Tag 3. Zweidimensionale Spielewelten
|
|
- Kajetan Wagner
- vor 1 Jahren
- Abrufe
Transkript
1 Tag 3 Zweidimensionale Spielewelten
2 Lernziele Grundlagen für eine 2D-Spielewelt Beschreibung von 2D-Welten durch Vektoren Zweidimensionale Welttransformationen durch Matrizen
3 Mögliche Problemstellungen Echtzeit Simulation der Flugbahn der Erde um die Sonne Flug einer Rakete von der Erde zum Mond...
4 Beispiel: Flugbahn der Erde um die Sonne Zielsetzung: Einfachste Beschreibung des Sachverhalts Zur Berechnung benötigen wir Ein Koordinatensystem (hier: kartesische Koordinatensystem) Definition des Ursprungspunkt (0/0) des Koordinatensystems Annahme / Vereinfachung: Umlaufbahn der Erde ist kreisförmig (nicht eliptisch) und liegt auf einem Einheitskreis (r=1)
5
6 Exkurs Vektoren: Ein Vektor ist Element eines Vektorraums, in der Geometrie, eine Klasse von Pfeilen gleicher Länge, gleicher Richtung und Orientierung Sie beschreiben z.b. Ort und Lage, Bewegung, wirkende Kräfte innerhalb eines Systems, man unterscheidet z.b.: gebundene Vektoren (Orts-/Abstandsvektor): besitzen einen festen Ursprung, (Pfeil vom Ursprung zur akt. Position (Ort) der Erde) Einheits-/normierter Vektor: ein Vektor mit der Länge 1 (Pfeil vom Ursprung zur Erde) Nullvektor: ein Vektor mit der Länge 0 (Position der Sonne)
7 Notation im Buch: s steht für einen Ortsvektor (Fettdruck beachten) v steht für einen Geschwindigkeitsvektor (Fettdruck beachten) Schreibweisen: Wichtig: DirectX arbeitet mit Zeilenvektoren! Ein Vektor enthält immer soviele Werte wie Dimensionen im Koordinatensystem vorhanden sind
8
9 Addition und Subtraktion von Vektoren
10 Skalarprodukte (Punktprodukte) oder inneres Produkt zweier Vektoren, so genannt da das Ergebnis ein Skalar (Zahl) ist Allgemein: Skalarprodukt eines Vektors, bei Multiplikation mit sich selbst Skalarprodukt zweier Vektoren, a und b in allgemeiner Form
11 (0,1) und (1,0): zwei senkrechte Vektoren (2,0) und (3,0): zwei parallele Vektoren die in die selbe Richtung zeigen
12 (-2,0) und (3,0): zwei antiparallele (in entgegengesetzte Richtung zeigende) Vektoren Daraus folgt: Die Berechnung des Skalarprodukts ist somit anhand der Multiplikation der Beträge beider Vektoren unter Berücksichtigung eines Faktors, der sich aus dem Winkel zwischen beiden Vektoren ergibt möglich. Faktor = 1, wenn Winkel 0 zwischen den Vektoren beträgt Faktor = 0, wenn Winkel Faktor = -1, wenn Winkel
13 Gesucht ist eine Funktion die diesen Faktor widerspiegelt Die Kosinusfunktion erfüllt oben genannte Bedingung für den Faktor, daraus folgt:
14 Betrag und Norm eines Vektors Durch Berechnung der Quadratwurzel des Skalarpodukts des Vektors mit sich selbst erhält man den Betrag Mit Hilfe des Betrags kann der Vektor normiert also in einen Einheitsvektor verwandelt werden. Dazu werden alle Elemente des Vektors durch den Betrag geteilt
15 Gegeben: Beschreibung des Systems (Koordinatensystem, Vektoren etc.) Problem: Berechnung der Bahn / Position der Erde zur Simulation Überlegung: Aufgrund der Kreisbewegung sind die Ortsvektoren konstant s = konst Letzter Ausdruck ist die Kreisgleichung, wobei s = Radius des Kreises
16 Durch umstellen, lassen sich nun alle Punkte für die Position der Erde berechnen Nachteil: Lösung viel zu kompliziert, y-wert erhält man durch Einsetzen der jeweiligen x-werte unter Berücksichtigung des Betrags des Ortsvektors 150 Millionen Kilometer = ca. 1 astronomische Einheit (au)
17 Beobachtung: Eigentlich ändert sich nur der Drehwinkel zwischen dem Ortsvektor und der x-achse, die Länge des Ortsvektors bleibt konstant
18 Daher: Beschreibung der Position der Erde als Funktion ihres Drehwinkels
19 Grad- und Bogenmaß
20 Bestimmung Einheits-Ortsvektor
21 Ebene Polarkoordinaten und Ihre Transformation in kartesische Koordinaten
22 Problem: Darstellung der Bewegungsrichtung der Erde Annahme: Vereinfachung des Systems, solange das Ergebnis stimmt, Berechnung aller nicht relevanten Einflüsse wird außen vorgelassen. Lösung: Darstellung durch einen Pfeil (Geschwindigkeitsvektor), die Pfeillänge kennzeichnet dabei den Geschwindigkeitsbetrag. Damit die Erde auf der Bahn bleibt muss sich die Geschwindigkeitsrichtung permanent ändern
23 Ortsvektor als Funktion der Zeit Fazit: Nun sind wir in der Lage alle Bewegungen der Erde zu simulieren, ohne die Kräfte die dafür in der Realität notwendig sind zu berücksichtigen.
24 Problem: Welche Kräfte wirken auf die Erde und halten Sie auf der Bahn um die Sonne? Darstellung mit Hilfe von Beschleunigungs- und Kraftvektoren
25 Beispiel: Kettenkarussell, was passiert wenn die Kette reißt? Welche Kräfte wirken? FZP = Zentripetalkraft: zeigt Richtung Karussellmitte (Kraft der Kette, hält den Sitz in der Bahn) FZF = Zentrifugalkraft: die Kraft die den Sitz wegdrückt wenn die Kette reisst Addiert man beide Kräfte heben sich die Kräfte gegenseitig auf und man erhält einen Nullvektor.
26 Allgemeine Definition von Kraft: F = m * a Kraft = Masse mal Beschleunigung Krafgesetzt (für die Gravitation): rn = Einrichtungsvektor, gibt die Richtung der Kraft an G = Gravitationskonstante Wichtig: Bei dieser Notation wird kein Unterschied zwischen Spalten und Zeilenvektoren gemacht
27 SI-Einheiten, internationale Norm für die Darstellung der Kraft
28 Beispiel: Aufbruch ins All, Simulation eines Raumfluges Wir bauen ein Raumschiff... Möglichkeiten zur Darstellung eines Objektes (in diesem Fall Raumschiff): Bitmapgrafik Drahtgittermodell (später mit Textur)
29 Drahtgittermodell durch Zeichnung der Vertices (Eckpunkte) Wichtig: Das gezeigte Koordinatensystem ist ausschliesslich gültig für das Objekt selbst
30 Skalierung von Objekten (scalex, scaley)
31
32 Transformation und Translation Triebwerke starten - die Translationsbewegung erster Schritt: Transformation des Modells in das Weltkoordinatensystem Durch Addition des Ortsvektors s des Schiffes im Weltkoordinatensystem zu den Schiff-Vertices
33
34 Bewegung des Schiffes entspricht somit der Änderung des Ortsvektors mit der Zeit Betrachtung: Ortsvektor zu den Zeitpunkten t und t+δt In der Zeitdauer Δt, legt das Schiff die Strecke Δs zurück (Verschiebungsvektor)
35 Wie wird nun die Translation (Verschiebung) berechnet?
36 Rotation oder Steuermann, das Schiff auf Kurs bringen Problem: Wie richte ich die Vertices des Raumschiffs richtig aus?
37 Rotation / Drehung um die z-achse
38 Herleitung der Rotationsformel Betrachtung von Spezialfällen: Fall 1 und 2: 90 Drehung führt zu Vertauschen des x und y Wertes
39 Ansatz: Bestimmen der Koeffizienten a,b,c,d führt zur Formel für die Rotation um die z-achse
40 Gegeben: Koordinatensystem, Möglichkeit zur Bestimmung der Positionen, Transformation, Translation und Rotation von Objekten. Problem: Komplexe Schreibweise, vergleichsweise aufwendige Berechnungen für Rotation etc. da diese Schrittweise erfolgt Lösung: Einsatz von Matrizen (tabellarische Schreibweise) Rotationsgleichung zuvor: Matrizenschreibweise:
41 Matrizenmultiplikation Nichts neues, denn es ist derselbe Fall wie die Berechnung des Skalarprodukts zweier Vektoren Ein Vektor ist nichts anderes als eine einzeilige / einspaltige Matrix
42 Nicht erlaubt, die Dimensionen stimmen nicht überein. möglich, die Dimensionen stimmen überein.
43 Einheitsmatrix Multiplikation eines Vektors / Matrix mit der Einheitsmatrix liefert als Ergebnis immer den Vektor / Matrix
44 Nullmatrix, die Multiplikation mit einer Nullmatrix liefert immer den Nullvektor oder die Nullmatrix Addition und Subtraktion von Matrizen Multiplikation mit einem Skalar
45 Skalierungsmatrix Beispiel: Multiplikation der Einheitsmatrix und des zugehörigen Vektors mit dem Faktor 4
46 Matrix für Skalierung und Drehung, in einem Schritt Kombination der Matrix für Drehung der z-achse des Vektors und der Matrix zur Skalierung des Vektors Ergebnis:
47 Translationsmatrix (Verschiebungsmatrix)
48 Skalierung, Drehung und Verschiebung: Theorie: Erweiterung der bisherigen Gleichung für Skalierung und Verschiebung um eine weitere Dimension und anschliessende Multiplikation mit der Translationsmatrix Jedoch
49 Unterschiede zwischen Spalten / Zeilenvektoren Wichtig: Die Reihenfolge der Matrizenmultiplikation bestimmt immer die Transformation des Vektors! Erstellung einer Matrix mit Vektoren in Spaltenschreibweise, lesen und abarbeiten von rechts nach links
50 DirectX berücksichtigt jedoch Zeilenschreibweise Erstellung einer Matrix mit Vektoren in Zeilenschreibweise, lesen und abarbeiten von links nach rechts es handelt sich dabei um eine transponierte Matrix, d.h. die Achsen sind gespiegelt. bei Spaltenschreibweise transponiert für Zeilenschreibweise
51 Beispiel für den Unterscheid bei Vektoren mit Zeilenschreibweise
52 Aufbau von 2D-Spielesystemen - Koordinatensysteme (Modell- und Weltkoordinatensystem) - Darstellungsformen von Objekten (Drahtgitter mit Vertices, Bitmapgrafik) - Transformation, Translation und Rotation Vektoren als Möglichkeit zur Darstellung von 2D-Spielewelten - Schreibweise von Vektoren (Spalten / Zeilenschreibweise) - Skalarprodukt eines Vektors Matrizen als Möglichkeit zur Manipulation der Spielewelt - Vereinfachung / Reduktion von Berechnungen durch Matrizen auf einen einzelnen Schritt - Bedeutung der Reihenfolge der Multiplikation von Matrizen
2D-Spielewelten. Softwaretechnologie II Christian Daum
2D-Spielewelten Softwaretechnologie II Christian Daum Aufgabenstellung I: Simulation der Erdbewegung um die Sonne (in Echtzeit bitteschön) Ausgangssituation: Die Erde beschreibt eine kreisförmige Bahn
& sind die Vektorkomponenten von und sind die Vektorkoordinaten von. A x. a) Der Betrag eines Vektors
Einführu hnung Was ist ein Vektor? In Bereichen der Naturwissenschaften treten Größen auf, die nicht nur durch eine Zahlenangabe dargestellt werden können, wie Kraft oder Geschwindigkeit. Zur vollständigen
Lernmaterialblatt Mathematik. Vektorrechnung eine Einführung. Anwendung Mathematik I. Einleitung:
Vektorrechnung eine Einführung Einleitung: Um beispielsweise das Dreieck ABC in der Abbildung an die Position A'B'C' zu verschieben, muss jeder Punkt um sieben Einheiten nach rechts und drei nach oben
1 Fraktale Eigenschaften der Koch-Kurve
Anhang Inhaltsverzeichnis Fraktale Eigenschaften der Koch-Kurve iii. Einführung.................................. iii.2 Defintion.................................... iii.3 Gesamtlänge der Koch-Kurve........................
Vorkurs Mathematik B
Vorkurs Mathematik B Dr. Thorsten Camps Fakultät für Mathematik TU Dortmund 20. September 2011 Definition (R n ) Wir definieren: 1 Der R 2 sei die Menge aller Punkte in der Ebene. Jeder Punkt wird in ein
1. Kinematik. 1.1 Lage 1.2 Geschwindigkeit. Starrkörperdynamik Prof. Dr. Wandinger. 2. Der starre Körper
1. Kinematik 1.1 Lage 1.2 Geschwindigkeit 2.1-1 Aus den Eigenschaften des starren Körpers folgt: Wird an einem beliebigen Punkt B des starren Körpers ein kartesisches Koordinatensystem Bξηζ aufgetragen,
Lineare Algebra. Mathematik II für Chemiker. Daniel Gerth
Lineare Algebra Mathematik II für Chemiker Daniel Gerth Überblick Lineare Algebra Dieses Kapitel erklärt: Was man unter Vektoren versteht Wie man einfache geometrische Sachverhalte beschreibt Was man unter
2. Vorlesung Wintersemester
2. Vorlesung Wintersemester 1 Mechanik von Punktteilchen Ein Punktteilchen ist eine Abstraktion. In der Natur gibt es zwar Elementarteilchen (Elektronen, Neutrinos, usw.), von denen bisher keine Ausdehnung
Einleitung 2. 1 Koordinatensysteme 2. 2 Lineare Abbildungen 4. 3 Literaturverzeichnis 7
Sonja Hunscha - Koordinatensysteme 1 Inhalt Einleitung 2 1 Koordinatensysteme 2 1.1 Kartesisches Koordinatensystem 2 1.2 Polarkoordinaten 3 1.3 Zusammenhang zwischen kartesischen und Polarkoordinaten 3
Grundlagen der Vektorrechnung
Grundlagen der Vektorrechnung Ein Vektor a ist eine geordnete Liste von n Zahlen Die Anzahl n dieser Zahlen wird als Dimension des Vektors bezeichnet Schreibweise: a a a R n Normale Reelle Zahlen nennt
Zusammenfassung Mathe III. Themenschwerpunkt 3: Analytische Geometrie / lineare Algebra (ean) 1. Rechenregeln mit Vektoren
Zusammenfassung Mathe III Themenschwerpunkt 3: Analytische Geometrie / lineare Algebra (ean) 1. Rechenregeln mit Vektoren Definition: (1) anschaulich: Ein Vektor ist eine direkt gerichtete Verbindung zweier
Definition, Grundbegriffe, Grundoperationen
Aufgaben 1 Vektoren Definition, Grundbegriffe, Grundoperationen Lernziele - einen Vektor korrekt kennzeichnen bzw. schreiben können. - wissen, was ein Gegenvektor ist. - wissen, wie die Addition zweier
Vektoren, Vektorräume
Vektoren, Vektorräume Roman Wienands Sommersemester 2010 Mathematisches Institut der Universität zu Köln Roman Wienands (Universität zu Köln) Mathematik II für Studierende der Chemie Sommersemester 2010
3 Matrizenrechnung. 3. November
3. November 008 4 3 Matrizenrechnung 3.1 Transponierter Vektor: Die Notation x R n bezieht sich per Definition 1 immer auf einen stehenden Vektor, x 1 x x =.. x n Der transponierte Vektor x T ist das zugehörige
Mathematik LK 12 M1, 4. Kursarbeit Matrizen und Stochastik Lösung )
Aufgabe 1: Berechne die Determinante und die Transponierte der folgenden Matrizen: 0 1 1.1 M =( 0 4 1 4 det M =0 4 1 4= 4 M T =( 5 3 3 1.2 1 1 3 A=( =( A T 3 0 1 5 1 3 3 1 0 3 3 1 4 4 det M = 5 1 1+3 3
Definition von R n. Parallelverschiebungen in R n. Definition 8.1 Unter dem Raum R n (n N) versteht man das kartesische Produkt R R... R (n-mal), d.h.
8 Elemente der linearen Algebra 81 Der euklidische Raum R n Definition von R n Definition 81 Unter dem Raum R n (n N) versteht man das kartesische Produkt R R R (n-mal), dh R n = {(x 1, x 2,, x n ) : x
Ilja Repin Die Wolgatreidler (1873) Das Skalarprodukt. 1-E Ma 1 Lubov Vassilevskaya
Ilja Repin Die Wolgatreidler (1873) Das Skalarprodukt 1-E Ma 1 Lubov Vassilevskaya Treideln http://www.rheinschifffahrtsgeschichte.de/mainzer%20pano%20dateien/tierer%20treideln.jpg Treideln heißt eine
Lineare Algebra: Theorie und Anwendungen
Lineare Algebra: Theorie und Anwendungen Sommersemester 2012 Bernhard Burgeth Universität des Saarlandes c 2010 2012, Bernhard Burgeth 1 VEKTOREN IN DER EBENE UND IM RAUM 2 1 Vektoren in der Ebene und
1. Vektoralgebra 1.0 Einführung Vektoren Ein Vektor ist eine Größe, welche sowohl einen Zahlenwert (Betrag) als auch eine Richtung hat.
1. Vektoralgebra 1.0 Einführung Vektoren Ein Vektor ist eine Größe, welche sowohl einen Zahlenwert (Betrag) als auch eine Richtung hat. übliche Beispiele: Ort r = r( x; y; z; t ) Kraft F Geschwindigkeit
2.2 Kollineare und koplanare Vektoren
. Kollineare und koplanare Vektoren Wie wir schon gelernt haben, können wir einen Vektor durch Multiplikation mit einem Skalar verlängern oder verkürzen. In Abbildung 9 haben u und v die gleiche Richtung,
Vektoren - Basiswechsel
Vektoren - Basiswechsel Grundprinzip Für rein geometrische Anwendungen verwendet man üblicherweise die Standardbasis. Damit ergibt sich in den Zahlenangaben der Koordinaten kein Unterschied zu einem Bezug
Mathematischer Vorkurs für Physiker WS 2011/12 Vorlesung 3
TU München Prof. P. Vogl Mathematischer Vorkurs für Physiker WS 2011/12 Vorlesung 3 Differenziation und Integration von Vektorfunktionen Der Ortsvektor: Man kann einen Punkt P im Raum eindeutig durch die
1 Analytische Geometrie
Analytische Geometrie. Grundlagen, Begriffe, Schreibweisen Achsenkreuz Die Achsen heißen in dieser Darstellung x und -Achse. Punkte Punkte werden weiterhin mit großen, lateinischen Buchstaben bezeichnet
Vektorrechnung Raumgeometrie
Vektorrechnung Raumgeometrie Sofja Kowalewskaja (*1850, 1891) Hypatia of Alexandria (ca. *360, 415) Maria Gaetana Agnesi (*1718, 1799) Emmy Noether (*1882 1935) Émilie du Châtelet (*1706, 1749) Cathleen
a 2β... a n ω alle Permutationen von α β γ... ω a 3 γ ( 1) k a 1α
Mathematik 1 - Übungsblatt 7 Lösungshinweise Tipp: Verwenden Sie zur Kontrolle Scilab, wo immer es möglich ist. Aufgabe 1 (Definitionsformel für Determinanten) Determinanten quadratischer Matrizen sind
2.3.4 Drehungen in drei Dimensionen
2.3.4 Drehungen in drei Dimensionen Wir verallgemeinern die bisherigen Betrachtungen nun auf den dreidimensionalen Fall. Für Drehungen des Koordinatensystems um die Koordinatenachsen ergibt sich 1 x 1
Wie berechnet man eine Planetenbahn?
Wie berechnet man eine Planetenbahn? Das Programm Doppelstern.exe macht das iterativ, das heißt, die einzelnen Bahnpunkte werden Schritt für Schritt in einer Endlosschleife berechnet. Dazu denkt man sich
Dynamische Systeme und Zeitreihenanalyse // Komplexe Zahlen 3 p.2/29
Dynamische Systeme und Zeitreihenanalyse Komplexe Zahlen Kapitel 3 Statistik und Mathematik WU Wien Michael Hauser Dynamische Systeme und Zeitreihenanalyse // Komplexe Zahlen 3 p.0/29 Motivation Für die
1 Vektorrechnung als Teil der Linearen Algebra - Einleitung
Vektorrechnung als Teil der Linearen Algebra - Einleitung www.mathebaustelle.de. Einführungsbeispiel Archäologen untersuchen eine neu entdeckte Grabanlage aus der ägyptischen Frühgeschichte. Damit jeder
Lineare Algebra. Grundlagen der Vektorrechnung. fsg Verlag
Rolf Stahlberger Alexander Golfmann Lineare Algebra Grundlagen der Vektorrechnung fsg Verlag Impressum Herausgeber: FSG Verlag Alexander Golfmann Augustenstr. 58 80333 München info@fsg-verlag.de www.fsg-verlag.de
1 Vorlesungen: und Vektor Rechnung: 1.Teil
1 Vorlesungen: 4.10.005 und 31.10.005 Vektor Rechnung: 1.Teil Einige in der Physik auftretende Messgrößen sind durch eine einzige Zahl bestimmt: Temperatur T K Dichte kg/m 3 Leistung P Watt = J/s = kg
H. Gruber, R. Neumann. Erfolg im Mathe-Abi. Übungsbuch für den Pflichtteil Baden-Württemberg mit Tipps und Lösungen
H. Gruber, R. Neumann Erfolg im Mathe-Abi Übungsbuch für den Pflichtteil Baden-Württemberg mit Tipps und Lösungen Inhaltsverzeichnis Inhaltsverzeichnis Themen des Pflichtteils... Analysis Von der Gleichung
Länge, Skalarprodukt, Vektorprodukt
Länge, Skalarprodukt, Vektorprodukt Jörn Loviscach Versionsstand: 20. April 2009, 19:39 1 Überblick Ein Vektorraum muss nur eine Minimalausstattung an Rechenoperationen besitzen: die Addition zweier Vektoren
entspricht der Länge des Vektorpfeils. Im R 2 : x =
Norm (oder Betrag) eines Vektors im R n entspricht der Länge des Vektorpfeils. ( ) Im R : x = x = x + x nach Pythagoras. Allgemein im R n : x x = x + x +... + x n. Beispiele ( ) =, ( 4 ) = 5, =, 4 = 0.
Lineare Abbildungen (Teschl/Teschl 10.3, 11.2)
Lineare Abbildungen (Teschl/Teschl.3,.2 Eine lineare Abbildung ist eine Abbildung zwischen zwei Vektorräumen, die mit den Vektoroperationen Addition und Multiplikation mit Skalaren verträglich ist. Formal:
Vektoren. Kapitel 3. 3.1 Skalare, Vektoren, Tensoren. 3.2 Vektoren
Kapitel 3 Vektoren 31 Skalare, Vektoren, Tensoren Viele physikalische Größen lassen sich bei bekannter Maßeinheit durch Angabe ihres Betrages als reelle Zahl vollständig angeben Solche Größen nennt man
Vektoralgebra Anwendungen der Vektorrechnung VEKTORRECHNUNG. Prof. Dr. Dan Eugen Ulmet. Hochschule Esslingen 1/64
1/64 VEKTORRECHNUNG Prof. Dr. Dan Eugen Ulmet Hochschule Esslingen März 2011 2/64 Overview Vektoralgebra 1 Vektoralgebra 2 Was sind Vektoren? 3/64 Vektoren werden geometrisch definiert als Pfeilklassen:
Definition, Abbildungsmatrix, Spiegelung, Projektion
Bau und Gestaltung, Mathematik 2, T. Borer Aufgaben 5-2/ Aufgaben 5 Lineare Abbildungen Definition, Abbildungsmatrix, Spiegelung, Projektion Lernziele - beurteilen können, ob eine gegebene Abbildung linear
Geometrie. 1 Vektorielle analytische Geometrie der Ebene, Kegelschnitte
Geometrie Geometrie W. Kuhlisch Brückenkurs 206. Vektorrechnung und analytische Geometrie der Ebene, Kegelschnitte 2. Vektorrechnung und analytische Geometrie des Raumes, Anwendungen in der Geometrie,
Matrizen. Spezialfälle. Eine m nmatrix ist ein rechteckiges Zahlenschema mit. m Zeilen und n Spalten der Form. A = (a ij ) =
Matrizen Eine m nmatrix ist ein rechteckiges Zahlenschema mit m Zeilen und n Spalten der Form a 11 a 12 a 1n A = a ij = a 21 a 22 a 2n a m1 a m2 a mn Dabei sind m und n natürliche und die Koezienten a
Grundsätzliches Rechnen mit Matrizen Anwendungen. Matrizenrechnung. Fakultät Grundlagen. Juli 2015
Matrizenrechnung Fakultät Grundlagen Juli 2015 Fakultät Grundlagen Matrizenrechnung Übersicht Grundsätzliches 1 Grundsätzliches Matrixbegriff Rechenregeln Spezielle Matrizen 2 Matrizenrechnung Determinanten
Geometrie. Bei der Addition von Vektoren erhält man einen Repräsentanten des Summenvektors +, indem man die Repräsentanten von aneinanderfügt:
Geometrie 1. Vektoren Die Menge aller zueinander parallelen, gleich langen und gleich gerichteten Pfeile werden als Vektor bezeichnet. Jeder einzelne Pfeil heißt Repräsentant des Vektors. Bei Ortsvektoren:
täglich einmal Scilab!
Mathematik 1 - Übungsblatt 7 täglich einmal Scilab! Aufgabe 1 (Definitionsformel für Determinanten) Determinanten quadratischer Matrizen sind skalare Größen (=einfache Zahlen im Gegensatz zu vektoriellen
Kapitel 2: Mathematische Grundlagen
[ Computeranimation ] Kapitel 2: Mathematische Grundlagen Prof. Dr. Stefan M. Grünvogel stefan.gruenvogel@fh-koeln.de Institut für Medien- und Phototechnik Fachhochschule Köln 2. Mathematische Grundlagen
1 Definition. 2 Besondere Typen. 2.1 Vektoren und transponieren A = 2.2 Quadratische Matrix. 2.3 Diagonalmatrix. 2.
Definition Die rechteckige Anordnung von m n Elementen a ij in m Zeilen und n Spalten heißt m n- Matrix. Gewöhnlich handelt es sich bei den Elementen a ij der Matrix um reelle Zahlen. Man nennt das Paar
Vektorielle Addition von Kräften
Vektorielle Addition von Kräften (Begleitende schriftliche Zusammenfassung zum Online-Video) Was wir bisher betrachtet haben: (a) Kräfte wirken entlang derselben Wirkungslinie (parallel oder antiparallel)
Analytische Geometrie, Vektorund Matrixrechnung
Kapitel 1 Analytische Geometrie, Vektorund Matrixrechnung 11 Koordinatensysteme Eine Gerade, eine Ebene oder den Anschauungsraum beschreibt man durch Koordinatensysteme 111 Was sind Koordinatensysteme?
Mathematische Erfrischungen III - Vektoren und Matrizen
Signalverarbeitung und Musikalische Akustik - MuWi UHH WS 06/07 Mathematische Erfrischungen III - Vektoren und Matrizen Universität Hamburg Vektoren entstanden aus dem Wunsch, u.a. Bewegungen, Verschiebungen
Kreis - Übungen. 1) Die y-achse ist am Punkt A eine Tangente an den Kreis. Mit dem noch nicht bekannten "Zwischenwert"
Kreis - Übungen Wenn die "Kreisgleichung" gesucht ist, sind der Mittelpunkt und der Radius anzugeben. Es ist möglich, dass mehrere Kreise eine Aufgabenstellung erfüllen. 1) Ein Kreis berührt die y-achse
8.1 Gleichförmige Kreisbewegung 8.2 Drehung ausgedehnter Körper 8.3 Beziehung: Translation - Drehung 8.4 Vektornatur des Drehwinkels
8. Drehbewegungen 8.1 Gleichförmige Kreisbewegung 8.2 Drehung ausgedehnter Körper 8.3 Beziehung: Translation - Drehung 8.4 Vektornatur des Drehwinkels 85 8.5 Kinetische Energie der Rotation ti 8.6 Berechnung
++ + = 0 so erhält man eine quadratische Gleichung mit zwei Variablen dx+ey+f = 0 1.1
Hauptachsentransformation. Einleitung Schneidet man den geraden Kreiskegel mit der Gleichung = + und die Ebene ++ + = 0 so erhält man eine quadratische Gleichung mit zwei Variablen +2 + +dx+ey+f = 0. Die
Matrizen und Determinanten, Lineare Gleichungssysteme, Vektorrechnung, Analytische Geometrie
Regina Gellrich Carsten Gellrich Matrizen und Determinanten, Lineare Gleichungssysteme, Vektorrechnung, Analytische Geometrie Mit zahlreichen Abbildungen, Aufgaben mit Lösungen und durchgerechneten Beispielen
Vektorräume. 1. v + w = w + v (Kommutativität der Vektoraddition)
Vektorräume In vielen physikalischen Betrachtungen treten Größen auf, die nicht nur durch ihren Zahlenwert charakterisiert werden, sondern auch durch ihre Richtung Man nennt sie vektorielle Größen im Gegensatz
Vektoren. Jörn Loviscach. Versionsstand: 11. April 2009, 23:42
Vektoren Jörn Loviscach Versionsstand:. April 29, 23:42 Rechnen mit Pfeilen Bei den komplexen Zahlen haben wir das Rechnen mit Pfeilen schon kennen gelernt. Addition und Subtraktion klappen in drei wie
Analytische Geometrie des Raumes
Analytische Geometrie des Raumes Als Begründer der analytischen Geometrie gilt René Descartes (Discours de la méthode). Seine grundliegende Idee bestand darin, geometrische Gebilde (Gerade, Kreis, Ellipse
3.6 Einführung in die Vektorrechnung
3.6 Einführung in die Vektorrechnung Inhaltsverzeichnis Definition des Vektors 2 2 Skalare Multiplikation und Kehrvektor 4 3 Addition und Subtraktion von Vektoren 5 3. Addition von zwei Vektoren..................................
Mathematik Analytische Geometrie
Mathematik Analytische Geometrie Grundlagen:. Das -Dimensionale kartesische Koordinatensystem: x x x. Vektoren und Ortsvektoren: a x = x x ist ein Vektor, der eine Verschiebung um x -Einheiten in x-richtung,
3.6 Eigenwerte und Eigenvektoren
3.6 Eigenwerte und Eigenvektoren 3.6. Einleitung Eine quadratische n n Matrix A definiert eine Abbildung eines n dimensionalen Vektors auf einen n dimensionalen Vektor. c A x c A x Von besonderem Interesse
3 Vektoren. 3.1 Kartesische Koordinaten in Ebene und Raum. Höhere Mathematik 60
Kartesische Koordinaten in Ebene und Raum 3 Vektoren 3.1 Kartesische Koordinaten in Ebene und Raum In der Ebene (mathematisch ist dies die Menge R 2 ) ist ein kartesisches Koordinatensystem festgelegt
Vektoren. 2.1 Darstellung. Kapitel Subtraktion und Addition
Kapitel 2 Vektoren In diesem Kapitel werden wir im wesentlichen die verschiedenen Formen der Darstellung von Vektoren in MatLab sowie Verknüpfungen zwischen Vektoren betrachten. In letzterem Punkt ist
Eigenwerte und Eigenvektoren
Vortrag Gmnasium Birkenfeld Von der mathematischen Spielerei zur technischen Anwendung Vortrag Gmnasium Birkenfeld. Vektoren und Matrizen Wir betrachten einen Punkt P (, ) in der Ebene eines rechtwinklig
Vektoren. Hinführung: Vektorielle Größen
Vektoren Dieser Anhang enthält eine Kurzeinführung in den für einfache Anwendungen erforderlichen Teil der Vektorrechnung. Er geht nicht primär davon aus, die zugehörige mathematische Struktur zu beschreiben
Vektorgeometrie. 1. Vektoren eingeben, Norm, Skalarprodukt. 2 In einem kartesischen Koordinatensystem sind die Vektoren. , v. und. gegeben.
Vektorgeometrie 1. Vektoren eingeben, Norm, Skalarprodukt 2 In einem kartesischen Koordinatensystem sind die Vektoren u 14, 5 11 10 v 2 und w 5 gegeben. 10 10 a) Zeigen Sie, dass die Vektoren einen Würfel
(Allgemeine) Vektorräume (Teschl/Teschl 9)
(Allgemeine) Vektorräume (Teschl/Teschl 9) Sei K ein beliebiger Körper. Ein Vektorraum über K ist eine (nichtleere) Menge V, auf der zwei Operationen deniert sind, die bestimmten Rechenregeln genügen:
Grundsätzliches Produkte Anwendungen in der Geometrie. Vektorrechnung. Fakultät Grundlagen. Juli 2015
Vektorrechnung Fakultät Grundlagen Juli 205 Fakultät Grundlagen Vektorrechnung Übersicht Grundsätzliches Grundsätzliches Vektorbegriff Algebraisierung der Vektorrechnung Betrag 2 Skalarprodukt Vektorprodukt
y x x y ( 2x 3y + z x + z
Matrizen Aufgabe Sei f R R 3 definiert durch ( ) x 3y x f = x + y y x Berechnen Sie die Matrix Darstellung von f Aufgabe Eine lineare Funktion f hat die Matrix Darstellung A = 0 4 0 0 0 0 0 Berechnen Sie
Gruppenarbeit Federn, Kräfte und Vektoren
1 Gruppenarbeit Federn, Kräfte und Vektoren Abzugeben bis Woche 10. Oktober Der geschätzte Zeitaufwand wird bei jeder Teilaufgabe mit Sternen angegeben. Je mehr Sterne eine Aufgabe besitzt, desto grösser
Brückenkurs Mathematik
Brückenkurs Mathematik 6.10. - 17.10. Vorlesung 3 Geometrie Doris Bohnet Universität Hamburg - Department Mathematik Mi 8.10.2008 1 Geometrie des Dreiecks 2 Vektoren Länge eines Vektors Skalarprodukt Kreuzprodukt
Rechnen mit Vektoren. 1. Vektoren im Koordinatensystem Freie Vektoren in der Ebene
Rechnen mit 1. im Koordinatensystem 1.1. Freie in der Ebene 1) Definition Ein Vektor... Zwei sind gleich, wenn... 2) Das ebene Koordinatensystem Wir legen den Koordinatenursprung fest, ferner zwei zueinander
Seminar 3-D Grafik Mathematische Grundlagen, Räume, Koordinatensysteme, Projektionen. Hermann Schwarz Marko Pilop
Seminar 3-D Grafik Mathematische Grundlagen, Räume, Koordinatensysteme, Projektionen Hermann Schwarz Marko Pilop 2003-11-20 http://www.informatik.hu-berlin.de/~pilop/3d_basics.pdf {hschwarz pilop}@informatik.hu-berlin.de
MLAN1 1 MATRIZEN 1 0 = A T =
MLAN1 1 MATRIZEN 1 1 Matrizen Eine m n Matrix ein rechteckiges Zahlenschema a 11 a 12 a 13 a 1n a 21 a 22 a 23 a 2n a m1 a m2 a m3 amn mit m Zeilen und n Spalten bestehend aus m n Zahlen Die Matrixelemente
Nachteile Boolesches Retrieval
Nachteile Boolesches Retrieval Komplizierte Anfragen Häufigkeit bzw. Relevanz der Terme in den Dokumenten nicht berücksichtigt 2 von 3 UND-verknüpften Termen im Dokument so schlecht wie 0 Terme Keine Rangfolge
Mathematik I Herbstsemester 2014 Kapitel 8: Lineare Algebra 8.1 Reelle Matrizen
Mathematik I Herbstsemester 2014 Kapitel 8: Lineare Algebra 81 Reelle Matrizen Prof Dr Erich Walter Farkas http://wwwmathethzch/ farkas 1 / 31 1 2 3 4 2 / 31 Transponierte einer Matrix 1 Transponierte
Tutorium: Diskrete Mathematik. Matrizen
Tutorium: Diskrete Mathematik Matrizen Steven Köhler mathe@stevenkoehler.de mathe.stevenkoehler.de Definition I Eine Matrix ist eine rechteckige Anordnung (Tabelle) von Elementen, mit denen man in bestimmter
Inhaltsverzeichnis. I Planimetrie.
Inhaltsverzeichnis I Planimetrie. Winkel 1.1 Einführung 1.1.1 Definition eines Winkels 1 1.1.2 Messung von Winkeln in Grad (Altgrad) 1 1.1.3 Orientierte Winkel 2 1.1.4 Winkelkategorien 2 1.2 Winkel an
Matrizen. Jörn Loviscach. Versionsstand: 12. April 2010, 19:00 Die nummerierten Felder sind absichtlich leer, zum Ausfüllen in der Vorlesung.
Matrizen Jörn Loviscach Versionsstand: 12. April 2010, 19:00 Die nummerierten Felder sind absichtlich leer, zum Ausfüllen in der Vorlesung. 1 Matrix Ein rechteckige Anordnung von mathematischen Objekten
3.6 Drehungen in der Ebene
3.6-1 3.6 Drehungen in der Ebene 3.6.1 Die Drehmatrix Gelegentlich müssen wir die Lage eines Teilchens in einem ebenen Koordinatensystem beschreiben, das gegenüber einem festen System um φ gedreht ist.
Arbeitsblatt 1 Einführung in die Vektorrechnung
Arbeitsblatt Einführung in die Vektorrechnung Allgemein Vektoren sind physikalische Größen und durch ihre Richtung und ihren Betrag festgelegt. Geometrisch wird ein Vektor durch einen Pfeil dargestellt,
Definition, Rechenoperationen, Lineares Gleichungssystem
Bau und Gestaltung, Mathematik, T. Borer Aufgaben /3 Aufgaben Matrizen Definition, Rechenoperationen, Lineares Gleichungssystem Lernziele - die Bezeichnung der Matrixelemente kennen und verstehen. - den
Die Nummerierung des Buches wurde für die leichtere Orientierung beibehalten. 1. VEKTOREN UND IHRE GEOMETRISCHE BEDEUTUNG
1 Dieses Skript ist ein Auszug mit Lücken aus Einführung in die mathematische Behandlung der Naturwissenschaften I von Hans Heiner Storrer, Birkhäuser Skripten. Als StudentIn sollten Sie das Buch auch
Das Skalarprodukt zweier Vektoren
Beim Skalarprodukt zweier Vektoren werden die Vektoren so multipliziert, dass sich ein Skalar eine Zahl ergibt. Die Berechnung des Skalarproduktes ist ziemlich einfach, aber die weiteren Eigenschaften
3. Kreisbewegung. Punkte auf einem Rad Zahnräder, Getriebe Drehkran Turbinen, Hubschrauberrotor
3. Kreisbewegung Ein wichtiger technischer Sonderfall ist die Bewegung auf einer Kreisbahn. Dabei hat der Massenpunkt zu jedem Zeitpunkt den gleichen Abstand vom Kreismittelpunkt. Beispiele: Punkte auf
Kapitel 3: Geometrische Transformationen
[ Computeranimation ] Kapitel 3: Geometrische Transformationen Prof. Dr. Stefan M. Grünvogel stefan.gruenvogel@fh-koeln.de Institut für Medien- und Phototechnik Fachhochschule Köln 3. Geometrische Transformationen
Geometrische Objekte im 3-dimensionalen affinen Raum oder,... wie nützlich ist ein zugehöriger Vektorraum der Verschiebungen
Geometrische Objekte im -dimensionalen affinen Raum Bekanntlich versteht man unter geometrischen Objekten Punktmengen, auf die man die üblichen Mengenoperationen wie z.b.: Schnittmenge bilden: - aussagenlogisch:
DEUTSCHE SCHULE MONTEVIDEO BIKULTURELLES DEUTSCH-URUGUAYISCHES ABITUR ( AUF SPANISCH )
Grundlegende Bemerkungen : Der Begriff des Vektors wurde in den vergangenen Jahren im Geometrieunterricht eingeführt und das mathematische Modell des Vektors wurde vor allem auch im Physikunterricht schon
Einleitung 19. Teil I Einführung 23. Kapitel 1 Motivation 25
Inhaltsverzeichnis Einleitung 19 Konventionen in diesem Buch 19 Törichte Annahmen über den Leser 20 Was Sie in diesem Buch finden 20 Was Sie in diesem Buch nicht finden 20 Wie dieses Buch aufgebaut ist
Mathematik II Frühlingsemester 2015 Kapitel 8: Lineare Algebra 8.5 Eigenwerte und Eigenvektoren
Mathematik II Frühlingsemester 215 Kapitel 8: Lineare Algebra 8.5 Eigenwerte und Eigenvektoren www.math.ethz.ch/education/bachelor/lectures/fs215/other/mathematik2 biol Prof. Dr. Erich Walter Farkas http://www.math.ethz.ch/
4.1. Vektorräume und lineare Abbildungen
4.1. Vektorräume und lineare Abbildungen Mengen von Abbildungen Für beliebige Mengen X und Y bezeichnet Y X die Menge aller Abbildungen von X nach Y (Reihenfolge beachten!) Die Bezeichnungsweise erklärt
Länge, Skalarprodukt, Geradengleichungen
Länge, Skalarprodukt, Geradengleichungen Jörn Loviscach Versionsstand: 9. April 2010, 18:48 Die nummerierten Felder sind absichtlich leer, zum Ausfüllen in der Vorlesung. Videos dazu: http://www.youtube.com/joernloviscach
Tutorium Mathematik II, M Lösungen
Tutorium Mathematik II, M Lösungen März 03 *Aufgabe Bestimmen Sie durch Hauptachsentransformation Lage und Typ der Kegelschnitte (a) 3x + 4x x + 3x 4x = 0, (b) 3x + 4x x + 3x 4x 6 = 0, (c) 3x + 4x x +
3 Analytische Geometrie der Kongruenzabbildungen
3 Analytische Geometrie der Kongruenzabbildungen 4 3 Analytische Geometrie der Kongruenzabbildungen 3. Grundlagen, Begriffe, Schreibweisen 3.. Achsenkreuz Die Achsen heißen in dieser Darstellung x und
Betrachtet man einen starren Körper so stellt man insgesamt sechs Freiheitsgrade der Bewegung
Die Mechanik besteht aus drei Teilgebieten: Kinetik: Bewegungsvorgänge (Translation, Rotation) Statik: Zusammensetzung und Gleichgewicht von Kräften Dynamik: Kräfte als Ursache von Bewegungen Die Mechanik
2. Räumliche Bewegung
2. Räumliche Bewegung Wenn die Bahn des Massenpunkts nicht bekannt ist, reicht die Angabe einer Koordinate nicht aus, um seinen Ort im Raum zu bestimmen. Es muss ein Ortsvektor angegeben werden. Prof.
Symmetrie von Naturgesetzen - Galilei-Transformationen und die Invarianz der Newton schen Gesetze
Symmetrie von Naturgesetzen - Galilei-Transformationen und die Invarianz der Newton schen Gesetze Symmetrie (Physik) (aus Wikipedia, der freien Enzyklopädie) Symmetrie ist ein grundlegendes Konzept der
Definition, Rechenoperationen, Lineares Gleichungssystem
Bau und Gestaltung, Mathematik, T. Borer Aufgaben / Aufgaben Matrizen Definition, Rechenoperationen, Lineares Gleichungssystem Lernziele - die Bezeichnung der Matrixelemente kennen und verstehen. - den
Das Wort Vektor kommt aus dem lateinischen und heißt so viel wie "Träger" oder "Fahrer".
Was ist ein Vektor? Das Wort Vektor kommt aus dem lateinischen und heißt so viel wie "Träger" oder "Fahrer". Vektoren sind Listen von Zahlen. Man kann einen Vektor darstellen, indem man seine Komponenten
Arbeitsblatt 1. ORTSVEKTOREN. "Ortsvektoren.ggb" Zahlenpaar (seine "Koordinaten") beschrieben werden.
Schule Bundesgymnasium für Berufstätige Salzburg Thema Personen Mathematik Modul 5 Einführung in VEKTOREN 5f und Alfred Dominik Arbeitsblatt Einführung in "Vektoren" mit GeoGebra Unterlagen von www.geogebra.org
00. Einiges zum Vektorraum R n
00. Einiges zum Vektorraum R n In diesem einleitenden Kapitel werden die in der LV Einführung in die mathematischen Methoden erwähnten Konzepte über Vektoren (im R 2 und R 3 ) im Rahmen des n-dimensionalen
mit "Skalarprodukt" aus i-tem "Zeilenvektor" und j-tem "Spaltenvektor"
Zusammenfassung Matrizen Transponierte: Addition: mit Skalare Multiplikation: Matrixmultiplikation: m x p m x n n x p mit ES "Skalarprodukt" aus i-tem "Zeilenvektor" und j-tem "Spaltenvektor" "Determinante"
11. Vorlesung Wintersemester
11. Vorlesung Wintersemester 1 Ableitungen vektorieller Felder Mit Resultat Skalar: die Divergenz diva = A = A + A y y + A z z (1) Mit Resultat Vektor: die Rotation (engl. curl): ( rota = A Az = y A y