Mathematik. Mathematische Leitidee: Daten, Häufigkeit und Wahrscheinlichkeit. Aufgabe Nr./Jahr: 16/2010. Bezug zum Lehrplan NRW:

Größe: px
Ab Seite anzeigen:

Download "Mathematik. Mathematische Leitidee: Daten, Häufigkeit und Wahrscheinlichkeit. Aufgabe Nr./Jahr: 16/2010. Bezug zum Lehrplan NRW:"

Transkript

1 Mathematik Mathematische Leitidee: Daten, Häufigkeit und Wahrscheinlichkeit Aufgabe Nr./Jahr: 16/2010 Bezug zum Lehrplan NRW: Prozessbezogener Bereich (Kap. 2.1) Prozessbezogene Kompetenzen (Kap. 3.1) Inhaltsbezogener Bereich und Schwerpunkt (Kap. 2.2) Inhaltsbezogene Kompetenz (Kap. 3.2) Argumentieren Die Schülerinnen und Schüler stellen Vermutungen über mathematische Zusammenhänge oder Auffälligkeiten an (vermuten) Sie testen Vermutungen anhand von Beispielen und hinterfragen, ob ihre Vermutungen, Lösungen, Aussagen, etc. zutreffend sind (überprüfen) Daten, Häufigkeiten, Wahrscheinlichkeiten: Wahrscheinlichkeiten Die Schülerinnen und Schüler bestimmen die Anzahl verschiedener Möglichkeiten im Rahmen einfacher kombinatorischer Aufgabenstellungen. Sie beschreiben die Wahrscheinlichkeit von einfachen Ereignissen (sicher, wahrscheinlich, unmöglich, immer, häufig, selten, nie)

2 Didaktische und methodische Hinweise Voraussetzungen Voraussetzungen: Aufgabentext Die Schülerinnen und Schüler müssen über grundlegende Erfahrungen mit einfachen Zufallsexperimenten verfügen. über grundlegende Erfahrungen zur Bestimmung verschiedener Möglichkeiten bei einfachen kombinatorischen Aufgabenstellungen verfügen. die Formulierungen sicher", möglich, aber nicht sicher" und unmöglich" zur Beschreibung der Eintrittswahrscheinlichkeit von Ereignissen kennen und über ein mathematisches Verständnis dieser Formulierungen verfügen. wissen, was unter einer zweistelligen Zahl zu verstehen ist. in der Lage sein, sich gedanklich vorzustellen, welche zweistelligen Zahlen sich mit den Ziffern 1, 2, 3 und 4 legen lassen. (notwendige Voraussetzung für eine optimale Lösung der Teilaufgaben) Teilaufgabe a und c Die Schülerinnen und Schüler müssen die Relationen ist größer als und ist kleiner als kennen. wissen, dass eine und"-aussage nur dann wahr" ist, wenn beide Teilaussagen wahr" sind. Teilaufgabe b Die Schülerinnen und Schüler müssen über Grundvorstellungen der Division verfügen. die Bedeutung der Formulierung ohne Rest durch 10 teilbar" kennen und wissen, dass nur glatte Zehnerzahlen ohne Rest durch 10 teilbar sind. Teilaufgabe d Die Schülerinnen und Schüler müssen wissen, dass mit Ziffern Zahlen gebildet werden können (hier: zweistellige Zahlen). die Bedeutung der Formulierung Die Ziffern der Zahl sind gleich." kennen. Mögliche Lösungswege: Nachfolgend werden jeweils zwei mögliche Lösungswege für jede Teilaufgabe beschrieben. Lösungsweg 1 ist jeweils als optimal, bezogen auf die jeweilige Teilaufgabe, anzusehen. Dieser Lösungsweg setzt jeweils die Fähigkeit voraus, sich gedanklich vorzustellen, welche zweistelligen Zahlen sich mit den Ziffern 1, 2, 3 und 4 legen lassen. Bei Lösungsweg 2 notieren die Schülerinnen und Schüler zunächst alle 12 möglichen zweistelligen Zahlen und treffen auf dieser Grundlage aufbauend die Entscheidung, welche Beschreibung der Eintrittswahrscheinlichkeit zutrifft. Teilaufgabe a Lösungsweg 1: Die Schülerinnen und Schüler ermitteln die kleinstmögliche und die größtmögliche zweistellige Zahl: 12 und 43. Da die kleinstmögliche Zahl größer als 11 und die größtmögliche Zahl kleiner als 44 ist, ist es sicher", dass alle möglichen zweistelligen Zahlen größer als 11 und kleiner als 44 sind. Lösungsweg 2: Die Schülerinnen und Schüler notieren zunächst alle 12 möglichen zweistelligen Zahlen und stellen dann fest, dass alle gefundenen Zahlen größer als 11 und kleiner als 44 sind. Teilaufgabe b Lösungsweg 1: Die Schülerinnen und Schüler wissen, dass nur glatte Zehnerzahlen ohne Rest durch 10 teilbar sind. Da mit den gegebenen 4 Ziffern keine glatte Zehnerzahl gebildet werden kann, stellen sie fest, dass es demnach unmöglich" ist, eine Zahl zu legen, die man ohne Rest durch 10 teilen kann. Lösungsweg 2:

3 Die Schülerinnen und Schüler stellen fest, dass es bei den 12 gefundenen Zahlen keine glatte Zehnerzahl gibt und dass es demnach unmöglich" ist, eine Zahl zu legen, die man ohne Rest durch 10 teilen kann. Teilaufgabe c Lösungsweg 1: Die Schülerinnen und Schüler stellen zunächst fest, dass es eine zweistellige Zahl gibt, für die die Aussage Die Zahl ist größer als 14" zutrifft. Z. B. kann mit den Ziffern 2 und 3 die Zahl 23 gebildet werden und diese ist größer als 14. (Teilaussage möglich ). Da aber z. B. mit den Ziffern 1 und 2 die Zahl 12 gebildet werden kann, die kleiner als 14 ist, ergibt sich, dass die Aussage, "Die Zahl ist größer als 14" nicht immer zutrifft. (Teilaussage aber nicht sicher ) Lösungsweg 2: Die Schülerinnen und Schüler stellen dann fest, dass es bei den 12 gefundenen Zahlen gibt, die größer als 14 sind, aber auch solche, die gleich oder kleiner als 14 sind. Teilaufgabe d Lösungsweg 1: Die Schülerinnen und Schüler erkennen, dass bei Durchführung des Zufallsexperimentes Theo nimmt zwei Karten und legt damit eine zweistellige Zahl." keine Zahlen mit gleichen Ziffern gelegt werden können, da jede Ziffer nur einmal vorhanden ist. Folglich ist es unmöglich, dass die Ziffern der Zahl gleich sind. Lösungsweg 2: Die Schülerinnen und Schüler stellen fest, dass es bei den 12 gefundenen Zahlen keine Zahl gibt, bei der die beiden Ziffern gleich sind, und dass es infolgedessen unmöglich ist, dass die Ziffern der Zahl gleich sind. Mögliche Falschlösungen: (1) Beim vorliegenden Experiment zieht Theo zwei Karten und legt damit eine zweistellige Zahl. Es handelt sich also um ein Zufallsexperiment der Kategorie Geordnete Stichprobe ohne Zurücklegen. Wenn Schülerinnen und Schüler nicht über hinreichende Erfahrungen zu Zufallsexperimenten verfügen, können sie diese Formulierung missverstehen: indem sie meinen, dass Theo zwei Karten nacheinander zieht, wobei er die gezogene Karte wieder zurücklegt und sich die gezogene Ziffer notiert, oder aber indem sie die Anweisung in der Weise deuten, dass Theo mit den 4 Ziffern zweistellige Zahlen bildet und insofern zweistellige Zahlen mit gleichen Ziffern möglich sind. In beiden Fällen würden sie also von einem Geordnete Stichprobe mit Zurücklegen ausgehen. Ein solches Missverständnis würde bei den Teilaufgaben a und d unweigerlich zu einer Falschlösung führen. (2) In seltenen Fällen könnte es vorkommen, dass Schülerinnen und Schüler meinen, dass die Ziffern 1, 2, 3 und 4 nur beispielhaft aufgelistet worden sind und die Ziffern 0, 5, 6, 7, 8 und 9 auch noch zum Ziehen zur Verfügung stehen. (3) Wenn die Schülerinnen und Schüler zunächst versuchen, alle möglichen zweistelligen Zahlen zu notieren, ist es möglich, dass sie aufgrund unsystematischer Vorgehensweise eine Zahl oder auch mehrere Zahlen vergessen. Vergessen sie z. B. die kleinstmögliche oder die größtmögliche Zahl, führt dies zu einer Falschlösung bei Teilaufgabe a. Ursachen für weitere Falschlösungen sind mit nicht vorhandenen Voraussetzungen zu erklären. (s. o.)

4 Anregungen für die Unterrichtspraxis: (1) Erfahrungen mit einfachen Zufallsexperimenten sammeln Es ist notwendig, die Schülerinnen und Schüler im Vorfeld mit einfachen Zufallsexperimenten vertraut zu machen. Beispiele für einfache Zufallsexperimente sind: eine Münze werfen (mögliche Ergebnisse/Ereignisse: Wappen, Zahl) mit einem Würfel würfeln (mögliche Ergebnisse/Ereignisse: 1, 2, 3, 4, 5, 6) ein Los, eine Kugel, eine Ziffernkarte zufällig ( blind ) ziehen zwei Ziffernkarten ziehen (gleichzeitig (bzw. nacheinander ohne Zurücklegen) oder nacheinander mit Zurücklegen) ziehen und mit den gezogenen Ziffern eine zweistellige Zahl bilden zwei Ziffernkarten ziehen (ohne Zurücklegen (auch: gleichzeitig) oder mit Zurücklegen (nacheinander)) ziehen und die gezogenen Ziffern addieren mit zwei Würfeln würfeln und die gewürfelten Augenzahlen addieren oder multiplizieren Bei diesen Experimenten hängt das Einzelergebnis vom Zufall ab, d. h. es kann nicht mit Sicherheit angegeben werden, welches Einzelergebnis sich einstellen wird. Mit steigender Anzahl der Versuchsdurchführungen nähert sich die tatsächliche Häufigkeit des Ergebnisses der theoretischen Eintrittswahrscheinlichkeit an ( Gesetz der großen Zahlen ). In diesem Zusammenhang können die Schülerinnen und Schüler die verschiedenen Grundbegriffe bzw. Formulierungen zur Beschreibung der Eintrittswahrscheinlichkeit von Ergebnissen kennen lernen: wahrscheinlich(er) Beispiel: In einer Kiste liegen fünf Ziffernkarten mit der Ziffer 3 und eine Ziffernkarte mit der Ziffer 4. Ziehe eine Karte und lege sie danach wieder zurück. Führe das Experiment 100mal durch. Halte die Ergebnisse deiner Ziehungen in einer Strichliste fest: 3 4 sicher Dieses Experiment können die Schülerinnen und Schüler in Partnerarbeit durchführen. Wichtig ist hierbei, dass sie die Vorschrift, die gezogene Ziffernkarte wieder zurückzulegen, genau einhalten. Anhand von Strichlisten finden sie selbst heraus, dass viel häufiger eine 3 als eine 4 gezogen wird. Befinden sich in der Kiste mehr Ziffernkarten mit der Ziffer 3 als mit der Ziffer 4, dann ist es also wahrscheinlicher, die Ziffer 3 als die Ziffer 4 zu ziehen. Beispiel: In einer Kiste liegen fünf Ziffernkarten mit der Ziffer 3. Befinden sich in der Kiste nur Ziffernkarten mit der Ziffer 3, dann ist es sicher, dass die Ziffer 3 gezogen wird.

5 unmöglich Beispiel: In einer Kiste liegen fünf Ziffernkarten mit der Ziffer 3. Befinden sich in der Kiste nur Ziffernkarten mit der Ziffer 3, dann ist es z. B. unmöglich, dass die Ziffer 4 gezogen wird. möglich, aber nicht sicher Beispiel: In einer Kiste liegen fünf Ziffernkarten mit der Ziffer 3 und eine Ziffernkarte mit der Ziffer 4. Befinden sich in der Kiste Ziffernkarten mit den Ziffer 3 und 4, dann ist es möglich eine Ziffernkarte mit der Ziffer 4 zu ziehen, es ist aber nicht sicher, da auch eine Ziffernkarte mit der Ziffer 3 gezogen werden kann. (2) Erfahrungen zur Bestimmung der Anzahl verschiedener Möglichkeiten bei einfachen kombinatorischen Aufgabenstellungen sammeln Um alle Möglichkeiten notieren zu können, welche zweistelligen Zahlen Theo gelegt haben kann, müssen im Unterricht Übungen zur Bestimmung der Anzahl aller Möglichkeiten bei einfachen kombinatorischen Aufgabenstellungen der Kategorie Geordnete Stichprobe ohne Zurücklegen vorangegangen sein. Beispiele: Geordnete Stichprobe ohne Zurücklegen (x aus x): (1) Peter (P), Lisa (L), Kiarash (K) machen ein Wettrennen. Schreibe alle Möglichkeiten auf, in welcher Reihenfolge sie durchs Ziel laufen können. (Es gibt = 6 Möglichkeiten) (2) 4 Ziffernkarten liegen auf dem Tisch (2, 5, 6, 9). Tim legt mit den 4 Ziffernkarten eine vierstellige Zahl. Schreibe alle Möglichkeiten auf, welche vierstellige Zahl sie gelegt haben kann. (Es gibt = 24 Möglichkeiten) (3) Peter hat sich ein vierstelliges Zahlenschloss für sein Fahrrad gekauft. Er verrät seinem Vater, dass die Ziffern 4, 5, 7 und 8 in seiner Zahl vorkommen. Schreibe alle möglichen Zahlenkombinationen mit den vier Ziffern auf. (Es gibt =24 Möglichkeiten) Geordnete Stichprobe ohne Zurücklegen (x aus y, wobei x<y): (4) Ahmed hat vier Buchstabenkarten zur Auswahl vor sich liegen: e, r, t, u. Er darf sich damit einem Geheimcode (Password) mit drei Buchstaben für das Mathematikprogramm Der Mathepirat ausdenken. Schreibe alle Möglichkeiten auf, welchen Geheimcode er sich ausgedacht haben kann. (Es gibt = 24 Möglichkeiten) (5) 4 Ziffernkarten liegen auf dem Tisch (1, 4, 6, 8). Sabine zieht zwei Ziffernkarten und legt damit eine zweistellige Zahl. Schreibe alle Möglichkeiten auf, welche zweistellige Zahl sie gelegt haben kann. (Es gibt 4 3 = 12 Möglichkeiten) Um wirklich alle Kombinationsmöglichkeiten finden zu können, ist es wichtig, Strategien kennen zu lernen, wie sich alle Möglichkeiten systematisch aufschreiben lassen (z. B. Baumdiagramm).

6 Baumdiagramm zu Beispiel (5): 1_ 4_ 6_ 8_ (3) Die Grundbegriffe bzw. Formulierungen sicher, möglich, aber nicht sicher und unmöglich einzelnen Aussagen zuordnen Der Schwierigkeitsgrad der Aufgabenstellung hängt vom Zufallsexperiment ab: relativ leicht: (vgl. 10/2010) Lina zieht eine Karte. Kreuze jeweils an. sicher möglich, aber nicht unmöglich Lina hat die Zahl 7 gezogen. Linas Zahl ist größer als 2 und kleiner als 10. Linas Zahl ist kleiner als 8. Lina hat die Zahl 1 gezogen. Linas Zahl ist größer als 1. Lina hat die Zahl 10 gezogen. mittel: (vgl. 16/2010) (vgl. auch 14/2010) Ali zieht zwei Karten und legt damit eine zweistellige Zahl. Kreuze jeweils an.

7 Ali hat eine gerade Zahl gelegt. Ali hat die Zahl 75 gelegt. Ali hat eine Zahl kleiner als 57 gelegt. Ali hat eine Zahl gelegt, die ohne Rest durch 2 teilbar ist. Ali hat eine ungerade Zahl gelegt. Ali hat eine Zahl zwischen 57 und 79 gelegt. sicher möglich, aber nicht unmöglich schwieriger: Susa zieht zwei Zahlenkarten und addiert die beiden Zahlen. Kreuze jeweils an. Die Summe ist ungerade. Die Summe ist größer als 13. Die Summe ist gerade. Die Summe ist größer als 7 und kleiner als 37. Die Summe ist 16. Die Summe ist 30. sicher möglich, aber nicht unmöglich Variationen der Aufgabenstellung (4) Eine einzelne Aussage, die einen der Grundbegriffe bzw. eine der Formulierungen sicher, möglich, aber nicht sicher und unmöglich enthält, als wahr oder falsch einschätzen Der Schwierigkeitsgrad der Aufgabenstellung hängt wiederum vom Zufallsexperiment ab.

8 relativ leicht: Karin zieht eine Karte. Kreuze die richtigen Aussagen an. Es ist sicher, dass Karin die Zahl 4 zieht. Es ist unmöglich, dass Karins Zahl größer als 6 ist. Es ist möglich, aber nicht sicher, dass Karin eine gerade Zahl zieht. Es ist unmöglich, dass Karin Zahl 2 zieht. Es ist sicher, dass Karin eine Zahl zwischen 5 und 8 zieht. mittel: Thilo zieht zwei Karten und legt damit eine dreistellige Zahl. Kreuze die richtigen Aussagen an. Es ist sicher, dass Thilo ungerade Zahl legt. Es ist möglich, aber nicht sicher, dass Thilo eine Zahl größer als 970 legt. Es ist unmöglich, dass Thilo eine Zahl zwischen 200 und 300 legt. Es ist unmöglich, dass Thilo die Zahl 279 legt. Es ist sicher, dass Thilo eine Zahl größer als 136 legt. schwieriger: Anna zieht zwei Karten und subtrahiert die kleinere von der größeren Zahl. Kreuze die richtigen Aussagen an. Es ist sicher, dass das Ergebnis gerade ist. Es ist möglich, aber nicht sicher, dass das Ergebnis 2 ist. Es ist unmöglich, dass das Ergebnis größer als 24 ist.

9 Es ist sicher, dass das Ergebnis kleiner als 5 ist. Es ist möglich, aber nicht sicher, dass das Ergebnis 13 ist. (5) Unter mehreren vorgegebenen Ergebnissen zu einem Zufallsexperiment das in Bezug auf einen der Grundbegriffe bzw. auf eine der Formulierungen sicher, möglich, aber nicht sicher und unmöglich zutreffende Ergebnis herausfinden Beispiel 1: (vgl. VERA 2010, DHW 14) Hans nimmt mit geschlossen Augen drei Kugeln in die Hand. Welche Ergebnisse sind möglich, aber nicht sicher? Kreuze an. Eine Kugel ist schwarz und zwei Kugeln sind weiß. Drei Kugeln sind schwarz. Drei Kugeln sind weiß. Zwei Kugeln sind schwarz und eine Kugel ist weiß. Beispiel 2: (vgl. VERA 2010, DHW 13) Tim würfelt einmal mit drei normalen Spielwürfeln und multipliziert die Augenzahlen. Welches Ergebnis ist unmöglich? Kreuze an

10 Beispiel 3: Timo legt mit den Karten zwei zweistellige Zahlen und addiert diese. Welches Ergebnis ist unmöglich? Kreuze an

Lernaufgaben Mathematik

Lernaufgaben Mathematik Ministerium für Schule und Weiterbildung des Landes Nordrhein - Westfalen Lernaufgaben Mathematik Grundschule Daten, Häufigkeiten, Wahrscheinlichkeiten Mögliche Ereignisse eines Zufallsexperimentes bestimmen

Mehr

Stochastik (Laplace-Formel)

Stochastik (Laplace-Formel) Stochastik (Laplace-Formel) Übungen Spielwürfel oder Münzen werden ideal (oder fair) genannt, wenn jedes Einzelereignis mit gleicher Wahrscheinlichkeit erwartet werden kann. 1. Ein idealer Spielwürfel

Mehr

Aufgabe 1 (mdb632540): Murat hat zehn Spielkarten verdeckt auf den Tisch gelegt: Buben, Könige, Asse, Zehn.

Aufgabe 1 (mdb632540): Murat hat zehn Spielkarten verdeckt auf den Tisch gelegt: Buben, Könige, Asse, Zehn. Wahrscheinlichkeiten Aufgabe 1 (mdb632540): Murat hat zehn Spielkarten verdeckt auf den Tisch gelegt: Buben, Könige, Asse, Zehn. Bestimme die Wahrscheinlichkeit, dass Anna a) ein Ass, b) einen Buben, c)

Mehr

Daten und Zufall. eine gar nicht sooo neue Leitidee im Bildungsplan Mathematik Grundschule. SINUS September 2012 Benedikt Rocksien 1

Daten und Zufall. eine gar nicht sooo neue Leitidee im Bildungsplan Mathematik Grundschule. SINUS September 2012 Benedikt Rocksien 1 Daten und Zufall eine gar nicht sooo neue Leitidee im Bildungsplan Mathematik Grundschule SINUS September 2012 Benedikt Rocksien 1 Mathematikunterricht in der Grundschule Allgemeine mathematische Kompetenzen

Mehr

Kurs 2 Stochastik EBBR Vollzeit (1 von 2)

Kurs 2 Stochastik EBBR Vollzeit (1 von 2) Erwachsenenschule Bremen Abteilung I: Sekundarstufe Doventorscontrescarpe 172 A 281 Bremen Kurs 2 Stochastik EBBR Vollzeit (1 von 2) Name: Ich 1. 2. 3. 4.. 6. 7. So schätze ich meinen Lernzuwachs ein.

Mehr

1 Vorbemerkungen 1. 2 Zufallsexperimente - grundlegende Begriffe und Eigenschaften 2. 3 Wahrscheinlichkeitsaxiome 4. 4 Laplace-Experimente 6

1 Vorbemerkungen 1. 2 Zufallsexperimente - grundlegende Begriffe und Eigenschaften 2. 3 Wahrscheinlichkeitsaxiome 4. 4 Laplace-Experimente 6 Inhaltsverzeichnis 1 Vorbemerkungen 1 2 Zufallsexperimente - grundlegende Begriffe und Eigenschaften 2 3 Wahrscheinlichkeitsaxiome 4 4 Laplace-Experimente 6 5 Hilfsmittel aus der Kombinatorik 7 1 Vorbemerkungen

Mehr

Daten und Zufall. eine gar nicht sooo neue Leitidee im Bildungsplan Mathematik Grundschule. SINUS September 2012 Benedikt Rocksien 1

Daten und Zufall. eine gar nicht sooo neue Leitidee im Bildungsplan Mathematik Grundschule. SINUS September 2012 Benedikt Rocksien 1 Daten und Zufall eine gar nicht sooo neue Leitidee im Bildungsplan Mathematik Grundschule SINUS September 2012 Benedikt Rocksien 1 Es hängt an der Wand, macht Ticktack, und wenn es runterfällt, geht die

Mehr

Wahrscheinlichkeitsrechnung

Wahrscheinlichkeitsrechnung Abiturvorbereitung Wahrscheinlichkeitsrechnung S. 1 von 9 Wahrscheinlichkeitsrechnung Kombinatorik Formeln für Wahrscheinlichkeiten Bedingte Wahrscheinlichkeiten Zusammenfassung wichtiger Begriffe Übungsaufgaben

Mehr

2.2 Ereignisse und deren Wahrscheinlichkeit

2.2 Ereignisse und deren Wahrscheinlichkeit 2.2 Ereignisse und deren Wahrscheinlichkeit Literatur: [Papula Bd., Kap. II.2 und II.], [Benning, Kap. ], [Bronstein et al., Kap. 1.2.1] Def 1 [Benning] Ein Zufallsexperiment ist ein beliebig oft wiederholbarer,

Mehr

Es werden 120 Schüler befragt, ob sie ein Handy besitzen. Das Ergebnis der Umfrage lautet: Von 120 Schülern besitzen 99 ein Handy.

Es werden 120 Schüler befragt, ob sie ein Handy besitzen. Das Ergebnis der Umfrage lautet: Von 120 Schülern besitzen 99 ein Handy. R. Brinkmann http://brinkmann-du.de Seite 08..2009 Von der relativen Häufigkeit zur Wahrscheinlichkeit Es werden 20 Schüler befragt, ob sie ein Handy besitzen. Das Ergebnis der Umfrage lautet: Von 20 Schülern

Mehr

Wählt man aus n Mengen mit z 1 bzw. z 2,..., bzw. z n Elementen nacheinander aus jeder Menge jeweils ein Element aus,

Wählt man aus n Mengen mit z 1 bzw. z 2,..., bzw. z n Elementen nacheinander aus jeder Menge jeweils ein Element aus, V. Stochastik ================================================================== 5.1 Zählprinzip Wählt man aus n Mengen mit z 1 bzw. z 2,..., bzw. z n Elementen nacheinander aus jeder Menge jeweils ein

Mehr

Beurteilende Statistik

Beurteilende Statistik Beurteilende Statistik Wahrscheinlichkeitsrechnung und Beurteilende Statistik was ist der Unterschied zwischen den beiden Bereichen? In der Wahrscheinlichkeitstheorie werden aus gegebenen Wahrscheinlichkeiten

Mehr

Zaubern im Mathematikunterricht

Zaubern im Mathematikunterricht Zaubern im Mathematikunterricht 0011 0010 1010 1101 0001 0100 1011 Die Mathematik als Fachgebiet ist so ernst, dass man keine Gelegenheit versäumen sollte, dieses Fachgebiet unterhaltsamer zu gestalten.

Mehr

Kontrolle. Themenübersicht

Kontrolle. Themenübersicht Themenübersicht Arbeitsblatt 1 Statistik Arbeitsblatt 2 Erheben und Auswerten von Daten Arbeitsblatt 3 Zufallsexperimente Arbeitsblatt 4 mehrstufige Zufallsexperimente Inhalt, Schwerpunkte des Themas Urliste,

Mehr

SS 2016 Torsten Schreiber

SS 2016 Torsten Schreiber SS 01 Torsten Schreiber 15 Ein lineares Gleichungssystem besteht immer aus einer Anzahl an Variablen und Gleichungen. Die Zahlen vor den Variablen werden in der sogenannten zusammen gefasst und die Zahlen

Mehr

Klasse 4: Zufall und Wahrscheinlichkeit. Was ist ein gerechtes Spiel? Amrei Naujoks und Anna Vorpahl

Klasse 4: Zufall und Wahrscheinlichkeit. Was ist ein gerechtes Spiel? Amrei Naujoks und Anna Vorpahl Klasse 4: Zufall und Wahrscheinlichkeit Was ist ein gerechtes Spiel? mrei Naujoks und nna Vorpahl 1. Woche Wochenplanarbeit von bis Deutsch Mathe Sachunterricht Sucht euch aus den 5 Stationen mindestens

Mehr

3 Berechnung von Wahrscheinlichkeiten bei mehrstufigen Zufallsversuchen

3 Berechnung von Wahrscheinlichkeiten bei mehrstufigen Zufallsversuchen Berechnung von Wahrscheinlichkeiten bei mehrstufigen Zufallsversuchen Berechnung von Wahrscheinlichkeiten bei mehrstufigen Zufallsversuchen.1 Pfadregeln.1.1 Pfadmultiplikationsregel Eine faire Münze und

Mehr

Primitiv? Primzahlen und Primfaktoren schätzen lernen. Dr. Heinrich Schneider, Wien. M 1 Grundlegende Zahlenmengen wiederhole dein Wissen!

Primitiv? Primzahlen und Primfaktoren schätzen lernen. Dr. Heinrich Schneider, Wien. M 1 Grundlegende Zahlenmengen wiederhole dein Wissen! S 1 Primitiv? Primzahlen und Primfaktoren schätzen lernen Dr. Heinrich Schneider, Wien M 1 Grundlegende Zahlenmengen wiederhole dein Wissen! Die natürlichen Zahlen n 1, 2, 3, 4, 5, heißen natürliche Zahlen.

Mehr

Stochastik - Kapitel 2

Stochastik - Kapitel 2 Aufgaben ab Seite 7 2. Häufigkeiten, Wahrscheinlichkeiten und Laplace-Experimente 2.1 Die absolute und die relative Häufigkeit 1. Beispiel: Ich werfe mal einen Würfel und möchte herausfinden, wie oft jeweils

Mehr

Kombinatorik mit dem Dominospiel (Klasse 4)

Kombinatorik mit dem Dominospiel (Klasse 4) Kombinatorik mit dem Dominospiel (Klasse 4) Alexandra Thümmler Einführung: Kombinatorik ist die Kunst des geschickten Zählens. In den Bildungsstandards werden kombinatorische Aufgaben inhaltlich dem Bereich

Mehr

15 Wahrscheinlichkeitsrechnung und Statistik

15 Wahrscheinlichkeitsrechnung und Statistik 5 Wahrscheinlichkeitsrechnung und Statistik Alles, was lediglich wahrscheinlich ist, ist wahrscheinlich falsch. ( Descartes ) Trau keiner Statistik, die du nicht selbst gefälscht hast. ( Churchill zugeschrieben

Mehr

Ein Würfel wird geworfen. Einsatz: Fr Gewinn: Fr. 6.--

Ein Würfel wird geworfen. Einsatz: Fr Gewinn: Fr. 6.-- 1 Ein Würfel wird geworfen. : Fr. 1.-- : Fr. 6.-- Der Spieler hat gewonnen falls eine 6 erscheint. 2 Zwei Würfel werden geworfen. : Fr. 1.-- : Fr. 7.-- Der Spieler hat gewonnen falls die Augensumme gleich

Mehr

Glücksrad oder Lostrommel? Wahrscheinlichkeiten im Baumdiagramm darstellen und berechnen

Glücksrad oder Lostrommel? Wahrscheinlichkeiten im Baumdiagramm darstellen und berechnen IV Daten und Zufall Beitrag 13 Baumdiagramme kennenlernen 1 von 26 Glücksrad oder Lostrommel? Wahrscheinlichkeiten im Baumdiagramm darstellen und berechnen Nach einer Idee von Tanja Mayr, Nördlingen Illustriert

Mehr

Wahrscheinlichkeitsrechnung für die Mittelstufe

Wahrscheinlichkeitsrechnung für die Mittelstufe Wahrscheinlichkeitsrechnung für die Mittelstufe Wir beginnen mit einem Beispiel, dem Münzwurf. Es wird eine faire Münze geworfen mit den Seiten K (für Kopf) und Z (für Zahl). Fair heißt, dass jede Seite

Mehr

Sachrechnen/Größen WS 14/ Kombinatorik und Wahrscheinlichkeit in der Schule

Sachrechnen/Größen WS 14/ Kombinatorik und Wahrscheinlichkeit in der Schule 3.2 Kombinatorik und Wahrscheinlichkeit in der Schule Stochastik in der Schule? am Ende von Sekundarstufe I und in Sekundarstufe II oft bei Schülern wie Lehrern unbeliebt zu geringes inhaltliches Verständnis

Mehr

Kombinatorik. 1. Beispiel: Wie viele fünfstellige Zahlen lassen sich aus den fünf Ziffern in M = {1;2;3;4;5} erstellen?

Kombinatorik. 1. Beispiel: Wie viele fünfstellige Zahlen lassen sich aus den fünf Ziffern in M = {1;2;3;4;5} erstellen? 1 Kombinatorik Aus einer Grundgesamtheit mit n Elementen wird eine Stichprobe k Elementen entnommen. Dabei kann die Stichprobe geordnet oder ungeordnet sein. "Geordnet" bedeutet, dass die Reihenfolge der

Mehr

Entdeckungen mit Stochastik in der Grundschule

Entdeckungen mit Stochastik in der Grundschule Gliederung Entdeckungen mit in der Grundschule 2. Wie? Unterrichtsmethodik 3. Warum? Gründe für Volker Ulm, Universität Augsburg im Lehrplan: 2.4.2: - Aufgaben zur z. B. verschieden farbige Häuserfronten

Mehr

will die Bildungsstandards umsetzen.

will die Bildungsstandards umsetzen. Aufgabenstellungen für die Klassen 1 bis 4 1 will die Bildungsstandards umsetzen. Grafik entnommen aus Bildungsstandards für die Grundschule: Mathematik konkret, Cornelsen Scriptor 2009 2 1 Raum und Form

Mehr

Wahrscheinlichkeitsrechnung

Wahrscheinlichkeitsrechnung Wahrscheinlichkeitsrechnung Was du wissen musst: Die Begriffe Zufallsexperiment, Ereignisse, Gegenereignis, Zufallsvariable und Wahrscheinlichkeit sind dir geläufig. Du kannst mehrstufige Zufallsversuche

Mehr

Computersimulation des Qualitätstests

Computersimulation des Qualitätstests .1 Computersimulation des Qualitätstests In diesem Kapitel erreichen wir ein erstes entscheidendes Ziel: Wir ermitteln näherungsweise die Wahrscheinlichkeiten und für die Fehler 1. und. Art und zwar ohne

Mehr

11 Wahrscheinlichkeitsrechnung

11 Wahrscheinlichkeitsrechnung 1 Kap 11 Wahrscheinlichkeitsrechnung 11 Wahrscheinlichkeitsrechnung 11.1 Zufallsexperimente Beispiele 1. 2. 3.... Definition: Vorgänge bei denen man das Ergebnis noch nicht kennt, heissen Zufallsexperimente.

Mehr

Laplace-Formel. Übungsaufgaben

Laplace-Formel. Übungsaufgaben Laplace-Formel Übungsaufgaben Spielwürfel oder Münzen werden ideal (oder fair) genannt, wenn jedes Einzelereignis mit gleicher Wahrscheinlichkeit erwartet werden kann. 1. Ein idealer Spielwürfel wird einmal

Mehr

An die Zweige schreibt man jeweils die Wahrscheinlichkeit, die für dieses Ereignis gilt.

An die Zweige schreibt man jeweils die Wahrscheinlichkeit, die für dieses Ereignis gilt. . Mehrstufige Zufallsversuche und Baumdiagramme Entsprechend der Anmerkung in. wollen wir nun auf der Basis von bekannten Wahr- scheinlichkeiten weitere Schlüsse ziehen. Dabei gehen wir immer von einem

Mehr

Bereiche der Stochastik

Bereiche der Stochastik Statistik Wahrscheinlichkeit Kombinatorik Bereiche der Stochastik Kombinatorik Hans Freudenthal: Einfache Kombinatorik ist das Rückgrat elementarer Wahrscheinlichkeitsrechnung. Die Lehrkraft bereitet sich

Mehr

Lösungen zu den. Beispielaufgaben für die Klasse 6. zum Themenbereich

Lösungen zu den. Beispielaufgaben für die Klasse 6. zum Themenbereich Lösungen zu den Beispielaufgaben für die Klasse zum Themenbereich Statistik und Wahrscheinlichkeitsrechnung erstellt von den Kolleginnen und Kollegen der Aufgabenentwicklergruppe für Vergleichsarbeiten

Mehr

Abiturvorbereitung Stochastik. neue friedländer gesamtschule Klasse 12 GB Holger Wuschke B.Sc.

Abiturvorbereitung Stochastik. neue friedländer gesamtschule Klasse 12 GB Holger Wuschke B.Sc. Abiturvorbereitung Stochastik neue friedländer gesamtschule Klasse 12 GB 21.02.2014 Holger Wuschke B.Sc. Glücksspiel auf der Buchmesse Leipzig, 2013 Organisatorisches 1. Begriffe in der Stochastik (1)

Mehr

Kapitel 6. Kapitel 6 Mehrstufige Zufallsexperimente

Kapitel 6. Kapitel 6 Mehrstufige Zufallsexperimente Mehrstufige Zufallsexperimente Inhalt 6.1 6.1 Mehrstufige Experimente 6.2 6.2 Bedingte Wahrscheinlichkeiten Seite 2 6.1 Mehrstufige Experimente Grundvorstellung: Viele Viele Experimente werden der der

Mehr

Baue mit dem Material so, dass andere dein Bauwerk nach einem Foto nachbauen können.

Baue mit dem Material so, dass andere dein Bauwerk nach einem Foto nachbauen können. Aufgabe 2.3 Idee und Aufgabenentwurf Rainer Meiers, Nicolaus-Voltz-Grundschule, Losheim am See, Klassenstufe 2 (Januar 2013) Baue mit dem Material so, dass andere dein Bauwerk nach einem Foto nachbauen

Mehr

Wahrscheinlichkeitsräume (Teschl/Teschl 2, Kap. 26)

Wahrscheinlichkeitsräume (Teschl/Teschl 2, Kap. 26) Wahrscheinlichkeitsräume (Teschl/Teschl 2, Kap. 26 Ein Wahrscheinlichkeitsraum (Ω, P ist eine Menge Ω (Menge aller möglichen Ausgänge eines Zufallsexperiments: Ergebnismenge versehen mit einer Abbildung

Mehr

KI(D)S Test. Code:.. (2 Buchstaben aus dem Vornamen + 2 Buchstaben des Familiennamens + 2 Ziffern des Geburtstags): Schule: Schulstufe:..

KI(D)S Test. Code:.. (2 Buchstaben aus dem Vornamen + 2 Buchstaben des Familiennamens + 2 Ziffern des Geburtstags): Schule: Schulstufe:.. KI(D)S Test Code:.. (2 Buchstaben aus dem Vornamen + 2 Buchstaben des Familiennamens + 2 Ziffern des Geburtstags): Schule: Schulstufe:.. Bist Du Mädchen Bub Geboren am:. Wie alt bist Du?.. Testdurchführung

Mehr

Zählprinzip und Baumdiagramm (Aufgaben)

Zählprinzip und Baumdiagramm (Aufgaben) Gymnasium Pegnitz Grundwissen JS 5 17. Juni 2007 Zählprinzip und Baumdiagramm (Aufgaben) 1.,,Nur einmal zweimal - Ein Würfelspiel für 2 oder mehr Spieler Jeder Spieler würfelt so lange, bis eine Zahl zum

Mehr

Kompetenztest. Testheft

Kompetenztest. Testheft Kompetenztest Testheft Klassenstufe 8 Gymnasium Schuljahr 2009/2010 Fach Mathematik ALLGEMEINE ANWEISUNGEN In diesem Testheft findest du eine Reihe von Aufgaben und Fragen zur Mathematik. Einige Aufgaben

Mehr

Aufgabenheft Mathematik

Aufgabenheft Mathematik Vergleichsarbeiten in 3. Grundschulklassen Aufgabenheft Mathematik Name: Klasse: Vergleichsarbeiten in der Grundschule VERA 2007 VERA 2007 Herausgeber: Projekt VERA (Vergleichsarbeiten in 3. Grundschulklassen)

Mehr

ISBN Zahlen 0 100

ISBN Zahlen 0 100 ISBN 978-3-906784-43-4 Zahlen 0 100 Zahlen Zahlen Eine Karte ziehen und die Zahl darstellen: laut lesen, mit Strichen / Punkten zeichnen, Zehnermaterial, Spielgeld, Zahlenstrahl, Zählrahmen, Zwanziger-

Mehr

BILDUNGSSTANDARDS PRIMARBEREICH MATHEMATIK

BILDUNGSSTANDARDS PRIMARBEREICH MATHEMATIK BILDUNGSSTANDARDS PRIMARBEREICH MATHEMATIK 1. Allgemeine mathematische Kompetenzen Primarbereich Allgemeine mathematische Kompetenzen zeigen sich in der lebendigen Auseinandersetzung mit Mathematik und

Mehr

Box. Mathematik 4. Begleitheft mit CD. Üben und Entdecken. Lernstandskontrollen mit Lösungen (auf CD) Kompetenzraster.

Box. Mathematik 4. Begleitheft mit CD. Üben und Entdecken. Lernstandskontrollen mit Lösungen (auf CD) Kompetenzraster. Box Begleitheft mit CD 73 5 Mathematik 4 Üben und Entdecken Lernstandskontrollen mit Lösungen (auf CD) Kompetenzraster Lernbegleiter Inhalt des Begleitheftes zur -Box Mathematik 4 Üben und Entdecken Üben

Mehr

Maximilian Gartner, Walther Unterleitner, Manfred Piok. Einstieg in die Wahrscheinlichkeitsrechnung

Maximilian Gartner, Walther Unterleitner, Manfred Piok. Einstieg in die Wahrscheinlichkeitsrechnung Zufallsexperimente Den Zufall erforschen Maximilian Gartner, Walther Unterleitner, Manfred Piok Thema Stoffzusammenhang Klassenstufe Einstieg in die Wahrscheinlichkeitsrechnung Daten und Zufall 1. Biennium

Mehr

Schuleigener Arbeitsplan im Fach Mathematik 4. Schuljahr Unterrichtswerk: Welt der Zahl Schroedel Stand:

Schuleigener Arbeitsplan im Fach Mathematik 4. Schuljahr Unterrichtswerk: Welt der Zahl Schroedel Stand: Schuleigener Arbeitsplan im Fach Mathematik 4. Schuljahr Unterrichtswerk: Welt der Zahl Schroedel Stand: 10.11.2010 Inhalte des Schulbuches Wiederholung und Vertiefung Seiten Prozessbezogene Kompetenzen

Mehr

Problemlösen Kombinationen - Wahrscheinlichkeit

Problemlösen Kombinationen - Wahrscheinlichkeit Problemlösen Kombinationen - Wahrscheinlichkeit Zusammengestellt aus dem Mathebuch der Bezirksschule Brugg Anzahl möglicher Anordnungen bei 3 Elementen Wie viele mögliche Anordnungen lassen sich aus drei

Mehr

Basistext - Wahrscheinlichkeitsrechnung

Basistext - Wahrscheinlichkeitsrechnung Basistext - Wahrscheinlichkeitsrechnung Die Wahrscheinlichkeitsrechnung beschäftigt sich mit Vorgängen, die in ihrem Ausgang unbestimmt sind. Sie versucht mögliche Ergebnisse der Vorgänge zu quantifizieren.

Mehr

Ein Ehepaar wünscht sich drei Kinder. Wie groß ist die Wahrscheinlichkeit, dass

Ein Ehepaar wünscht sich drei Kinder. Wie groß ist die Wahrscheinlichkeit, dass Ein Ehepaar wünscht sich drei Kinder. Wie groß ist die Wahrscheinlichkeit, dass a) alle Kinder Mädchen sind? b) das zweite Kind ein Junge ist? c) das älteste Kind ein Junge, das zweite Kind ein Mädchen

Mehr

Begleitbuch für Mathematik Oberstufe für die Abiturprüfung 2017 Baden-Württemberg - berufliche Gymnasien. Stochastik

Begleitbuch für Mathematik Oberstufe für die Abiturprüfung 2017 Baden-Württemberg - berufliche Gymnasien. Stochastik mathe-aufgaben.com Begleitbuch für Mathematik Oberstufe für die Abiturprüfung 2017 Baden-Württemberg - berufliche Gymnasien Stochastik Dipl.-Math. Alexander Schwarz E-Mail: aschwarz@mathe-aufgaben.com

Mehr

Tag der Mathematik 2016

Tag der Mathematik 2016 Tag der Mathematik 2016 Mathematischer Wettbewerb, Klassenstufe 7 8 30. April 2016, 9.00 12.00 Uhr Aufgabe 1 (a) Auf wie vielen Nullen endet die Zahl 1 2 3 9 10? (b) Auf wie vielen Nullen endet die Zahl

Mehr

Statistik, Wahrscheinlichkeits- und Prozentrechnung Seite 1

Statistik, Wahrscheinlichkeits- und Prozentrechnung Seite 1 Seite 1 1 W ü r f e l e x p e r i m e n t 1 (Partnerarbeit) a) Würfele mehrmals mit einigen Spielwürfeln und notiere in einer Strichliste, welche Augenzahl wie oft gefallen ist. Wie oft wurde welche Augenzahl

Mehr

Zufallsprozesse, Ereignisse und Wahrscheinlichkeiten die Grundlagen

Zufallsprozesse, Ereignisse und Wahrscheinlichkeiten die Grundlagen Zufallsprozesse, Ereignisse und Wahrscheinlichkeiten die Grundlagen Wichtige Tatsachen und Formeln zur Vorlesung Mathematische Grundlagen für das Physikstudium 3 Franz Embacher http://homepage.univie.ac.at/franz.embacher/

Mehr

Variationen Permutationen Kombinationen

Variationen Permutationen Kombinationen Variationen Permutationen Kombinationen Mit diesen Rechenregeln lässt sich die Wahrscheinlichkeit bestimmter Ereigniskombinationen von gleichwahrscheinlichen Elementarereignissen ermitteln, und erleichtert

Mehr

Wahrscheinlichkeitsrechnung

Wahrscheinlichkeitsrechnung Teil V Wahrscheinlichkeitsrechnung Inhaltsangabe 6 Einführung in die Wahrscheinlichkeitsrechnung 125 6.1 Kombinatorik......................... 125 6.2 Grundbegri e......................... 129 6.3 Wahrscheinlichkeiten.....................

Mehr

Orientierungsarbeit in der Jahrgangsstufe 4. Schuljahr 2015/2016. Mathematik

Orientierungsarbeit in der Jahrgangsstufe 4. Schuljahr 2015/2016. Mathematik Ministerium für Bildung, Jugend und Sport Orientierungsarbeit in der Jahrgangsstufe 4 Schuljahr 2015/2016 Mathematik Name:... Klasse:... Seite 1 von 8 Orientierungsarbeit Mathematik/Jahrgangsstufe 4/2015/2016

Mehr

Bestimmen der Wahrscheinlichkeiten mithilfe von Zählstrategien

Bestimmen der Wahrscheinlichkeiten mithilfe von Zählstrategien R. Brinmann http://brinmann-du.de Seite 4.0.2007 Bestimmen der Wahrscheinlicheiten mithilfe von Zählstrategien Die bisherigen Aufgaben zur Wahrscheinlicheitsrechnung onnten im Wesentlichen mit übersichtlichen

Mehr

Kinga Szűcs

Kinga Szűcs Kinga Szűcs 25.10.2011 Die Schülerinnen und Schüler werten graphische Darstellungen und Tabellen von statistischen Erhebungen aus, planen statistische Erhebungen, sammeln systematisch Daten, erfassen sie

Mehr

Daten und Zufall in der Grundschule. Daten Titel und Zufall in der

Daten und Zufall in der Grundschule. Daten Titel und Zufall in der Fortbildung zum Thema Daten und Zufall in der Grundschule Daten Titel und Zufall in der Sabine Kern / Erhard ltendorf 1 Schwerpunkte Zufall Schwerpunkte des Workshops - Standards der Grundschule und wie

Mehr

1. Grundlagen der Wahrscheinlichkeitsrechnung

1. Grundlagen der Wahrscheinlichkeitsrechnung 1. Grundlagen der Wahrscheinlichkeitsrechnung Ereignisse und Wahrscheinlichkeiten Zufälliger Versuch: Vorgang, der (zumindest gedanklich) beliebig oft wiederholbar ist und dessen Ausgang innerhalb einer

Mehr

Wirtschaftsstatistik I [E1]

Wirtschaftsstatistik I [E1] 040571-1 WMS: Wirtschaftsstatistik 1 :: WiSe07/08 Wirtschaftsstatistik I [E1] Schwab, Harald 1 harald.schwab@univie.ac.at http://homepage.univie.ac.at/harald.schwab October 7, 2007 1 Sprechstunde: MO 17-18h

Mehr

Kompetenzen von Grundschülern bei der Bearbeitung von Aufgaben zur Wahrscheinlichkeitsrechnung

Kompetenzen von Grundschülern bei der Bearbeitung von Aufgaben zur Wahrscheinlichkeitsrechnung Kompetenzen von Grundschülern bei der Bearbeitung von Aufgaben zur Wahrscheinlichkeitsrechnung BERND NEUBERT, GIEßEN Zusammenfassung: Im Artikel wird dargestellt, welche Kompetenzen Grundschüler verschiedener

Mehr

Vorlesungsübersicht WS 2015/16

Vorlesungsübersicht WS 2015/16 Vorlesungsübersicht WS 2015/16 Di 10-12 Audimax Einführen in mathematische Grundvorstellungen 27.10. V1 Mathematik in der Grundschule 03.11. V2 Kinder mit Lernschwierigkeiten 10.11. V3 Mathematisch begabte

Mehr

Wahrscheinlichkeitsrechnung 1. Was verstehen Sie unter einem Zufallsexperiment? Nennen Sie die wichtigsten Eigenschaften.

Wahrscheinlichkeitsrechnung 1. Was verstehen Sie unter einem Zufallsexperiment? Nennen Sie die wichtigsten Eigenschaften. Wahrscheinlichkeitsrechnung 1. Was verstehen Sie unter einem Zufallsexperiment? Nennen Sie die wichtigsten Eigenschaften. 2. Geben Sie vier Zufallsexperimente mit ihrer jeweiligen an. 3. In einer Obstkiste

Mehr

Arbeitsplan mit Implementierung des Lehrplans Mathematik Klasse 3

Arbeitsplan mit Implementierung des Lehrplans Mathematik Klasse 3 Arbeitsplan mit Implementierung des Lehrplans Mathematik Klasse 3 Prozessbezogene Inhaltsbezogene Kapitel 1: Wiederholung und Vertiefung Seite 4 17 (ca. 1. 4. Woche) Rechnen im Zahlenraum bis 100 festigen;

Mehr

Begriffsbildung Wahrscheinlichkeit

Begriffsbildung Wahrscheinlichkeit Gymnasium Neureut Dienstag, 15.05.2012 Arbeitskreis Anwendungsorientierter Mathematikunterricht Rolf Reimer, Staatliches Seminar für Didaktik und Lehrerbildung (Gymnasien) Karlsruhe Begriffsbildung Wahrscheinlichkeit

Mehr

Mathematik im 2. Schuljahr. Kompetenzen und Inhalte

Mathematik im 2. Schuljahr. Kompetenzen und Inhalte Mathematik im 2. Schuljahr Kompetenzen und Inhalte Prozessbezogene Kompetenzen Problemlösen / kreativ sein Die S. bearbeiten Problemstellungen. Modellieren Die S. wenden Mathematik auf konkrete Aufgabenstellungen

Mehr

Diese Aufgaben sind ohne Taschenrechner in maximal 45 Minuten zu lösen. Die Formelsammlung und deine Zeichengeräte darfst du benutzen.

Diese Aufgaben sind ohne Taschenrechner in maximal 45 Minuten zu lösen. Die Formelsammlung und deine Zeichengeräte darfst du benutzen. Liebe Schülerin, lieber Schüler! Die Abschlussarbeit besteht aus zwei Heften. Heft 1 Kurzformaufgaben Diese Aufgaben sind ohne Taschenrechner in maximal 45 Minuten zu lösen. Die Formelsammlung und deine

Mehr

Rechendreiecke Ich erkenne einfache Formen aus der Umwelt, beschreibe und benenne sie: Rechteck, Dreieck, Kreis, Quadrat

Rechendreiecke Ich erkenne einfache Formen aus der Umwelt, beschreibe und benenne sie: Rechteck, Dreieck, Kreis, Quadrat Mathematik 1. Klasse EBENE UND RAUM Gegenstandsmengen zählen, vergleichen und Ich orientiere und positioniere mich im Raum (links, rechts, oben, unten) und bewege mich zielorientiert. Zahlenraum 20/30

Mehr

Übungsaufgaben Wahrscheinlichkeit

Übungsaufgaben Wahrscheinlichkeit Übungsaufgaben Wahrscheinlichkeit Aufgabe 1 (mdb500405): In einer Urne befinden sich gelbe (g), rote (r), blaue (b) und weiße (w) Kugel (s. Bild). Ohne Hinsehen sollen aus der Urne in einem Zug Kugeln

Mehr

Orientierung im erweiterten Zahlenraum

Orientierung im erweiterten Zahlenraum Orientierung im erweiterten Zahlenraum Thema: Zahlen gliedern, lesen, vergleichen und schreiben Medien: Zahlkarten für E, Z, H (T); Systemblöcke (E-Würfel, Z-Stangen, H-Platten, T-Würfel) Klassenstufe:

Mehr

Unterrichtsmaterialien in digitaler und in gedruckter Form. Auszug aus:

Unterrichtsmaterialien in digitaler und in gedruckter Form. Auszug aus: Unterrichtsmaterialien in digitaler und in gedruckter Form Auszug aus: Relative Häufigkeiten als Schätzwerte für Wahrscheinlichkeiten - Simulationen mit dem GTR Das komplette Material finden Sie hier:

Mehr

Neue Wege Klasse 6 Schulcurriculum EGW

Neue Wege Klasse 6 Schulcurriculum EGW Neue Wege Klasse 6 Schulcurriculum EGW Inhalt Neue Wege 6 Kapitel 1 Ganze Zahlen 1.1 Negative Zahlen beschreiben Situationen und Vorgänge 1.2 Anordnung auf der Zahlengeraden 1.3 Addieren und Subtrahieren

Mehr

Was macht mathematische Kompetenz aus?

Was macht mathematische Kompetenz aus? Was macht mathematische Kompetenz aus? ^ Kompetenzstrukturmodell Zahlen und Operationen Raum und Form Größen und Messen Daten und Zufall Stand 02/2013 Probleme lösen mathematische Kenntnisse, Fertigkeiten

Mehr

Unterrichtsmaterialien in digitaler und in gedruckter Form. Auszug aus: Daten, Häufigkeit und Wahrscheinlichkeit

Unterrichtsmaterialien in digitaler und in gedruckter Form. Auszug aus: Daten, Häufigkeit und Wahrscheinlichkeit Unterrichtsmaterialien in digitaler und in gedruckter Form Auszug aus: Daten, Häufigkeit und Wahrscheinlichkeit Das komplette Material finden Sie hier: School-Scout.de Die Autorin Karin Behring studierte

Mehr

Erwartungswert. c Roolfs

Erwartungswert. c Roolfs Erwartungswert 2e b a 4e Der Sektor a des Glücksrads bringt einen Gewinn von 2e, der Sektor b das Doppelte. Um den fairen Einsatz zu ermitteln, ist der durchschnittlich zu erwartende Gewinn pro Spiel zu

Mehr

Es wird aus einer Urne mit N Kugeln gezogen, die mit den Zahlen 1,..., N durchnummiert sind. (N n)! n! = N! (N n)!n! =

Es wird aus einer Urne mit N Kugeln gezogen, die mit den Zahlen 1,..., N durchnummiert sind. (N n)! n! = N! (N n)!n! = Übungsblatt Höhere Mathematik - Weihenstephan SoSe 00 Michael Höhle, Hannes Petermeier, Cornelia Eder Übung: 5.6.00 Die Aufgaben -3 werden in der Übung am Donnerstag (5.6. besprochen. Die Aufgaben -6 sollen

Mehr

Kompetenzen und Aufgabenbeispiele Mathematik

Kompetenzen und Aufgabenbeispiele Mathematik Institut für Bildungsevaluation Assoziiertes Institut der Universität Zürich Kompetenzen und Aufgabenbeispiele Mathematik Informationen für Lehrpersonen und Eltern 1. Wie sind die Ergebnisse dargestellt?

Mehr

Stochastik Pfadregeln Erwartungswert einer Zufallsvariablen Vierfeldertafel Gymnasium

Stochastik Pfadregeln Erwartungswert einer Zufallsvariablen Vierfeldertafel Gymnasium Stochastik Pfadregeln Erwartungswert einer Zufallsvariablen Vierfeldertafel Gymnasium Alexander Schwarz www.mathe-aufgaben.com Oktober 205 Aufgabe : In einer Urne befinden sich drei gelbe, eine rote und

Mehr

Didaktik der Stochastik

Didaktik der Stochastik Didaktik der Stochastik. Didaktik der Stochastik Didaktik der Stochastik. Inhaltsverzeichnis Didaktik der Stochastik Ziele und Inhalte Beschreibende Statistik Wahrscheinlichkeitsrechnung Beurteilende Statistik

Mehr

Stochastik Lehr-und Aufgabenbuch. Skriptum zum Vorbereitungskurs

Stochastik Lehr-und Aufgabenbuch. Skriptum zum Vorbereitungskurs Stochastik Lehr-und Aufgabenbuch Skriptum zum Vorbereitungskurs 1 WICHTIGER HINWEIS: Ich bitte den Eigentümer dieses Skriptes, weder das gesamte Skript noch Teilauszüge daraus zu kopieren, einzuscannen

Mehr

A Grundlegende Begriffe

A Grundlegende Begriffe Grundlegende egriffe 1 Zufallsexperimente und Ereignisse Ein Zufallsexperiment besteht aus der wiederholten Durchführung eines Zufallsversuchs. ei einem Zufallsversuch können verschiedene Ergebnisse (chreibweise:

Mehr

Interviewleitfaden. Lernumgebung IRI-Zahlen

Interviewleitfaden. Lernumgebung IRI-Zahlen Lernumgebung IRI-Zahlen Zeitpunkt: Zeitlicher Umfang: Material: ab Ende 3. Schuljahr bis Ende 4. Schuljahr 30 40 Minuten Arbeitsblätter (siehe Anhang), Karteikarten, Stifte Mathematischer Hintergrund Das

Mehr

7. Mathematik Olympiade 3. Stufe (Bezirksolympiade) Klasse 9 Saison 1967/1968 Aufgaben und Lösungen

7. Mathematik Olympiade 3. Stufe (Bezirksolympiade) Klasse 9 Saison 1967/1968 Aufgaben und Lösungen 7. Mathematik Olympiade. Stufe (Bezirksolympiade) Klasse 9 Saison 967/968 Aufgaben und Lösungen OJM 7. Mathematik-Olympiade. Stufe (Bezirksolympiade) Klasse 9 Aufgaben Hinweis: Der Lösungsweg mit Begründungen

Mehr

Kapitel 4: Stochastik in der Grundschule

Kapitel 4: Stochastik in der Grundschule Kapitel 4: Stochastik in der Grundschule 0. Warum Stochastik in der Schule? Gründe ergeben sich aus dem Auftrag zur Allgemeinbildung: Das Lernen von Stochastik kann wesentlich zum besseren Verständnis

Mehr

Aufgaben für die Klassenstufen 11/12

Aufgaben für die Klassenstufen 11/12 Aufgaben für die Klassenstufen 11/12 mit Lösungen Einzelwettbewerb Gruppenwettbewerb Speedwettbewerb Aufgaben OE1, OE2, OE3 Aufgaben OG1, OG2, OG3, OG4 Aufgaben OS1, OS2, OS3, OS4, OS5, OS6, OS7, OS8 Aufgabe

Mehr

Strichlisten bei Laplace-Experimenten zum Paradox der ungleichmäßigen Verteilung

Strichlisten bei Laplace-Experimenten zum Paradox der ungleichmäßigen Verteilung Strichlisten bei Laplace-Experimenten zum Paradox der ungleichmäßigen Verteilung DIETMAR PFEIFER INSTITUT FÜR MATHEMATIK Die Problemstellung aus: Mathebaum 4, S. 114 2 In der Klasse 6b werfen 28 Schülerinnen

Mehr

Wahrscheinlichkeit Klasse 8 7

Wahrscheinlichkeit Klasse 8 7 7 Wahrscheinlichkeit Klasse 8 Ereignisse Seite 8 a) Ω {Herz 7; Herz 8; Herz 9; Herz 0; Herz Unter; Herz Ober; Herz König; Herz Ass; Eichel 7; Eichel 8; Eichel 9; Eichel 0; Eichel Unter; Eichel Ober; Eichel

Mehr

Terme, Rechengesetze, Gleichungen

Terme, Rechengesetze, Gleichungen Terme, Rechengesetze, Gleichungen Ein Junge kauft sich eine CD zu 15 und eine DVD zu 23. Er bezahlt mit einem 50 - Schein. Wie viel erhält er zurück? Schüler notieren mögliche Rechenwege: (1) 15 + 23 =

Mehr

Schulinternes Curriculum Mathematik 5 / 6

Schulinternes Curriculum Mathematik 5 / 6 Die dargestellte Reihenfolge der Unterrichtsinhalte ist eine von mehreren sinnvollen Möglichkeiten und daher nicht bindend. Lambacher Schweizer 5 Inhaltsbezogene Kompetenzen Prozessbezogene Kompetenzen

Mehr

GS Rethen. Themenzuordnung. Zu erwerbende Kompetenzen am Ende von Jahrgang 4: Die Schülerinnen und Schüler

GS Rethen. Themenzuordnung. Zu erwerbende Kompetenzen am Ende von Jahrgang 4: Die Schülerinnen und Schüler GS Rethen Kompetenzorientierung Fach: Mathematik Zu erwerbende Kompetenzen am Ende von Jahrgang 4: Die Schülerinnen und Schüler - verwenden eingeführte mathematische Fachbegriffe sachgerecht. - erläutern

Mehr

Schulinterner Lehrplan Mathematik Klasse 6

Schulinterner Lehrplan Mathematik Klasse 6 Gesamtschule Gescher Schulinterner Lehrplan Mathematik Klasse 6 Als Lehrwerk wird das Buch Mathematik real 6, Differenzierende Ausgabe Nordrhein-Westfalen benutzt. Auf den Seiten Noch fit? können die Schülerinnen

Mehr

Laplace und Gleichverteilung

Laplace und Gleichverteilung Laplace und Gleichverteilung Aufgaben Aufgabe 1 An einem Computer, dessen Tastatur die 26 Tasten für die kleinen Buchstaben (a,b,c... z) hat, sitzt ein Nutzer (User) und tippt zufällige auf den Tasten

Mehr

Unterrichtsmaterialien in digitaler und in gedruckter Form. Auszug aus: Kopiervorlagen Stochastik (2) - Wahrscheinlichkeitsrechnung

Unterrichtsmaterialien in digitaler und in gedruckter Form. Auszug aus: Kopiervorlagen Stochastik (2) - Wahrscheinlichkeitsrechnung Unterrichtsmaterialien in digitaler und in gedruckter Form Auszug aus: Kopiervorlagen Stochastik (2) - Wahrscheinlichkeitsrechnung Das komplette Material finden Sie hier: School-Scout.de Blatt 26: Pfadregeln

Mehr

Stochastik Klasse 10 Zufallszahlen

Stochastik Klasse 10 Zufallszahlen Thema Grit Moschkau Stochastik Klasse 10 Zufallszahlen Sek I Sek II ClassPad TI-Nspire CAS. Schlagworte: Urnenmodell, Histogramm, absolute und relative Häufigkeit, Zufallsexperiment, Wahrscheinlichkeit,

Mehr

Aufgabe 2.1. Ergebnis, Ergebnismenge, Ereignis

Aufgabe 2.1. Ergebnis, Ergebnismenge, Ereignis Aufgabe 2. Ergebnis, Ergebnismenge, Ereignis Ergebnis und Ergebnismenge Vorgänge mit zufälligem Ergebnis, oft Zufallsexperiment genannt Bei der Beschreibung der Ergebnisse wird stets ein bestimmtes Merkmal

Mehr

Wir setzen daher den Anteil der weiblichen Nichtraucher gleich dem Anteil der Nichtraucher und berechnen X:

Wir setzen daher den Anteil der weiblichen Nichtraucher gleich dem Anteil der Nichtraucher und berechnen X: Übungsblatt 1 Beispiel 1. Von den 50 Teilnehmern eines Kurses sind 35 weiblich und 10 Raucher/innen. Wie viele nicht-rauchende Teilnehmerinnen sind zu erwarten, wenn die Merkmale Geschlecht und Rauchverhalten

Mehr

KAPITEL 2. Kombinatorik

KAPITEL 2. Kombinatorik KAPITEL 2 Kombinatori In der Kombinatori geht es um das Abzählen von Kombinationen 21 Geburtstagsproblem Beispiel 211 (Geburtstagsproblem In einem Raum befinden sich 200 Studenten Wie groß ist die Wahrscheinlicheit,

Mehr