55. Mathematik-Olympiade 4. Stufe (Bundesrunde) Olympiadeklasse 10 Lösungen 1. Tag

Größe: px
Ab Seite anzeigen:

Download "55. Mathematik-Olympiade 4. Stufe (Bundesrunde) Olympiadeklasse 10 Lösungen 1. Tag"

Transkript

1 55. Mathematik-Olympiade 4. Stufe (Bundesrunde) Olympiadeklasse 10 Lösungen 1. Tag c 2016 Aufgabenausschuss des Mathematik-Olympiaden e.v. Alle Rechte vorbehalten Lösung 6 Punkte Es sei x die Länge der Strecke zwischen Stuttgart und Nürnberg und y die Länge der Strecke zwischen Nürnberg und Leipzig, jeweils in Kilometern. Wir erhalten die beiden Gleichungen x 75 + y 145 = 4,8, x x+y +2 = Dieses lineare Gleichungssystem lässt sich umformen zu 15y +29x = 10440, 7y x = Also gilt ( )y = , daher 248y = und somit y = 290. Durch Einsetzen dieses Wertes in eine der vorherigen Gleichungen (zweckmäßigerweise in die besonders einfache Gleichung 7y x = 1400) ergibt sich x = Dies liefert dann x = 210. Somit ist gezeigt, dass die beiden Streckenlängen eindeutig bestimmt sind. Eine Probe mit der anderen Gleichung des umgeformten Systems oder mit beiden Ausgangsgleichungen ist zwar nützlich aber entbehrlich, da äquivalent umgeformt wurde. Die Teilstrecke Stuttgart Nürnberg hat damit eine Länge von 210 km, die Teilstrecke Nürnberg Leipzig hat eine Länge von 290 km Lösung 7 Punkte C E D E P D A F F L a B 1

2 Wir bezeichnen zusätzlich den Schnittpunkt der Parallelen zu AC durch P mit der Dreiecksseite BC mit D und definieren analog E auf AC und F auf AB. Mit a,b,c werden in üblicher Weise die Längen der Dreiecksseiten bezeichnet. Weiterhin sei s(p) = P D + P E + P F. Wegen der Ähnlichkeit der Dreiecke E PE, FF P zum Dreieck ABC und da AFPE und F BDP als Parallelogramme gleich lange gegenüberliegende Seiten haben, gilt PD = F B, PE = PE a c = AF a c, PF = FF b c und somit Teil a) s(p) = AF a c + FF b c + F B. (1) Ist a = b = c, so folgt s(p) = AF + FF + F B = c = 1 (a+b+c) für jeden Punkt P des Dreiecks ABC. Der gesuchte geometrische Ort besteht in diesem Fall also aus allen Punkten des Dreiecks ABC. Teil b) Der Schwerpunkt S des Dreiecks ABC teilt die Seitenhalbierenden im Verhältnis 2 : 1. Für P = S erhalten wir deshalb nach dem Strahlensatz AF = FF = F B = c und somit s(s) = c a c + c b c + c = 1 (a+b+c) aus (1). S gehört also in jedem Fall zum gesuchten geometrischen Ort. Als Vorbetrachtung untersuchen wir das Verhalten von s(p), wenn P auf einer vorgegebenen Geraden (nicht außerhalb des Dreiecks ABC) variiert. Sei dazu g eine Gerade, die durch das Innere des Dreiecks ABC verläuft, und X ein fester Punkt der Geraden g außerhalb des Dreiecks. Wir zeigen zunächst, dass es feste reelle Zahlen m E und n E so gibt, dass EP = m E PX +n E für alle Punkte P g gilt. Dies ist im Falle g AC für n E = CD und m E = 0 erfüllt. Im Falle g BC sind die Lagemöglichkeiten P zwischen E und X bzw. E zwischen P und X zu unterscheiden. Dann gilt die Gleichung für n E = EX und m E = 1 bzw. für n E = EX und m E = 1. Anderenfalls seien Y und Z die Schnittpunkte von g mit den Geraden AC und BC. E C Y Z P A X L b 2 B

3 Für jede Lage des Dreiecks bzgl. X und Y gibt es Zahlen v,w { 1,+1}, für die v PX + w XY = PY gilt. Aus dem Strahlensatz folgt EP = CZ und wegen PY ZY EP = EP PY PY = CZ ZY CZ CZ (v PX +w XY ) = v PX +w XY ZY ZY mit m E = v CZ ZY und n E = w XY CZ ZY die behauptete Darstellungsmöglichkeit EP = m E PX +n E für alle Punkte P g. Analog folgt die Existenz von festen reellen Zahlen m D, m F, n D und n F derart, dass DP = m D PX +n D und FP = m F PX +n F für alle Punkte P g gilt. Für m = m D +m E +m F und n = n D +n E +n F gilt also s(p) = DP + EP + FP = m PX +n für alle Punkte P g. Damit ist s(p) auf einer Teilstrecke UV der Geraden g innerhalb des Dreiecks ABC entweder konstant (Fallm = 0) oder nimmt jeden beliebigen Wert zwischens(u) unds(v) genau einmal an (Fall m 0). Sind nun a, b und c nicht alle gleich, dürfen wir (dies ist ggf. durch zyklisches Vertauschen der Bezeichnungen A, B und C bzw. D, E und F zu erreichen) annehmen, dass 1 (a+b+c) zwischen a und c liegt und insbesondere nicht gleich a und nicht gleich c ist. Wegen s(a) = c und s(b) = a gibt es also auf AB auch einen Punkt Q mits(q) = 1 (a+b+c). Damit ist s(p) auch für P auf der Strecke t, die sich als Schnitt von der Geraden SQ und dem Dreieck ABC ergibt, konstant gleich 1 (a+b+c), da dieser Wert sowohl in Q als auch im Schwerpunkt S angenommen wird. Also gehört t zu dem geometrischen Ort. Da jede Gerade durch A und jede Gerade durch B höchstens einen Punkt mit dem geometrischen Ort gemeinsam haben kann, ist t auch der gesamte geometrische Ort. Die gegebene Aussage trifft also zu. Bemerkungen zu weiteren Lösungsvarianten: Wir bezeichnen in üblicher Weise mit h a,h b,h c die Längen der Höhen im Dreieck ABC und mit h a,h b,h c die Längen der Lote aus P auf die Geraden BC, AC bzw. AB. Schließlich führen wir Zahlen p,q,r mit 0 p,q,r 1 ein, für die gilt. h a = p h a, h b = q h b und h c = r h c Nach Konstruktion sind die DreieckePDD,E PE undff P in Ähnlichkeitslage zum Dreieck ABC. Das Verhältnis einander entsprechender Strecken ist demnach jeweils konstant und gleich p, q bzw. r. Insbesondere gilt PD = p c, PE = q a, PF = r b, D P = p b und EE = q b. Nach Konstruktion sind die Vierecke AFPE und PD CE Parallelogramme. Damit folgt b = CE + EE + E A = D P + EE + PF = p b+q b+r b

4 und weiter p+q +r = 1. Gesucht wird also der geometrische Ort aller Punkte P im Inneren des Dreiecks, für die qa+rb+pc = 1 (a+b+c) (2) gilt. Teil a) Ist das Dreieck ABC gleichseitig, also a = b = c, dann ist (2) für alle Punkte des Dreiecks erfüllt, denn es gilt stets qa+rb+pc = (q +r+p)a = a = 1 (a+b+c). Teil b) Im allgemeinen Fall erhalten wir aus (2) und r = 1 p q für Punkte P des gesuchten geometrischen Orts die Bestimmungsgleichung qa+(1 p q)b+pc = 1 (a+b+c) für p,q in den gegebenen Streckenlängen a,b,c und damit ( p 1 ) ( (c b)+ q 1 ) (a b) = 0. () Diese lineare Gleichung in p,q hat die Lösungsschar p = 1 +(a b)x, q = 1 +(b c)x, r = 1 p q = 1 +(c a)x (4) mit x R, wenn a b 0 oder b c 0 ist, also nicht a = b = c gilt. Im affinen Koordinatensystem mit dem Ursprung A, den Achsen AB und AC und den Einheitsstrecken AB und AC hat der Punkt P die Koordinaten (q,r), woraus ersichtlich wird, dass (4) die Gleichung einer Geraden g ist. Für x = 0 ergibt sich mit p = q = r = 1 der Schwerpunkt S des Dreiecks, der damit ebenfalls auf der Geraden g liegt. Alle Punkte des gesuchten geometrischen Orts liegen also auf der Geraden g durch den Schwerpunkt des Dreiecks ABC und im Inneren des Dreiecks, also auf einer Strecke mit Eigenschaften wie behauptet. Umgekehrt gibt es zu jedem Punkt P 0 dieser Strecke eine reelle Zahl x 0, für die sich die Abstände p, q und r von P 0 zu den Dreiecksseiten nach der Formel (4) mit x = x 0 berechnen. Damit ist aber () und schließlich auch (2) erfüllt, so dass P 0 zum gesuchten geometrischen Ort gehört. Anmerkung: Ist das Dreieck ABC gleichschenklig, etwa a = b, so ergibt sich p = 1 für alle Punkte des gesuchten geometrischen Orts. Damit ist h a = p h a konstant und alle Punkte P, die (2) erfüllen, liegen auf der Parallelen zu BC durch S. Anmerkung: Für die Ortsvektoren von S aus gilt SP = SA+ AF + FP = SA+q AB +r AC = ( ( ) SA+q SB SA )+r SC SA = p SA+q SB +r SC. 4

5 (p,q,r) sind die baryzentrischen Koordinaten des Punkts P im Dreieck ABC. Gilt (4) für P, so ist SP = 1 ( ) +x SA+ SB + SC ST für einen Punkt T mit ST =(a b) SA+(b c) SB +(c a) SC, der sich durch Vektoraddition eindeutig bestimmen lässt. Wegen SA+ SB+ SC = 0 für den Schwerpunkt S liegen also alle Punkte P, die (4) erfüllen, auf der Geraden ST Lösung 7 Punkte Mit n = 196 Lottoscheinen kann Paul sein Ziel eines garantierten Dreiers erreichen, wenn er beim Ankreuzen der Scheine die im Weiteren beschriebene Strategie befolgt. Unsere Strategie beruht auf folgender Überlegung: Kann man G = {1,...,49} als Vereinigung dreier Teilmengen A, B und C schreiben, so müssen nach dem Schubfachprinzip in einer der Mengen A, B oder C mindestens drei der sieben gezogenen Zahlen enthalten sein. Wenn Paul also so viele Lottoscheine mit sechs Zahlen allein ausa, allein ausb sowie allein ausc ausfüllt, dass jedes Tripel von Zahlen aus A, jedes Tripel von Zahlen aus B und jedes Tripel von Zahlen aus C auf einem der Lottoscheine angekreuzt ist, dann hat Paul garantiert einen Dreier. Dazu müssen die Mengen A,B,C nicht disjunkt sein. Zunächst beweisen wir folgenden Hilfssatz: Istk undm eine Menge von2k Elementen, dann kann man ( k ) sechselementige Teilmengen von M derart wählen, dass jede dreielementige Teilmenge von M in einer dieser sechselementigen Mengen enthalten ist. Beweis: Wir setzen M = {a 1,...,a k,b 1,...,b k } und bilden die k zweielementigen Mengen M i = {a i,b i }, i = 1,...,k. Zu je drei dieser k paarweise disjunkten zweielementigen Mengen bilden wir die Vereinigungsmenge. Insgesamt erhalten wir damit ( k ) sechselementige Vereinigungsmengen. Da drei beliebige Elemente von M auf höchstens drei der zweielementigen Mengen M i verteilt sind, sind sie in mindestens einer der ( k ) sechselementigen Vereinigungsmengen enthalten. Nun wenden wir den Hilfssatz auf die 18-elementige Menge A = {1,2,...,18} und die 16- elementigen Mengen B = {19,20,...,4} und C = {4,5,...,49} an. Auf diese Weise erhalten wir (9 ) + ( ) 8 + ( ) 8 = 196 sechselementige Mengen. Paul kreuzt nun entsprechend seine 196 Lottoscheine an und hat damit nach den Eingangsüberlegungen garantiert einen Dreier, denn von den sieben gezogenen Zahlen müssen nach dem Schubfachprinzip in einer der Mengen A, B oder C mindestens drei enthalten sein. Die sind aber nach Konstruktion auf einem der Lottoscheine angekreuzt. Hinweis: Die obige Lösung findet nicht das minimal mögliche n. Sie ist aber mustergültig, weil sowohl n als auch die Länge des Beweises relativ klein sind. Nach Kenntnis der Aufgabensteller ist vom minimal möglichen n nur bekannt, dass es zwischen 57 und 116 liegt. Für n = 116 verwendet man die allgemeine Strategie aus obiger Lösung, setzt 5

6 aber A = {1,2,...,18}, B = {19,20,...,5} und C = {6,7,...,49}. Statt der Methode aus dem Hilfssatz wurde nun mit Computerhilfe gezeigt, dass bei 18 Zahlen 48 Lottoscheine genügen, um alle Tripel zu tippen. Bei 17 Zahlen genügen 4,5 Lottoscheine (4 ganze plus Zahlen auf einem weiteren Schein) und bei 14 genügen 24,5 Lottoscheine. Insgesamt genügen also 48+4,5+24,5 = 116 Lottoscheine. 6

56. Mathematik-Olympiade 4. Stufe (Bundesrunde) Olympiadeklasse 10 Lösungen 2. Tag

56. Mathematik-Olympiade 4. Stufe (Bundesrunde) Olympiadeklasse 10 Lösungen 2. Tag 56. Mathematik-Olympiade 4. Stufe Bundesrunde) Olympiadeklasse 10 Lösungen. Tag c 017 Aufgabenausschuss des Mathematik-Olympiaden e.v. www.mathematik-olympiaden.de. Alle Rechte vorbehalten. 561044 Lösung

Mehr

20. Landeswettbewerb Mathematik Bayern

20. Landeswettbewerb Mathematik Bayern 20. Landeswettbewerb Mathematik Bayern Lösungsbeispiele für die Aufgaben der 2. Runde 2017/2018 Aufgabe 1 Eine Folge a0,a1,... natürlicher Zahlen ist durch einen Startwert a 0 1 und die folgende Vorschrift

Mehr

12 Der Abstand eines Punktes von einer Geraden Seite 1 von Der Abstand eines Punktes von einer Geraden

12 Der Abstand eines Punktes von einer Geraden Seite 1 von Der Abstand eines Punktes von einer Geraden 12 Der Abstand eines Punktes von einer Geraden Seite 1 von 5 12 Der Abstand eines Punktes von einer Geraden Die Bestimmung des Abstands eines Punktes von einer Geraden gehört zu den zentralen Problemen

Mehr

Musterlösungen Klausur Geometrie

Musterlösungen Klausur Geometrie Musterlösungen Klausur Geometrie Aufgabe 1 (Total: 8 Punkte). Seien A, B, C die Eckpunkte eines nichtentarteten Dreiecks in der euklidischen Ebene. Seien D, E, F derart gewählt, dass folgende Teilverhältnisse

Mehr

Rechnen mit Vektoren. 1. Vektoren im Koordinatensystem Freie Vektoren in der Ebene

Rechnen mit Vektoren. 1. Vektoren im Koordinatensystem Freie Vektoren in der Ebene Rechnen mit 1. im Koordinatensystem 1.1. Freie in der Ebene 1) Definition Ein Vektor... Zwei sind gleich, wenn... 2) Das ebene Koordinatensystem Wir legen den Koordinatenursprung fest, ferner zwei zueinander

Mehr

Klausurenkurs zum Staatsexamen (SS 2015): Lineare Algebra und analytische Geometrie 7

Klausurenkurs zum Staatsexamen (SS 2015): Lineare Algebra und analytische Geometrie 7 Dr. Erwin Schörner Klausurenkurs zum Staatsexamen (SS 5): Lineare Algebra und analytische Geometrie 7 7. (Frühjahr, Thema, Aufgabe 4) Im R seien die beiden Ebenen E : 6 x + 4 y z = und E : + s + t 4 gegeben.

Mehr

TECHNISCHE UNIVERSITÄT MÜNCHEN

TECHNISCHE UNIVERSITÄT MÜNCHEN TECHNISCHE UNIVERSITÄT MÜNCHEN Zentrum Mathematik PROF. DR.DR. JÜRGEN RICHTER-GEBERT, VANESSA KRUMMECK, MICHAEL PRÄHOFER Höhere Mathematik für Informatiker I (Wintersemester 3/4) Aufgabenblatt (9. Januar

Mehr

Die Strahlensätze machen eine Aussage über Streckenverhältnisse, nämlich:

Die Strahlensätze machen eine Aussage über Streckenverhältnisse, nämlich: Elementargeometrie Der. Strahlensatz Geschichte: In den Elementen des Euklid wird im 5.Buch die Proportionenlehre behandelt, d.h. die geometrische Theorie aller algebraischen Umformungen der Proportion.

Mehr

Koordinatengeometrie. Aufgabe 4 Untersuchen Sie die Funktion f(x) = x² 9.

Koordinatengeometrie. Aufgabe 4 Untersuchen Sie die Funktion f(x) = x² 9. Koordinatengeometrie Aufgabe 1 Gegeben sind der Punkt P (-1; 9) sowie die Geraden g: 3x y + 6 = 0 und h: x + 4y 8 = 0. a) Die Geraden g und h schneiden einander im Punkt S. Berechnen Sie die exakten Koordinaten

Mehr

} Symmetrieachse von A und B.

} Symmetrieachse von A und B. 5 Symmetrieachsen Seite 1 von 6 5 Symmetrieachsen Gleicher Abstand von zwei Punkten Betrachtet man zwei fest vorgegebene Punkte A und B, drängt sich im Zusammenhang mit dem Abstandsbegriff eine Frage auf,

Mehr

Grundwissen Abitur Geometrie 15. Juli 2012

Grundwissen Abitur Geometrie 15. Juli 2012 Grundwissen Abitur Geometrie 5. Juli 202. Erkläre die Begriffe (a) parallelgleiche Pfeile (b) Vektor (c) Repräsentant eines Vektors (d) Gegenvektor eines Vektors (e) Welcher geometrische Zusammenhang besteht

Mehr

Demo für

Demo für Aufgabensammlung Mit ausführlichen Lösungen Geradengleichungen und lineare Funktionen Zeichnen von Geraden in vorgefertigte Koordinatensysteme Aufstellen von Geradengleichungen Schnitt von Geraden Die

Mehr

Klausurenkurs zum Staatsexamen (WS 2015/16): Lineare Algebra und analytische Geometrie 7

Klausurenkurs zum Staatsexamen (WS 2015/16): Lineare Algebra und analytische Geometrie 7 Dr. Erwin Schörner Klausurenkurs zum Staatsexamen (WS 5/6): Lineare Algebra und analytische Geometrie 7 7. (Frühjahr 5, Thema, Aufgabe ) Sei V ein reeller Vektorraum. a) Wann nennt man eine Teilmenge U

Mehr

Pflichtteilaufgaben zu Gegenseitige Lage, Abstand, Baden-Württemberg

Pflichtteilaufgaben zu Gegenseitige Lage, Abstand, Baden-Württemberg Pflichtteilaufgaben zu Gegenseitige Lage, Abstand, Baden-Württemberg Hilfsmittel: keine allgemeinbildende Gymnasien Alexander Schwarz wwwmathe-aufgabencom September 6 Abituraufgaben (Haupttermin) Aufgabe

Mehr

Klausurenkurs zum Staatsexamen (SS 2014): Lineare Algebra und analytische Geometrie 7

Klausurenkurs zum Staatsexamen (SS 2014): Lineare Algebra und analytische Geometrie 7 Dr. Erwin Schörner Klausurenkurs zum Staatsexamen (SS 4): Lineare Algebra und analytische Geometrie 7 7. (Frühjahr, Thema 3, Aufgabe 4) Im R 3 seien die beiden Ebenen E : 6x+4y z = und E : +s +t 4 gegeben.

Mehr

Lage zweier Ebenen. Suche alle Punkte von E 1 die in E 2 enthalten sind. Setze also die Parameterform von E 1 in die Koordinatenform von E 2.

Lage zweier Ebenen. Suche alle Punkte von E 1 die in E 2 enthalten sind. Setze also die Parameterform von E 1 in die Koordinatenform von E 2. LAGE Lage zweier Ebenen Suche alle Punkte von E die in E 2 enthalten sind. Setze also die Parameterform von E in die Koordinatenform von E 2. B = E : X E 2 : x + x 2 + x 3 = Parameterform (PF) in Koordinatenform

Mehr

Klausurenkurs zum Staatsexamen (WS 2016/17): Lineare Algebra und analytische Geometrie 7

Klausurenkurs zum Staatsexamen (WS 2016/17): Lineare Algebra und analytische Geometrie 7 Dr. Erwin Schörner Klausurenkurs zum Staatsexamen (WS 6/7): Lineare Algebra und analytische Geometrie 7 7. (Frühjahr 5, Thema, Aufgabe ) Sei V ein reeller Vektorraum. a) Wann nennt man eine Teilmenge U

Mehr

3.6 Einführung in die Vektorrechnung

3.6 Einführung in die Vektorrechnung 3.6 Einführung in die Vektorrechnung Inhaltsverzeichnis Definition des Vektors 2 2 Skalare Multiplikation und Kehrvektor 4 3 Addition und Subtraktion von Vektoren 5 3. Addition von zwei Vektoren..................................

Mehr

2.4 Besondere Punkte und Teilverhältnisse von Strecken in geometrischen Figuren

2.4 Besondere Punkte und Teilverhältnisse von Strecken in geometrischen Figuren 72 KOORDINATENGEOMETRIE 2.4 Besondere Punkte und Teilverhältnisse von Strecken in geometrischen Figuren Aufgabe Lösung Subtraktionsverfahren verwenden Durch die Punkte A (9j2), B (2 j 8) und C ( j 6) ist

Mehr

Erste Schnittpunktsätze und Anfänge einer Dreiecksgeometrie

Erste Schnittpunktsätze und Anfänge einer Dreiecksgeometrie Christoph Vogelsang Matr.Nr. 66547 Nils Martin Stahl Matr.Nr. 664 Seminar: Geometrie Dozent: Epkenhans Wintersemester 005/006 Erste Schnittpunktsätze und Anfänge einer Dreiecksgeometrie Ausarbeitung der

Mehr

Inhalt der Lösungen zur Prüfung 2015:

Inhalt der Lösungen zur Prüfung 2015: Inhalt der Lösungen zur Prüfung : Pflichtteil... Wahlteil Analysis... 8 Wahlteil Analysis... Wahlteil Analytische Geometrie/Stochastik... Wahlteil Analytische Geometrie/Stochastik... 9 Pflichtteil Lösungen

Mehr

Analytische Geometrie II

Analytische Geometrie II Analytische Geometrie II Rainer Hauser März 212 1 Einleitung 1.1 Geradengleichungen in Parameterform Jede Gerade g in der Ebene oder im Raum lässt sich durch einen festen Punkt auf g, dessen Ortsvektor

Mehr

Elemente der Mathematik - Sommer 2016

Elemente der Mathematik - Sommer 2016 Elemente der Mathematik - Sommer 2016 Prof Dr Matthias Lesch, Regula Krapf Übungsblatt 7 Aufgabe 23 9 Punkte In der folgenden Aufgabe sei mit baryzentrischen Koordinaten immer die baryzentrischen Koordinaten

Mehr

Klausurenkurs zum Staatsexamen (WS 2013/14): Lineare Algebra und analytische Geometrie 7

Klausurenkurs zum Staatsexamen (WS 2013/14): Lineare Algebra und analytische Geometrie 7 Dr. Erwin Schörner Klausurenkurs zum Staatsexamen (WS 3/4): Lineare Algebra und analytische Geometrie 7 7. (Frühjahr, Thema 3, Aufgabe 4) Im R 3 seien die beiden Ebenen E : 6x+4y z = und E : +s +t 4 gegeben.

Mehr

Aufgabe E 1 (8 Punkte)

Aufgabe E 1 (8 Punkte) Aufgabe E (8 Punkte) Auf einem Billardtisch (bei dem die Koordinatenachsen x = 0 und y = 0 als Banden dienen) liegen zwei Kugeln P( ) und Q(3 ) Die Kugel P soll so angestoßen werden, dass sie nach Reflexion

Mehr

F B. Abbildung 2.1: Dreieck mit Transversalen

F B. Abbildung 2.1: Dreieck mit Transversalen 2 DS DREIECK 16 2 Das Dreieck 2.1 Ein einheitliches Beweisprinzip Def. Eine Gerade, die jede Trägergerade der Seiten eines Dreiecks (in genau einem Punkt) schneidet, heißt Transversale des Dreiecks. Eine

Mehr

Klausurenkurs zum Staatsexamen (WS 2012/13): Lineare Algebra und analytische Geometrie 7

Klausurenkurs zum Staatsexamen (WS 2012/13): Lineare Algebra und analytische Geometrie 7 Dr. Erwin Schörner Klausurenkurs zum Staatsexamen (WS /3): Lineare Algebra und analytische Geometrie 7 7. (Frühjahr, Thema 3, Aufgabe 4) Im R 3 seien die beiden Ebenen E : 6x+4y z = und E : +s +t 4 a)

Mehr

Analytische Geometrie. Dreiecke Vierecke GROSSE AUFGABENSAMMLUNG. Stand November F. Buckel INTERNETBIBLIOTHEK FÜR SCHULMATHEMATIK

Analytische Geometrie. Dreiecke Vierecke GROSSE AUFGABENSAMMLUNG. Stand November F. Buckel INTERNETBIBLIOTHEK FÜR SCHULMATHEMATIK Analytische Geometrie Dreiecke Vierecke GROSSE AUFGABENSAMMLUNG Wird erweitert Lösungen nur auf der Mathe CD Datei Nr. 0050 Stand November 005 F. Buckel INTERNETBIBLIOTHEK FÜR SCHULMATHEMATIK 0050 Dreiecke

Mehr

Übungen zu Lineare Algebra 1, NAWI Graz, WS 2018/19 Blatt 1 (3.10.)

Übungen zu Lineare Algebra 1, NAWI Graz, WS 2018/19 Blatt 1 (3.10.) Blatt 1 (3.10.) 1. Von einem Parallelogramm ABCD sind die Punkte A = (2, 1), B = (6, 2) und D = (3, 5) gegeben. Berechnen Sie C. 2. Stellen Sie rechnerisch fest, ob das Viereck ABCD mit A = (2, 3), B =

Mehr

55. Mathematik-Olympiade 4. Stufe (Bundesrunde) Olympiadeklasse 11 Lösungen 1. Tag

55. Mathematik-Olympiade 4. Stufe (Bundesrunde) Olympiadeklasse 11 Lösungen 1. Tag 55. Mathematik-Olympiade 4. Stufe (Bundesrunde) Olympiadeklasse 11 Lösungen 1. Tag c 2016 Aufgabenausschuss des Mathematik-Olympiaden e.v. www.mathematik-olympiaden.de. Alle Rechte vorbehalten. 551141

Mehr

Elementare Geometrie

Elementare Geometrie Elementare Geometrie Prof. Dr. M. Rost Übungen Blatt 1 (SS 019) 1 Abgabetermin: Donnerstag, 11. April http://www.math.uni-bielefeld.de/~rost/eg Vorbemerkung: Dies ist eine erste Nachbereitung der ersten

Mehr

Lemma 10. Die Menge Aff (K n ) aller Affinitäten von K n ist eine Gruppe bezüglich der Verkettung. Beweis. (vgl. Lemma 39 LAAG I sowie

Lemma 10. Die Menge Aff (K n ) aller Affinitäten von K n ist eine Gruppe bezüglich der Verkettung. Beweis. (vgl. Lemma 39 LAAG I sowie Lemma 10. Die Menge Aff (K n ) aller Affinitäten von K n ist eine Gruppe bezüglich der Verkettung. Beweis. (vgl. Lemma 39 LAAG I sowie Noch ein Beispiel aus Vorl. 1, Seite 10) Zuerst zeigen wir, dass jede

Mehr

Mathematische Probleme, SS 2013 Donnerstag $Id: dreieck.tex,v /04/18 15:03:29 hk Exp hk $

Mathematische Probleme, SS 2013 Donnerstag $Id: dreieck.tex,v /04/18 15:03:29 hk Exp hk $ $Id: dreieck.tex,v 1.6 2013/04/18 15:03:29 hk Exp hk $ 1 Dreiecke 1.5 Einige spezielle Punkte im Dreieck Wir hatten gerade begonnen uns mit den speziellen Punkten im Dreieck zu beschäftigen. Dabei beschränken

Mehr

A c. C a. C b. P A b. A B c. B a. Über Parallelen zu Dreiecksseiten Darij Grinberg

A c. C a. C b. P A b. A B c. B a. Über Parallelen zu Dreiecksseiten Darij Grinberg Über Parallelen zu Dreiecksseiten Darij Grinberg c a b P b c Fig. 1 Wir werden zuerst zeigen (Fig. 1): Satz 1: Sei P ein Punkt in der Ebene eines Dreiecks : Die Parallele zu der Geraden durch den Punkt

Mehr

3. Mathematik Olympiade 2. Stufe (Kreisolympiade) Klasse 9 Saison 1963/1964 Aufgaben und Lösungen

3. Mathematik Olympiade 2. Stufe (Kreisolympiade) Klasse 9 Saison 1963/1964 Aufgaben und Lösungen 3. Mathematik Olympiade 2. Stufe (Kreisolympiade) Klasse 9 Saison 1963/1964 Aufgaben und Lösungen 1 OJM 3. Mathematik-Olympiade 2. Stufe (Kreisolympiade) Klasse 9 Aufgaben Hinweis: Der Lösungsweg mit Begründungen

Mehr

Lineare Algebra und analytische Geometrie II

Lineare Algebra und analytische Geometrie II Prof. Dr. H. Brenner Osnabrück SS 016 Lineare Algebra und analytische Geometrie II Vorlesung 37 Neben den drei Eckpunkten eines Dreieckes gibt es noch weitere charakteristische Punkte eines Dreieckes wie

Mehr

30. Mathematik Olympiade 4. Stufe (Bundesrunde) Klasse 10 Saison 1990/1991 Aufgaben und Lösungen

30. Mathematik Olympiade 4. Stufe (Bundesrunde) Klasse 10 Saison 1990/1991 Aufgaben und Lösungen 30 Mathematik Olympiade 4 Stufe (Bundesrunde) Klasse 10 Saison 1990/1991 Aufgaben und Lösungen 1 OJM 30 Mathematik-Olympiade 4 Stufe (Bundesrunde) Klasse 10 Aufgaben Hinweis: Der Lösungsweg mit Begründungen

Mehr

2. Mathematik Olympiade 3. Stufe (Bezirksolympiade) Klasse 12 Saison 1962/1963 Aufgaben und Lösungen

2. Mathematik Olympiade 3. Stufe (Bezirksolympiade) Klasse 12 Saison 1962/1963 Aufgaben und Lösungen 2. Mathematik Olympiade 3. Stufe (Bezirksolympiade) Klasse 12 Saison 1962/1963 Aufgaben und Lösungen 1 OJM 2. Mathematik-Olympiade 3. Stufe (Bezirksolympiade) Klasse 12 Aufgaben Hinweis: Der Lösungsweg

Mehr

Abituraufgaben bis 2018 Baden-Württemberg. Geraden, Ebenen, Abstand

Abituraufgaben bis 2018 Baden-Württemberg. Geraden, Ebenen, Abstand Abituraufgaben bis 8 Baden-Württemberg Geraden, Ebenen, Abstand allgemeinbildende Gymnasien Alexander Schwarz www.mathe-aufgaben.com August 8 Aufgabe : (Abiturprüfung 8) Gegeben sind die Ebenen E: xx x

Mehr

1 Dreiecke. 1.6 Ähnliche Dreiecke. Mathematische Probleme, SS 2019 Donnerstag 2.5. $Id: dreieck.tex,v /05/03 14:05:29 hk Exp $

1 Dreiecke. 1.6 Ähnliche Dreiecke. Mathematische Probleme, SS 2019 Donnerstag 2.5. $Id: dreieck.tex,v /05/03 14:05:29 hk Exp $ $Id: dreieck.tex,v 1.60 2019/05/03 14:05:29 hk Exp $ 1 Dreiecke 1.6 Ähnliche Dreiecke Wir hatten zwei Dreiecke kongruent genannt wenn in ihnen entsprechende Seiten jeweils dieselbe Länge haben und dann

Mehr

55. Mathematik-Olympiade 4. Stufe (Bundesrunde) Olympiadeklasse 12 Lösungen 1. Tag

55. Mathematik-Olympiade 4. Stufe (Bundesrunde) Olympiadeklasse 12 Lösungen 1. Tag 55. Mathematik-Olympiade 4. Stufe (Bundesrunde) Olympiadeklasse 12 Lösungen 1. Tag c 2016 Aufgabenausschuss des Mathematik-Olympiaden e.v. www.mathematik-olympiaden.de. Alle Rechte vorbehalten. 551241

Mehr

Unterrichtsmaterialien in digitaler und in gedruckter Form. Auszug aus: Klausuren Jahrgangsstufe 11, 1. Halbjahr

Unterrichtsmaterialien in digitaler und in gedruckter Form. Auszug aus: Klausuren Jahrgangsstufe 11, 1. Halbjahr Unterrichtsmaterialien in digitaler und in gedruckter Form Auszug aus: Klausuren Jahrgangsstufe 11, 1. Halbjahr Das komplette Material finden Sie hier: School-Scout.de SCHOOL-SCOUT Klausuren Jahrgangsstufe

Mehr

1 Analytische Geometrie und Grundlagen

1 Analytische Geometrie und Grundlagen $Id: vektor.tex,v 1.22 2017/05/15 15:10:33 hk Exp $ 1 Analytische Geometrie und Grundlagen 1.5 Abstände und Winkel In der letzten Sitzung haben wir einen orientierten Winkelbegriff zwischen Strahlen mit

Mehr

Unterlagen zur Vorlesung Algebra und Geometrie in der Schule: Grundwissen über Affine Geometrie. Sommersemester Franz Pauer

Unterlagen zur Vorlesung Algebra und Geometrie in der Schule: Grundwissen über Affine Geometrie. Sommersemester Franz Pauer Unterlagen zur Vorlesung Algebra und Geometrie in der Schule: Grundwissen über Affine Geometrie Sommersemester 2009 Franz Pauer INSTITUT FÜR MATHEMATIK, UNIVERSITÄT INNSBRUCK, TECHNIKERSTRASSE 13, 6020

Mehr

Analytische Geometrie

Analytische Geometrie Analytische Geometrie 1 Punkte und Vektoren im Raum G 1.1 Gegeben sind die Vektoren in nebenstehender Abbildung. Drücke die Vektoren AC durch a und b AB durch z und w BC durch c und d DB durch b und u

Mehr

Mathematisches Argumentieren und Beweisen Beweisarten Besipiele. Hagen Knaf, WS 2014/15

Mathematisches Argumentieren und Beweisen Beweisarten Besipiele. Hagen Knaf, WS 2014/15 Mathematisches Argumentieren und Beweisen Beweisarten Besipiele Hagen Knaf, WS 2014/15 Im Folgenden sind einige der in der Vorlesung besprochenen Beispielbeweise für die verschiedenen Beweisarten aufgeführt

Mehr

30. Satz des Apollonius I

30. Satz des Apollonius I 30. Satz des Apollonius I Das Teilverhältnis T V (ABC) von drei Punkten ABC einer Geraden ist folgendermaßen definiert: Für den Betrag des Teilverhältnisses gilt (ABC) = AC : BC. Für das Vorzeichen des

Mehr

Analytische Geometrie I

Analytische Geometrie I Analytische Geometrie I Rainer Hauser Januar 202 Einleitung. Geometrie und Algebra Geometrie und Algebra sind historisch zwei unabhängige Teilgebiete der Mathematik und werden bis heute von Laien weitgehend

Mehr

Einführung in die Algebra

Einführung in die Algebra Prof. Dr. H. Brenner Osnabrück SS 2009 Einführung in die Algebra Vorlesung 24 Unter den drei klassischen Problemen der antiken Mathematik versteht man (1) die Quadratur des Kreises, (2) die Dreiteilung

Mehr

Lösung 10 Punkte Teil a) Auch bei Fortsetzung der Folge der Quadratzahlen liefert die zweite Differenzenfolge

Lösung 10 Punkte Teil a) Auch bei Fortsetzung der Folge der Quadratzahlen liefert die zweite Differenzenfolge 0 Mathematik-Olympiade Stufe (Schulstufe) Klasse 9 0 Lösungen c 00 Aufgabenausschuss des Mathematik-Olympiaden ev wwwmathematik-olympiadende Alle Rechte vorbehalten 00 Lösung 0 Punkte Teil a) Auch bei

Mehr

Lineare Algebra I (WS 13/14)

Lineare Algebra I (WS 13/14) Lineare Algebra I (WS 13/14) Alexander Lytchak Nach einer Vorlage von Bernhard Hanke 06.12.2013 Alexander Lytchak 1 / 16 Wiederholung Ist V ein Vektorraum, so heißen Abbildungen T v : V V der Form w w

Mehr

Mathematik Name: Klassenarbeit Nr. 2 Klasse 9a Punkte: /30 Note: Schnitt:

Mathematik Name: Klassenarbeit Nr. 2 Klasse 9a Punkte: /30 Note: Schnitt: Aufgabe 1: [4P] Erkläre mit zwei Skizzen, vier Formeln und ein paar Worten die jeweils zwei Varianten der beiden Strahlensätze. Lösung 1: Es gibt viele Arten, die beiden Strahlensätze zu erklären, etwa:

Mehr

Prof. Dr. Elmar Grosse-Klönne Institut für Mathematik

Prof. Dr. Elmar Grosse-Klönne Institut für Mathematik Prof. Dr. Elmar Grosse-Klönne Institut für Mathematik Lineare Algebra Analytische Geometrie I* Übungsaufgaben, Blatt Musterlösungen Aufgabe. Es seien A, B, C Teilmengen einer Menge X. Zeige: i A B C =

Mehr

4. Mathematik Olympiade 2. Stufe (Kreisolympiade) Klasse 10 Saison 1964/1965 Aufgaben und Lösungen

4. Mathematik Olympiade 2. Stufe (Kreisolympiade) Klasse 10 Saison 1964/1965 Aufgaben und Lösungen 4. Mathematik Olympiade. Stufe (Kreisolympiade) Klasse 10 Saison 1964/1965 Aufgaben und Lösungen 1 OJM 4. Mathematik-Olympiade. Stufe (Kreisolympiade) Klasse 10 Aufgaben Hinweis: Der Lösungsweg mit Begründungen

Mehr

Elemente der Algebra

Elemente der Algebra Prof. Dr. H. Brenner Osnabrück SS 2015 Elemente der Algebra Vorlesung 25 Auch Albrecht Dürer hatte Spaß an der Quadratur des Kreises Unter den drei klassischen Problemen der antiken Mathematik versteht

Mehr

Algebra Für welche reellen Zahlen m hat das folgende Gleichungssystem nur die triviale

Algebra Für welche reellen Zahlen m hat das folgende Gleichungssystem nur die triviale Algebra 1 www.schulmathe.npage.de Aufgaben 1. Für welche reellen Zahlen m hat das folgende Gleichungssystem nur die triviale Lösung? x + y + mz = 0 mx y + z = 0 x + y + z = 0. Welche Punkte P z der z-achse

Mehr

Klausur (Modulprüfung) zum Lehrerweiterbildungskurs Geometrie WiSe 2014/2015 am

Klausur (Modulprüfung) zum Lehrerweiterbildungskurs Geometrie WiSe 2014/2015 am Klausur (Modulprüfung) zum Lehrerweiterbildungskurs Geometrie WiSe 2014/2015 am 23.1.2015 Bearbeiten Sie bitte zwei der drei folgenden Aufgaben! Falls Sie alle drei Aufgaben bearbeitet haben sollten, kennzeichnen

Mehr

Elementare Geometrie Vorlesung 11

Elementare Geometrie Vorlesung 11 Elementare Geometrie Vorlesung 11 Thomas Zink 29.5.2017 1.Verhältnisse Es sei g eine Gerade. Es seien A, B, C, D g vier Punkte, so dass A B und C D. Wir definieren: AB CD = AB CD, wenn die Strahlen AB

Mehr

Elementare Geometrie Wiederholung 3

Elementare Geometrie Wiederholung 3 Elementare Geometrie Wiederholung 3 Thomas Zink 10.7.2017 1.Schwerpunkt und Teilverhältnis, V13, Es seien A, B, C, D Punkte, die auf einer Geraden liegen, und so dass A B und C D. AB = λ CD λ = AB CD.

Mehr

Lösungsmenge L I = {x R 3x + 5 = 9} = L II = {x R 3x = 4} = L III = { }

Lösungsmenge L I = {x R 3x + 5 = 9} = L II = {x R 3x = 4} = L III = { } Zur Einleitung: Lineare Gleichungssysteme Wir untersuchen zunächst mit Methoden, die Sie vermutlich aus der Schule kennen, explizit einige kleine lineare Gleichungssysteme. Das Gleichungssystem I wird

Mehr

Karoline Grandy und Renate Schöfer

Karoline Grandy und Renate Schöfer Karoline Grandy und Renate Schöfer 1 Lemma 1 (Haruki) In einem Kreis seien zwei sich nicht schneidende Sehnen AB und CD gegeben. Außerdem wähle einen beliebiger Punkt P auf dem Kreisbogen zwischen A und

Mehr

1993 III Aufgabe. In einem kartesischen Koordinatensystem sind die Gerade

1993 III Aufgabe. In einem kartesischen Koordinatensystem sind die Gerade 993 III Aufgabe In einem kartesischen Koordinatensystem sind die Gerade = g : X mit R sowie die beiden Punkte A( -) und C(- 2 ) gegeben. A und C bestimmen die Gerade h..a) Begründen Sie, dass der Mittelpunkt

Mehr

1 Analytische Geometrie und Grundlagen

1 Analytische Geometrie und Grundlagen $Id: vektor.tex,v 1.39 2018/05/03 14:55:15 hk Exp $ 1 Analytische Geometrie und Grundlagen 1.5 Abstände und Winkel Nachdem wir uns am Ende der letzten Sitzung an den Orthogonalitätsbegriff der linearen

Mehr

Lineare Algebra Übungen

Lineare Algebra Übungen Dr Andreas Maurischat Aachen 9 September 7 Lineare Algebra Übungen Vorkurs Mathematik 7 RWTH Aachen Aufgaben um Kapitel (Vektorrechnung Aufgabe Im R sind die Punkte P = (; ; Q = (; ; R = ( ; ; gegeben

Mehr

Aufgabe 5: Analytische Geometrie (WTR)

Aufgabe 5: Analytische Geometrie (WTR) Abitur Mathematik: Nordrhein-Westfalen 203 Aufgabe 5 a) () PARALLELOGRAMMEIGENSCHAFTEN NACHWEISEN Zu zeigen ist, dass die gegenüberliegenden Seiten parallel sind, d. h. und. Zunächst ist 0 0 2 0, 3 2 0

Mehr

Elementare Geometrie - Die Gerade & das Dreieck Teil I

Elementare Geometrie - Die Gerade & das Dreieck Teil I Proseminar zur Linearen Algebra und Elementargeometrie Elementare Geometrie - Die Gerade & das Dreieck Teil I Eingereicht von: Alexandra Kopp 178294 alexandra.kopp@tu-dortmund.de Eingereicht bei: Prof.

Mehr

Geometrische Objekte im 3-dimensionalen affinen Raum oder,... wie nützlich ist ein zugehöriger Vektorraum der Verschiebungen

Geometrische Objekte im 3-dimensionalen affinen Raum oder,... wie nützlich ist ein zugehöriger Vektorraum der Verschiebungen Geometrische Objekte im -dimensionalen affinen Raum Bekanntlich versteht man unter geometrischen Objekten Punktmengen, auf die man die üblichen Mengenoperationen wie z.b.: Schnittmenge bilden: - aussagenlogisch:

Mehr

Übungsblatt

Übungsblatt Übungsblatt 6..7 ) Zeigen Sie die Gültigkeit der folgenden Sätze durch Verwendung abstrakter Vektoren (ohne Bezug auf konkrete Komponenten), deren Addition bzw. Subtraktion und Multiplikation mit Skalaren:

Mehr

6. Vektor- und Koordinaten-Geometrie.

6. Vektor- und Koordinaten-Geometrie. 6. Vektor- und Koordinaten-Geometrie. Jeder endlichen Menge, etwa der Menge kann man durch M = {,,, }. R 4 (M) = { a 1 + a 2 + a 3 + a 4 a i R } die Menge der formalen Linearkombinationen zuordnen. Es

Mehr

Affine Eigenschaften ( stets K = R)

Affine Eigenschaften ( stets K = R) Affine Eigenschaften ( stets K = R) Def. 15 Sei M eine Teilmenge eines affinen Raums A über V (über K). Eine Eigenschaft der Menge M heißt affin, wenn für jede Affinität F : A A 1 die Bildmenge {F(a)wobei

Mehr

Kapitel VI. Euklidische Geometrie

Kapitel VI. Euklidische Geometrie Kapitel VI. Euklidische Geometrie 1 Abstände und Lote Wiederholung aus Kapitel IV. Wir versehen R n mit dem Standard Skalarprodukt x 1 y 1.,. := x 1 y 1 +... + x n y n x n y n Es gilt für u, v, w R n und

Mehr

49. Mathematik-Olympiade 3. Stufe (Landesrunde) Klasse 11 Lösungen 1. Tag

49. Mathematik-Olympiade 3. Stufe (Landesrunde) Klasse 11 Lösungen 1. Tag 49. Mathematik-Olympiade 3. Stufe (Landesrunde) Klasse 11 Lösungen 1. Tag c 010 Aufgabenausschuss des Mathematik-Olympiaden e.v. www.mathematik-olympiaden.de. Alle Rechte vorbehalten. 491131 Lösung 6 Punkte

Mehr

Aufgaben zu Anwendungen zur Vektorrechnung

Aufgaben zu Anwendungen zur Vektorrechnung Aufgaben zu Anwendungen zur Vektorrechnung 1. Von einer Strecke AB mit dem Mittelpunkt M sind bekannt: A(/5) und M(-4/3). Berechnen Sie B.. Die Punkte A(3/7) und B(11/-1) sind gegenüberliegende Ecken eines

Mehr

Elementare Geometrie Vorlesung 12

Elementare Geometrie Vorlesung 12 Elementare Geometrie Vorlesung 12 Thomas Zink 31.5.2017 1.Die Winkelhalbierende Es seien s und t zwei Strahlen, die sich in einem Punkt O schneiden. Es sei (s, t) < 180 o. Die Winkelfläche besteht aus

Mehr

Blatt 10 Lösungshinweise

Blatt 10 Lösungshinweise Lineare Algebra und Geometrie I SS 05 Akad. Rätin Dr. Cynthia Hog-Angeloni Dr. Anton Malevich Blatt 0 Lösungshinweise 0 0 Aufgabe 0. Es seien die Vektoren u =, v = und w = in R gegeben. a # Finden Sie

Mehr

Kapitel II. Vektoren und Matrizen

Kapitel II. Vektoren und Matrizen Kapitel II. Vektoren und Matrizen Vektorräume A Körper Auf der Menge R der reellen Zahlen hat man zwei Verknüpfungen: Addition: R R R(a, b) a + b Multiplikation: R R R(a, b) a b (Der Malpunkt wird oft

Mehr

Aufgaben / Lösungen der Klausur Nr. 4 vom Juni 2002 im LK 12. nx ln(x)dx

Aufgaben / Lösungen der Klausur Nr. 4 vom Juni 2002 im LK 12. nx ln(x)dx Aufgaben / Lösungen der Klausur Nr. 4 vom Juni 2002 im LK 2 Aufgabe ) a) Berechne für alle natürlichen Zahlen n N das Integral e nx ln(x)dx. Mit Hilfe der partiellen Integration für f (x) = nx, somit f(x)

Mehr

Aufgaben zu Anwendungen zur Vektorrechnung

Aufgaben zu Anwendungen zur Vektorrechnung Aufgaben zu Anwendungen zur Vektorrechnung. Von einer Strecke AB mit dem Mittelpunkt M sind bekannt: A(/5) und M(-4/3). Berechnen Sie B.. Die Punkte A(3/7) und B(/-) sind gegenüberliegende Ecken eines

Mehr

Lösungen der Serie 2, Schuljahr 2007/08, Klasse 11/13

Lösungen der Serie 2, Schuljahr 2007/08, Klasse 11/13 Lösungen der Serie 2, Schuljahr 2007/08, Klasse 11/13 Lösung 110706. Das Produkt einer endlichen Anzahl reeller Zahlen ist genau dann größer oder gleich 0, wenn die Anzahl der negativen Faktoren gerade

Mehr

1 Einleitung 1. 2 Notation 1

1 Einleitung 1. 2 Notation 1 Inhaltsverzeichnis 1 Einleitung 1 2 Notation 1 3 Definitionen & Hilfssätze 1 3.1 Definition (Sehne)............................... 1 3.2 Satz (Peripheriewinkelsatz).......................... 2 3.3 Lemma.....................................

Mehr

Berufliches Gymnasium Gelnhausen

Berufliches Gymnasium Gelnhausen Berufliches Gymnasium Gelnhausen Fachbereich Mathematik Die inhaltlichen Anforderungen für das Fach Mathematik für Schülerinnen und Schüler, die in die Einführungsphase (E) des Beruflichen Gymnasiums eintreten

Mehr

55. Mathematik-Olympiade 1. Stufe (Schulrunde) Olympiadeklasse 8 Aufgaben

55. Mathematik-Olympiade 1. Stufe (Schulrunde) Olympiadeklasse 8 Aufgaben 55. Mathematik-Olympiade 1. Stufe (Schulrunde) Olympiadeklasse 8 Aufgaben c 2015 Aufgabenausschuss des Mathematik-Olympiaden e.v. www.mathematik-olympiaden.de. Alle Rechte vorbehalten. Hinweis: Der Lösungsweg

Mehr

entspricht der Länge des Vektorpfeils. Im R 2 : x =

entspricht der Länge des Vektorpfeils. Im R 2 : x = Norm (oder Betrag) eines Vektors im R n entspricht der Länge des Vektorpfeils. ( ) Im R : x = x = x + x nach Pythagoras. Allgemein im R n : x x = x + x +... + x n. Beispiele ( ) =, ( 4 ) = 5, =, 4 = 0.

Mehr

1.12 Einführung in die Vektorrechung

1.12 Einführung in die Vektorrechung . Einführung in die Vektorrechung Inhaltsverzeichnis Definition des Vektors Skalare Multiplikation und Kehrvektor 3 3 Addition und Subtraktion von Vektoren 3 3. Addition von zwei Vektoren..................................

Mehr

m und schneidet die y-achse im Punkt P(0/3).

m und schneidet die y-achse im Punkt P(0/3). Aufgabe (Pflichtbereich 999) Eine Parabel hat die Gleichung y x 6x, 75. Bestimme rechnerisch die Koordinaten ihres Scheitelpunktes. Berechne die Entfernung des Scheitelpunktes vom Ursprung des Koordinatensystems.

Mehr

Mathematische Probleme, SS 2013 Montag $Id: dreieck.tex,v /04/22 20:37:01 hk Exp hk $

Mathematische Probleme, SS 2013 Montag $Id: dreieck.tex,v /04/22 20:37:01 hk Exp hk $ $Id: dreieck.tex,v 1.7 013/04/ 0:37:01 hk Exp hk $ 1 Dreiecke 1.5 Einige spezielle Punkte im Dreieck In der letzten Sitzung hatten wir den sogenannten Inkreis eines Dreiecks eingeführt, dies ist der Kreis

Mehr

Ebene und. Gerade, 2. Punkte A, B, C,..., die auf einer Geraden liegen, heißen kollinear.

Ebene und. Gerade, 2. Punkte A, B, C,..., die auf einer Geraden liegen, heißen kollinear. 16 3 Das Axiomensystem Motiviert von den Elementen des Euklid, wollen wir jetzt ein modernes Axiomensystem für die Ebene Geometrie aufstellen. Zum ersten Mal wurde das um 1900 von David Hilbert geleistet,

Mehr

55. Mathematik-Olympiade 2. Stufe (Regionalrunde) Olympiadeklasse 8 Lösungen

55. Mathematik-Olympiade 2. Stufe (Regionalrunde) Olympiadeklasse 8 Lösungen 55. Mathematik-Olympiade 2. Stufe (Regionalrunde) Olympiadeklasse 8 Lösungen c 2015 Aufgabenausschuss des Mathematik-Olympiaden e.v. www.mathematik-olympiaden.de. Alle Rechte vorbehalten. 550821 Lösung

Mehr

Inhaltsverzeichnis. 1 Einführung 1

Inhaltsverzeichnis. 1 Einführung 1 Inhaltsverzeichnis 1 Einführung 1 2 Der Inkreis und die Ankreise eines Dreiecks 1 2.1 Kreistangente und Berührradius....................... 1 2.2 Konstruktion von Kreistangenten mit Hilfe des Satzes von

Mehr

Zum Einstieg. Mittelsenkrechte

Zum Einstieg. Mittelsenkrechte Zum Einstieg Mittelsenkrechte 1. Zeichne einen Kreis um A mit einem Radius r, der größer ist, als die Länge der halben Strecke AB. 2. Zeichne einen Kreis um B mit dem gleichen Radius. 3. Die Gerade durch

Mehr

7. Mathematik Olympiade 2. Stufe (Kreisolympiade) Klasse 10 Saison 1967/1968 Aufgaben und Lösungen

7. Mathematik Olympiade 2. Stufe (Kreisolympiade) Klasse 10 Saison 1967/1968 Aufgaben und Lösungen 7. Mathematik Olympiade 2. Stufe (Kreisolympiade) Klasse 10 Saison 1967/1968 Aufgaben und Lösungen 1 OJM 7. Mathematik-Olympiade 2. Stufe (Kreisolympiade) Klasse 10 Aufgaben Hinweis: Der Lösungsweg mit

Mehr

Didaktik der Analysis und der Analytischen Geometrie/ Linearen Algebra

Didaktik der Analysis und der Analytischen Geometrie/ Linearen Algebra A. Filler[-3mm] Didaktik der Analysis und der Analytischen Geometrie/ Linearen Algebra, Teil 8 Folie 1 /27 Didaktik der Analysis und der Analytischen Geometrie/ Linearen Algebra 8. Das Skalarprodukt, metrische

Mehr

Hauptprüfung Abiturprüfung 2015 (ohne CAS) Baden-Württemberg

Hauptprüfung Abiturprüfung 2015 (ohne CAS) Baden-Württemberg Baden-Württemberg: Abitur 01 Pflichtteil www.mathe-aufgaben.com Hauptprüfung Abiturprüfung 01 (ohne CAS) Baden-Württemberg Pflichtteil Hilfsmittel: keine allgemeinbildende Gymnasien Alexander Schwarz www.mathe-aufgaben.com

Mehr

Die Eulergerade. Begrie. Spezialfälle. Konstruktion der Euler-Gerade

Die Eulergerade. Begrie. Spezialfälle. Konstruktion der Euler-Gerade Die Eulergerade Begrie In einem Dreieck liegen der Schwerpunkt S, der Höhenschnittpunkt H und der Umkreismittelpunkt U auf einer gemeinsamen Geraden, der Euler-Geraden (Bezeichnung: e). Zur Erinnerung:

Mehr

21. Mathematik Olympiade 3. Stufe (Bezirksolympiade) Klasse 7 Saison 1981/1982 Aufgaben und Lösungen

21. Mathematik Olympiade 3. Stufe (Bezirksolympiade) Klasse 7 Saison 1981/1982 Aufgaben und Lösungen 21. Mathematik Olympiade 3. Stufe (Bezirksolympiade) Klasse 7 Saison 1981/1982 Aufgaben und Lösungen 1 OJM 21. Mathematik-Olympiade 3. Stufe (Bezirksolympiade) Klasse 7 Aufgaben Hinweis: Der Lösungsweg

Mehr