdem wir nun einige grundlegende Gruppen kennengelernt haben, wollen wir in diesem Kapitel eine einfache Möglichkeit untersuchen, mit der man aus bereits bekannten

Mehr

Theoretische Informatik

Theoretische Informatik Theoretische Informatik für die Studiengänge Ingenieur-Informatik berufsbegleitendes Studium Lehramt Informatik (Sekundar- und Berufsschule) http://theo.cs.uni-magdeburg.de/lehre04s/ Lehrbeauftragter:

Mehr

Vorlesung. Funktionen/Abbildungen 1

Vorlesung. Funktionen/Abbildungen 1 Vorlesung Funktionen/Abbildungen 1 1 Grundlagen Hinweis: In dieser Vorlesung werden Funktionen und Abbildungen synonym verwendet. In der Schule wird eine Funktion häufig als eindeutige Zuordnung definiert.

Mehr

Eine Menge A ist die Zusammenfassung gleichartiger Elemente zu einer Gesamtheit. Eine Menge kann definiert werden durch

Eine Menge A ist die Zusammenfassung gleichartiger Elemente zu einer Gesamtheit. Eine Menge kann definiert werden durch 1.2 Mengenlehre Grundlagen der Mathematik 1 1.2 Mengenlehre Definition: Menge, Element, Variablenraum Eine Menge A ist die Zusammenfassung gleichartiger Elemente zu einer Gesamtheit. Eine Menge kann definiert

Mehr

Mengenlehre. Jörg Witte

Mengenlehre. Jörg Witte Mengenlehre Jörg Witte 25.10.2007 1 Grbegriffe Die Menegenlehre ist heute für die Mathematik grlegend. Sie spielt aber auch in der Informatik eine entscheidende Rolle. Insbesondere fußt die Theorie der

Mehr

Vorkurs Mathematik und Informatik Mengen, natürliche Zahlen, Induktion

Vorkurs Mathematik und Informatik Mengen, natürliche Zahlen, Induktion Vorkurs Mathematik und Informatik Mengen, natürliche Zahlen, Induktion Saskia Klaus 07.10.016 1 Motivation In den ersten beiden Vorträgen des Vorkurses haben wir gesehen, wie man aus schon bekannten Wahrheiten

Mehr

Die Schreibweise x M bedeutet, dass das Objekt x in der Menge M liegt. Ist dies nicht der Fall, dann schreibt man

Die Schreibweise x M bedeutet, dass das Objekt x in der Menge M liegt. Ist dies nicht der Fall, dann schreibt man Die Schreibweise x M bedeutet, dass das Objekt x in der Menge M liegt. Ist dies nicht der Fall, dann schreibt man x / M. Man sagt, M ist Teilmenge von N und schreibt M N, wenn für jedes x M auch x N gilt.

Mehr

$Id: gruppen.tex,v /04/24 15:25:02 hk Exp $ $Id: ring.tex,v /04/24 15:35:17 hk Exp $

$Id: gruppen.tex,v /04/24 15:25:02 hk Exp $ $Id: ring.tex,v /04/24 15:35:17 hk Exp $ $Id: gruppen.tex,v 1.13 2012/04/24 15:25:02 hk Exp $ $Id: ring.tex,v 1.11 2012/04/24 15:35:17 hk Exp $ 2 Gruppen 2.3 Zyklische Gruppen Wir hatten am Ende der letzten Sitzung bewiesen, dass in einer endlichen

Mehr

2. Symmetrische Gruppen

2. Symmetrische Gruppen 14 Andreas Gathmann 2 Symmetrische Gruppen Im letzten Kapitel haben wir Gruppen eingeführt und ihre elementaren Eigenschaften untersucht Wir wollen nun eine neue wichtige Klasse von Beispielen von Gruppen

Mehr

Lineare Algebra I. Eine Vorlesung von Prof. Dr. Klaus Hulek

Lineare Algebra I. Eine Vorlesung von Prof. Dr. Klaus Hulek Lineare Algebra I Eine Vorlesung von Prof. Dr. Klaus Hulek hulek@math.uni-hannover.de c Klaus Hulek Institut für Mathematik Universität Hannover D 30060 Hannover Germany E-Mail : hulek@math.uni-hannover.de

Mehr

Lineare Algebra I. HP Butzmann. Vorlesung im HWS 09

Lineare Algebra I. HP Butzmann. Vorlesung im HWS 09 Lineare Algebra I HP Butzmann Vorlesung im HWS 09 Inhaltsverzeichnis 1 Mengen und Abbildungen 2 2 Körper 15 3 Vektorräume 40 4 Basis und Dimension 53 5 Lineare Abbildungen 67 6 Matrizen 80 7 Lineare Gleichungssysteme

Mehr

4.1 Definition. Gegeben: Relation f X Y f heißt Funktion (Abbildung) von X nach Y, wenn. = y 1. = y 2. xfy 1. xfy 2

4.1 Definition. Gegeben: Relation f X Y f heißt Funktion (Abbildung) von X nach Y, wenn. = y 1. = y 2. xfy 1. xfy 2 4.1 Definition Gegeben: Relation f X Y f heißt Funktion (Abbildung) von X nach Y, wenn xfy 1 xfy 2 = y 1 = y 2 Y heißt Zielbereich oder Zielmenge von f. Statt (x, y) f oder xfy schreibt man y = f(x). Vollständige

Mehr

Thema 4 Limiten und Stetigkeit von Funktionen

Thema 4 Limiten und Stetigkeit von Funktionen Thema 4 Limiten und Stetigkeit von Funktionen Wir betrachten jetzt Funktionen zwischen geeigneten Punktmengen. Dazu wiederholen wir einige grundlegende Begriffe und Schreibweisen aus der Mengentheorie.

Mehr

Halbgruppen, Gruppen, Ringe

Halbgruppen, Gruppen, Ringe Halbgruppen-1 Elementare Zahlentheorie Einige Bezeichnungen Halbgruppen, Gruppen, Ringe Die Menge N 0 der natürlichen Zahlen 0, 1, 2, Die Menge N = N 1 der von Null verschiedenen natürlichen Zahlen Die

Mehr

1.3 Gruppen. Algebra I 9. April 2008 c Rudolf Scharlau,

1.3 Gruppen. Algebra I 9. April 2008 c Rudolf Scharlau, Algebra I 9. April 2008 c Rudolf Scharlau, 2002 2008 18 1.3 Gruppen Der Begriff der Gruppe ordnet sich in gewisser Weise dem allgemeineren Konzept der Verknüpfung (auf einer Menge) unter. So ist zum Beispiel

Mehr

1 Axiomatische Charakterisierung der reellen. 3 Die natürlichen, die ganzen und die rationalen. 4 Das Vollständigkeitsaxiom und irrationale

1 Axiomatische Charakterisierung der reellen. 3 Die natürlichen, die ganzen und die rationalen. 4 Das Vollständigkeitsaxiom und irrationale Kapitel I Reelle Zahlen 1 Axiomatische Charakterisierung der reellen Zahlen R 2 Angeordnete Körper 3 Die natürlichen, die ganzen und die rationalen Zahlen 4 Das Vollständigkeitsaxiom und irrationale Zahlen

Mehr

Logik, Mengen und Abbildungen

Logik, Mengen und Abbildungen Kapitel 1 Logik, Mengen und bbildungen Josef Leydold Mathematik für VW WS 2016/17 1 Logik, Mengen und bbildungen 1 / 26 ussage Um Mathematik betreiben zu können, sind ein paar Grundkenntnisse der mathematischen

Mehr

5 Restklassen. Restklasse siehe unten.) (Zum Namen

5 Restklassen. Restklasse siehe unten.) (Zum Namen 5 Restklassen Definition 5.1 Seien a, m Z. Die Restklasse von a modulo m ist die bekannte Teilmenge a + mz von Z. Sie wird auch mit (a mod m) bezeichnet. (Zum Namen Restklasse siehe unten.) Bemerkungen

Mehr

Mengen und Abbildungen

Mengen und Abbildungen Mengen und bbildungen 0. Oktober 010 Mengen und bbildungen, S. Mengendarstellungen Eplizit: Eine Menge kann durch eplizites ulisten ihrer Elemente dargestellt werden: = {,,z,...} ist die Menge, die aus

Mehr

WS 2009/10. Diskrete Strukturen

WS 2009/10. Diskrete Strukturen WS 2009/10 Diskrete Strukturen Prof. Dr. J. Esparza Lehrstuhl für Grundlagen der Softwarezuverlässigkeit und theoretische Informatik Fakultät für Informatik Technische Universität München http://www7.in.tum.de/um/courses/ds/ws0910

Mehr

ANALYSIS I FÜR TPH WS 2016/17 1. Übung Übersicht

ANALYSIS I FÜR TPH WS 2016/17 1. Übung Übersicht . Übung Übersicht Aufgaben zu Kapitel und 2 Aufgabe : Drei klassische Ungleichungen Aufgabe 2: ) Beweis einer Summenformel Induktion) Aufgabe : ) Teleskopsummen Aufgabe 4: Noch etwas Formelmanipulation

Mehr

Technische Universität München

Technische Universität München Stand der Vorlesung Kapitel 2: Auffrischung einiger mathematischer Grundlagen Mengen, Potenzmenge, Kreuzprodukt (Paare, Tripel, n-tupel) Relation: Teilmenge MxN Eigenschaften: reflexiv, symmetrisch, transitiv,

Mehr

Gruppen und deren Anwendungen in der Zahlentheorie Bad Doberan

Gruppen und deren Anwendungen in der Zahlentheorie Bad Doberan Gruppen und deren Anwendungen in der Zahlentheorie Bad Doberan Thomas Krakow 15.10.2006 Inhaltsverzeichnis 1 Mengen und Abbildungen 5 1.1 Mengen..................................... 5 1.2 Teilmengen,

Mehr

Affine und projektive Räume

Affine und projektive Räume Affine und projektive Räume W. Kühnel Literatur hierzu: G.Fischer, Analytische Geometrie, 7. Aufl., Vieweg 2001 Zur Motivation: Wenn man in einem Vektorraum die Elemente nicht als Vektoren, sondern als

Mehr

1. Gruppen. 1. Gruppen 7

1. Gruppen. 1. Gruppen 7 1. Gruppen 7 1. Gruppen Wie schon in der Einleitung erläutert wollen wir uns in dieser Vorlesung mit Mengen beschäftigen, auf denen algebraische Verknüpfungen mit gewissen Eigenschaften definiert sind.

Mehr

2.2 Konstruktion der rationalen Zahlen

2.2 Konstruktion der rationalen Zahlen 2.2 Konstruktion der rationalen Zahlen Wie wir in Satz 2.6 gesehen haben, kann man die Gleichung a + x = b in Z jetzt immer lösen, allerdings die Gleichung a x = b im allgemeinen immer noch nicht. Wir

Mehr

3. Relationen Erläuterungen und Schreibweisen

3. Relationen Erläuterungen und Schreibweisen 3. Relationen Eine Relation ist allgemein eine Beziehung, die zwischen Dingen bestehen kann. Relationen im Sinne der Mathematik sind ausschließlich diejenigen Beziehungen, bei denen stets klar ist, ob

Mehr

Analysis 1. Delio Mugnolo. delio.mugnolo@uni-ulm.de. (Version von 18. Dezember 2012)

Analysis 1. Delio Mugnolo. delio.mugnolo@uni-ulm.de. (Version von 18. Dezember 2012) Analysis 1 Delio Mugnolo delio.mugnolo@uni-ulm.de (Version von 18. Dezember 2012) 2 Dies ist das Skript zur Vorlesung Analysis 1, welche ich im Sommersemester 2012 an der Universität Ulm gehalten habe.

Mehr

Definition 4.2. Die Menge Q der rationalen Zahlen ist definiert durch. Wir führen jetzt auf Z eine Addition und eine Multiplikation ein durch

Definition 4.2. Die Menge Q der rationalen Zahlen ist definiert durch. Wir führen jetzt auf Z eine Addition und eine Multiplikation ein durch Kapitel 4 Die rationalen Zahlen Wir haben gesehen, dass eine Gleichung a x = b mit a, b Z genau dann eine Lösung x Z besitzt, wenn a b. Zum Beispiel hat 2 x = 1 keine Lösung x Z. Wir wollen nun den Zahlbereich

Mehr

Abbildungseigenschaften

Abbildungseigenschaften Abbildungseigenschaften.5. Injektivität Injektivität (injektiv, linkseindeutig) ist eine Eigenschaft einer mathematischen Funktion. Sie bedeutet, dass jedes Element der Zielmenge höchstens einmal als Funktionswert

Mehr

Skript zur Vorlesung Topologie I

Skript zur Vorlesung Topologie I Skript zur Vorlesung Topologie I Carsten Lange, Heike Siebert Richard-Sebastian Kroll Faszikel 1 Fehler und Kommentare bitte an clange@math.fu-berlin.de Stand: 15. Juni 2010 Fachbereich Mathematik und

Mehr

Mathematik für Studierende der Biologie und des Lehramtes Chemie Wintersemester 2013/14. Auswahl vorausgesetzter Vorkenntnisse

Mathematik für Studierende der Biologie und des Lehramtes Chemie Wintersemester 2013/14. Auswahl vorausgesetzter Vorkenntnisse UNIVERSITÄT DES SAARLANDES FACHRICHTUNG 6.1 MATHEMATIK Dipl.-Math. Kevin Everard Mathematik für Studierende der Biologie und des Lehramtes Chemie Wintersemester 2013/14 Auswahl vorausgesetzter Vorkenntnisse

Mehr

13. Funktionen in einer Variablen

13. Funktionen in einer Variablen 13. Funktionen in einer Variablen Definition. Seien X, Y Mengen. Eine Funktion f : X Y ist eine Vorschrift, wo jedem Element der Menge X eindeutig ein Element von Y zugeordnet wird. Wir betrachten hier

Mehr

7 Vektorräume und Körperweiterungen

7 Vektorräume und Körperweiterungen $Id: vektor.tex,v 1.3 2009/05/25 15:03:47 hk Exp $ 7 Vektorräume und Körperweiterungen Wir sind gerade bei der Besprechung derjenigen Grundeigenschaften des Tensorprodukts, die mit vergleichsweise wenig

Mehr

Vorkurs Mathematik Teil I. Grundlagen

Vorkurs Mathematik Teil I. Grundlagen Inhalt Vorkurs Mathematik Teil I. Grundlagen 1. Aussagen 2. Mengen und Abbildungen 3. Der Aufbau des Zahlensystems 4. Gleichungen und Ungleichungen 5. Komplexe Zahlen 2 of 128 Aachen 2016 - Olaf Wittich

Mehr

(x, x + y 2, x y 2 + z 3. = e x sin y. sin y. Nach dem Umkehrsatz besitzt f dann genau auf der Menge

(x, x + y 2, x y 2 + z 3. = e x sin y. sin y. Nach dem Umkehrsatz besitzt f dann genau auf der Menge ÜBUNGSBLATT 0 LÖSUNGEN MAT/MAT3 ANALYSIS II FRÜHJAHRSSEMESTER 0 PROF DR CAMILLO DE LELLIS Aufgabe Finden Sie für folgende Funktionen jene Punkte im Bildraum, in welchen sie sich lokal umkehren lassen,

Mehr

Lehrbuch der Mathematik

Lehrbuch der Mathematik Lehrbuch der Mathematik Zum Studium und Selbststudium Claus Gerhardt Analysis I Claus Gerhardt Ruprecht-Karls-Universität Institut für Angewandte Mathematik Im Neuenheimer Feld 294 69120 Heidelberg gerhardt@math.uni-heidelberg.de

Mehr

1.4 Homomorphismen und Isomorphismen

1.4 Homomorphismen und Isomorphismen Algebra I 9. April 2008 c Rudolf Scharlau, 2002 2008 28 1.4 Homomorphismen und Isomorphismen Definition 1.4.1 Es seien (G, ) und (H, ) zwei Gruppen. Eine Abbildung ϕ : G H heißt (Gruppen-)Homomorphismus,

Mehr

Mathematik I. Zusammenhängende Räume

Mathematik I. Zusammenhängende Räume Prof. Dr. H. Brenner Osnabrück WS 2009/2010 Mathematik I Vorlesung 21 Die beiden nächsten Vorlesungen kann man unter dem Aspekt sehen, welche topologischen Eigenenschaften die reellen Zahlen gegenüber

Mehr

1. Aufgabe [2 Punkte] Seien X, Y zwei nicht-leere Mengen und A(x, y) eine Aussageform. Betrachten Sie die folgenden Aussagen:

1. Aufgabe [2 Punkte] Seien X, Y zwei nicht-leere Mengen und A(x, y) eine Aussageform. Betrachten Sie die folgenden Aussagen: Klausur zur Analysis I svorschläge Universität Regensburg, Wintersemester 013/14 Prof. Dr. Bernd Ammann / Dr. Mihaela Pilca 0.0.014, Bearbeitungszeit: 3 Stunden 1. Aufgabe [ Punte] Seien X, Y zwei nicht-leere

Mehr