Abschlussklausur (60 Minuten), 15. Juli 2014

Größe: px
Ab Seite anzeigen:

Download "Abschlussklausur (60 Minuten), 15. Juli 2014"

Transkript

1 Prof. Dr. Amelie Wuppermann Volkswirtschaftliche Fakultät Universität München Sommersemester 2014 Empirische Ökonomie 1 Abschlussklausur (60 Minuten), 15. Juli 2014 Bearbeitungshinweise Die Bearbeitungszeit der Klausur beträgt 60 Minuten. Insgesamt werden maximal 60 Punkte vergeben. Die Klausur besteht aus offenen Fragen. Alle Fragen sind zu beantworten. Alle Antworten müssen in diesem Klausurexemplar an den vorgesehenen Stellen gegeben werden. Antworten an anderer Stelle der Klausur oder auf nicht zum Klausurexemplar gehörenden Blättern werden nicht gewertet. Die Blätter des gehefteten Klausurexemplars dürfen nicht getrennt werden. Die Formelsammlung befindet sich am Ende der Klausur und darf ebenfalls nicht abgetrennt werden. Hilfsmittel Als Hilfsmittel ist ein nicht programmierbarer Taschenrechner zugelassen. Weitere Hilfsmittel sind nicht zugelassen.

2 Aufgabe 1 [Insgesamt 25 Punkte] Nach dem Studium nehmen Sie einen Job in der Marketing Agentur Bonobo Marketing an. Der österreichische Hersteller des Energy Drinks Los Lokos beauftragt Sie, die Wirksamkeit seiner Erfrischungsgetränke in einem Arbeitsumfeld zu untersuchen. Dazu liegt Ihnen eine Zufallsstichprobe 256 professioneller Aktienhändler (Trader) aus Londoner Investmentbanken vor. Sie haben Daten aller Trader zu den folgenden beiden Variablen: profit Wöchentlicher Profit des Traders in $ energy Durchschnittlicher täglicher Konsum von Energy Drinks in Litern Vorab betrachten Sie in Gretl die Grundlegenden Statistiken und erhalten den folgenden Output: Grundlegende Statistiken, benutze die Beobachtungen Variable arith. Mittel Median Minimum profit 20,84 30,69-10,42 88,10 energy 0,89 1,40 0,00 5,25 Maximum Variable Std. Abw. Var koeff. Schiefe Überwölbung profit 3,44 0,165 0,531 0,574 energy 1,52 1, ,013 1,532 Die Stichproben Korrelation zwischen profit und energy ist r=0,82. Betrachten Sie ein Regressionsmodell der Form: profit i =β 0 +β 1 energy i +u i Der Index i=1,...,256 kennzeichnet die individuellen Trader. Empirische Ökonomie 1 (15. Juli 2014) Seite 2 (von 11)

3 Teilaufgabe 1.1 [Insgesamt 16 Punkte] (a) Erläutern Sie anhand einer geeigneten Graphik stichpunktartig für das gegebene Beispiel die Funktionsweise des kleinste-quadrate-schätzers (OLS Schätzers). Erstellen Sie eine geeignete, vollständig beschriftete Skizze, in der u.a. exemplarisch Daten der Stichprobe und eine Schätzgleichung zu sehen sind. [7 Punkte] (b) Bestimmen Sie die OLS Schätzer ˆβ 0 und ˆβ 1 für die Modellparameter β 0 und β 1. Runden Sie Ihre Ergebnisse auf zwei Nachkommastellen. Wie sind die Werte jeweils inhaltlich zu interpretieren? [5 Punkte] Empirische Ökonomie 1 (15. Juli 2014) Seite 3 (von 11)

4 (c) Die Schätzung des Modells bestätigt Ihre Berechnungen und Sie erhalten für ˆβ 1 einen Standardfehler von 0,53. Testen Sie die Nullhypothese, dass der Konsum einer zusätzlichen Dose des Energy Drinks pro Tag (eine Dose entspricht 0,25 Litern) die Profitabilität der Trader um $ pro Woche steigert, auf dem 5% Signifikanzniveau. Wenn Sie vorher kein Ergebnis für ˆβ 1 erhalten haben, dürfen Sie mit ˆβ 1 =2,0 rechnen. Runden Sie Ihr Ergebnis auf zwei Nachkommastellen. [4 Punkte] Teilaufgabe 1.2 [Insgesamt 9 Punkte] Ausgehend von Ihren vorherigen Berechnungen erwägt Ihr Team dem Hersteller von Los Lokos eine Werbekampagne in der City of London (Londons Finanzbezirk) mit dem Slogan Boost your profit with Los Lokos! ( Vergrößern Sie Ihren Profit mit Los Lokos! ) anzubieten. (d) Nennen Sie stichpunktartig die Annahmen, die für solch eine kausale Interpretation der Ergebnisse des Modells in Teil b) nötig sind. [3 Punkte] Empirische Ökonomie 1 (15. Juli 2014) Seite 4 (von 11)

5 (e) Ihr Vorgesetzter Max Powers könnte Ihnen Daten zur Arbeitszeit der Trader besorgen, befürchtet aber, dass dies die Ergebnisse Ihrer vorherigen Analyse zerstören könnte. In Ihrer Schätzung wurde die Arbeitszeit der Trader bisher nicht berücksichtigt. Unter welchen Bedingungen führt dies dazu, dass Ihr Schätzer des Effekts von Energy Drinks auf die Profitabilität von Tradern aus Teil b) verzerrt ist? [2 Punkte] (f) Gehen Sie davon aus, dass die Bedingungen in e) erfüllt sind und Ihr Schätzer ˆβ 1 ohne Berücksichtigung der Arbeitszeit also verzerrt und inkonsistent ist. Welches Vorzeichen erwarten Sie für die Verzerrung des Schätzers aus Teil b)? [4 Punkte] Empirische Ökonomie 1 (15. Juli 2014) Seite 5 (von 11)

6 Aufgabe 2 [Insgesamt 20 Punkte] Die Krankenkasse EÖK hat festgestellt, dass es während einer Fußball WM zur verstärkten Gewichtszunahme von Fußballfans kommt. Sie werden beauftragt, potentielle Einflussfaktoren zu identifizieren. Hierfür liegt Ihnen eine Zufallsstichprobe von 2845 erwachsenen Fußballfans vor. Der Datensatz enthält die folgenden Variablen: dgew Gewichtsveränderung während der WM in Gramm alter Alter des Fans in Jahren alterqu Alter des Fans in Jahren zum Quadrat geschlecht Dummyvariable: = 1, wenn Fan männlich; = 0, sonst spiele Anzahl der WM-Spiele, die der Fan gesehen hat spiele geschlecht Interaktionsterm von Spiele und Geschlecht vuv Dummayvariable: = 1, wenn der Fan eine Vuvuzela (Südafrikanisches Blasinstrument, das während der Fußball WM 2010 in Deutschland populär wurde) besitzt; =0, sonst Teilaufgabe 2.1 [Insgesamt 14 Punkte] Mit diesem Datensatz haben Sie folgendes lineares Regressionsmodell geschätzt: dgew i =β 0 +β 1 alter i +β 2 alterqu i +β 3 spiele i +β 4 geschlecht i +β 5 vuv i +β 6 spiele geschlecht i +u i Gehen Sie in Teilaufgabe 2.1 davon aus, dass die Annahmen M1-M4 in dem geschätzten Modell erfüllt sind. Die OLS-Regression in GRETL (mit robusten Standardfehlern) ergibt den folgenden Output: Modell 1: KQ, benutze die Beobachtungen Abhängige Variable: dgew Heteroskedastizitäts-robuste Standardfehler, Variante HC1 Koeffizient Std. Fehler t-quotient p-wert const 430, ,9311 4, ,0000 alter 19, ,5193 5, ,0000 alterqu 0, ,0315 5, ,0000 spiele 39, ,7150 6, ,0000 geschlecht 634, , , ,0000 vuv 7, ,3059 0, ,8409 spiele geschlecht 11, ,8757 2, ,0442 Empirische Ökonomie 1 (15. Juli 2014) Seite 6 (von 11)

7 (a) Enthalten i) das 95% Konfidenzintervall und ii) das 99% Konfidenzintervall für den Koeffizienten von vuv den Wert Null? Begründen Sie Ihre Antwort. [2 Punkte] (b) Betrachten Sie einen 35-jährigen Mann und eine 35-jährige Frau, die beide keine Vuvuzela besitzen und WM-Spiele ausschließlich gemeinsam anschauen. Wie viele Spiele müssen die beiden anschauen, damit die von Ihrem Regressionsmodell vorhergesagte Gewichtsänderung für sie und ihn gleich groß ist? Runden Sie Ihr Ergebnis auf zwei Nachkommastellen. [4 Punkte] (c) Warum wurde die Variable alterqu in das Regressionsmodell aufgenommen? [1 Punkt] Empirische Ökonomie 1 (15. Juli 2014) Seite 7 (von 11)

8 (d) Leiten Sie den marginalen Effekt des Alters auf die erwartete Änderung des Gewichts während der WM her und berechnen Sie, wie sich der marginale Effekt mit dem Alter ändert. Runden Sie Ihr Ergebnis auf zwei Nachkommastellen. [4 Punkte] (e) Stellen Sie folgende Nullhypothese formal auf: Der Achsenabschnitt von Männern ist dreimal so groß wie der Achsenabschnitt von Frauen. Warum kann diese Hypothese nicht mit einem t-test getestet werden? [3 Punkte] Teilaufgabe 2.2 [Insgesamt 6 Punkte] Experten der Krankenkasse kommen zu der Übereinstimmung, dass eine Gewichtszunahme von mehr als 2,5 kg bei Männern während der WM bedenklich ist. Um die Determinanten einer bedenklichen Gewichszunahme näher zu analysieren, generieren Sie die binäre Variable zun: zun = 1, wenn dgew> 2500; = 0 sonst Sie schätzen nun ein Probitmodell unter Verwendung der 2071 Beobachtungen männlicher Teilnehmer und erhalten das folgende Ergebnis (Standardfehler in Klammern unter den geschätzten Werten der Parameter): Empirische Ökonomie 1 (15. Juli 2014) Seite 8 (von 11)

9 Pr(zun = 1 alter,alterqu,spiele) = Φ( 1,7155 (0,1761) 0, 0003 (0,0001) +0,0277alter (0,0066) alterqu+0,0287spiele) (0,0030) Hinweis: Gehen Sie davon aus, dass das obige Modell korrekt spezifiziert ist. (f) Wie lässt sich der geschätzte Koeffizient der Variable spiele interpretieren? [2 Punkte] (g) Geben Sie den Ausdruck an, mit dem Sie den Effekt eines zusätzlichen Spiels auf die Wahrscheinlichkeit einer bedenklichen Gewichtszunahme für einen 35-jährigen Mann, der bereits 10 Spiele gesehen hat, berechnen können. [4 Punkte] Empirische Ökonomie 1 (15. Juli 2014) Seite 9 (von 11)

10 Aufgabe 3 [Insgesamt 15 Punkte] Der Bürgermeister der Gemeinde Nirgendwo ist im Wahlkampf. Er hat in seiner letzten Amtszeit dafür gesorgt, dass um seine Gemeinde eine Umgehungsstraße gebaut wurde. Nun möchte er zeigen, wie viel dies den Hausbesitzern in seiner Gemeinde gebracht hat und beauftragt Sie daher zu berechnen, wie sich der Wert der Häuser in seiner Gemeinde durch den Bau der Umgehungsstraße verändert hat. Stellen Sie sich vor, Sie haben Daten der mittleren Hauspreise in der Gemeinde Nirgendwo und der Nachbargemeinde Irgendwo aus den Jahren 2010 und 2014: HP N,2010 Mittelwert der Hauspreise in Nirgendwo im Jahr 2010 HP N,2014 Mittelwert der Hauspreise in Nirgendwo im Jahr 2014 HP I,2010 Mittelwert der Hauspreise in Irgendwo im Jahr 2010 HP I,2014 Mittelwert der Hauspreise in Irgendwo im Jahr 2014 Während in Nirgendwo in 2012 eine Umgehungsstraße gebaut wurde, wurde in Irgendwo zwischen 2010 und 2014 keine solche Straße gebaut. Nehmen Sie an, dass im Jahr 2010 nicht bekannt war, dass in Gemeinde Nirgendwo eine Umgehungsstraße gebaut werden würde. (a) Ihr Kommilitone schlägt vor, den Effekt der Umgehungsstraße auf die Hauspreise durch HP N,2014 HP I,2014 zu ermitteln. Nennen und erläutern Sie einen möglichen Grund, aus dem diese Differenz nicht den gesuchten kausalen Effekt der Umgehungsstraße auf die Hauspreise in Nirgendwo abbildet. [4 Punkte] (b) Ein anderer Kommilitone schlägt stattdessen vor, den Effekt der Umgehungsstraße durch HP N,2014 HP N,2010 zu ermitteln. Nennen und erläutern Sie einen möglichen Grund, aus dem diese Differenz nicht den gesuchten kausalen Effekt der Umgehungs- Empirische Ökonomie 1 (15. Juli 2014) Seite 10 (von 11)

11 straße auf die Hauspreise abbildet. [4 Punkte] (c) Sie schlagen vor, den doppelten Differenzenschätzer zu verwenden. Wie würden Sie diesen aus den verschiedenen Mittelwerten der Hauspreise berechnen? [3 Punkte] (d) Nennen und erläutern Sie ein potentielles Problem, bei dem auch der doppelte Differenzenschätzer nicht den gesuchten kausalen Effekt der Umgehungsstraße auf die Hauspreise ermittelt. [4 Punkte] Empirische Ökonomie 1 (15. Juli 2014) Seite 11 (von 11)

Klausur Sommersemester 2010

Klausur Sommersemester 2010 Klausur Sommersemester 2010 Lehrstuhl: Wirtschaftspolitik Prüfungsfach: Empirische Wirtschaftsforschung Prüfer: Prof. Dr. K. Kraft Datum: 04.08.2010 Hilfsmittel: Nicht-programmierbarer Taschenrechner Klausurdauer:

Mehr

Name (in Druckbuchstaben): Matrikelnummer: Unterschrift:

Name (in Druckbuchstaben): Matrikelnummer: Unterschrift: 20-minütige Klausur zur Vorlesung Lineare Modelle im Sommersemester 20 PD Dr. Christian Heumann Ludwig-Maximilians-Universität München, Institut für Statistik 2. Oktober 20, 4:5 6:5 Uhr Überprüfen Sie

Mehr

90-minütige Klausur Statistik für Studierende der Kommunikationswissenschaft

90-minütige Klausur Statistik für Studierende der Kommunikationswissenschaft Prof. Dr. Helmut Küchenhoff SS08 90-minütige Klausur Statistik für Studierende der Kommunikationswissenschaft am 22.7.2008 Anmerkungen Überprüfen Sie bitte sofort, ob Ihre Angabe vollständig ist. Sie sollte

Mehr

Klausur zur Vorlesung Statistik III für Studenten mit dem Wahlfach Statistik

Klausur zur Vorlesung Statistik III für Studenten mit dem Wahlfach Statistik Ludwig Fahrmeir, Nora Fenske Institut für Statistik Bitte für die Korrektur freilassen! Aufgabe 1 2 3 4 Punkte Klausur zur Vorlesung Statistik III für Studenten mit dem Wahlfach Statistik 29. März 21 Hinweise:

Mehr

1 Interaktion von zwei Dummyvariablen. 2 Interaktion einer Dummyvariablen mit einer kardinalskalierten Variablen

1 Interaktion von zwei Dummyvariablen. 2 Interaktion einer Dummyvariablen mit einer kardinalskalierten Variablen Modelle mit Interationsvariablen I Modelle mit Interationsvariablen II In der beim White-Test verwendeten Regressionsfuntion y = β 0 + β 1 x 1 + β 2 x 2 + β 3 x 2 1 + β 4 x 2 2 + β 5 x 1 x 2, ist anders

Mehr

Bachelorprüfung. Praxis der empirischen Wirtschaftsforschung Prof. Regina T. Riphahn, Ph.D. Name, Vorname. Matrikelnr. E-Mail. Studiengang.

Bachelorprüfung. Praxis der empirischen Wirtschaftsforschung Prof. Regina T. Riphahn, Ph.D. Name, Vorname. Matrikelnr. E-Mail. Studiengang. Lehrstuhl für Statistik und empirische Wirtschaftsforschung Fach: Prüfer: Bachelorprüfung Praxis der empirischen Wirtschaftsforschung Prof. Regina T. Riphahn, Ph.D. Name, Vorname Matrikelnr. E-Mail Studiengang

Mehr

29. Mai 2006. 5. Bei Unterschleif gilt die Klausur als nicht bestanden und es erfolgt eine Meldung an das Prüfungsamt.

29. Mai 2006. 5. Bei Unterschleif gilt die Klausur als nicht bestanden und es erfolgt eine Meldung an das Prüfungsamt. L. Fahrmeir, C. Belitz Department für Statistik Bitte für die Korrektur freilassen! Aufgabe 1 2 3 4 Punkte Klausur zur Vorlesung Statistik III für Studenten mit Wahlfach Statistik 29. Mai 2006 Hinweise:

Mehr

8. Februar 2007. 5. Bei Unterschleif gilt die Klausur als nicht bestanden und es erfolgt eine Meldung an das Prüfungsamt.

8. Februar 2007. 5. Bei Unterschleif gilt die Klausur als nicht bestanden und es erfolgt eine Meldung an das Prüfungsamt. L. Fahrmeir, C. Belitz Department für Statistik Bitte für die Korrektur freilassen! Aufgabe 1 2 3 4 Punkte Klausur zur Vorlesung Statistik III für Studenten mit Wahlfach Statistik 8. Februar 2007 Hinweise:

Mehr

Fortgeschrittene Statistik Logistische Regression

Fortgeschrittene Statistik Logistische Regression Fortgeschrittene Statistik Logistische Regression O D D S, O D D S - R A T I O, L O G I T T R A N S F O R M A T I O N, I N T E R P R E T A T I O N V O N K O E F F I Z I E N T E N, L O G I S T I S C H E

Mehr

Interne und externe Modellvalidität

Interne und externe Modellvalidität Interne und externe Modellvalidität Interne Modellvalidität ist gegeben, o wenn statistische Inferenz bzgl. der untersuchten Grundgesamtheit zulässig ist o KQ-Schätzer der Modellparameter u. Varianzschätzer

Mehr

1 Statistische Grundlagen

1 Statistische Grundlagen Konzepte in Empirische Ökonomie 1 (Winter) Hier findest Du ein paar Tipps zu den Konzepten in Empirische 1. Wenn Du aber noch etwas Unterstützung kurz vor der Klausur brauchst, schreib uns eine kurze Email.

Mehr

Prüfung im Fach Ökonometrie im WS 2011/12 Aufgabenteil. Name, Vorname. Matrikelnr. Studiengang. E-Mail-Adresse. Unterschrift

Prüfung im Fach Ökonometrie im WS 2011/12 Aufgabenteil. Name, Vorname. Matrikelnr. Studiengang. E-Mail-Adresse. Unterschrift Lehrstuhl für Statistik und empirische Wirtschaftsforschung Prof. Regina T. Riphahn, Ph.D. Prüfung im Fach Ökonometrie im WS 2011/12 Aufgabenteil Name, Vorname Matrikelnr. Studiengang E-Mail-Adresse Unterschrift

Mehr

Einige Statistische Tests für den Ein- Zwei- und k-stichprobenfall (Nach Sachs, Stat. Meth.)

Einige Statistische Tests für den Ein- Zwei- und k-stichprobenfall (Nach Sachs, Stat. Meth.) ue biostatistik: nichtparametrische testverfahren / ergänzung 1/6 h. Lettner / physik Statistische Testverfahren Einige Statistische Tests für den Ein- Zwei- und k-stichprobenfall (Nach Sachs, Stat. Meth.)

Mehr

a) Zeichnen Sie in das nebenstehende Streudiagramm mit Lineal eine Regressionsgerade ein, die Sie für passend halten.

a) Zeichnen Sie in das nebenstehende Streudiagramm mit Lineal eine Regressionsgerade ein, die Sie für passend halten. Statistik für Kommunikationswissenschaftler Wintersemester 2009/200 Vorlesung Prof. Dr. Helmut Küchenhoff Übung Cornelia Oberhauser, Monia Mahling, Juliane Manitz Thema 4 Homepage zur Veranstaltung: http://www.statistik.lmu.de/~helmut/kw09.html

Mehr

Statistik II Wahrscheinlichkeitsrechnung und induktive Statistik Erste Klausur zum Sommersemester 2005 26. Juli 2005

Statistik II Wahrscheinlichkeitsrechnung und induktive Statistik Erste Klausur zum Sommersemester 2005 26. Juli 2005 Statistik II Wahrscheinlichkeitsrechnung und induktive Statistik Erste Klausur zum Sommersemester 2005 26. Juli 2005 Aufgabe 1: Grundzüge der Wahrscheinlichkeitsrechnung 19 P. Als Manager eines großen

Mehr

Universität Bonn 28. Juli 2010 Fachbereich Rechts- und Wirtschaftswissenschaften Statistische Abteilung Prof. Dr. A. Kneip. KLAUSUR Statistik B

Universität Bonn 28. Juli 2010 Fachbereich Rechts- und Wirtschaftswissenschaften Statistische Abteilung Prof. Dr. A. Kneip. KLAUSUR Statistik B Universität Bonn 28. Juli 2010 Fachbereich Rechts- und Wirtschaftswissenschaften Statistische Abteilung Prof. Dr. A. Kneip Sommersemester 2010 KLAUSUR Statistik B Hinweise zur Bearbeitung: Bei allen Teilaufgaben

Mehr

9. Schätzen und Testen bei unbekannter Varianz

9. Schätzen und Testen bei unbekannter Varianz 9. Schätzen und Testen bei unbekannter Varianz Dr. Antje Kiesel Institut für Angewandte Mathematik WS 2011/2012 Schätzen und Testen bei unbekannter Varianz Wenn wir die Standardabweichung σ nicht kennen,

Mehr

Probeklausur Zeitreihenökonometrie (Sommersemester 2014) 1

Probeklausur Zeitreihenökonometrie (Sommersemester 2014) 1 Probeklausur Zeitreihenökonometrie (Sommersemester 2014) 1 Aufgabe 1: Betrachtet wird folgendes Modell zur Erklärung des Managergehalts salary durch den Umsatz sales, die Eigenkapitalrendite roe und die

Mehr

Multinomiale logistische Regression

Multinomiale logistische Regression Multinomiale logistische Regression Die multinomiale logistische Regression dient zur Schätzung von Gruppenzugehörigkeiten bzw. einer entsprechenden Wahrscheinlichkeit hierfür, wobei als abhänginge Variable

Mehr

Einfache statistische Auswertungen mit dem Programm SPSS

Einfache statistische Auswertungen mit dem Programm SPSS Einfache statistische Auswertungen mit dem Programm SPSS Datensatz: fiktive_daten.sav Dipl. Päd. Anne Haßelkus Dr. Dorothea Dette-Hagenmeyer 11/2011 Überblick 1 Deskriptive Statistiken; Mittelwert berechnen...

Mehr

Standardab er des. Testwert = 145.5 95% Konfidenzintervall. T df Sig. (2-seitig) Differenz Untere Obere -2.011 698.045-5.82-11.50 -.14.

Standardab er des. Testwert = 145.5 95% Konfidenzintervall. T df Sig. (2-seitig) Differenz Untere Obere -2.011 698.045-5.82-11.50 -.14. Aufgabe : einfacher T-Test Statistik bei einer Stichprobe Standardfehl Standardab er des Mittelwert weichung Mittelwertes 699 39.68 76.59 2.894 Test bei einer Sichprobe Testwert = 45.5 95% Konfidenzintervall

Mehr

Klausur zur Vorlesung Methoden der empirischen Kapitalmarktforschung

Klausur zur Vorlesung Methoden der empirischen Kapitalmarktforschung Universität Augsburg Wirtschaftswissenschaftliche Fakultät Lehrstuhl für Finanz und Bankwirtschaft Matrikelnummer Klausur zur Vorlesung Methoden der empirischen Kapitalmarktforschung Prof. Dr. Marco Wilkens

Mehr

PRAKTIKUM Experimentelle Prozeßanalyse 2. VERSUCH AS-PA-2 "Methoden der Modellbildung statischer Systeme" Teil 2 (für ausgewählte Masterstudiengänge)

PRAKTIKUM Experimentelle Prozeßanalyse 2. VERSUCH AS-PA-2 Methoden der Modellbildung statischer Systeme Teil 2 (für ausgewählte Masterstudiengänge) FACHGEBIET Systemanalyse PRAKTIKUM Experimentelle Prozeßanalyse 2 VERSUCH AS-PA-2 "Methoden der Modellbildung statischer Systeme" Teil 2 (für ausgewählte Masterstudiengänge) Verantw. Hochschullehrer: Prof.

Mehr

DIPLOMVORPRÜFUNG GRUNDZÜGE DER STATISTIK, TEIL B WINTERSEMESTER 2006/07 28.02.2007

DIPLOMVORPRÜFUNG GRUNDZÜGE DER STATISTIK, TEIL B WINTERSEMESTER 2006/07 28.02.2007 Wirtschaftswissenschaftliches Prüfungsamt DIPLOMVORPRÜFUNG GRUNDZÜGE DER STATISTIK, TEIL B WINTERSEMESTER 006/07 8.0.007 Lösung Prof. Dr. R Friedmann / Dr. R. Hauser Hinweise für die Klausurteilnehmer

Mehr

Bachelorabschlussseminar Dipl.-Kfm. Daniel Cracau

Bachelorabschlussseminar Dipl.-Kfm. Daniel Cracau 1 Einführung in die statistische Datenanalyse Bachelorabschlussseminar Dipl.-Kfm. Daniel Cracau 2 Gliederung 1.Grundlagen 2.Nicht-parametrische Tests a. Mann-Whitney-Wilcoxon-U Test b. Wilcoxon-Signed-Rank

Mehr

Modulklausur Konstruktion und Analyse ökonomischer Modelle

Modulklausur Konstruktion und Analyse ökonomischer Modelle Modulklausur Konstruktion und Analyse ökonomischer Modelle Aufgabenheft Termin: 04.03.2015, 09:00-11:00 Uhr Prüfer: Univ.-Prof. Dr. J. Grosser Aufbau der Klausur Pflichtaufgabe Maximale Punktzahl: 34 Wahlpflichtaufgabe

Mehr

METHODENLEHRE I WS 2013/14 THOMAS SCHÄFER

METHODENLEHRE I WS 2013/14 THOMAS SCHÄFER METHODENLEHRE I WS 2013/14 THOMAS SCHÄFER DAS THEMA: INFERENZSTATISTIK IV INFERENZSTATISTISCHE AUSSAGEN FÜR ZUSAMMENHÄNGE UND UNTERSCHIEDE Inferenzstatistik für Zusammenhänge Inferenzstatistik für Unterschiede

Mehr

Franz Kronthaler. Statistik angewandt. Datenanalyse ist (k)eine Kunst. Excel Edition. ^ Springer Spektrum

Franz Kronthaler. Statistik angewandt. Datenanalyse ist (k)eine Kunst. Excel Edition. ^ Springer Spektrum Franz Kronthaler Statistik angewandt Datenanalyse ist (k)eine Kunst Excel Edition ^ Springer Spektrum Inhaltsverzeichnis Teil I Basiswissen und Werkzeuge, um Statistik anzuwenden 1 Statistik ist Spaß 3

Mehr

Institut für Soziologie. Methoden 2. Regressionsanalyse I: Einfache lineare Regression

Institut für Soziologie. Methoden 2. Regressionsanalyse I: Einfache lineare Regression Institut für Soziologie Methoden 2 Regressionsanalyse I: Einfache lineare Regression Programm Anwendungsbereich Vorgehensweise Interpretation Annahmen Zusammenfassung Übungsaufgabe Literatur # 2 Anwendungsbereich

Mehr

Statistik I für Wirtschaftswissenschaftler Klausur am 06.07.2007, 14.00 16.00.

Statistik I für Wirtschaftswissenschaftler Klausur am 06.07.2007, 14.00 16.00. 1 Statistik I für Wirtschaftswissenschaftler Klausur am 06.07.2007, 14.00 16.00. Bitte unbedingt beachten: a) Gewertet werden alle 9 gestellten Aufgaben. b) Lösungswege sind anzugeben. Die Angabe des Endergebnisses

Mehr

Nachholklausur STATISTIK II

Nachholklausur STATISTIK II Nachholklausur STATISTIK II Name, Vorname: Matrikel-Nr.: Die Klausur enthält zwei Typen von Aufgaben: T e i l A besteht aus Fragen mit mehreren vorgegebenen Antwortvorschlägen, von denen mindestens eine

Mehr

Analog zu Aufgabe 16.1 werden die Daten durch folgenden Befehl eingelesen: > kredit<-read.table("c:\\compaufg\\kredit.

Analog zu Aufgabe 16.1 werden die Daten durch folgenden Befehl eingelesen: > kredit<-read.table(c:\\compaufg\\kredit. Lösung 16.3 Analog zu Aufgabe 16.1 werden die Daten durch folgenden Befehl eingelesen: > kredit

Mehr

Binäre abhängige Variablen

Binäre abhängige Variablen Binäre abhängige Variablen Thushyanthan Baskaran thushyanthan.baskaran@awi.uni-heidelberg.de Alfred Weber Institut Ruprecht Karls Universität Heidelberg Einführung Oft wollen wir qualitative Variablen

Mehr

Kapitel 3: Interpretationen

Kapitel 3: Interpretationen Kapitel 3: 1. Interpretation von Outputs allgemein... 1 2. Interpretation von Signifikanzen... 1 2.1. Signifikanztests / Punktschätzer... 1 2.2. Konfidenzintervalle... 2 3. Interpretation von Parametern...

Mehr

6. METRISCHE UND KATEGORIALE MERKMALE

6. METRISCHE UND KATEGORIALE MERKMALE 6. METRISCHE UND KATEGORIALE MERKMALE wenn an einer Beobachtungseinheit eine (oder mehrere) metrische und eine (oder mehrere) kategoriale Variable(n) erhoben wurden Beispiel: Haushaltsarbeit von Teenagern

Mehr

Klausur: Einführung in die Statistik

Klausur: Einführung in die Statistik 1 Lösungen immer unter die jeweiligen Aufgaben schreiben. Bei Platzmangel auf die Rückseite schreiben (dann Nummer der bearbeiteten Aufgabe mit anmerken!!!). Lösungen, die nicht auf den Aufgabenblättern

Mehr

Aufgabenstellung Aufgabe 1: Betrachten Sie das folgende ökonometrische Modell: y t = α + βx t + u t (1)

Aufgabenstellung Aufgabe 1: Betrachten Sie das folgende ökonometrische Modell: y t = α + βx t + u t (1) Klausur: Einführung in die Ökonometrie Prüfer: Prof. Dr. Karl-Heinz Paqué Dr.Ludwigv.Auer Semester: WS 1999/00 Als Hilfsmittel sind zugelassen: nicht-programmierbarer Taschenrechner Diese Klausur besteht

Mehr

MATHEMATIK 3 STUNDEN. DATUM: 8. Juni 2009

MATHEMATIK 3 STUNDEN. DATUM: 8. Juni 2009 EUROPÄISCHES ABITUR 2009 MATHEMATIK 3 STUNDEN DATUM: 8. Juni 2009 DAUER DES EXAMENS : 3 Stunden (180 Minuten) ZUGELASSENE HILFSMITTEL : Europäische Formelsammlung Nicht graphischer und nicht programmierbarer

Mehr

Abschlussklausur der Vorlesung Bank I, II:

Abschlussklausur der Vorlesung Bank I, II: Seite 1 von 23 Name: Matrikelnummer: Abschlussklausur der Vorlesung Bank I, II: Bankmanagement und Theory of Banking Hinweise: o Bitte schreiben Sie Ihren Namen und Ihre Matrikelnummer auf die Klausur

Mehr

DIPLOM. Abschlussklausur der Vorlesung Bank I, II:

DIPLOM. Abschlussklausur der Vorlesung Bank I, II: Seite 1 von 9 Name: Matrikelnummer: DIPLOM Abschlussklausur der Vorlesung Bank I, II: Bankmanagement und Theory of Banking Seite 2 von 9 DIPLOM Abschlussklausur der Vorlesung Bank I, II: Bankmanagement

Mehr

Übungen zur Veranstaltung Statistik 2 mit SPSS

Übungen zur Veranstaltung Statistik 2 mit SPSS Raum 22, Tel. 39 4 Aufgabe 5. Wird der neue Film MatchPoint von Woody Allen von weiblichen und männlichen Zuschauern gleich bewertet? Eine Umfrage unter 00 Kinobesuchern ergab folgende Daten: Altersgruppe

Mehr

Modulklausur Multivariate Verfahren

Modulklausur Multivariate Verfahren Name, Vorname Matrikelnummer Modulklausur 31821 Multivariate Verfahren Datum Punkte Note Termin: 28. März 2014, 9.00-11.00 Uhr Erstprüfer: Univ.-Prof. Dr. H. Singer Hinweise zur Bearbeitung der Modulklausur

Mehr

Multiple Regression. Ziel: Vorhersage der Werte einer Variable (Kriterium) bei Kenntnis der Werte von zwei oder mehr anderen Variablen (Prädiktoren)

Multiple Regression. Ziel: Vorhersage der Werte einer Variable (Kriterium) bei Kenntnis der Werte von zwei oder mehr anderen Variablen (Prädiktoren) Multiple Regression 1 Was ist multiple lineare Regression? Ziel: Vorhersage der Werte einer Variable (Kriterium) bei Kenntnis der Werte von zwei oder mehr anderen Variablen (Prädiktoren) Annahme: Der Zusammenhang

Mehr

ε heteroskedastisch BINARY CHOICE MODELS Beispiele: Wahlentscheidung Kauf langlebiger Konsumgüter Arbeitslosigkeit Schätzung mit OLS?

ε heteroskedastisch BINARY CHOICE MODELS Beispiele: Wahlentscheidung Kauf langlebiger Konsumgüter Arbeitslosigkeit Schätzung mit OLS? BINARY CHOICE MODELS 1 mit Pr( Y = 1) = P Y = 0 mit Pr( Y = 0) = 1 P Beispiele: Wahlentscheidung Kauf langlebiger Konsumgüter Arbeitslosigkeit Schätzung mit OLS? Y i = X i β + ε i Probleme: Nonsense Predictions

Mehr

Klausur Wirtschaftsmathematik Lösungshinweise

Klausur Wirtschaftsmathematik Lösungshinweise Klausur Wirtschaftsmathematik Lösungshinweise Prüfungsdatum: 27. Juni 2015 Prüfer: Etschberger Studiengang: Wirtschaftsingenieurwesen Aufgabe 1 16 Punkte Anton Arglos hat von seiner Großmutter 30 000 geschenkt

Mehr

Abschlussklausur am 12. Juli 2004

Abschlussklausur am 12. Juli 2004 Institut für Geld- und Kapitalverkehr Vorlesung Nr. 03.511 der Universität Hamburg Grundkonzeptionen der Finanzierungstheorie (ABWL / Finanzierung) Dr. Stefan Prigge Sommersemester 2004 Abschlussklausur

Mehr

Profil A 49,3 48,2 50,7 50,9 49,8 48,7 49,6 50,1 Profil B 51,8 49,6 53,2 51,1 51,1 53,4 50,7 50 51,5 51,7 48,8

Profil A 49,3 48,2 50,7 50,9 49,8 48,7 49,6 50,1 Profil B 51,8 49,6 53,2 51,1 51,1 53,4 50,7 50 51,5 51,7 48,8 1. Aufgabe: Eine Reifenfirma hat für Winterreifen unterschiedliche Profile entwickelt. Bei jeweils gleicher Geschwindigkeit und auch sonst gleichen Bedingungen wurden die Bremswirkungen gemessen. Die gemessenen

Mehr

Klausur zu Methoden der Statistik II (mit Kurzlösung) Wintersemester 2010/2011. Aufgabe 1

Klausur zu Methoden der Statistik II (mit Kurzlösung) Wintersemester 2010/2011. Aufgabe 1 Lehrstuhl für Statistik und Ökonometrie der Otto-Friedrich-Universität Bamberg Prof. Dr. Susanne Rässler Klausur zu Methoden der Statistik II (mit Kurzlösung) Wintersemester 2010/2011 Aufgabe 1 Nach einer

Mehr

Klausur Statistik Lösungshinweise

Klausur Statistik Lösungshinweise Klausur Statistik Lösungshinweise Prüfungsdatum: 1. Juli 2015 Prüfer: Etschberger, Heiden, Jansen Studiengang: IM und BW Aufgabe 1 14 Punkte Ein Freund von Ihnen hat über einen Teil seiner Daten, die er

Mehr

UNIVERSITÄT LEIPZIG WIRTSCHAFTSWISSENSCHAFTLICHE FAKULTÄT DIPLOM-PRÜFUNG

UNIVERSITÄT LEIPZIG WIRTSCHAFTSWISSENSCHAFTLICHE FAKULTÄT DIPLOM-PRÜFUNG UNIVERSITÄT LEIPZIG WIRTSCHAFTSWISSENSCHAFTLICHE FAKULTÄT DIPLOM-PRÜFUNG DATUM: 13. Juli 2009 FACH: TEILGEBIET: KLAUSURDAUER: Allgemeine Betriebswirtschaftslehre SL-Schein Marketing II 60 Minuten PRÜFER:

Mehr

2. Korrelation, lineare Regression und multiple Regression

2. Korrelation, lineare Regression und multiple Regression multiple 2.2 Lineare 2.2 Lineare 1 / 130 2.2 Lineare 2 / 130 2.1 Beispiel: Arbeitsmotivation Untersuchung zur Motivation am Arbeitsplatz in einem Chemie-Konzern 25 Personen werden durch Arbeitsplatz zufällig

Mehr

Statistik Einführung // Lineare Regression 9 p.2/72

Statistik Einführung // Lineare Regression 9 p.2/72 Statistik Einführung Lineare Regression Kapitel 9 Statistik WU Wien Gerhard Derflinger Michael Hauser Jörg Lenneis Josef Ledold Günter Tirler Rosmarie Wakolbinger Statistik Einführung // Lineare Regression

Mehr

Statistik II. Statistik II, SS 2001, Seite 1 von 5

Statistik II. Statistik II, SS 2001, Seite 1 von 5 Statistik II, SS 2001, Seite 1 von 5 Statistik II Hinweise zur Bearbeitung Hilfsmittel: - Taschenrechner (ohne Datenbank oder die Möglichkeit diesen zu programmieren) - Formelsammlung im Umfang von einer

Mehr

Weitere Fragestellungen im Zusammenhang mit einer linearen Einfachregression

Weitere Fragestellungen im Zusammenhang mit einer linearen Einfachregression Weitere Fragestellungen im Zusammenhang mit einer linearen Einfachregression Speziell im Zusammenhang mit der Ablehnung der Globalhypothese werden bei einer linearen Einfachregression weitere Fragestellungen

Mehr

Fachhochschule Düsseldorf Wintersemester 2008/09

Fachhochschule Düsseldorf Wintersemester 2008/09 Fachhochschule Düsseldorf Wintersemester 2008/09 Teilfachprüfung Statistik im Studiengang Wirtschaft Prüfungsdatum: 26.01.2009 Prüfer: Prof. Dr. H. Peters, Diplom-Vw. Lothar Schmeink Prüfungsform: 2-stündige

Mehr

Übungsaufgaben zu Kapitel 5. Aufgabe 101. Inhaltsverzeichnis:

Übungsaufgaben zu Kapitel 5. Aufgabe 101. Inhaltsverzeichnis: Inhaltsverzeichnis: Übungsaufgaben zu Kapitel 5... 1 Aufgabe 101... 1 Aufgabe 102... 2 Aufgabe 103... 2 Aufgabe 104... 2 Aufgabe 105... 3 Aufgabe 106... 3 Aufgabe 107... 3 Aufgabe 108... 4 Aufgabe 109...

Mehr

Stichprobenauslegung. für stetige und binäre Datentypen

Stichprobenauslegung. für stetige und binäre Datentypen Stichprobenauslegung für stetige und binäre Datentypen Roadmap zu Stichproben Hypothese über das interessierende Merkmal aufstellen Stichprobe entnehmen Beobachtete Messwerte abbilden Schluss von der Beobachtung

Mehr

Bachelorprüfung. Praxis der empirischen Wirtschaftsforschung Prof. Regina T. Riphahn, Ph.D. Name, Vorname. Matrikelnr. E-Mail. Studiengang.

Bachelorprüfung. Praxis der empirischen Wirtschaftsforschung Prof. Regina T. Riphahn, Ph.D. Name, Vorname. Matrikelnr. E-Mail. Studiengang. Lehrstuhl für Statistik und empirische irtschaftsforschung, SS 2009 ach: Prüfer: Bachelorprüfung Praxis der empirischen irtschaftsforschung Prof. Regina T. Riphahn, Ph.D. Name, Vorname Matrikelnr. E-Mail

Mehr

Überblick über die Verfahren für Ordinaldaten

Überblick über die Verfahren für Ordinaldaten Verfahren zur Analyse ordinalskalierten Daten 1 Überblick über die Verfahren für Ordinaldaten Unterschiede bei unabhängigen Stichproben Test U Test nach Mann & Whitney H Test nach Kruskal & Wallis parametrische

Mehr

1 Von den Ereignissen U und V eines Zufallsexperiments kennt man die Eigenschaften (1) bis (3) :

1 Von den Ereignissen U und V eines Zufallsexperiments kennt man die Eigenschaften (1) bis (3) : Prof. Dr. E. Mammen SEMINAR FÜR STATISTIK Prof. Dr. H. Stenger UNIVERSITÄT MANNHEIM Vierstündige Klausur in statistischer Methodenlehre 9. Juli 003; 8:30 - :30 Zulässige Hilfsmittel: keine, insbesondere

Mehr

Florian Frötscher und Demet Özçetin

Florian Frötscher und Demet Özçetin Statistische Tests in der Mehrsprachigkeitsforschung Aufgaben, Anforderungen, Probleme. Florian Frötscher und Demet Özçetin florian.froetscher@uni-hamburg.de SFB 538 Mehrsprachigkeit Max-Brauer-Allee 60

Mehr

Aufgabenblatt 10 zur Lehrveranstaltung Quantitative Methoden der Betriebswirtschaftslehre I Frühjahrssemester 2015

Aufgabenblatt 10 zur Lehrveranstaltung Quantitative Methoden der Betriebswirtschaftslehre I Frühjahrssemester 2015 Universität Bern Bern, den 27. April 2015 Professur für Quantitative Methoden der BWL Schützenmattstr. 14, 3012 Bern Prof. Dr. Norbert Trautmann, Oliver Strub E-Mail: oliver.strub@pqm.unibe.ch Fragestunde

Mehr

Statistik für Studenten der Sportwissenschaften SS 2008

Statistik für Studenten der Sportwissenschaften SS 2008 Statistik für Studenten der Sportwissenschaften SS 008 Aufgabe 1 Man weiß von Rehabilitanden, die sich einer bestimmten Gymnastik unterziehen, dass sie im Mittel µ=54 Jahre (σ=3 Jahre) alt sind. a) Welcher

Mehr

Lehrstuhl für Statistik und empirische Wirtschaftsforschung Prof. Regina T. Riphahn, Ph.D. Prüfung im Fach Ökonometrie im WS 2011/12 Lösungsskizze

Lehrstuhl für Statistik und empirische Wirtschaftsforschung Prof. Regina T. Riphahn, Ph.D. Prüfung im Fach Ökonometrie im WS 2011/12 Lösungsskizze Lehrstuhl für Statistik und empirische irtschaftsforschung Prof. Regina T. Riphahn, Ph.D. Prüfung im ach Ökonometrie im S 20/2 Lösungsskizze Aufgabe (.5 Punkte) Sie verfügen über einen Datensatz, der Informationen

Mehr

Webergänzung zu Kapitel 10

Webergänzung zu Kapitel 10 Webergänzung zu Kapitel 10 10.1.4 Varianzanalyse (ANOVA: analysis of variance) Im Kapitel 10 haben wir uns hauptsächlich mit Forschungsbeispielen beschäftigt, die nur zwei Ergebnissätze hatten (entweder

Mehr

Klausur zu Methoden der Statistik I (mit Kurzlösung) Wintersemester 2007/2008. Aufgabe 1

Klausur zu Methoden der Statistik I (mit Kurzlösung) Wintersemester 2007/2008. Aufgabe 1 Lehrstuhl für Statistik und Ökonometrie der Otto-Friedrich-Universität Bamberg Prof. Dr. Susanne Rässler Klausur zu Methoden der Statistik I (mit Kurzlösung) Wintersemester 2007/2008 Aufgabe 1 Ihnen liegt

Mehr

Kapitel 7: Varianzanalyse mit Messwiederholung

Kapitel 7: Varianzanalyse mit Messwiederholung Kapitel 7: Varianzanalyse mit Messwiederholung Durchführung einer einfaktoriellen Varianzanalyse mit Messwiederholung 1 Durchführung einer zweifaktoriellen Varianzanalyse mit Messwiederholung auf einem

Mehr

Klausur in Statistik VWA Essen

Klausur in Statistik VWA Essen Prof. Dr. Peter von der Lippe Klausur in Statistik VWA Essen neue Regelung (verkürzter Stoff) Bitte schreiben Sie hier Ihren Namen auf das Deckblatt. Bitte neben dieser Aufgabenstellung keine weitere Blätter

Mehr

Gegeben sei folgende zweidimensionale Wahrscheinlichkeitsdichtefunktion zweier Zufallsvariablen. 0 sonst.

Gegeben sei folgende zweidimensionale Wahrscheinlichkeitsdichtefunktion zweier Zufallsvariablen. 0 sonst. Aufgabe 1 (2 + 4 + 2 + 1 Punkte) Gegeben sei folgende zweidimensionale Wahrscheinlichkeitsdichtefunktion zweier Zufallsvariablen X und Y : { 2x + 2y für 0.5 x 0.5, 1 y 2 f(x, y) = 3 0 sonst. a) Berechnen

Mehr

Prüfung zu Modul 26 (BA Bw) bzw. 10 (BA IB) (Wirtschaftsstatistik)

Prüfung zu Modul 26 (BA Bw) bzw. 10 (BA IB) (Wirtschaftsstatistik) 2 3 Klausur-Nr = Sitzplatz-Nr Prüfung zu Modul 26 (BA Bw) bzw. 10 (BA IB) (Wirtschaftsstatistik) Klausurteil 1: Beschreibende Statistik BeStat-1 (7 ) n = 400 Personen wurden gefragt, wie viele Stück eines

Mehr

Einführung in statistische Analysen

Einführung in statistische Analysen Einführung in statistische Analysen Andreas Thams Econ Boot Camp 2008 Wozu braucht man Statistik? Statistik begegnet uns jeden Tag... Weihnachten macht Deutschen Einkaufslaune. Im Advent überkommt die

Mehr

Klausur Nr. 1. Wahrscheinlichkeitsrechnung. Keine Hilfsmittel gestattet, bitte alle Lösungen auf dieses Blatt.

Klausur Nr. 1. Wahrscheinlichkeitsrechnung. Keine Hilfsmittel gestattet, bitte alle Lösungen auf dieses Blatt. Klausur Nr. 1 2014-02-06 Wahrscheinlichkeitsrechnung Pflichtteil Keine Hilfsmittel gestattet, bitte alle Lösungen auf dieses Blatt. Name: 0. Für Pflicht- und Wahlteil gilt: saubere und übersichtliche Darstellung,

Mehr

Studiendesign/ Evaluierungsdesign

Studiendesign/ Evaluierungsdesign Jennifer Ziegert Studiendesign/ Evaluierungsdesign Praxisprojekt: Nutzerorientierte Evaluierung von Visualisierungen in Daffodil mittels Eyetracker Warum Studien /Evaluierungsdesign Das Design einer Untersuchung

Mehr

Gemischte Modelle. Fabian Scheipl, Sonja Greven. SoSe 2011. Institut für Statistik Ludwig-Maximilians-Universität München

Gemischte Modelle. Fabian Scheipl, Sonja Greven. SoSe 2011. Institut für Statistik Ludwig-Maximilians-Universität München Gemischte Modelle Fabian Scheipl, Sonja Greven Institut für Statistik Ludwig-Maximilians-Universität München SoSe 2011 Inhalt Amsterdam-Daten: LMM Amsterdam-Daten: GLMM Blutdruck-Daten Amsterdam-Daten:

Mehr

Studiengang (Zutreffendes bitte ankreuzen):

Studiengang (Zutreffendes bitte ankreuzen): Prof. Dr. Ulrich Schwalbe Sommersemester 2006 Klausur Mikroökonomik Matrikelnummer: Studiengang (Zutreffendes bitte ankreuzen): SozÖk Sozma AÖ WiPäd Wiwi Prof. Dr. Ulrich Schwalbe Sommersemester 2006 Klausur

Mehr

5 Zusammenhangsmaße, Korrelation und Regression

5 Zusammenhangsmaße, Korrelation und Regression 5 Zusammenhangsmaße, Korrelation und Regression 5.1 Zusammenhangsmaße und Korrelation Aufgabe 5.1 In einem Hauptstudiumsseminar des Lehrstuhls für Wirtschafts- und Sozialstatistik machten die Teilnehmer

Mehr

Name:... Vorname:... Matrikel-Nr.:... Fachrichtung:... Semesterzahl:...

Name:... Vorname:... Matrikel-Nr.:... Fachrichtung:... Semesterzahl:... Wirtschaftswissenschaftlicher Prüfungsausschuss der Georg-August-Universität Göttingen Diplomprüfung Klausuren für Volkswirte, Betriebswirte, Handelslehrer und Wirtschaftsinformatiker, BA, MA, Nebenfach

Mehr

Diplom BWL/VWL / Diplom BWL/VWL / B-BAE / B-SW

Diplom BWL/VWL / Diplom BWL/VWL / B-BAE / B-SW Diplom BWL/VWL / Diplom BWL/VWL / B-BE / B-SW Prüfungsfach/Modul: llgemeine Volkswirtschaftslehre BWL-Theorie Wahlmodul Klausur: Institutionenökonomik (Klausur 60 Min) (00101, 0109, 1101) Prüfer: Prof.

Mehr

Einleitung 19. Teil I Datenanalyse und Modellbildung Grundlagen 25

Einleitung 19. Teil I Datenanalyse und Modellbildung Grundlagen 25 Inhaltsverzeichnis Einleitung 19 Zu diesem Buch 19 Konventionen in diesem Buch 20 Was Sie nicht lesen müssen 21 Falsche Voraussetzungen 21 Wie dieses Buch aufgebaut ist 21 Teil I: Datenanalyse und Grundlagen

Mehr

Klausur zur Vorlesung Financial Engineering und Structured Finance

Klausur zur Vorlesung Financial Engineering und Structured Finance Universität Augsburg Wirtschaftswissenschaftliche Fakultät Lehrstuhl für Finanz- und Bankwirtschaft Klausur zur Vorlesung Financial Engineering und Structured Finance Prof. Dr. Marco Wilkens 7. Februar

Mehr

Kapitel 4: Binäre Regression

Kapitel 4: Binäre Regression Kapitel 4: Binäre Regression Steffen Unkel (basierend auf Folien von Nora Fenske) Statistik III für Nebenfachstudierende WS 2013/2014 4.1 Motivation Ausgangssituation Gegeben sind Daten (y i, x i1,...,

Mehr

Diplom BWL/VWL / B-BAE / B-SW / LA RS / LA GY

Diplom BWL/VWL / B-BAE / B-SW / LA RS / LA GY Diplom BWL/VWL / B-BAE / B-SW / LA RS / LA GY Prüfungsfach/Modul: Allgemeine Volkswirtschaftslehre Wirtschaftstheorie Wahlmodul Klausur: Institutionenökonomik (Klausur 60 Min) (200101, 201309, 211301)

Mehr

Multivariate Verfahren

Multivariate Verfahren Selbstkontrollarbeit 2 Multivariate Verfahren Musterlösung Aufgabe 1 (28 Punkte) Der Marketing-Leiter einer Lebensmittelherstellers möchte herausfinden, mit welchem Richtpreis eine neue Joghurt-Marke auf

Mehr

TECHNISCHE UNIVERSITÄT BERGAKADEMIE FREIBERG. Alte und Neue Prüfungsordnung. ABWL Personalmanagement. 90-minütige Abschlussklausur 20.

TECHNISCHE UNIVERSITÄT BERGAKADEMIE FREIBERG. Alte und Neue Prüfungsordnung. ABWL Personalmanagement. 90-minütige Abschlussklausur 20. TECHNISCHE UNIVERSITÄT BERGAKADEMIE FREIBERG Professur für Allgemeine Betriebswirtschaftslehre speziell Unternehmensführung und Personalwesen Alte und Neue Prüfungsordnung ABWL Personalmanagement 90-minütige

Mehr

Grundlagen der Inferenzstatistik

Grundlagen der Inferenzstatistik Grundlagen der Inferenzstatistik (Induktive Statistik oder schließende Statistik) Dr. Winfried Zinn 1 Deskriptive Statistik versus Inferenzstatistik Die Deskriptive Statistik stellt Kenngrößen zur Verfügung,

Mehr

Lösungen zu Janssen/Laatz, Statistische Datenanalyse mit SPSS 1

Lösungen zu Janssen/Laatz, Statistische Datenanalyse mit SPSS 1 LÖSUNG 9B a) Lösungen zu Janssen/Laatz, Statistische Datenanalyse mit SPSS 1 Man kann erwarten, dass der Absatz mit steigendem Preis abnimmt, mit höherer Anzahl der Außendienstmitarbeiter sowie mit erhöhten

Mehr

Test auf Varianzgleichheit (F-Test) (einseitiger Test!!)

Test auf Varianzgleichheit (F-Test) (einseitiger Test!!) T-Tests in Excel T-Tests in Excel Test auf Varianzgleichheit (F-Test) (einseitiger Test!!)! Annahmen:! Unabhängige Stichproben! Normalverteilte Grundgesamtheiten H0 : σx = σ y; H0 : σx > σ y Sx σ x F =

Mehr

Institut für Soziologie Benjamin Gedon. Methoden 2. Regressionsanalyse IV: Transformation und Interaktion

Institut für Soziologie Benjamin Gedon. Methoden 2. Regressionsanalyse IV: Transformation und Interaktion Institut für Soziologie Methoden 2 Regressionsanalyse IV: Transformation und Interaktion Inhalt 1. Zusammenfassung letzte Sitzung 2. Weitere Annahmen und Diagnostik 3. Transformationen zur besseren Interpretierbarkeit

Mehr

Statistik I für Wirtschaftswissenschaftler Klausur am 01.07.2005, 14.00 16.00.

Statistik I für Wirtschaftswissenschaftler Klausur am 01.07.2005, 14.00 16.00. 1 Statistik I für Wirtschaftswissenschaftler Klausur am 01.07.2005, 14.00 16.00. Bitte unbedingt beachten: a) Gewertet werden alle 9 gestellten Aufgaben. b) Lösungswege sind anzugeben. Die Angabe des Endergebnisses

Mehr

Teil II: Einführung in die Statistik

Teil II: Einführung in die Statistik Teil II: Einführung in die Statistik (50 Punkte) Bitte beantworten Sie ALLE Fragen. Es handelt sich um multiple choice Fragen. Sie müssen die exakte Antwortmöglichkeit angeben, um die volle Punktzahl zu

Mehr

Hypothesentests mit SPSS. Beispiel für einen t-test

Hypothesentests mit SPSS. Beispiel für einen t-test Beispiel für einen t-test Daten: museum-f-v04.sav Hypothese: Als Gründe, in ein Museum zu gehen, geben mehr Frauen als Männer die Erweiterung der Bildung für Kinder an. Dies hängt mit der Geschlechtsrolle

Mehr

Studiengang «StudG» Klausur Marketing & Management Science WS 2012/2013. Studienfach: Abschluss:

Studiengang «StudG» Klausur Marketing & Management Science WS 2012/2013. Studienfach: Abschluss: Univ.-Prof. Dr. Jost Adler Univ.-Prof. Dr. Gertrud Schmitz Studiengang «StudG» Klausur Marketing & Management Science WS 202/203 Datum: «Datum» Beginn/Ort: «Beginn» / «Ort» Bearbeitungszeit: 60 Minuten

Mehr

Regression mit Gretl Eine erste Einführung 1

Regression mit Gretl Eine erste Einführung 1 Kurzeinführung in Gretl S. 1 Regression mit Gretl Eine erste Einführung 1 Installation: Gretl für das entsprechende Betriebssystem herunterladen und die Setup-Datei ausführen. Hinweis: Für die Benutzung

Mehr

Bearbeitungshinweise. (20 Punkte)

Bearbeitungshinweise. (20 Punkte) Bearbeitungshinweise - Es sind alle Aufgaben zu bearbeiten. - Als Hilfsmittel sind lediglich nicht programmierbare Taschenrechner erlaubt. - Die Klausur darf nicht auseinander genommen werden. - Sämtliche

Mehr

FernUniversität in Hagen Fakultät für Wirtschaftswissenschaft

FernUniversität in Hagen Fakultät für Wirtschaftswissenschaft FernUniversität in Hagen Fakultät für Wirtschaftswissenschaft Den Aufgabenbogen der Klausur können Sie mit nach Hause nehmen. Es muss nur der abgegeben werden! Klausur: Klausur Instrumente des Controlling

Mehr

Seite 1 von 2. Teil Theorie Praxis S Punkte 80+25 120+73 200+98 erreicht

Seite 1 von 2. Teil Theorie Praxis S Punkte 80+25 120+73 200+98 erreicht Seite 1 von 2 Ostfalia Hochschule Fakultät Elektrotechnik Wolfenbüttel Prof. Dr.-Ing. T. Harriehausen Bearbeitungszeit: Theoretischer Teil: 60 Minuten Praktischer Teil: 60 Minuten Klausur FEM für elektromagnetische

Mehr

14.01.14 DAS THEMA: INFERENZSTATISTIK II. Standardfehler Konfidenzintervalle Signifikanztests. Standardfehler

14.01.14 DAS THEMA: INFERENZSTATISTIK II. Standardfehler Konfidenzintervalle Signifikanztests. Standardfehler DAS THEMA: INFERENZSTATISTIK II INFERENZSTATISTISCHE AUSSAGEN Standardfehler Konfidenzintervalle Signifikanztests Standardfehler der Standardfehler Interpretation Verwendung 1 ZUR WIEDERHOLUNG... Ausgangspunkt:

Mehr

Statistische Auswertung der Daten von Blatt 13

Statistische Auswertung der Daten von Blatt 13 Statistische Auswertung der Daten von Blatt 13 Problemstellung 1 Graphische Darstellung der Daten 1 Diskussion der Normalverteilung 3 Mittelwerte und deren Konfidenzbereiche 3 Signifikanz der Behandlung

Mehr

Statistik II für Betriebswirte Vorlesung 2

Statistik II für Betriebswirte Vorlesung 2 PD Dr. Frank Heyde TU Bergakademie Freiberg Institut für Stochastik Statistik II für Betriebswirte Vorlesung 2 21. Oktober 2014 Verbundene Stichproben Liegen zwei Stichproben vor, deren Werte einander

Mehr

Statistische Auswertung:

Statistische Auswertung: Statistische Auswertung: Die erhobenen Daten mittels der selbst erstellten Tests (Surfaufgaben) Statistics Punkte aus dem Punkte aus Surftheorietest Punkte aus dem dem und dem Surftheorietest max.14p.

Mehr