FILTER UND FALTUNGEN

Größe: px
Ab Seite anzeigen:

Download "FILTER UND FALTUNGEN"

Transkript

1 Ausarbeitung zum Vortrag von Daniel Schmitzek im Seminar Verarbeitung und Manipulation digitaler Bilder

2 I n h a l t. Der Begriff des Filters 3 2. Faltungsfilter 4 2. Glättungsfilter Filter zur Kantendetektion Filterung im Frequenzraum 7 3. Rangordnungsfilter 7 Literaturverzeichnis 8

3 . Der Begriff des Filters Verarbeitung und Manipulation digitaler Bilder In dieser Arbeit geht es um Filter und Filteroperationen, die auf digitale Bilder angewandt werden können, um hauptsächlich folgende Ergebnisse zu erzielen: Verminderung von Signalrauschen Glättung Kantendetektion Beseitigung von Bildstörungen wie Staub oder Kratzern Wenn es um Glättung, Reduzierung von Rauschen und Kantenfindung geht, wird die Filterung meist mit Hilfe einer Faltung realisiert. Eine andere Klasse bilden die Rangordnungsfilter, die zur Beseitigung diskreter Bildstörungen verwendet werden. Es muß jedoch klar sein, daß auch der optimale Filter keine Bildinformationen wieder herausholen kann, die zuvor nicht enthalten waren. Es ist lediglich eine Verbesserung hinsichtlich bestimmter Kriterien wie z.b. Schärfe oder Kantenhervorhebung zu erreichen. Abb..,.2: Glättung eines Ultraschallbildes, Kantendetektion Natürlich ist es auch möglich, die digitale Bildfilterung für kreative Anwendungen einzusetzen, worauf hier jedoch selbstverständlich nicht eingegangen wird. 3

4 Verarbeitung und Manipulation digitaler Bilder 2. Faltungsfilter Die wichtigste Klasse der Filteroperationen sind die Faltungsfilter. Diese Filter basieren auf der sog. Faltungsfunktion, die mathematisch folgendermaßen definiert ist: Faltung eines Signals f mit einer Maske h (2.) (2.2) Durch eine Maske wird die sog. Nachbarschaft, also die Pixel-Umgebung, auf die die Operation angewandt wird, und die entsprechende Wichtung für jedes Pixel innerhalb der Maske festgelegt. Zur Glättung von Bildern wird dafür häufig eine 3x3-Maske verwendet. 2. Glättungsfilter Die einfachste Operation stellt dabei die Filterung mit einem Blockfilter (auch: Boxcar ) dar. Mittelwert wird in das neue Bild geschrieben Originalbild Auf ein konkretes Bild angewandt ergibt sich: gefiltertes Bild Abb. 2., 2.2: Anwendung der Filtermaske (oben), verrauschtes Bild vor und nach Anwendung des Blockfilters 4

5 Verarbeitung und Manipulation digitaler Bilder Da die Anwendung des Faltungsfilters eine assoziative Operation ist, kann die zweidimensionale Filtermaske auch in zwei eindimensionale aufgespalten werden. Dies ist für eine effiziente Anwendung sehr wichtig, denn mit der 2D-Filtermaske aus Abb. 2 werden neun Multiplikationen und acht Additionen pro Pixel benötigt. Werden die Faltungen jedoch nacheinander mit den D-Masken ausgeführt, reduziert sich dieser Aufwand auf acht Multiplikationen und sechs Additionen. Diese Ersparnis wird umso deutlicher je größer die Filtermasken werden. 9 = 3 3 [ ] (2.3) Der einfache Blockfilter hat den Nachteil, daß er anisotrop ist, d.h. er glättet nicht in alle Richtungen gleich gut. Das liegt daran, daß hier alle Pixel vor allem die am weitesten vom Mittelpixel entfernten Eckpixel gleich gewichtet werden. Anders ist das beim Binomialfilter. Er bietet hinsichtlich der Glättung und Reduzierung von Gausschem Rauschen optimale Eigenschaften und arbeitet dabei in allen Richtungen gleich gut (Isotropie). Die Werte der Filtermaske entsprechen denen der diskreten Binomialverteilung (2.4) Filter zur Kantendetektion Kanten können wichtige Informationen über Umrisse und Form von Objekten z.b. für Medizin oder Technik liefern. Für die Kantendetektion wird das Bild als Grauwertfunktion g(x,y) betrachtet. Dann sind Kanten starke Steigungen in g. Die Ableitung der Funktion ist also der Schlüssel zur Kanten-detektion. Abb. 2.3: Grauwertfunktion g,.ableitung g, 2. Ableitung g Sollen Grauwertveränderungen hervorgehoben und Bereiche konstanter Grauwerte unterdrückt werden, so muß dazu die Ableitung eines Bildes in allen (i.d.r. in zwei) Richtungen gebildet werden. Die Approximierung des Ableitungsoperators auf einem diskreten Gitter führt zum Differenzoperator der Form Dx = ½ [ 0 -], der konstante Flächen neutralisiert und Grauwertdifferenzen hervorhebt. Diese eindimensionale Filtermaske reagiert jedoch vor allem 5

6 Verarbeitung und Manipulation digitaler Bilder auf Kanten, die senkrecht zur Operatorrichtung verlaufen. Zur Detektion von in allen Richtungen verlaufenden Kanten zweidimensionaler Bilder wird der Gradient durch zwei senkrecht zueinander arbeitende Operatoren Dx und Dy berechnet. Der einfachste Filter zur Kantendetektion ist der sog. Roberts-Operator. Er bedient sich 0 0 der kleinstmöglichen Differenzfilter und. 0 0 Beide Filtermasken müssen jeweils auf das Ausgangsbild angewandt und die Ergebnisse danach in einem gemeinsamen Bild kombiniert werden. Mit dem Robertsoperator werden leider nur die breiteren, deutlicheren Kanten in einem Bild hervorgehoben, alles andere geht verloren. Der Sobel-Operator hingegen benötigt zwar ebenfalls zwei Filtermasken, um in beiden Richtungen zu arbeiten, hat jedoch zusätzlich Anleihen aus dem Binomialfilter, um ein Rauschen nicht noch zu verstärken. Darüberhinaus verbessert die Maskengröße von 3x3 Pixeln noch die Wirkung. Bei Anwendung des Sobel-Operators lassen sich Kanten so schon klarer hervorheben. 2 0 horizontale Kanten:, vertikale Kanten: Ein weiterer Operator zur Kantendetektion ist der Laplace-Filter, der in untenstehender Form sozusagen ein geglättetes Bild vom Originalbild subtrahiert. Wie man im Beispiel sehen kann, arbeitet dieser Filter (zumindest beim verwendeten Bild) schon annehmbar effektiv. 2 6 Abb. 2.4: Originalbild und gefiltertes Bild nach Anwendung der Filtermaske in der Mitte 6

7 2.3 Filterung im Frequenzraum Verarbeitung und Manipulation digitaler Bilder Wie man sich leicht vorstellen kann, ist der Rechenaufwand bei den zuvor beschriebenen Verfahren sehr hoch, und er steigt auch noch überproportional mit einer Vergrößerung der Filtermaske. Um die Effizienz zu erhöhen, ist es möglich, ein Bild von seiner Darstellung im Ortsraum (die uns bekannte normale Darstellung) in den Frequenzraum zu überführen, dort die Filtermaske anzuwenden und das Bild danach wieder in den Ortsraum rückzutransformieren. Der Effizienzvorteil ergibt sich aus der Tatsache, daß die im Ortsraum benötigte Faltungsoperation im Frequenzraum zu einer Multiplikation wird. Um die Transformation durchzuführen, wird üblicherweise die Fast Fourier Transformation (FFT) verwendet, weshalb der Frequenzraum auch Fourierraum genannt wird. Neben dem Effizienzvorteil bietet die Überführung eines Bildes in den Frequenzraum auch noch den Vorteil, daß periodische Störungen gezielter entfernt werden können. Abb. 2.5: Fouriertransformierte des Originalbildes aus Abb. 2.4 Die Fouriertransformierte des Originalbildes aus Abbildung 2.4 ist dem menschlichen Betrachter zwar nicht mehr direkt zugänglich, sie stellt jedoch so abstrakt sie auch aussehen mag ein Äquivalent zur uns geläufigen Darstellung im Ortsraum dar. Die höheren Frequenzen, also die Bereiche des Bildes, die feinere Strukturen und starke Kontraste enthalten, sind in der Mitte dargestellt. Die niedrigeren Frequenzen, also großflächige Bereiche mit weichen Übergängen, sind weiter außen angeordnet. Es können im Frequenzraum gezielt bestimmte Bereiche gelöscht werden, was sich nach der Rücktransformation in den Ortsraum entsprechend im Bild widerspiegelt. 3. Rangordnungsfilter Zur Klasse der nichtlinearen Filter gehören die Rangordnungsfilter. Sie werden vor allem verwendet, um diskrete Bildstörungen wie etwa Staub oder Kratzer auf einer eingescannten Vorlage zu eliminieren. Zwar wird bei einem Rangordnungsfilter, wie bei den Faltungsfiltern, auch mit Hilfe einer Maske das Ausgangsbild abgetastet, jedoch wird hier statt einer Faltungsoperation eine aufsteigende Sortierung der Grauwerte der innerhalb der Maske liegenden Pixel vorgenommen. Der meistverwendete Filter ist dabei der sog. Medianfilter. Dieser wählt nach Sortierung der Werte in einer Liste denjenigen Wert, der in der Mitte der Liste steht und schreibt 7

8 Verarbeitung und Manipulation digitaler Bilder diesen in das entsprechende Pixel im gefilterten Bild. Dadurch wird erreicht, daß Grauwerte, die sozusagen Ausreißer in ihrer Umgebung darstellen, durch passendere Werte ersetzt werden. Analog zum Medianfilter ist auch ein Minimum- oder Maximumfilter möglich, welcher dementsprechend den ersten oder den letzten Wert in der Liste für das neue Pixel wählt. Medianfilter Abb.3.: Bild mit Pixelstörungen vor und nach der Anwendung eines Medianfilters Wie gut zu erkennen ist, werden die einzelnen Ausreißer durch den Medianfilter sehr gut entfernt, ohne daß dabei Kanten oder andere Details verwischt werden. Auf die Schärfe des Gesamtbildes hat die Anwendung dieses Filters nahezu keinen Einfluß. Im Gegensatz dazu wäre ein Glättungsoperator hier vollkommen ungeeignet, da er die Störungen im Bild nur auf Kosten der Schärfe reduzieren könnte. Es sei zusätzlich bemerkt, daß es zum Rangordnungsfilter kein Äquivalent im Frequenzraum gibt. Verwendete Literatur: Wahl F.M. (989): Digitale Bildsignalverarbeitung, Springer Verlag, Berlin Jähne B. (997): Digitale Bildverarbeitung, Springer Verlag, Berlin Digital Image Processing. Domik G., Das Bild im Computer. Wonnemann C.: Digitale Bildverarbeitung. WS_00_0/MerkmalFilter.pdf 8

1. Filterung im Ortsbereich 1.1 Grundbegriffe 1.2 Lineare Filter 1.3 Nicht-Lineare Filter 1.4 Separabele Filter 1.

1. Filterung im Ortsbereich 1.1 Grundbegriffe 1.2 Lineare Filter 1.3 Nicht-Lineare Filter 1.4 Separabele Filter 1. . Filterung im Ortsbereich. Grundbegriffe. Lineare Filter.3 Nicht-Lineare Filter.4 Separabele Filter.5 Implementierung. Filterung im Frequenzbereich. Fouriertransformation. Hoch-, Tief- und Bandpassfilter.3

Mehr

Bildverarbeitung Herbstsemester

Bildverarbeitung Herbstsemester Bildverarbeitung Herbstsemester Herbstsemester 2009 2012 Filter Filter 1 Inhalt Lineare und nichtlineare Filter Glättungsfilter (z.b. Gauss-Filter) Differenzfilter (z.b. Laplace-Filter) Lineare Faltung

Mehr

Einführung in die medizinische Bildverarbeitung WS 12/13

Einführung in die medizinische Bildverarbeitung WS 12/13 Einführung in die medizinische Bildverarbeitung WS 12/13 Stephan Gimbel Kurze Wiederholung Pipeline Pipelinestufen können sich unterscheiden, beinhalten aber i.d.r. eine Stufe zur Bildvorverarbeitung zur

Mehr

Struktur des menschlichen Auges. Bildgebende Verfahren in der Medizin und medizinische Bildverarbeitung Bildverbesserung 2 / 99

Struktur des menschlichen Auges. Bildgebende Verfahren in der Medizin und medizinische Bildverarbeitung Bildverbesserung 2 / 99 Struktur des menschlichen Auges 2 / 99 Detektoren im Auge Ca. 100 150 Mio. Stäbchen Ca. 1 Mio. Zäpfchen 3 / 99 Zapfen Entlang der Sehachse, im Fokus Tagessehen (Photopisches Sehen) Scharfsehen Farbsehen

Mehr

Filter. Industrielle Bildverarbeitung, Vorlesung No M. O. Franz

Filter. Industrielle Bildverarbeitung, Vorlesung No M. O. Franz Filter Industrielle Bildverarbeitung, Vorlesung No. 5 1 M. O. Franz 07.11.2007 1 falls nicht anders vermerkt, sind die Abbildungen entnommen aus Burger & Burge, 2005. Übersicht 1 Lineare Filter 2 Formale

Mehr

Digitale Bildverarbeitung Einheit 8 Lineare Filterung

Digitale Bildverarbeitung Einheit 8 Lineare Filterung Digitale Bildverarbeitung Einheit 8 Lineare Filterung Lehrauftrag WS 05/06 Fachbereich M+I der FH-Offenburg Dipl.-Math. Bernard Haasdonk Albert-Ludwigs-Universität Freiburg Ziele der Einheit Verstehen,

Mehr

Systemtheorie abbildender Systeme

Systemtheorie abbildender Systeme Bandbegrenzung Bild in (b) nicht band-begrenzt: scharfe Kanten = Dirac-Funktionen = weißes Spektrum Erfordert Tapering vor Digitalisierung (Multiplikation mit geeigneter Fensterfunktion; auf Null drücken

Mehr

Rauschunterdrückung in der Theorie & Praxis

Rauschunterdrückung in der Theorie & Praxis Rauschunterdrückung in der Theorie & Praxis Florian Kramer Urs Pricking Seminar Simulation und Bildanalyse in Java Universität Ulm, Abteilungen SAI & Stochastik 4 Übersicht Motivation Arten von Rauschen

Mehr

Was bisher geschah. digitale Bilder: Funktion B : pos col Matrix B col pos. Punktoperationen f : col 1 col 2

Was bisher geschah. digitale Bilder: Funktion B : pos col Matrix B col pos. Punktoperationen f : col 1 col 2 Was bisher geschah digitale Bilder: Funktion B : pos col Matrix B col pos statistische Merkmale Punktoperationen f : col 1 col 2 (Bildanalyse) (Farbtransformation) Geometrische Operationen f : pos 1 pos

Mehr

Bildverarbeitung: Filterung. D. Schlesinger () Bildverarbeitung: Filterung 1 / 17

Bildverarbeitung: Filterung. D. Schlesinger () Bildverarbeitung: Filterung 1 / 17 Bildverarbeitung: Filterung D. Schlesinger () Bildverarbeitung: Filterung 1 / 17 Allgemeines Klassische Anwendung: Entrauschung (Fast) jeder Filter basiert auf einem Modell (Annahme): Signal + Rauschen

Mehr

Digitale Bildverarbeitung Einheit 8 Lineare Filterung

Digitale Bildverarbeitung Einheit 8 Lineare Filterung Digitale Bildverarbeitung Einheit 8 Lineare Filterung Lehrauftrag SS 2008 Fachbereich M+I der FH-Offenburg Dr. Bernard Haasdonk Albert-Ludwigs-Universität Freiburg Ziele der Einheit Verstehen, wie lineare

Mehr

Einführung in die medizinische Bildverarbeitung SS 2013

Einführung in die medizinische Bildverarbeitung SS 2013 Einführung in die medizinische Bildverarbeitung SS 2013 Stephan Gimbel 1 Kurze Wiederholung Gradienten 1. und 2. Ableitung grad( f ( x, y) ) = f ( x, y) = f ( x, y) x f ( x, y) y 2 f ( x, y) = 2 f ( x,

Mehr

Digitale Bildverarbeitung (DBV)

Digitale Bildverarbeitung (DBV) Digitale Bildverarbeitung (DBV) Prof. Dr. Ing. Heinz Jürgen Przybilla Labor für Photogrammetrie Email: heinz juergen.przybilla@hs bochum.de Tel. 0234 32 10517 Sprechstunde: Montags 13 14 Uhr und nach Vereinbarung

Mehr

Digitale Bildverarbeitung (DBV)

Digitale Bildverarbeitung (DBV) Digitale Bildverarbeitung (DBV) Prof. Dr. Ing. Heinz Jürgen Przybilla Labor für Photogrammetrie Email: heinz juergen.przybilla@hs bochum.de Tel. 0234 32 10517 Sprechstunde: Montags 13 14 Uhr und nach Vereinbarung

Mehr

Morphologische Filter

Morphologische Filter Morphologische Filter Industrielle Bildverarbeitung, Vorlesung No. 8 1 M. O. Franz 28.11.2007 1 falls nicht anders vermerkt, sind die Abbildungen entnommen aus Burger & Burge, 2005. Übersicht 1 Morphologische

Mehr

Graphische Datenverarbeitung und Bildverarbeitung

Graphische Datenverarbeitung und Bildverarbeitung Graphische Datenverarbeitung und Bildverarbeitung Hochschule Niederrhein Bildverbesserung - Filterung Graphische DV und BV, Regina Pohle,. Bildverbesserung - Filterung Einordnung in die Inhalte der Vorlesung

Mehr

Proseminar Grundlagen der Bildverarbeitung Thema: Bildverbesserung Konstantin Rastegaev

Proseminar Grundlagen der Bildverarbeitung Thema: Bildverbesserung Konstantin Rastegaev Proseminar Grundlagen der Bildverarbeitung Thema: Bildverbesserung Konstantin Rastegaev 1 Inhaltsverzeichnis: 1.Pixelbasierte Bildverbesserung...3 1.1.Monotone Grauwertabbildung...3 1.1.1.Maximierung des

Mehr

Graphische Datenverarbeitung und Bildverarbeitung

Graphische Datenverarbeitung und Bildverarbeitung Graphische Datenverarbeitung und Bildverarbeitung Hochschule Niederrhein Bildverbesserung - Filterung Graphische DV und BV Regina Pohle. Bildverbesserung - Filterung Einordnung in die Inhalte der Vorlesung

Mehr

EVC Repetitorium Blender

EVC Repetitorium Blender EVC Repetitorium Blender Michael Hecher Felix Kreuzer Institute of Computer Graphics and Algorithms Vienna University of Technology INSTITUTE OF COMPUTER GRAPHICS AND ALGORITHMS Filter Transformationen

Mehr

Bildverbesserung. Frequenz-, Punkt- und Maskenoperationen. Backfrieder-Hagenberg

Bildverbesserung. Frequenz-, Punkt- und Maskenoperationen. Backfrieder-Hagenberg Bildverbesserung Frequenz-, Punkt- und Maskenoperationen Filtern im Frequenzraum Fouriertransformation f(x)->f( ) Filter-Multiplikation F =FxH Rücktransformation F ( )->f (x) local-domain frequency-domain

Mehr

Praktikum-Meßtechnik Verfasser: Dr. H. Bergelt

Praktikum-Meßtechnik Verfasser: Dr. H. Bergelt TU Bergakademie Freiberg Praktikum-Meßtechnik Verfasser: Dr. H. Bergelt Filter in der Bildverarbeitung. Einleitung Digitale Filter gehören zu den wirkungsvollsten Methoden der Bildverarbeitung. Wir können

Mehr

Diskrete Signalverarbeitung und diskrete Systeme

Diskrete Signalverarbeitung und diskrete Systeme Diskrete Signalverarbeitung und diskrete Systeme Computer- basierte Verarbeitung von Signalen und Realisierung von Systemverhalten erfordern diskrete Signale und diskrete Systembeschreibungen. Wegen der

Mehr

Bildverbesserung (Image Enhancement)

Bildverbesserung (Image Enhancement) Prof. Dr. Wolfgang Konen, Thomas Zielke Bildverbesserung (Image Enhancement) WS07 7.1 Konen, Zielke Der Prozess der Bildverbesserung (1) Bildverbesserung wird häufig dafür eingesetzt, die für einen menschlichen

Mehr

Darstellung als Filterbank. Annahme für die Codierung: bestimmter Betrachtungsabstand, Wiedergabegröße Bestimmter Betrachtungswinkel für das Auge.

Darstellung als Filterbank. Annahme für die Codierung: bestimmter Betrachtungsabstand, Wiedergabegröße Bestimmter Betrachtungswinkel für das Auge. Darstellung als Filterbank Annahme für die Codierung: bestimmter Betrachtungsabstand, Wiedergabegröße Bestimmter Betrachtungswinkel für das Auge. - Trifft in bestimmten Maße auch auf das Original zu, da

Mehr

Bildpunkt auf dem Gitter: Pixel (picture element) (manchmal auch Pel)

Bildpunkt auf dem Gitter: Pixel (picture element) (manchmal auch Pel) 4. Digitalisierung und Bildoperationen 4.1 Digitalisierung (Sampling, Abtastung) Rasterung auf 2D-Bildmatrix mathematisch: Abb. einer 2-dim. Bildfunktion mit kontinuierlichem Definitionsbereich auf digitales

Mehr

Digitale Bildverarbeitung Einheit 9 Morphologische Operationen

Digitale Bildverarbeitung Einheit 9 Morphologische Operationen Digitale Bildverarbeitung Einheit 9 Morphologische Operationen Lehrauftrag SS 2007 Fachbereich M+I der FH-Offenburg Dr. Bernard Haasdonk Albert-Ludwigs-Universität Freiburg Ziele der Einheit Verstehen,

Mehr

Digitale Bildverarbeitung Einheit 9 Morphologische Operationen

Digitale Bildverarbeitung Einheit 9 Morphologische Operationen Digitale Bildverarbeitung Einheit 9 Morphologische Operationen Lehrauftrag WS 2007/2008 Fachbereich M+I der FH-Offenburg Dr. Bernard Haasdonk Albert-Ludwigs-Universität Freiburg Ziele der Einheit Verstehen,

Mehr

Diskretisierung und Quantisierung (Teil 1) Prof. U. Rüde - Algorithmik kontinuierlicher Systeme

Diskretisierung und Quantisierung (Teil 1) Prof. U. Rüde - Algorithmik kontinuierlicher Systeme Algorithmik kontinuierlicher Systeme Diskretisierung und Quantisierung (Teil ) Digitalisierung und Quantisierung Motivation Analoge Aufnahme von Sprache, Bildern, Digitale Speicherung durch Diskretisierung

Mehr

Hauptklausur zur Vorlesung Bildverarbeitung WS 2002/2003

Hauptklausur zur Vorlesung Bildverarbeitung WS 2002/2003 Name:........................................ Vorname:..................................... Matrikelnummer:.............................. Bitte Studiengang ankreuzen: Computervisualistik Informatik Hauptklausur

Mehr

Filterung von Bildern (2D-Filter)

Filterung von Bildern (2D-Filter) Prof. Dr. Wolfgang Konen, Thomas Zielke Filterung von Bildern (2D-Filter) SS06 6. Konen, Zielke Aktivierung Was, denken Sie, ist ein Filter in der BV? Welche Filter kennen Sie? neuer Pixelwert bilden aus

Mehr

Diskretisierung und Quantisierung (Teil 1) Prof. U. Rüde - Algorithmik kontinuierlicher Systeme

Diskretisierung und Quantisierung (Teil 1) Prof. U. Rüde - Algorithmik kontinuierlicher Systeme Algorithmik kontinuierlicher Systeme Diskretisierung und Quantisierung (Teil ) Digitalisierung und Quantisierung Motivation Analoge Aufnahme von Sprache, Bildern, Digitale Speicherung durch Diskretisierung

Mehr

Graphische Datenverarbeitung

Graphische Datenverarbeitung Graphische Datenverarbeitung Bildbearbeitung für Rasterbilder Übersicht l Neu Folien:, 28 und ab 56 l Maße zur Beurteilung von Bildern: l Histogramm l Entropie l Punktoperationen: l Lineare Veränderung

Mehr

Digitale Bildverarbeitung Einheit 9 Morphologische Operationen

Digitale Bildverarbeitung Einheit 9 Morphologische Operationen Digitale Bildverarbeitung Einheit 9 Morphologische Operationen Lehrauftrag WS 05/06 Fachbereich M+I der FH-Offenburg Dipl.-Math. Bernard Haasdonk Albert-Ludwigs-Universität Freiburg Ziele der Einheit Verstehen,

Mehr

Filter Transformationen (Blender) INSTITUTE OF COMPUTER GRAPHICS AND ALGORITHMS

Filter Transformationen (Blender) INSTITUTE OF COMPUTER GRAPHICS AND ALGORITHMS Filter Transformationen (Blender) INSTITUTE OF COMPUTER GRAPHICS AND ALGORITHMS Wozu Filter? Wozu Filter? Beispiel 3 Teil1: Filter anwenden (verschiedene Filter anwenden um diverse Effekte zu erzeugen)

Mehr

Wasserscheiden-Ansätze zur Bildsegmentierung I

Wasserscheiden-Ansätze zur Bildsegmentierung I Seminar Bildsegmentierung und Computer Vision Wasserscheiden-Ansätze zur Bildsegmentierung I Stefan Sugg 19.12.2005 Gliederung 1. Einführung 2. Morphologische Grundlagen 3. Simulation durch Überflutung

Mehr

Elementare Bildverarbeitungsoperationen

Elementare Bildverarbeitungsoperationen 1 Elementare Bildverarbeitungsoperationen - Kantenerkennung - 1 Einführung 2 Gradientenverfahren 3 Laplace-Verfahren 4 Canny-Verfahren 5 Literatur 1 Einführung 2 1 Einführung Kantenerkennung basiert auf

Mehr

Segmentierung. Vorlesung FH-Hagenberg SEM

Segmentierung. Vorlesung FH-Hagenberg SEM Segmentierung Vorlesung FH-Hagenberg SEM Segmentierung: Definition Die Pixel eines Bildes A={a i }, i=1:n, mit N der Anzahl der Pixel, werden in Teilmengen S i unterteilt. Die Teilmengen sind disjunkt

Mehr

Wie findet man interessante Punkte? Martin Herrmann, Philipp Gaschler

Wie findet man interessante Punkte? Martin Herrmann, Philipp Gaschler Wie findet man interessante Punkte? Martin Herrmann, Philipp Gaschler Wenn man sie denn gefunden hat, was kann man mit den interessanten Punkten anfangen? /Anwendungsgebiete Wenn man sie denn gefunden

Mehr

Kantenextraktion. Klassische Verfahren. Christoph Wagner. 30. Januar Vortrag zum Seminar Bildsegmentierung und Computer Vision

Kantenextraktion. Klassische Verfahren. Christoph Wagner. 30. Januar Vortrag zum Seminar Bildsegmentierung und Computer Vision Klassische Verfahren 30. Januar 2006 Vortrag zum Seminar Bildsegmentierung und Computer Vision Gliederung Grundlagen 1 Grundlagen Aufgabenstellung Anforderungen an Kantenfilter Lineare Filter 2 3 Gliederung

Mehr

Computergrafik 2: Filtern im Ortsraum

Computergrafik 2: Filtern im Ortsraum Computergrafik 2: Filtern im Ortsraum Prof. Dr. Michael Rohs, Dipl.-Inform. Sven Kratz michael.rohs@ifi.lmu.de MHCI Lab, LMU München Folien teilweise von Andreas Butz, sowie von Klaus D. Tönnies (Grundlagen

Mehr

Computergrafik 2: Filtern im Ortsraum

Computergrafik 2: Filtern im Ortsraum Computergrafik 2: Filtern im Ortsraum Prof. Dr. Michael Rohs, Dipl.-Inform. Sven Kratz michael.rohs@ifi.lmu.de MHCI Lab, LMU München Folien teilweise von Andreas Butz, sowie von Klaus D. Tönnies (Grundlagen

Mehr

Diskretisierung und Quantisierung (Teil 1) Prof. U. Rüde - Algorithmik kontinuierlicher Systeme

Diskretisierung und Quantisierung (Teil 1) Prof. U. Rüde - Algorithmik kontinuierlicher Systeme Algorithmik kontinuierlicher Systeme Diskretisierung und Quantisierung (Teil ) Digitalisierung und Quantisierung Motivation Analoge Aufnahme von Sprache, Bildern, Digitale Speicherung durch Diskretisierung

Mehr

Bildverarbeitung. Bildvorverarbeitung - Fourier-Transformation -

Bildverarbeitung. Bildvorverarbeitung - Fourier-Transformation - Bildverarbeitung Bildvorverarbeitung - Fourier-Transformation - 1 Themen Methoden Punktoperationen / Lokale Operationen / Globale Operationen Homogene / Inhomogene Operationen Lineare / Nichtlineare Operationen

Mehr

Übung zur Vorlesung 2D Grafik Wintersemester 05/06. Otmar Hilliges

Übung zur Vorlesung 2D Grafik Wintersemester 05/06. Otmar Hilliges Übung zur Vorlesung 2D Grafik Wintersemester 05/06 Übungsblatt 5 Musterlösung auf der Übungsseite. https://wiki.medien.ifi.lmu.de/pub/main/uebung2dgrafikws 0506/FFT_LSG.jar Page 2 transform() for (y =

Mehr

Bildverarbeitung. Fachschaftsrat Informatik. Professor Fuchs. Fragen TECHNISCHE UNIVERSITÄT DRESDEN. Unterteilung der Filter in Klassen

Bildverarbeitung. Fachschaftsrat Informatik. Professor Fuchs. Fragen TECHNISCHE UNIVERSITÄT DRESDEN. Unterteilung der Filter in Klassen Professor Fuchs Unterteilung der Filter in Klassen Wie erstellt man bei der Segmentierung objektumschreibende Formen? Eigenschaften der Zellkomplextopologie Was ist ein Histogramm? Wozu ist es gut? Unterschied

Mehr

1 Einleitung Einordnung des Gebietes Aufbau des Buches Philosophie Inhalte Einige Lehrbücher...

1 Einleitung Einordnung des Gebietes Aufbau des Buches Philosophie Inhalte Einige Lehrbücher... Inhaltsverzeichnis 1 Einleitung... 1 1.1 Einordnung des Gebietes... 1 1.2 Aufbau des Buches... 3 1.2.1 Philosophie... 3 1.2.2 Inhalte... 5 1.3 Einige Lehrbücher... 6 2 Allgemeine Begriffe... 11 2.1 Einige

Mehr

Computergrafik 2: Übung 6. Korrelation im Orts- und Frequenzraum, Filtern im Frequenzraum, Wiener Filter

Computergrafik 2: Übung 6. Korrelation im Orts- und Frequenzraum, Filtern im Frequenzraum, Wiener Filter Computergrafik : Übung 6 Korrelation im Orts- und Frequenzraum, Filtern im Frequenzraum, Wiener Filter Quiz Warum Filtern im Frequenzraum? Ideales Tiefpassfilter? Parameter? Eigenschaften? Butterworth-Filter?

Mehr

Elementare Bildverarbeitungsoperationen

Elementare Bildverarbeitungsoperationen 1 Elementare Bildverarbeitungsoperationen - Lineare Filterung - 1 Einführung 2 Definition der Faltung 3 Beispiele linearer Filter 4 Diskussion 5 Ausblick: nichtlineare Filterung 6 Literatur 1 Einführung

Mehr

Graphische Datenverarbeitung und Bildverarbeitung

Graphische Datenverarbeitung und Bildverarbeitung Graphische Datenverarbeitung und Bildverarbeitung Hochschule Niederrhein Fourier-Transformation Graphische DV und BV, Regina Pohle, 8. Fourier-Transformation 1 Einordnung in die Inhalte der Vorlesung Einführung

Mehr

Bildverarbeitung: Diffusion Filters. D. Schlesinger ()Bildverarbeitung: Diffusion Filters 1 / 10

Bildverarbeitung: Diffusion Filters. D. Schlesinger ()Bildverarbeitung: Diffusion Filters 1 / 10 Bildverarbeitung: Diffusion Filters D. Schlesinger ()Bildverarbeitung: Diffusion Filters 1 / 10 Diffusion Idee Motiviert durch physikalische Prozesse Ausgleich der Konzentration eines Stoffes. Konzentration

Mehr

R.Wagner, Mathematik in der Astronomie

R.Wagner, Mathematik in der Astronomie Mathematik in der Astronomie Roland Wagner Johann Radon Institute for Computational and Applied Mathematics (RICAM) Österreichische Akademie der Wissenschaften (ÖAW) Linz, Austria Linz, 20.Mai 2016 Übersicht

Mehr

Computergraphik 1 2. Teil: Bildverarbeitung. Fouriertransformation Ende FFT, Bildrestauration mit PSF Transformation, Interpolation

Computergraphik 1 2. Teil: Bildverarbeitung. Fouriertransformation Ende FFT, Bildrestauration mit PSF Transformation, Interpolation Computergraphik 1 2. Teil: Bildverarbeitung Fouriertransformation Ende FFT, Bildrestauration mit PSF Transformation, Interpolation LMU München Medieninformatik Butz/Hoppe Computergrafik 1 SS2009 1 2 Repräsentation

Mehr

Bildbearbeitung: automatische Eigenschaftserkennung versus visuelle Beurteilung

Bildbearbeitung: automatische Eigenschaftserkennung versus visuelle Beurteilung DACH-Jahrestagung 2012 in Graz - Di.3.C.2 DACH-Jahrestagung, 17. 19. Sept. 2012, Graz BAM Bundesanstalt für Materialforschung und -prüfung Bildbearbeitung: automatische Eigenschaftserkennung versus visuelle

Mehr

INTELLIGENTE DATENANALYSE IN MATLAB

INTELLIGENTE DATENANALYSE IN MATLAB INTELLIGENTE DATENANALYSE IN MATLAB Bildanalyse Literatur David A. Forsyth: Computer Vision i A Modern Approach. Mark S. Nixon und Alberto S. Aguado: Feature Extraction and Image Processing. Ulrich Schwanecke:

Mehr

Computergrafik 2: Filtern im Frequenzraum

Computergrafik 2: Filtern im Frequenzraum Computergrafik 2: Filtern im Frequenzraum Prof. Dr. Michael Rohs, Dipl.-Inform. Sven Kratz michael.rohs@ifi.lmu.de MHCI Lab, LMU München Folien teilweise von Andreas Butz, sowie von Klaus D. Tönnies (Grundlagen

Mehr

Übung: Computergrafik 1

Übung: Computergrafik 1 Prof. Dr. Andreas Butz Prof. Dr. Ing. Axel Hoppe Dipl.-Medieninf. Dominikus Baur Dipl.-Medieninf. Sebastian Boring Übung: Computergrafik 1 Fouriertransformation Organisatorisches Neue Abgabefrist für Blatt

Mehr

Übung: Computergrafik 1

Übung: Computergrafik 1 Prof. Dr. Andreas Butz Prof. Dr. Ing. Axel Hoppe Dipl.-Medieninf. Dominikus Baur Dipl.-Medieninf. Sebastian Boring Übung: Computergrafik 1 Filtern im Frequenzraum Segmentierung Organisatorisches Klausuranmeldung

Mehr

2D Graphik: Bildverbesserung 2

2D Graphik: Bildverbesserung 2 LMU München Medieninformatik Butz/Hilliges D Graphics WS5 9..5 Folie D Graphik: Bildverbesserung Vorlesung D Graphik Andreas Butz, Otmar Hilliges Freitag, 9. Dezember 5 LMU München Medieninformatik Butz/Hilliges

Mehr

Graphische Datenverarbeitung

Graphische Datenverarbeitung Graphische Datenverarbeitung Bildbearbeitung für Rasterbilder Prof. Dr. Elke Hergenröther Übersicht Maße zur Beurteilung von Bildern: Histogramm Entropie GDV: Bildbearbeitung für Rasterbilder Punktoperationen:

Mehr

Digitale Bildverarbeitung Einheit 7 Bildarithmetik

Digitale Bildverarbeitung Einheit 7 Bildarithmetik Digitale Bildverarbeitung Einheit 7 Bildarithmetik Lehrauftrag SS 2008 Fachbereich M+I der FH-Offenburg Dr. Bernard Haasdonk Albert-Ludwigs-Universität Freiburg Ziele der Einheit Einsehen, dass man mit

Mehr

Prüfung Grundlagen der digitalen Bildbearbeitung

Prüfung Grundlagen der digitalen Bildbearbeitung Prüfung Grundlagen der digitalen Bildbearbeitung 14.06.2005 1) Gegeben sind 24 Bilder, die als Eingabe als auch als Ergebnis einer der 10 Bildoperationen auftreten können. (14 Punkte) 10 folgenden Bildoperationen,

Mehr

Digitale Bildverarbeitung

Digitale Bildverarbeitung Bernd Jahne Digitale Bildverarbeitung 6., überarbeitete und erweiterte Auflage Mit 248 Abbildungen und 155 Übungsaufgaben und CD-ROM Sy Springer Inhaltsverzeichnis I Grundlagen 1 Anwendungen und Werkzeuge

Mehr

Segmentierung 1 Segmentation

Segmentierung 1 Segmentation Segmentierung Segmentation M. Thaler, TG08 tham@zhaw.ch Juni 7 Um was geht es? Bis jetzt vor allem Transformation Bild Bild Neu Transformation Bild? Feature, Aussage, etc. Bild Aussage "it's a circle"

Mehr

2D-Fourieranalyse und Farbräume

2D-Fourieranalyse und Farbräume 2D-Fourieranalyse und Farbräume Industrielle Bildverarbeitung, Vorlesung No. 12 1 M. O. Franz 09.01.2008 1 falls nicht anders vermerkt, sind die Abbildungen entnommen aus Burger & Burge, 2005. Übersicht

Mehr

Motivation. Diskretisierung. Überblick. Algorithmik III Algorithmen und Modelle für kontinuierliche Datenstrukturen. Diskretisierung und Quantisierung

Motivation. Diskretisierung. Überblick. Algorithmik III Algorithmen und Modelle für kontinuierliche Datenstrukturen. Diskretisierung und Quantisierung Algorithmik III Algorithmen und Modelle für kontinuierliche Datenstrukturen Motivation Analoge Aufnahme von Sprache, Bildern Digitale Speicherung durch Diskretisierung + Quantisierung Informationsverlust

Mehr

Computergrafik 2: Morphologische Operationen

Computergrafik 2: Morphologische Operationen Computergrafik 2: Morphologische Operationen Prof. Dr. Michael Rohs, Dipl.-Inform. Sven Kratz michael.rohs@ifi.lmu.de MHCI Lab, LMU München Folien teilweise von Andreas Butz, sowie von Klaus D. Tönnies

Mehr

Proseminar: Grundlagen Bildverarbeitung / Bildverstehen. Bildverbesserung. Sylwia Kawalerowicz

Proseminar: Grundlagen Bildverarbeitung / Bildverstehen. Bildverbesserung. Sylwia Kawalerowicz Proseminar: Grundlagen Bildverarbeitung / Bildverstehen Bildverbesserung Sylwia Kawalerowicz Betreuer: Michael Roth Abgabetermin: 8 April 2006 Inhaltverzeichnis Kapitel...3.. Die wichtigen Fragen der Bildverbesserung....3.2

Mehr

Bildverarbeitung in der Robotik

Bildverarbeitung in der Robotik Bildverarbeitung in der Robotik Thomas Röfer (Folien z.t. von Rolf Müller) Bildaufnahme Filter Kantenfindung Farbverarbeitung Landmarkenerkennung Einsatzgebiete Industrie Qualitätskontrolle Lageerkennung

Mehr

Digitale Bildverarbeitung - Rechnerübung 3

Digitale Bildverarbeitung - Rechnerübung 3 Digitale Bildverarbeitung - Rechnerübung 3 1. Khoros Zur Durchführung der Rechnerübung wird das Programmpaket KHOROS mit seiner Benutzerschnittstelle Cantata verwendet. Nach der Anmeldung am Rechner durch

Mehr

Technische Universität München. Fakultät für Informatik

Technische Universität München. Fakultät für Informatik Technische Universität München Fakultät für Informatik Forschungs- und Lehreinheit Informatik IX Thema: Filterung im Bildraum: Konvolution Proseminar: Grundlagen Bildverstehen/Bildgestaltung Jonas Zaddach

Mehr

6Si 6. Signal-und Bildfilterung sowie. H. Burkhardt, Institut für Informatik, Universität Freiburg DBV-I 1

6Si 6. Signal-und Bildfilterung sowie. H. Burkhardt, Institut für Informatik, Universität Freiburg DBV-I 1 6Si 6. Signal-und Bildfilterung sowie Korrelation H. Burkhardt, Institut für Informatik, Universität Freiburg DBV-I Bildfilterung und Korrelation Die lineare Bildfilterung wird zur Rauschunterdrückung

Mehr

Digitale Bildverarbeitung Einheit 7 Bildarithmetik

Digitale Bildverarbeitung Einheit 7 Bildarithmetik Digitale Bildverarbeitung Einheit 7 Bildarithmetik Lehrauftrag SS 2007 Fachbereich M+I der FH-Offenburg Dr. Bernard Haasdonk Albert-Ludwigs-Universität Freiburg Ziele der Einheit Einsehen, dass man mit

Mehr

Nichtmonotone Grauwertabbildung

Nichtmonotone Grauwertabbildung LMU München Medieninformatik Butz/Hilliges 2D Graphics WS2005 02.12.2005 Folie 1 Nichtmonotone Grauwertabbildung Zwei Grauwertfenster in einem Bild. g (g) 0 511 2100 g Erzeugt künstliche Kanten. Grenzen

Mehr

14. Bildbearbeitung. Bildverbesserung Compositing, Masken, Layer-Techniken Painting. Bildverbesserung

14. Bildbearbeitung. Bildverbesserung Compositing, Masken, Layer-Techniken Painting. Bildverbesserung 14. Bildbearbeitung Bildverbesserung Compositing, Masken, Layer-Techniken Painting Bildverbesserung Einfachste Methode: Steuerung der Intensitätswiedergabe durch Anwendung von Funktionen auf alle 3 Grundfarben-Intensitäten

Mehr

Mathematische Bildverarbeitung

Mathematische Bildverarbeitung Kristian Bredies Dirk Lorenz Mathematische Bildverarbeitung Abbildungen und Zusatzmaterial Kapitel 1 3 In dieser PDF-Datei befindet sich eine Auswahl der Abbildungen aus dem Buch, vor allem solche, die

Mehr

3.7 Anti-Alias-Verfahren

3.7 Anti-Alias-Verfahren 3.7 Anti-Alias-Verfahren Wir hatten Treppeneffekte bereits beim Rastern von Bildern kennengelernt. Aber auch beim Wiederholen verkleinerter Texturen können sich durch Rasterungseffekte unschöne Interferenzerscheinungen

Mehr

Aus der Vortragsreihe zum Seminar: Verarbeitung und Manipulation digitaler Bilder. Low level vision. von Romina Drees

Aus der Vortragsreihe zum Seminar: Verarbeitung und Manipulation digitaler Bilder. Low level vision. von Romina Drees Aus der Vortragsreihe zum Seminar: Verarbeitung und Manipulation digitaler Bilder Low level vision von Romina Drees Low level vision: Einleitung Seite 1 1. Einleitung Unter 'Low level vision' versteht

Mehr

Wasserscheiden-Ansätze zur Bildsegmentierung II

Wasserscheiden-Ansätze zur Bildsegmentierung II Wasserscheiden-Ansätze zur Bildsegmentierung II Johannes Renfordt renfordt@mathematik.uni-ulm.de Seminar Bildsegmentierung und Computer Vision im Wintersemester 2005/2006 Universität Ulm Fakultät für Mathematik

Mehr

Computergraphik I. Das Abtasttheorem. Problem bei räumlicher Abtastung: Oliver Deussen Abtasttheorem 1

Computergraphik I. Das Abtasttheorem. Problem bei räumlicher Abtastung: Oliver Deussen Abtasttheorem 1 Das Abtasttheorem Problem bei räumlicher Abtastung: Oliver Deussen Abtasttheorem 1 Problem bei zeitlicher Abtastung: Oliver Deussen Abtasttheorem 2 Darstellung auf Monitor Was geschieht eigentlich, wenn

Mehr

2D Graphik: FFT und Anwendungen der Fouriertransformation. Vorlesung 2D Graphik Andreas Butz, Otmar Hilliges Freitag, 25.

2D Graphik: FFT und Anwendungen der Fouriertransformation. Vorlesung 2D Graphik Andreas Butz, Otmar Hilliges Freitag, 25. LMU München Medieninformatik Butz/Hilliges D Graphics WS005 5..005 Folie D Graphik: FFT und Anwendungen der Fouriertransformation Vorlesung D Graphik Andreas Butz, Otmar Hilliges Freitag, 5. ovember 005

Mehr

- Sei r(x,y) Eingangsbild, dass nur Rauschen (Quantenrauschen) enthält.

- Sei r(x,y) Eingangsbild, dass nur Rauschen (Quantenrauschen) enthält. Eingang System Ausgang - Sei r(x,y) Eingangsbild, dass nur (Quantenrauschen) enthält. - Das Bild enthalte keinerlei Information, d.h. das Spektrum ist weiß und es gibt keine Korrelationen zwischen den

Mehr

Suche nach korrespondierenden Pixeln

Suche nach korrespondierenden Pixeln Suche nach korrespondierenden Pixeln Seminar Algorithmen zur Erzeugung von Panoramabildern Philip Mildner, Gliederung 1. Motivation 2. Anforderungen 3. Moravec Detektor 4. Harris Detektor 5. Scale Invariant

Mehr

Signale und Systeme. Martin Werner

Signale und Systeme. Martin Werner Martin Werner Signale und Systeme Lehr- und Arbeitsbuch mit MATLAB -Übungen und Lösungen 3., vollständig überarbeitete und erweiterte Auflage Mit 256 Abbildungen, 48 Tabellen und zahlreichen Beispielen,

Mehr

Fragensammlung Digitale Bildverarbeitung

Fragensammlung Digitale Bildverarbeitung .. Fragensammlung Digitale Bildverarbeitung Diese Fragensammlung enthält eine Sammlung aus Musterfragen, Fragen, die in der Vorlesung gestellt wurden und Originalklausurfragen der Klausuren bis. Die Originalklausurfragen

Mehr

Bildverarbeitung: Fourier-Transformation. D. Schlesinger () BV: Fourier-Transformation 1 / 16

Bildverarbeitung: Fourier-Transformation. D. Schlesinger () BV: Fourier-Transformation 1 / 16 Bildverarbeitung: Fourier-Transformation D. Schlesinger () BV: Fourier-Transformation 1 / 16 Allgemeines Bilder sind keine Vektoren. Bilder sind Funktionen x : D C (Menge der Pixel in die Menge der Farbwerte).

Mehr

Digitale Bildverarbeitung (DBV)

Digitale Bildverarbeitung (DBV) Digitale Bildverarbeitung (DBV) Prof. Dr. Ing. Heinz Jürgen Przybilla Labor für Photogrammetrie Email: heinz juergen.przybilla@hs bochum.de Tel. 0234 32 10517 Sprechstunde: Montags 13 14 Uhr und nach Vereinbarung

Mehr

Einführung in die Signalverarbeitung

Einführung in die Signalverarbeitung Einführung in die Signalverarbeitung Phonetik und Sprachverarbeitung, 2. Fachsemester, Block Sprachtechnologie I Florian Schiel Institut für Phonetik und Sprachverarbeitung, LMU München Signalverarbeitung

Mehr

Perlen der Informatik I Wintersemester 2012 Aufgabenblatt 6

Perlen der Informatik I Wintersemester 2012 Aufgabenblatt 6 Technische Universität München WS 2012 Institut für Informatik Prof. Dr. H.-J. Bungartz Prof. Dr. T. Huckle Prof. Dr. M. Bader Kristof Unterweger Perlen der Informatik I Wintersemester 2012 Aufgabenblatt

Mehr

Graphische Datenverarbeitung und Bildverarbeitung

Graphische Datenverarbeitung und Bildverarbeitung Graphische Datenverarbeitung und Bildverarbeitung Hochschule Niederrhein Morphologische Operatoren Graphische DV und BV, Regina Pohle, 5. Morphologische Operatoren Einordnung in die Inhalte der Vorlesung

Mehr

Computergrafik 2: Filtern im Frequenzraum

Computergrafik 2: Filtern im Frequenzraum Computergrafik 2: Filtern im Frequenzraum Prof. Dr. Michael Rohs, Dipl.-Inform. Sven Kratz michael.rohs@ifi.lmu.de MHCI Lab, LMU München Folien teilweise von Andreas Butz, sowie von Klaus D. Tönnies (Grundlagen

Mehr

Übung: Computergrafik 1

Übung: Computergrafik 1 Prof. Dr. Andreas Butz Prof. Dr. Ing. Axel Hoppe Dipl.-Medieninf. Dominikus Baur Dipl.-Medieninf. Sebastian Boring Übung: Computergrafik 1 Konvolutionen Morphologische Operationen Hough-Transformation

Mehr

Bildentrauschung und Kantenextrakion

Bildentrauschung und Kantenextrakion Seminar: Bayessche Ansätze in der Bildanalyse Fakultät für Mathematik und Wirtschaftswissenschaften 29.05.06 Outline 1 Wiederholung Bildmodell Bayes 2 Bildentrauschung mit Masken Masken Beispiele Fazit

Mehr

Prof. J. Zhang Universität Hamburg. AB Technische Aspekte Multimodaler Systeme. 20. Januar 2004

Prof. J. Zhang Universität Hamburg. AB Technische Aspekte Multimodaler Systeme. 20. Januar 2004 zhang@informatik.uni-hamburg.de Universität Hamburg AB Technische Aspekte Multimodaler Systeme zhang@informatik.uni-hamburg.de Inhaltsverzeichnis 6. Bildverarbeitung..........................415 Aufbau

Mehr

Morphologische Bildverarbeitung II

Morphologische Bildverarbeitung II FAKULTÄT FÜR MATHEMATIK UNIVERSITÄT ULM ABT. STOCHASTIK ABT. ANGEWANDTE INFORMATIONSVERARBEITUNG Seminar Simulation und Bildanalyse mit Java Morphologische Bildverarbeitung II BETREUER: JOHANNES MAYER

Mehr

Digitale Bildverarbeitung und Bildanalyse - PDEs und Variationsmethoden

Digitale Bildverarbeitung und Bildanalyse - PDEs und Variationsmethoden Digitale Bildverarbeitung und Bildanalyse - PDEs und Variationsmethoden Michael Pippig Fakultät für Mathematik Technische Universität Chemnitz 6. Mai 2008 Michael Pippig Digitale Bildverarbeitung und Bildanalyse

Mehr

Grundlagen der Bildverarbeitung

Grundlagen der Bildverarbeitung Grundlagen der Bildverarbeitung Inhaltsverzeichnis Vorwort 9 Kapitel 1 Einführung 13 1.1 Anwendungen der digitalen Bildverarbeitung 16 1.2 Algorithmische Verarbeitung von Bildinformation 17 1.3 Zu diesem

Mehr

Segmentierung. Vorlesung FH-Hagenberg SEM. Digitale Bildverarbeitung in der Medizin. Schwellenwerte

Segmentierung. Vorlesung FH-Hagenberg SEM. Digitale Bildverarbeitung in der Medizin. Schwellenwerte Segmentierung g Vorlesung FH-Hagenberg SEM Schwellenwerte Globaler Schwellenwert Lokale Schwellenwerte Mehrfache Schwellenwerte Semi-Schwellenwerte Optimale Schwellenwerte 1 Optimal Threshold optimal zu

Mehr