Mathematik - Arbeitsblätter

Save this PDF as:
 WORD  PNG  TXT  JPG

Größe: px
Ab Seite anzeigen:

Download "Mathematik - Arbeitsblätter"

Transkript

1 I knn I knn Mte I knn Mte lernen Mtemtik - Areitslätter M Wiederolung Gnze und rtionle Zlen Ds retwinklige Koordintensystem Potenzen Anwendung der Prozentrenung Termumformungen Fläeninlte von Vieleken Linere Gleiungen Verältnisse und Proportionen Änlikeit Proportionle Zuordnungen Prismen und Pyrmiden Zinsen und Zinseszinsen Lerstz des Pytgors Renen mit Formeln Sttistik Srenen Rätsel 1 2 GS-Multimedi I knn Mte lernen Seite 2

2 Nme: Anwendung der Prozentrenung 6 Preis one MWSt 100 % Nettopreis Preis mit MWSt Bruttopreis plus MWSt 22) Toms kuft ein Frrd, ds one MWSt 18 kostet Wie viel eträgt die MWSt (20 %) und wie viel ezlt Toms (inklusive MWSt) für ds Frrd? K: G = 18, p % = 20 %; A =? A = G p 100 Preis one MWSt 100 % 18,00 A = 18 0,20 MWSt 20 % 6,60 A = 6,60 Preis mit MWSt 120 % 81,60 A: Die MWSt eträgt 6,60 Toms ezlt für ds Frrd inklusive MWSt 81,60 2) Mri kuft ein Bu, ds inklusive 10 % MWSt 18,82 kostet Wie o ist der Preis one MWSt und wie viel eträgt die MWSt? K: A = 18,82, p % = 110 %; G =? A = G p 100 : p 100 Preis one MWSt 100 % 17,11 G = A : p 100 MWSt 10 % 1,71 G = 18,82 : 1,10 Preis mit MWSt 110 % 18,82 G = 17,109 17,11 A: Der Preis one MWSt eträgt 17,11 und die MWSt eträgt 1,71 24) Herr Lnner kuft in Deutslnd Softwre um 64 Zuzügli sind no 102,88 MWSt zu entriten Wie viel zlt Herr Lnner für die Softwre und wie o ist in Deutslnd der Merwertsteuerstz für Softwre? K: G = 64, A = 102,88 ; p % =? A = G p 100 : G Preis one MWSt 100 % 64,00 MWSt 16 % 102,88 Preis mit MWSt 116 % 745,88 p 100 = A : G p 100 = 102,88 : 64 p 100 = 0,16 p = 16 A: Der Preis inklusive MWSt eträgt 745,88 ; der Merwertsteuerstz für Softwre eträgt in Deutslnd 16 % 25) Berene die felenden Beträge (Sreie den Reengng n und rene dnn us) Preis one MWSt : 1,20 = : 1,20 = 166,67 Preis mit 20 % MWSt 18 1,20 = 21, Preis one MWSt : 1,10 = 16,6 200 : 1,10 = 181,82 Preis mit 10 % MWSt 18 1,10 = 19, GS-Multimedi I knn Mte lernen Seite 58

3 Nme: Anwendung der Prozentrenung 6 Preis one MWSt 100 % Nettopreis Preis mit MWSt Bruttopreis plus MWSt 22) Toms kuft ein Frrd, ds one MWSt 18 kostet Wie viel eträgt die MWSt (20 %) und wie viel ezlt Toms (inklusive MWSt) für ds Frrd? K: Preis one MWSt MWSt Preis mit MWSt A: 2) Mri kuft ein Bu, ds inklusive 10 % MWSt 18,82 kostet Wie o ist der Preis one MWSt und wie viel eträgt die MWSt? K: A: 24) Herr Lnner kuft in Deutslnd Softwre um 64 Zuzügli sind no 102,88 MWSt zu entriten Wie viel zlt Herr Lnner für die Softwre und wie o ist in Deutslnd der Merwertsteuerstz für Softwre? K: A: Der Preis inklusive MWSt eträgt 745,88 ; der Merwertsteuerstz für Softwre eträgt in Deutslnd 16 % 25) Berene die felenden Beträge (Sreie den Reengng n und rene dnn us) Preis one MWSt 18 Preis mit 20 % MWSt Preis one MWSt 18 Preis mit 10 % MWSt GS-Multimedi I knn Mte lernen Seite 58

4 Nme: Prismen und Pyrmiden 1 1) Drtmodelle von Prismen - lle Knten sind sitr Ergänze die felenden Knten und gi die Nmen der Körper n Würfel Dreiseitiges Prism Trpezförmiges Prism Sesseitiges Prism Quder Dreiseitiges Prism Trpezförmiges Prism Sesseitiges Prism 2) Ergänze ei den Srägrissen die verdekten Knten ) Konstruiere die Srägrisse der Prismen ) l = 8 m; α = 45, v = 1 2 ) = 4 m; α = 15, v = 1 2 GS-Multimedi I knn Mte lernen Seite 118

5 Nme: Prismen und Pyrmiden 1 1) Drtmodelle von Prismen - lle Knten sind sitr Ergänze die felenden Knten und gi die Nmen der Körper n 2) Ergänze ei den Srägrissen die verdekten Knten ) Konstruiere die Srägrisse der Prismen ) l = 8 m; α = 45, v = 1 2 ) = 4 m; α = 15, v = 1 2 GS-Multimedi I knn Mte lernen Seite 118

6 Nme: Zinsen und Zinseszinsen 7 27) Kredit Tilgungspln Ergänze in der Telle die felenden Zlen (Sreie sorgfältig untereinnder) Jresnfng Jresende Suld plus Zinsen Rükzlung Restsuld 1 Jr , ,00 = , , ,00 2 Jr , ,00 = , , ,00 Jr , ,52 = , , ,52 4 Jr , ,8 = 28 26, ,90 0,00 Lies us der Telle zw erene ) Weler Betrg wurde ls Kredit ufgenommen? ,00 ) Wele Summe wurde in den ersten drei Jren zurük gezlt? ,00 ) Wie o ist die Suld m Ende des dritten Jres? ,52 d) Weler Betrg fiel n Zinsen n? 28 26,90 e) Weler Betrg wurde insgesmt zurükezlt? ,90 f) Wie o ist der Zinsstz? 12 % 28) Kredit Tilgungspln Ergänze in der Telle die felenden Zlen (Sreie sorgfältig untereinnder) Jresnfng Jresende Suld plus Zinsen Rükzlung Restsuld 1 Jr , ,00 = , , ,00 2 Jr , ,00 = 7 248, , ,00 Jr 5 248, ,2 = , , ,2 4 Jr 8 040,2 + 42,6 = 41 46, , ,95 5 Jr 21 46, ,76 = 2 95, ,00 95,71 6 Jr 95, ,61 = 701,2 701,2 0,00 29) Stelle einen Kredit Tilgungspln uf Ein Kredit von wird zu einem Zinsstz von 10 % ufgenommen und soll in Jresrten zu zurükezlt werden Jresnfng Jresende Suld plus Zinsen Rükzlung Restsuld 1 Jr , ,00 = 1 200, , ,00 2 Jr 9 200, ,00 = , , ,00 Jr 6 120, ,00 = 6 72, , ,0 4 Jr 2 72, ,20 = 005,20 005,20 0,00 GS-Multimedi I knn Mte lernen Seite 14

7 Nme: Zinsen und Zinseszinsen 7 27) Kredit Tilgungspln Ergänze in der Telle die felenden Zlen (Sreie sorgfältig untereinnder) Jresnfng Jresende Suld plus Zinsen Rükzlung Restsuld 1 Jr , ,00 = , ,00 2 Jr , ,00 = 0 000, ,00 Jr ,52 = , , ,52 4 Jr ,52 + = 28 26, ,90 0,00 Lies us der Telle zw erene ) Weler Betrg wurde ls Kredit ufgenommen? ) Wele Summe wurde in den ersten drei Jren zurük gezlt? ) Wie o ist die Suld m Ende des dritten Jres? d) Weler Betrg fiel n Zinsen n? e) Weler Betrg wurde insgesmt zurükezlt? f) Wie o ist der Zinsstz? 28) Kredit Tilgungspln Ergänze in der Telle die felenden Zlen (Sreie sorgfältig untereinnder) Jresnfng Jresende Suld plus Zinsen Rükzlung Restsuld 1 Jr , ,00 = , ,00 2 Jr , ,00 = , ,00 Jr ,2 = ,00 4 Jr 8 040,2 + = 41 46, ,00 5 Jr ,76 = 2 95, ,00 6 Jr 95, ,61 = 29) Stelle einen Kredit Tilgungspln uf Ein Kredit von wird zu einem Zinsstz von 10 % ufgenommen und soll in Jresrten zu zurükezlt werden Jresnfng Jresende Suld plus Zinsen Rükzlung Restsuld 1 Jr + = 2 Jr + = Jr + = 4 Jr + = GS-Multimedi I knn Mte lernen Seite 14

8 Nme: Renen mit Formeln 1 Bei Formelumformungen ist es günstig, lle Mlpunkte nzusreien (2 2 ) 1) Forme die Formeln n der gesuten Größe um Qudrt: u = 4; =? Gleiseitiges Dreiek: u = ; =? Regelmäßiges Sesek: u = 6; =? u = 4 : 4 u = : u = 6 : 6 = u 4 = u = u 6 Retek: A = ; =? Prllelogrmm: A = ; =? Rute: A = ; =? A = : A = : A = : = A Allgemeines Dreiek: u = + + ; =? = A Gleisenkliges Dreiek ( = ): u = 2 + ; =? = A u = + + ( + ) u = = u ( + ) = u 2 Quder: V = ; =? Qudrtises Prism: V = 2 ; =? V = : ( ) V = 2 : 2 = V = V 2 Quder: O = 2 G + M; M =? Allgemeines Dreiek: A = 2 ; =? Qudrtise Pyrmide: G V = ; =? Qudrtise Pyrmide: O = G + M; G =? O = 2 G + M 2 G O = G + M M M = O 2 G A = 2 G = O M GS-Multimedi I knn Mte lernen Seite 146 s Deltoid: e f A = ; e =? 2 A = 2 e f 2 A 2 = : e A 2 = e f : f = e = V = A 2 G f Retekige Pyrmide: V = ; =? V = A 2 f V = G : G V = : ( ) = = V V G 2

9 Nme: Renen mit Formeln 1 Bei Formelumformungen ist es günstig, lle Mlpunkte nzusreien (2 2 ) 1) Forme die Formeln n der gesuten Größe um Qudrt: u = 4; =? Gleiseitiges Dreiek: u = ; =? Regelmäßiges Sesek: u = 6; =? Retek: A = ; =? Prllelogrmm: A = ; =? Rute: A = ; =? Allgemeines Dreiek: u = + + ; =? Gleisenkliges Dreiek ( = ): u = 2 + ; =? Quder: V = ; =? Qudrtises Prism: V = 2 ; =? Quder: O = 2 G + M; M =? Qudrtise Pyrmide: O = G + M; G =? s Allgemeines Dreiek: A = 2 ; =? Deltoid: e f A = ; e =? 2 f e A 2 f Qudrtise Pyrmide: G V = ; =? Retekige Pyrmide: V = ; =? V GS-Multimedi I knn Mte lernen Seite 146

Mathematik - Arbeitsblätter

Mathematik - Arbeitsblätter I knn I knn Mte I knn Mte lernen Mtemtik - Areitslätter M Wiederolung 1 4 5 8 Gnze und rtionle Zlen 1 4 5 6 7 8 9 47 Ds retwinklige Koordintensystem 1 49 Potenzen 1 4 5 Anwendung der Prozentrenung 1 4

Mehr

Vorbereitung auf die 5. Schularbeit

Vorbereitung auf die 5. Schularbeit M-Beispielen KL, KV 01 Vorereitung uf die 5. Sulreit HS Pins Klsse 3 M3/I. 3.5.01 Vorereitung uf die NAME: 5. Sulreit us MATHEMATIK KL.: M3/I. - S. Do, 3. 5. 01 1) Ein regelmäßiges sesseitiges Prism t

Mehr

FLÄCHE/ UMFANG VOLUMEN/ OBERFLÄCHE

FLÄCHE/ UMFANG VOLUMEN/ OBERFLÄCHE FLÄCHENBERECHNUNG FLÄCHE/ UMFANG VOLUMEN/ OBERFLÄCHE Für die Berenung von Fläen git es für die versiedenen Figuren Formeln, die mn kennen sollte. Mit ein pr kleinen Triks mt mn si ds Leen llerdings viel

Mehr

Vorbereitung auf (3. Mai 2012) NAME: 5. Schularbeit: MATHEMATIK KL.: M3/I. - S.1

Vorbereitung auf (3. Mai 2012) NAME: 5. Schularbeit: MATHEMATIK KL.: M3/I. - S.1 Vorereitung uf (3. Mi 01) NME: 5. Sulreit: MTHEMTIK KL.: M3/I. - S.1 Netze versieener Prismen zeinen (Grunfläe: Dreiek, Vierek, regelmäßiges Sesek). Ds Netz eines Prisms estet us Grunfläe + Dekfläe + Mntel.

Mehr

Mathematik - Arbeitsblätter

Mathematik - Arbeitsblätter Ic knn... Ic knn Mte... Ic knn Mte lernen Mtemtik - Areitslätter 3 M Wiederolung 3 6 7 8 38 Reelle Zlen 3 6 Stzgruppe des Ptgors 3 6 7 8 9 Terme 3 6 6 Gleicungen und Ungleicungen 3 6 7 8 9 7 Körpererecnungen

Mehr

Aus Textaufgaben mit Angabe des Grundwertes und Prozentsatzes den Prozentwert berechnen.

Aus Textaufgaben mit Angabe des Grundwertes und Prozentsatzes den Prozentwert berechnen. Vorereitung uf die 3. Sulreit: MATHEMATI L.: M3/I. - S. 5.. Aus Textufgen mit Ange des Grundwertes und Prozentstzes den Prozentwert erenen. Grundwert G... ds Gnze ( oder vom Gnzen $ % oder % Prozentnteil

Mehr

Mathematik - Arbeitsblätter

Mathematik - Arbeitsblätter Ic nn... Ic nn Mte... Ic nn Mte lernen Mtemti - Areitslätter 9 M Wiederolung 1 Gleicungen 1 5 6 7 8 0 Teilreit 1 5 6 6 Geometrisce Konstrutionen 1 5 6 7 5 Brucrecnung 1 5 6 7 8 9 10 11 1 1 1 67 Dreiece

Mehr

Strahl Eine gerade Linie, die auf einer Seite von einem Punkt begrenzt wird, (Anfangspunkt) heißt Strahl.

Strahl Eine gerade Linie, die auf einer Seite von einem Punkt begrenzt wird, (Anfangspunkt) heißt Strahl. 1. 1. 2. Strecke B B Gerde Eine gerde, von zwei Punkten begrenzte Linie heißt Strecke. Eine gerde Linie, die nicht begrenzt ist, heißt Gerde. D.h. eine Gerde ht keine Endpunkte! 2. 3. 3. g Strhl Eine gerde

Mehr

Mathematik - Arbeitsblätter

Mathematik - Arbeitsblätter Ic knn... Ic knn Mte... Ic knn Mte lernen Mtemtik - reitslätter M Wiederolung 6 7 8 8 Reelle Zlen 6 Stzgruppe des Ptgors 6 7 8 9 Terme 6 6 leicungen und Ungleicungen 6 7 8 9 7 Körpererecnungen 6 7 8 9

Mehr

2008-06-11 Klassenarbeit 5 Klasse 10c Mathematik

2008-06-11 Klassenarbeit 5 Klasse 10c Mathematik 2008-06- Klssenrbeit 5 Klsse 0c Mtemtik Lösung Version 2008-06-4 Cindy t 3000 geerbt. ) Den Betrg will sie so nlegen, dss sie in 20 Jren doppelt so viel Geld t. Berecne, zu welcem Zinsstz sie ds Geld nlegen

Mehr

Lösung: a) 1093 1100 b) 1093 1090

Lösung: a) 1093 1100 b) 1093 1090 OvTG Guting, Grundwissen Mthemtik 5. Klsse 1. Ntürliche Zhlen Dezimlsystem Mn nennt die Zhlen, die mn zum Zählen verwendet, 10963 = 1 10000+ 0 1000+ 9 100+ 6 10 + 3 1 ntürliche Zhlen. Der Stellenwert der

Mehr

Berechnungen am Prisma. Das Netz (Abwicklung) eines Prismas

Berechnungen am Prisma. Das Netz (Abwicklung) eines Prismas Berechnungen m Prism Einführung des Prisms: Schüler ringen verschiedene Verpckungen mit in den Unterricht Klssifizierung der Verpckungen in Prismen und ndere Körper Erreitung der Eigenschften eines Prisms:

Mehr

2.2. Aufgaben zu Figuren

2.2. Aufgaben zu Figuren 2.2. Aufgen zu Figuren Aufge 1 Zeichne ds Dreieck ABC in ein Koordintensystem. Bestimme die Innenwinkel, und und erechne ihre Summe. Ws stellst Du fest? ) A(1 2), B(8 3) und C(3 7) ) A(0 3), B(10 1) und

Mehr

Download. Klassenarbeiten Mathematik 5. Geometrische Figuren und Körper. Marco Bettner, Erik Dinges. Downloadauszug aus dem Originaltitel:

Download. Klassenarbeiten Mathematik 5. Geometrische Figuren und Körper. Marco Bettner, Erik Dinges. Downloadauszug aus dem Originaltitel: Downlod Mrco Bettner, Erik Dinges Klssenrbeiten Mthemtik 5 Geometrische Figuren und Körper Downloduszug us dem Originltitel: Klssenrbeiten Mthemtik 5 Geometrische Figuren und Körper Dieser Downlod ist

Mehr

Mathematik. Name, Vorname:

Mathematik. Name, Vorname: Kntonsschule Zürich Birch Fchmittelschule Aufnhmeprüfung 2007 Nme, Vornme: Nr.: Zeit: 90 Minuten erlubte Hilfsmittel: Tschenrechner us der Sekundrschule, lso weder progrmmierbr noch grfik- oder lgebrfähig

Mehr

Schrägbilder und Berechnungen an Körpern 1 Schrägbilder 22 2 Berechnungen an Körpern 25 3 Weiterführende Aufgaben 27 Probe-Prüfungsaufgaben 28

Schrägbilder und Berechnungen an Körpern 1 Schrägbilder 22 2 Berechnungen an Körpern 25 3 Weiterführende Aufgaben 27 Probe-Prüfungsaufgaben 28 Inlt Eene Geometrie: Dreieke 1 Seitenlängen und Winkelmße in retwinkligen Dreieken 6 erenungen in llgemeinen Dreieken 8 3 Weiterfürende ufgen 10 Proe-Prüfungsufgen 1 Eene Geometrie: Viereke und ndere Figuren

Mehr

Prisma und Pyramide 10

Prisma und Pyramide 10 Prism und Pyrmide 10 C10-01 1 5 1 Körper 1 Scnittbogen 1 Körper Scnittbogen Körper Scnittbogen Körper Scnittbogen 6 Scnittbogen Scnittbogen 5 M c = + ( ) = 10 + 5 = 15 11, c c c c Individuelle Individuelle

Mehr

Kapitel IV Euklidische Vektorräume. γ b

Kapitel IV Euklidische Vektorräume. γ b Kpitel IV Euklidische Vektorräume 1 Elementrgeometrie in der Eene Sei E die Zeicheneene In der Schule lernt mn: (11) Stz des Pythgors: Sei E ein Dreieck mit den Seiten, und c, und sei γ der c gegenüerliegende

Mehr

MATHEMATIK GRUNDWISSEN KLASSE 5

MATHEMATIK GRUNDWISSEN KLASSE 5 MATHEMATIK GRUNDWISSEN KLASSE 5 Them NATÜRLICHE ZAHLEN Zählen und Ordnen Ntürliche Zhlen werden zum Zählen und Ordnen verwendet Stefn ist beim 100m-Luf ls 2. ins Ziel gekommen. Große Zhlen und Zehnerpotenzen

Mehr

Mathematik - Arbeitsblätter

Mathematik - Arbeitsblätter Ic knn... Ic knn Mte... Ic knn Mte lernen Mtemtik - reitslätter M Wieerolung 6 7 8 8 Reelle Zlen 6 Stzgruppe es Ptgors 6 7 8 Terme 6 6 leicungen un Ungleicungen 6 7 8 7 Körpererecnungen 6 7 8 ructerme

Mehr

a) Spezielle Winkel bei schneidenden Geraden und Parallelen α 3 β 4 Institut für Automatisierungstechnik Prof. Dr. Ch. Bold Vorsemester V.

a) Spezielle Winkel bei schneidenden Geraden und Parallelen α 3 β 4 Institut für Automatisierungstechnik Prof. Dr. Ch. Bold Vorsemester V. 0.05.0 Geometrie und Trigonometrie ) Spezielle Winkel ei shneidenden Gerden und Prllelen 4 4 Sheitelwinkel sind gleih (z.. zw. ) Neenwinkel ergänzen sih zu 80 0 (z.. + 80 0 ) Stufenwinkel sind gleih (z..

Mehr

Grundwissen l Klasse 5

Grundwissen l Klasse 5 Grundwissen l Klsse 5 1 Zhlenmengen und Punktmengen {1; 2; 3; 4; 5; 6;... } Die Menge der ntürlichen Zhlen. 0 {0; 1; 2; 3; 4; 5;... } Die Menge der ntürlichen Zhlen mit Null. M {; ; C;... } Die Menge der

Mehr

Aufgabentyp 2: Geometrie

Aufgabentyp 2: Geometrie Aufgbe 1: Würfel (1) () (3) (Schülerzeichnung) Wie wurde der links drgestellte Körper jeweils gedreht? Der Körper wurde nch links vorne gekippt. Der Körper wurde nch rechts vorne gekippt. Der Körper wurde

Mehr

3 Wiederholung des Bruchrechnens

3 Wiederholung des Bruchrechnens 3 Wiederholung des Bruchrechnens Ein Bruch entsteht, wenn ein Gnzes in mehrere gleiche Teile zerlegt wird. Jeder Bruch besteht us dem Zähler, der Zhl über dem Bruchstrich, und dem Nenner, der Zhl unter

Mehr

{ } Menge der natürlichen Zahlen { } Menge der natürlichen Zahlen mit Null { } Menge der ganzen Zahlen

{ } Menge der natürlichen Zahlen { } Menge der natürlichen Zahlen mit Null { } Menge der ganzen Zahlen Themen Ntürliche und gnze gerde Eigenschften Besonderheiten - Beispiele { } Menge der ntürlichen { } Menge der ntürlichen mit Null { } Menge der gnzen IN = 1;2;3;4;... IN 0 = 0;1;2;3;4;... Z =...; 3; 2;

Mehr

Download. Hausaufgaben: Trigonometrie. Üben in drei Differenzierungsstufen. Otto Mayr. Downloadauszug aus dem Originaltitel:

Download. Hausaufgaben: Trigonometrie. Üben in drei Differenzierungsstufen. Otto Mayr. Downloadauszug aus dem Originaltitel: Downlod Otto Myr Husufgen: Üen in drei Differenzierungsstufen Downloduszug us dem Originltitel: Husufgen: Üen in drei Differenzierungsstufen Dieser Downlod ist ein uszug us dem Originltitel Husufgen Mthemtik

Mehr

Erkundungen. Terme vergleichen. Rechteck Fläche als Produkt der Seitenlängen Fläche als Summe der Teilflächen A B

Erkundungen. Terme vergleichen. Rechteck Fläche als Produkt der Seitenlängen Fläche als Summe der Teilflächen A B Erkundungen Terme vergleihen Forshungsuftrg : Fläheninhlte von Rehteken uf vershiedene Arten erehnen Die Terme () is (6) eshreien jeweils den Fläheninhlt von einem der drei Rehteke. Ordnet die Terme den

Mehr

Aufgaben zur Vertiefung der Geometrie. WS 2005/06 5./6. Dezember 2005 Blatt 3

Aufgaben zur Vertiefung der Geometrie. WS 2005/06 5./6. Dezember 2005 Blatt 3 ufgben zur Vertiefung der Geometrie WS 2005/06 5./6. ezember 2005 ltt 3 1. Umkugel und Innenkugel eines Tetreders Leiten Sie die Formel für ds Volumen, die Oberfläche, den Rdius der umbeschriebenen und

Mehr

750 + 142,50 = 892,50 Nettopreis Umsatzsteuer Bruttopreis

750 + 142,50 = 892,50 Nettopreis Umsatzsteuer Bruttopreis 2.7 Verminderter und vermehrter Grundwert 41 Beispiel: Bruttobetrg, Nettobetrg, Umstzsteuer Profirdfhrer Klus kuft sih ein Mountinbike. Ds Fhrrd kostet einshließlih 19 % Umstzsteuer 892,50. Ds Finnzmt

Mehr

Teilbarkeitsregeln. 6.1 Grundwissen Mathematik Algebra Klasse 6. Teilbarkeit durch 2: Eine Zahl ist durch 2 teilbar, wenn die Endziffer gerade ist.

Teilbarkeitsregeln. 6.1 Grundwissen Mathematik Algebra Klasse 6. Teilbarkeit durch 2: Eine Zahl ist durch 2 teilbar, wenn die Endziffer gerade ist. 6.1 Grundwissen Mthemtik Algebr Klsse 6 Teilbrkeitsregeln Definition und Regeln Teilbrkeit durch 2: Eine Zhl ist durch 2 teilbr, wenn die Endziffer gerde ist. Teilbrkeit durch 3: Eine Zhl ist durch 3 teilbr,

Mehr

Rechnen mit Termen. 1. Berechne das Volumen und die Oberfläche. 4. Löse die Klammern auf und fasse zusammen: a) 2x(3x 1) x(2 5x) b) 7a(1 b)+5b(2 a)

Rechnen mit Termen. 1. Berechne das Volumen und die Oberfläche. 4. Löse die Klammern auf und fasse zusammen: a) 2x(3x 1) x(2 5x) b) 7a(1 b)+5b(2 a) Rechnen mit Termen 1. Berechne ds Volumen und die Oberfläche. 2. 3 3 7 2 4b 3. 5 4 8 b 4. Löse die Klmmern uf und fsse zusmmen: ) 2x(3x 1) x(2 5x) b) 7(1 b)+5b(2 ) c) 4b( 3b) 4b( 2 3) 5. Löse die Gleichungen:

Mehr

GRUNDWISSEN MATHEMATIK. Gymnasium Ernestinum Coburg Fachschaft Mathematik

GRUNDWISSEN MATHEMATIK. Gymnasium Ernestinum Coburg Fachschaft Mathematik GRUNDWISSEN MTHEMTIK Gymnsium Ernestinum Coburg Fchschft Mthemtik GM 5.1 Zhlen und Mengen Grundwissen Jhrgngsstufe 5 Mengen werden in der Mthemtik mit geschweiften Klmmern geschrieben: Menge der ntürlichen

Mehr

2.8. Aufgaben zum Satz des Pythagoras

2.8. Aufgaben zum Satz des Pythagoras Aufgbe 1 Vervollständige die folgende Tbelle:.8. Aufgben zum Stz des Pythgors Kthete 6 1 4 1 13 17 15 Kthete b 8 1 7 8 11 Hypotenuse c 13 9 19 17 Aufgbe Berechne jeweils die Länge der dritten Seite: Aufgbe

Mehr

MATHEMATIK 7. Schulstufe Schularbeiten

MATHEMATIK 7. Schulstufe Schularbeiten MATHEMATIK 7. Schulstufe Schularbeiten 1. S c h u l a r b e i t Grundrechnungsarten mit ganzen Zahlen Koordinatensystem rationale Zahlen Prozentrechnung a) Berechne: [( 26) : (+ 2) ( 91) : ( 7)] + ( 12)

Mehr

Mathe lernen mit Paul

Mathe lernen mit Paul Mte lernen mit Pul Die kleine Formelsmmlung Mit Gutscein für 2 kostenlose Unterrictsstunden 2 Mte lernen mit Pul Inlt Algebr Mße und Gewicte 4 Grundrecenrten 5 Brucrecnung 6 Potenzen und Wurzeln 7 Prozentrecnung

Mehr

Vorbereitung auf die Mathematik Schularbeit

Vorbereitung auf die Mathematik Schularbeit Vorbereitung uf die Mthemtik Schulrbeit 7. März 0 Alles Gute ll deinen Bemühungen, KL, KV Viel Erfolg! . Schulrbeit: MATHEMATIK KL.: M3b/I. - S. Mi, 7.03.0 ) Zeichne ds Prllelogrmm us den Bestimmungsstücken

Mehr

Unterrichtsmaterialien in digitaler und in gedruckter Form. Auszug aus: Lernzirkel / Stationenlernen: Höhensätze (Pythagoras und Euklid)

Unterrichtsmaterialien in digitaler und in gedruckter Form. Auszug aus: Lernzirkel / Stationenlernen: Höhensätze (Pythagoras und Euklid) Unterrihtsmterilien in digitler und in gedrukter Form uszug us: Lernzirkel / Sttionenlernen: Höhensätze (Pythgors und Euklid) Ds komplette Mteril finden Sie hier: Downlod ei Shool-Soutde SHOOL-SOUT Lernzirkel

Mehr

MATHEMATIK-WETTBEWERB 2003/2004 DES LANDES HESSEN

MATHEMATIK-WETTBEWERB 2003/2004 DES LANDES HESSEN MATHEMATIK-WETTBEWERB 2003/2004 DES LANDES HESSEN AUFGABENGRUPPE A PFLICHTAUFGABEN P1. Berechne: ) 22 (45 48) ) 25 [ 60 + ( 38 2)] c) 24 : (12 60) P2. Eine Kugel Eis kostete im vergngenen Jhr 0,60 ; jetzt

Mehr

Logarithmen zu speziellen und häufig gebrauchten Basen haben eigene Namen: Der Logarithmus zur Basis 10 heißt dekadischer oder Zehnerlogarithmus:

Logarithmen zu speziellen und häufig gebrauchten Basen haben eigene Namen: Der Logarithmus zur Basis 10 heißt dekadischer oder Zehnerlogarithmus: 0 Dr Andres M Seifert Sternstunden in Mthe, Physik und Technik wwwsternstunden-odenwldde Logrithmen Die Gleichung vom Typ b wird mit Hilfe des Logrithmus gelöst Der Logrithmus von zur Bsis b ist die Zhl,

Mehr

Formelsammlung Mathematik 4. Klasse

Formelsammlung Mathematik 4. Klasse Formelsmmlung Mthemtik 4. Klsse Inhlt Rehtek... Qurt... llgemeines Dreiek... Rehtwinkeliges Dreiek... Gleihshenkliges Dreiek... 4 Gleihseitiges Dreiek... 4 Trpez... 5 Prllelogrmm... 5 Rute Rhomus... 6

Mehr

Grundwissen Mathematik 5/1

Grundwissen Mathematik 5/1 1. Wihtie Symole Grundwissen Mthemtik 5/1 Wihtie Symole Rehenrten Qudrtzhlen IN Mene der ntürlihen Zhlen { 1; 2; 3; 4;... } IN 0 Mene der ntürlihen Zhlen einshließlih der Null {0; 1; 2; 3; 4;... } GI Grundmene

Mehr

Es soll der Betrag eines Vektors berechnet werden, wenn dieser in Komponenten oder Koordinatenschreibweise gegeben ist. a 3. x 2

Es soll der Betrag eines Vektors berechnet werden, wenn dieser in Komponenten oder Koordinatenschreibweise gegeben ist. a 3. x 2 R. Brinkmnn http://brinkmnn-du.de Seite 8.. Vektoren im krtesischen Koordintensystem Betrg eines Vektors Es soll der Betrg eines Vektors berechnet werden, wenn dieser in Komponenten oder Koordintenschreibweise

Mehr

Der Gauß - Algorithmus

Der Gauß - Algorithmus R Brinkmnn http://brinkmnn-du.de Seite 7..9 Der Guß - Algorithmus Der Algorithmus von Guss ist ds universelle Verfhren zur Lösung beliebiger linerer Gleichungssysteme. Einführungsbeispiel: 7x+ x 5x = Drei

Mehr

Brückenkurs Lineare Gleichungssysteme und Vektoren

Brückenkurs Lineare Gleichungssysteme und Vektoren Brückenkurs Linere Gleichungssysteme und Vektoren Dr Alessndro Cobbe 30 September 06 Linere Gleichungssyteme Ws ist eine linere Gleichung? Es ist eine lgebrische Gleichung, in der lle Vriblen nur mit dem

Mehr

Definition: Eine Folge, bei welcher der Quotient zweier aufeinanderfolgender Glieder immer gleich gross ist, heisst geometrische Folge (GF).

Definition: Eine Folge, bei welcher der Quotient zweier aufeinanderfolgender Glieder immer gleich gross ist, heisst geometrische Folge (GF). 7. Geometrische Folgen (exponentielles Wchstum) Beispiele: 2, 6, 8, 54, 62,... = 6= 2 8 8, -4, 2, -,,,... =, ds Vorzeichen wechselt b (lternierende Folge), -,, -,... = Definition: Eine Folge, bei welcher

Mehr

Kleine Algebra-Formelsammlung

Kleine Algebra-Formelsammlung Immnuel-Knt-Gymnsium Heiligenhus Gierhrt Kleine Alger-Formelsmmlung Mittelstufe (is Klsse 0) Drgestellt sin ie wichtigsten Fkten un Gesetze, woei iverse Ausnhmeregeln wie z.b. s Verot er Division urch

Mehr

Wiederholungsaufgaben zum Grundwissenkatalog Mathematik der 7. Jahrgangsstufe

Wiederholungsaufgaben zum Grundwissenkatalog Mathematik der 7. Jahrgangsstufe Gymnsium Stein Wiederholungsufgen zum Grundwissenktlog Mthemtik der. Jhrgngsstufe ) ) Wie viele Symmetriechsen hen jeweils die folgenden Figuren? ) Welche der Figuren sind punktsymmetrisch? ❶ ❷ ❸ ❹ ❺ ❻

Mehr

7.4. Teilverhältnisse

7.4. Teilverhältnisse 7... erehnung von Teilverhältnissen ufgen zu Teilverhältnissen Nr. 7.. Teilverhältnisse Die Shwerpunkte von Figuren und Körpern lssen sih mit Hilfe von Teilverhältnissen usdrüken und erehnen. Definition

Mehr

Aufgaben zu Brechung - Lösungen:

Aufgaben zu Brechung - Lösungen: Aufgen zu Brechung - Lösungen: Aufg. 2 (mit Berechnung von n) ) 1 = 1,8 cm; = / n' mit n' = 1/1,5 ==> 1 = 1,8 cm. 1,5 = 2,7 cm r = 2,1cm; d 1 > r ==> Totlreflexion 2 = 0,9 cm; 2 = 0,9 cm. 1,5 = 1,35 cm

Mehr

F 0 =0, F 1 =1 und F n+1 =F n +F n-1 0, 1, 1, 2, 3, 5, 8, 13, 21, 34, 55,

F 0 =0, F 1 =1 und F n+1 =F n +F n-1 0, 1, 1, 2, 3, 5, 8, 13, 21, 34, 55, F 0 0, F und F n+ F n +F n- 0,,,,,, 8,,, 4,, N A U T I L U S Fiboncci - Zhlen S. Nutilus - Nmen gebend für ds berühmte U-Boot des Kpitäns Nemo us Jules Vernes Romn "0 000 Meilen unter dem Meer" - ist ein

Mehr

R. Brinkmann http://brinkmann-du.de Seite 1 17.11.2010

R. Brinkmann http://brinkmann-du.de Seite 1 17.11.2010 R. rinkmnn http://rinkmnn-du.de Seite 7..2 Grundegriffe der Vektorrehnung Vektor und Sklr Ein Teil der in Nturwissenshft und Tehnik uftretenden Größen ist ei festgelegter Mßeinheit durh die nge einer Mßzhl

Mehr

Grundwissen Mathematik 8.Klasse Gymnasium SOB. Darstellung im Koordinatensystem: Der Kreisumfang ist direkt proportional zu seinem Radius.

Grundwissen Mathematik 8.Klasse Gymnasium SOB. Darstellung im Koordinatensystem: Der Kreisumfang ist direkt proportional zu seinem Radius. Gymso 1 Grundwissen Mthemtik 8.Klsse Gymnsium SOB 1.Funktionle Zusmmenhänge 1.1.Proportionlität Ändern sih ei einer Zuordnung die eiden Größen im gleihen Verhältnis, so spriht mn von einer direkten Proportionlität.

Mehr

Beispiel-Abiturprüfung

Beispiel-Abiturprüfung Mthemtik BeispielAbiturprüfung Prüfungsteile A und B Bewertungsschlüssel und Lösungshinweise (nicht für den Prüfling bestimmt) Die Bewertung der erbrchten Prüfungsleistungen ht sich für jede Aufgbe nch

Mehr

Ungleichungen. Jan Pöschko. 28. Mai Einführung

Ungleichungen. Jan Pöschko. 28. Mai Einführung Ungleichungen Jn Pöschko 8. Mi 009 Inhltsverzeichnis Einführung. Ws sind Ungleichungen?................................. Äquivlenzumformungen..................................3 Rechnen mit Ungleichungen...............................

Mehr

XING Events. Kurzanleitung

XING Events. Kurzanleitung XING Events Kurznleitung 00 BASIC nd PLUS Events 2 Die Angebotspkete im Überblick Wählen Sie zwischen zwei Pketen und steigern Sie jetzt gezielt den Erfolg Ihres Events mit XING. Leistungen Event BASIS

Mehr

Volumen und Oberfläche von Prismen und Zylindern: Das Volumen und die Oberfläche sind für alle geraden Prismen und Zylinder wie folgt zu berechnen:

Volumen und Oberfläche von Prismen und Zylindern: Das Volumen und die Oberfläche sind für alle geraden Prismen und Zylinder wie folgt zu berechnen: Körpererehnungen Grunwissen Grunwissen Viele mthemtishe Körper lssen sih us en eknnten geometrishen Grunkörpern zusmmensetzen: us geren Prismen, Zylinern, Kegeln, Pyrmien un Kugeln. Hinsihtlih er Oerflähen-

Mehr

Spiele und logische Komplexitätsklassen

Spiele und logische Komplexitätsklassen Spiele und logische Komplexitätsklssen Mrtin Horsch 26. Jnur 2006 Inhlt des Seminrvortrges Ehrenfeucht-Frïssé-Spiel mit k Mrken Formeln mit k Vrilen und logische Komplexitätsklssen k-vrileneigenschft logischer

Mehr

Mathematik Bruchrechnung Grundwissen und Übungen

Mathematik Bruchrechnung Grundwissen und Übungen Mthemtik Bruchrechnung Grundwissen und Übungen von Stefn Gärtner (Gr) Stefn Gärtner -00 Gr Mthemtik Bruchrechnung Seite Inhlt Inhltsverzeichnis Seite Grundwissen Ws ist ein Bruch? Rtionle Zhlen Q Erweitern

Mehr

Besondere Linien und Punkte im Dreieck

Besondere Linien und Punkte im Dreieck Sttion 6 Aufge Besondere Linien und Punkte im Dreiek Nme: Betrhte folgende Begriffe. Shreie diese n die rihtige Stelle neen den Dreieken. Höhenlinie Winkelhlierende Seitenhlierende Mittelsenkrehte Mittelpunkt

Mehr

der reellen Zahlen umfasst alle rationalen und irrationalen Zahlen.

der reellen Zahlen umfasst alle rationalen und irrationalen Zahlen. . Zhlen. Die Qudrtwurzel Die Qudrtwurzel ist die positive Lösung der Gleihung Ein Teil der Qudrtwurzeln sind rtionle Zhlen. 0! z.b. 9, 0,0 0, oder, 0 0! 9 heißt Rdiknd ndere dgegen irrtionle Zhlen z. B.,

Mehr

( ) ( 4) I. Reelle Zahlen LÖSUNGEN L9_01. o Rationale Zahlen: 5; ; 2,8. o Irrationale Zahlen: 7 ; ; 6 5 ; L9_02 = = o 48 3.

( ) ( 4) I. Reelle Zahlen LÖSUNGEN L9_01. o Rationale Zahlen: 5; ; 2,8. o Irrationale Zahlen: 7 ; ; 6 5 ; L9_02 = = o 48 3. I. Reelle Zhlen L9_0 Rtinle Zhlen: ; ;,8 ;, ; 9 7 L9_0 Irrtinle Zhlen: 7 ; + ; ; 8 8 8 L9_0 L9_0 L9_0 L9_0 8 + ist bereits vllständig vereinfcht! (Achtung: + +, vgl. Tschenrechner,, und,, ls +, ), : +

Mehr

Grundwissen. Die Menge der reellen Zahlen 0 =0. Beispiele

Grundwissen. Die Menge der reellen Zahlen 0 =0. Beispiele Grundwissen Klsse 9 Die Menge der reellen Zhlen Die Umkehrung des Qudrierens wird für nicht negtive Zhlen ls Ziehen der Wurzel oder Rdizieren ezeichnet. Die Qudrtwurzel us (kurz: Wurzel us ) ist dei die

Mehr

Grundwissen Mathematik 5/1

Grundwissen Mathematik 5/1 1 Wichtige Symole Grundwissen Mthemtik 5/1 Wichtige Symole Rechenrten Qudrtzhlen IN Menge der ntürlichen Zhlen { 1; ; 3; 4;... } IN 0 Menge der ntürlichen Zhlen einschließlich der Null {0; 1; ; 3; 4;...

Mehr

Grundwissen am Ende der Jahrgangsstufe 9. Wahlpflichtfächergruppe II / III

Grundwissen am Ende der Jahrgangsstufe 9. Wahlpflichtfächergruppe II / III Grundwissen m Ende der Jhrgngsstufe 9 Whlpflichtfächergruppe II / III Funktionsbegriff Gerdengleichungen ufstellen und zu gegebenen Gleichungen die Grphen der Gerden zeichnen Ssteme linerer Gleichungen

Mehr

Übungsteil: 1. Algebra

Übungsteil: 1. Algebra lgebr Übungsteil: lgebr Gleichungssysteme: estimmen Sie die Lösungsmenge folgender Gleichungssysteme: ) y + 7 = 5x x + y = 7 c) y = x 9 6x 0 = y b) y = 5x y = x d) x + 5y = 05 0,5y = x,5 e) 0(x + y) =

Mehr

ARBEITSBLATT 1-13. Maßeinheiten. 1. Längenmaße. km m dm cm mm. Beispiel: Schreib mehrnamig: 2,032801 km Lösung: 2,032801 km = 2 km 32 m 8 dm 1 mm

ARBEITSBLATT 1-13. Maßeinheiten. 1. Längenmaße. km m dm cm mm. Beispiel: Schreib mehrnamig: 2,032801 km Lösung: 2,032801 km = 2 km 32 m 8 dm 1 mm ARBEITSBLATT 1-13 13 Mßeinheiten 1. Längenmße 1000 10 10 10 km m dm cm mm Beispiel: Schreib mehrnmig:,03801 km Lösung:,03801 km = km 3 m 8 dm 1 mm Beispiel: Drücke in km us: 4 km 0 m 3 cm Lösung: 4 km

Mehr

Nullstellen quadratischer Gleichungen

Nullstellen quadratischer Gleichungen Nullstellen qudrtischer Gleichungen Rolnd Heynkes 5.11.005, Achen Nch y ufgelöst hen qudrtische Gleichungen die Form y = x +x+c. Zeichnet mn für jedes x uf der rechten Seite und ds drus resultierende y

Mehr

Mathematik in eigenen Worten

Mathematik in eigenen Worten Sieglinde Wsmier Mtemtik in eigenen Worten Lernumgeungen für die Sekundrstufe I Klett und Blmer Verlg Mtemtik in eigenen Worten Scülerinnen und Scüler screien ire Lern- und Denkwege uf : Sieglinde Wsmier

Mehr

Einfache Formeln als Gleichungen sehen und entsprechend umformen.

Einfache Formeln als Gleichungen sehen und entsprechend umformen. orereitung uf die (6.Juni 01) NME: 6. Sculreit: MTHEMTIK KL.: M/I. - S.1 leicungen umformen: Wgemodell und Umkeropertion. Wgemodell: Umformungregeln Durc jede ktion mu d leicgewict erlten leien! - = 8

Mehr

Multiplikative Inverse

Multiplikative Inverse Multipliktive Inverse Ein Streifzug durch ds Bruchrechnen in Restklssen von Yimin Ge, Jänner 2006 Viele Leute hben Probleme dbei, Brüche und Restklssen unter einen Hut zu bringen. Dieser kurze Aufstz soll

Mehr

Mathematik Thema Vielecke

Mathematik Thema Vielecke Them Vielecke Im Jnur 2006 Florin Vetter, Klsse 8, Riegelhof Relschule Seite 1 von 15 INHALTSVERZEICHNES 1. EINLEITUNG 3 2. ARTEN VON VIELECKEN 4 2.1. DREIECK 4 2.2. VIERECK 4 2.2.1. RECHTECK 4 2.2.2.

Mehr

1.2 Der goldene Schnitt

1.2 Der goldene Schnitt Goldener Schnitt Psclsches Dreieck 8. Der goldene Schnitt Beim Begriff Goldener Schnitt denken viele Menschen n Kunst oder künstlerische Gestltung. Ds künstlerische Problem ist, wie ein Bild wohlproportioniert

Mehr

4.8. Prüfungsaufgaben zur Trigonometrie

4.8. Prüfungsaufgaben zur Trigonometrie 4.8. Prüfungufgen zur Trigonometrie Aufge 1: Retwinklige Dreiek mit eite und inkel In einem retwinkligen Dreiek ABC mit der Hypotenue ind die Ktete = 45 m und der inkel β = 61 gegeen. Berene die eiden

Mehr

ARBEITSBLATT 14 ARBEITSBLATT 14

ARBEITSBLATT 14 ARBEITSBLATT 14 Mthemtik: Mg. Schmid Wolfgng reitsltt. Semester RBEITSBLTT RBEITSBLTT RBEITSBLTT RBEITSBLTT DS VEKTORPRODUKT Definition: Ds vektorielle Produkt (oder Kreuprodukt) weier Vektoren und ist ein Vektor mit

Mehr

Känguru der Mathematik 2005 Gruppe Kadett (7. und 8. Schulstufe) Österreich

Känguru der Mathematik 2005 Gruppe Kadett (7. und 8. Schulstufe) Österreich Känguru der Mthemtik 005 Gruppe Kdett (7. und 8. Schulstufe) Österreich - 7.3.005-3 Punkte Beispiele - ) In den Feldern einer Tbelle befinden sich wie bgebildet 8 Kängurus. Jedes dieser Kängurus knn von

Mehr

Satzgruppe des Pythagoras

Satzgruppe des Pythagoras Stzgruppe des Pythgors Jürgen Zumdik I. ntdeken des Stzes 1) Seilspnnergeshihte oder Zimmermnnsgeshihte (in Zimmermnn legt us Ltten der Länge 1,0 m, 1,60 m und,00 m ein Dreiek). ) us einer Werung von Ritter-Sport

Mehr

Installations und Bedienungsanleitung

Installations und Bedienungsanleitung Instlltions und Bedienungsnleitung EKRUCBS Instlltions und Bedienungsnleitung Deutsch Inhltsverzeichnis Inhltsverzeichnis Für den Benutzer 2 1 Schltflächen 2 2 Sttussymole 2 Für den Instllteur 3 3 Üersicht:

Mehr

Grundbegriffe der Informatik Aufgabenblatt 5

Grundbegriffe der Informatik Aufgabenblatt 5 Grundegriffe der Informtik Aufgenltt 5 Mtr.nr.: Nchnme: Vornme: Tutorium: Nr. Nme des Tutors: Ausge: 20. Novemer 2013 Age: 29. Novemer 2013, 12:30 Uhr im GBI-Briefksten im Untergeschoss von Geäude 50.34

Mehr

1 Das dreidimensionale Koordinatensystem

1 Das dreidimensionale Koordinatensystem Schüleruchseite 90 9 Lösungen vorläufig Ds dreidimensionle Koordintensystem S. 90. Möglichkeit: : Linke vordere oere Ecke des gnz linken Würfels : rechte hintere oere Ecke des gnz rechten Würfels : rechte

Mehr

Verbrauchswerte. 1. Umgang mit Verbrauchswerten

Verbrauchswerte. 1. Umgang mit Verbrauchswerten Verbruchswerte Dieses Unterkpitel ist speziell dem Them Energienlyse eines bestehenden Gebäudes nhnd von Verbruchswerten (Brennstoffverbräuche, Wrmwsserverbruch) gewidmet. BEISPIEL MFH: Ds Beispiel des

Mehr

Übungsblatt Gleichungssysteme Klasse 8

Übungsblatt Gleichungssysteme Klasse 8 Üungsltt Gleichungsssteme Klsse 8 Auge : Berechne die Lösungen des Gleichungspres: I II 7 Kontrolliere durch Einseten. Auge : Löse dem Additionsverhren: I 7-6 II 9 Auge : Gegeen ist olgendes linere Gleichungssstem

Mehr

Flächensätze am rechtwinkligen Dreieck

Flächensätze am rechtwinkligen Dreieck Flähensätze m rehtwinkligen Dreiek ufge: Zeihne ein rehtwinkliges Dreiek us = 7 m, = 5 m γ = 90 o und zeihne die Höhe h ein. γ Kthete h Kthete q Hypotenusenshnitte Hypotenuse p MERKE: Ktheten: Hypotenuse:

Mehr

Z R Z R Z R Z = 50. mit. aus a) Z L R. Wie groß ist der Leistungsfaktor cos der gesamten Schaltung?

Z R Z R Z R Z = 50. mit. aus a) Z L R. Wie groß ist der Leistungsfaktor cos der gesamten Schaltung? Aufge F 99: Drehstromverruher Ein symmetrisher Verruher ist n ds Drehstromnetz ( 0 V, f 50 Hz) ngeshlossen. Die us dem Netz entnommene Wirkleistung eträgt,5 kw ei einem eistungsfktor os 0,7. ) Berehnen

Mehr

Blatt 9. Bewegung starrer Körper- Lösungsvorschlag

Blatt 9. Bewegung starrer Körper- Lösungsvorschlag Fkultät für Physik der LMU München Lehrstuhl für Kosmologie, Prof. Dr. V. Mukhnov Übungen zu Klssischer Mechnik (T) im SoSe 0 Bltt 9. Bewegung strrer Körper- Lösungsvorschlg Aufgbe 9.. Trägheitstensor

Mehr

Grundbegriffe der Informatik Aufgabenblatt 6

Grundbegriffe der Informatik Aufgabenblatt 6 Mtr.nr.: Nchnme: Vornme: Grundbegriffe der Informtik Aufgbenbltt 6 Tutorium: Nr. Nme des Tutors: Ausgbe: 2. Dezember 2015 Abgbe: 11. Dezember 2015, 12:30 Uhr im GBI-Briefksten im Untergeschoss von Gebäude

Mehr

Mathematik schriftlich

Mathematik schriftlich WS KV Chur Abschlussprüfungen 00 für die Berufsmtur kufmännische Richtung Mthemtik schriftlich LÖSUNGEN Kndidtennummer Nme Vornme Dtum der Prüfung Bewertung mögliche erteilte Punkte Punkte. Aufgbe 0. Aufgbe

Mehr

Vorkurs Mathematik Fachhochschule Frankfurt, Fachbereich 2. Fachhochschule Frankfurt am Main Fachbereich Informatik und Ingenieurwissenschaften

Vorkurs Mathematik Fachhochschule Frankfurt, Fachbereich 2. Fachhochschule Frankfurt am Main Fachbereich Informatik und Ingenieurwissenschaften Vorkurs Mthemtik Fchhochschule Frnkfurt, Fchereich Fchhochschule Frnkfurt m Min Fchereich Informtik und Ingenieurwissenschften Vorkurs Mthemtik Sie finden lle Mterilien sowie ergänzende Informtionen unter

Mehr

Checkliste Sinus, Kosinus, Tangens

Checkliste Sinus, Kosinus, Tangens Chekliste Sinus, Kosinus, Tngens Nr. K 1 K K 3 K 4 K 5 K 6 K 7 K 8 Kompetenz Ih knn... in einem rehtwinkligen Dreiek Kthete, Gegenkthete und Hypotenuse estimmen in einem rehtwinkligen Dreiek die Seitenverhältnisse

Mehr

H Dreiecke und Vierecke

H Dreiecke und Vierecke H Dreieke und Viereke 1 eziehungen zwishen Seiten und Winkeln im Dreiek In einem Dreiek liegt der längsten Seite der größte Winkel gegenüer. Umgekehrt liegt dem größten Winkel uh die längste Seite gegenüer.

Mehr

4 Die rationalen Zahlen

4 Die rationalen Zahlen 4 Die rtionlen Zhlen Der Ring der gnzen Zhlen ht den Mngel, dß nicht jede Gleichung = X, 0 innerhl Z lösr ist. (Z.B. ist 1 = 2 X unlösr in Z). Zu seiner Beseitigung erweitert mn den Zhlereich zum Körper

Mehr

Tag der Mathematik 2011

Tag der Mathematik 2011 Zentrum für Mthemtik Tg der Mthemtik 0 Gruppenwettbewerb Einzelwettbewerb Mthemtische Hürden Lösungen Allgemeine Hinweise: Als Hilfsmittel dürfen nur Schreibzeug, Geodreieck und Zirkel benutzt werden.

Mehr

Download. Basics Mathe Flächenberechnung. Fläche von Rechteck, Quadrat, Drachen, Raute, Parallelogramm, Dreieck. Michael Franck

Download. Basics Mathe Flächenberechnung. Fläche von Rechteck, Quadrat, Drachen, Raute, Parallelogramm, Dreieck. Michael Franck Downlod Mihel Frnk sis Mthe Flähenerehnung Flähe von Rehtek, Qudrt, Drhen, Rute, Prllelogrmm, Dreiek Downloduszug us dem Originltitel: sis Mthe Flähenerehnung Flähe von Rehtek, Qudrt, Drhen, Rute, Prllelogrmm,

Mehr

Teilfachprüfung Mathematik Studiengang: Wirtschaft Neue Diplomprüfungsordnung (NPO)

Teilfachprüfung Mathematik Studiengang: Wirtschaft Neue Diplomprüfungsordnung (NPO) Fchhochschule Düsseldorf SS 2007 Teilfchprüfung Mthemtik Studiengng: Wirtschft Neue Diplomprüfungsordnung (NPO) Prüfungsdtum: 29..2007 Prüfer: Prof. Dr. Horst Peters / Dipl. Volkswirt Lothr Schmeink Prüfungsform:

Mehr

2. Klausur in K2 am

2. Klausur in K2 am Nme: Punkte: Note: Ø: Profilfch Physik Azüge für Drstellung: Rundung:. Klusur in K m.. 04 Achte uf die Drstellung und vergiss nicht Geg., Ges., Formeln, Einheiten, Rundung...! Aufge ) (8 Punkte) In drei

Mehr

Definition Suffixbaum

Definition Suffixbaum Suffix-Bäume Definition Suche nch einer Menge von Mustern Längste gemeinsme Zeichenkette Pltzreduktion Suffixbäume für Muster Alle Pre Suffix-Präfix Übereinstimmung Sich wiederholende Strukturen Definition

Mehr

2. Landeswettbewerb Mathematik Bayern 2. Runde 1999/2000

2. Landeswettbewerb Mathematik Bayern 2. Runde 1999/2000 Lndeswettewer Mthemtik Bern Runde 999/000 Aufge Ein Würfel wird durh je einen Shnitt rllel zur order-, Seiten und Dekflähe in ht Quder zerlegt (siehe Skizze) Können sih die Ruminhlte dieser Quder wie :

Mehr

1. Mathematik Olympiade 3. Stufe (Bezirksolympiade) Klasse 12 Saison 1961/1962 Aufgaben und Lösungen

1. Mathematik Olympiade 3. Stufe (Bezirksolympiade) Klasse 12 Saison 1961/1962 Aufgaben und Lösungen 1. Mthemtik Olympide. Stufe (Bezirksolympide) Klsse 1 Sison 1961/196 Aufgen und Lösungen 1 OJM 1. Mthemtik-Olympide. Stufe (Bezirksolympide) Klsse 1 Aufgen Hinweis: Der Lösungsweg mit Begründungen und

Mehr

Mathe Warm-Up, Teil 1 1 2

Mathe Warm-Up, Teil 1 1 2 Mthe Wrm-Up, Teil 1 1 2 HEUTE: 1. Elementre Rechenopertionen: Brüche, Potenzen, Logrithmus, Wurzeln 2. Summen- und Produktzeichen 3. Gleichungen/Ungleichungen 1 orientiert sich n den Kpiteln 3,4,6,8 des

Mehr

MATHEMATIK-WETTBEWERB 2004/2005 DES LANDES HESSEN

MATHEMATIK-WETTBEWERB 2004/2005 DES LANDES HESSEN MATHEMATIK-WETTBEWERB 004/005 DES LANDES HESSEN AUFGABENGRUPPE A PFLICHTAUFGABEN P. Es gilt =. Berechne jeweils den Wert des Terms: ) 0,3 b) () c) : ( + ) P. Von 800 Jugendlichen lesen lut einer Umfrge

Mehr

Die Regelungen zu den Einsendeaufgaben (Einsendeschluss, Klausurzulassung) finden Sie in den Studien- und Prüfungsinformationen Heft Nr. 1.

Die Regelungen zu den Einsendeaufgaben (Einsendeschluss, Klausurzulassung) finden Sie in den Studien- und Prüfungsinformationen Heft Nr. 1. Modul : Grundlgen der Wirtschftsmthemtik und Sttistik Kurs 46, Einheit, Einsendeufge Die Regelungen zu den Einsendeufgen (Einsendeschluss, Klusurzulssung) finden Sie in den Studien- und Prüfungsinformtionen

Mehr