Ortskurve, Resonanz, Filter

Größe: px
Ab Seite anzeigen:

Download "Ortskurve, Resonanz, Filter"

Transkript

1 Elektrotechnisches Grundlagen-Labor II Ortskurve, esonanz, Filter Versuch Nr. 1 Erforderliche Geräte Anzahl Bezeichnung, Daten GL-Nr. 1 NF-Generator 10V; 600Ω 14 1 NF-Millivoltmeter 16 NF-Voltmeter, erdfrei 134/135 1 eaktanzhochpass 84 1 Abschlusswiderstand 600Ω 1 Spule 75/300mH 1 Widerstand 1kΩ 1 Widerstand 10kΩ 1 Kondensator 100nF 1 Umschalter, abgeschirmt 1 Steckbrett Kurzschlussstecker 6 Verbindungsleitungen 0,5m, BNC-BNC 1 Koaxialkabel 0,5m, BNC/ Bananenstecker 4 Koaxialkabel Datum: Name: Versuch durchgeführt:

2 1 Theoretische Grundlagen 1.1 Ortskurven Der Betriebszustand von passiven linearen Schaltungen für sinusförmigen Wechselstrom und sinusförmige Wechselspannung kann beschrieben werden durch die komplexen Effektivwerte der Ströme und Spannungen in der Schaltung. Die komplexen Effektivwerte werden im Folgenden durch große unterstrichene Buchstaben symbolisiert. In der komplexen Ebene werden sie durch sog. Zeiger dargestellt. Aus dem komplexen Effektivwert A einer sinusförmigen Wechselgröße mit der Kreisfrequenz ω erhält man ihren von der Zeit t abhängigen Momentanwert zu jωt { A e } a(t) = e. (1) Den Quotienten Z = U / I = + jx () der komplexen Effektivwerte U und I von Eingangsspannung und Eingangsstrom eines passiven Zweipols bezeichnet man als dessen komplexen Widerstand. Hierbei ist vorausgesetzt, dass für U und I das Verbraucherzählpfeilsystem eingeführt ist. Die Größen und X in () heißen Wirk- und Blindwiderstand. Der eziprokwert 1 Y = = G + jb (3) Z heißt komplexer Leitwert des Zweipols, wobei G als Wirkleitwert, B als Blindleitwert bezeichnet wird. Jeder Wert Z und Y entspricht einem Punkt in der komplexen Widerstands- bzw. Leitwertsebene. Der komplexe Widerstand eines passiven linearen Zweipols hängt ab von 1. der Schaltungsstruktur und der Art der verwendeten Bauelemente (Widerstand, Kondensator, Spule, Übertrager),. der Dimensionierung der Bauelemente, 3. der Frequenz. Ändert man bei einem passiven linearen Zweipol die Frequenz oder die Dimensionierung eines einzigen Bauelements stetig, so kann man die hierbei von Z angenommenen Werte in der komplexen Widerstandsebene durch eine Kurve verbinden. Diese heißt Ortskurve. An der Ortskurve kann man als Parameter die Frequenz bzw. die Dimensionierung des veränderlichen Bauelements angeben. Auch der komplexe Leitwert Y = 1/ Z kann als Ortskurve dargestellt werden. Bild 1 zeigt einen passiven linearen Zweipol, dessen Dimensionierung sich im Folgenden nicht ändern soll. Für diesen Zweipol ist in Bild (a) der Eingangswiderstand Z, in Bild (b) der Eingangsleitwert Y abhängig von der Frequenz f als Ortskurve dargestellt.

3 Z = 1 Y C = 100 Ω C = 159 pf Bild 1 Passiver linearer Zweipol e(z)/ Ω 100 Im(Z) Ω f 16 6 MHz Bild a Ortskurve des Eingangswiderstands Z der Schaltung nach Bild 1 mit der Frequenz f als Parameter Im(Y) ms f MHz e(y)/ms 10 Bild b Ortskurve des Eingangsleitwerts Y der Schaltung nach Bild 1 mit der Frequenz f als Parameter 3

4 Die Anwendungsmöglichkeit von Ortskurven ist nicht auf die Darstellung komplexer Widerstände und Leitwerte beschränkt. Sie können immer dann angewandt werden, wenn die Abhängigkeit einer komplexen Größe von einem reellen Parameter dargestellt werden soll. Als Beispiel werde der Zweipol nach Bild 3 betrachtet. Dieser werde mit konstanter Spannung und Frequenz betrieben. Die Induktivität L soll von sehr kleinen bis zu sehr großen Werten einstellbar sein. L U L U = 100 Ω ω = 10 6 s -1 U = 10 V 0 < L < U 8 Bild 3 Passiver linearer Zweipol mit einstellbarer Induktivität In Bild 4 ist die Ortskurve des Quotienten U U = + jωl (4) mit der Induktivität L als Parameter dargestellt. e U U 1 Im U U - 0, L µh Bild 4 Ortskurve des Verhältnisses U /U mit der Induktivität L als Parameter für die Schaltung nach Bild 3 4

5 esonanzschaltungen Die Prinzipien der esonanzschaltungen werden im Folgenden anhand des Serienschwingkreises nach Bild 5 erläutert. L C S Bild 5 Serienschwingkreis Der Eingangswiderstand dieser Schaltung ist 1 Z= S + j ωl (5) ωc Bei der Kreisfrequenz 1 ω =ω = (6) L C verschwindet der Imaginärteil von Z und Z wird minimal. ω heißt esonanzkreisfrequenz, f = ω /(π) esonanzfrequenz. Mit dem sog. esonanzblindwiderstand L X = (7) C und dem Gütefaktor L Q= / S (8) C des esonanzkreises lässt sich dessen Eingangswiderstand auch ausdrücken in der Form ω ω ω ω = Z = S + jx S 1+ jq. (9) ω ω ω ω 5

6 In Bild 6 ist die Ortskurve von Z = 1+ jf (10) S mit dem Frequenzfaktor ω ω F = Q (11) ω ω als Parameter für 0,8 F 1 gezeichnet. Neben dem Gütefaktor Q ist dessen eziprokwert L d = 1/ Q= S / (1) C der sog. Dämpfungsfaktor, eine wichtige Beschreibungsgröße des Schwingkreises. 1,0 0,8 0,8 Im Z S 0,6 0,4 0,6 0,4 F 0, 0, - 0, - 0,4-0,6-0,8 0, 0,4 0,6 0,8 e - 0, - 0,4-0,6-0,8 Z S Bild 6 Ortskurve des normierten Eingangswiderstands mit F als Parameter für den Serienschwingkreis nach Bild 5 6

7 Im Folgenden wird angenommen, dass die Amplitude U ) der Spannung am Schwingkreis unabhängig von der Frequenz stets den gleichen Wert hat. Dann wird der Strom durch den esonanzkreis maximal mit der Amplitude ) ) I = I = U / (13) max S bei der esonanzfrequenz. Allgemein erhält man für die Stromamplitude mit (9) und (13) Imax Imax I= = (14a) ω ω 1+ jf 1+ jq ω ω I max I max I = = (14b) 1 F ω ω + 1+ Q ω ω In Bild 7 ist die Ortskurve von I/I max nach (14a) mit F nach (11) als Parameter dargestellt. Bild 8 zeigt I / I nach (14b) abhängig von F. max 0,6 1 F 0,4 0,5 I Im Imax 0, - 0, 0, 0,4 0,6 0,8 0,07 F = 0 1 e - 0,07 I I max - 0, ,5-0,6-1 Bild 7 Ortskurve von I/I max nach (14a) mit F als Parameter 7

8 1 I I max P P max F 1 3 Bild 8 I/I max nach (14b) und P/P max nach (16) als Funktion von F Die vom Schwingkreis aufgenommene Wirkleistung erreicht bei konstanter Spannung U ihren Maximalwert P = Pmax = U / S = Imax S (15) bei esonanz. Allgemein erhält man für die Leistung mit (14b) P = max S max max = = (16) 1+ Q I ω ω ω ω 1+ Q P ω ω ω ω P 1+ F P/P max nach (16) ist abhängig von F ebenfalls in Bild 8 dargestellt. 1.3 eaktanzfilter Ein Generator mit der Leerlaufspannung U 0 (Effektivwert), mit dem Innenwiderstand i und mit einstellbarer Frequenz f speise den ohmschen Verbraucherwiderstand 1 = i, siehe Bild 9. i U 0 G P ~ 1 = i Bild 9 Belasteter Generator bei Anpassung 8

9 In diesem Fall wird dem Generator unabhängig von der Frequenz f stets die maximal mögliche Wirkleistung P max U 0 = (17) 4 i entnommen. Es herrscht Leistungsanpassung. Insbesondere in der Nachrichtentechnik besteht nun häufig die Forderung, dass ein Verbraucherwiderstand 1 einem Generator lediglich in gewissen Frequenzbereichen möglichst hohe Leistung P entnimmt. In anderen Frequenzbereichen soll 1 dagegen möglichst geringe Leistung erhalten. Diese Forderung lässt sich dadurch erfüllen, dass man zwischen den Generator und den Verbraucher einen Vierpol aus Blindelementen schaltet. Ein solcher Vierpol wird allgemein als Filter bezeichnet. Je nach der Frequenzlage der Durchlass- und Sperrbereiche ist ein solches Filter ein Tief-, Band- oder Hochpass oder eine Bandsperre. Bild 10 zeigt als Beispiel eine Tiefpassschaltung. i L U 0 G Z C 1 = i Filter 1 = i = 50 Ω ; L = 15,9 µh ; C = 1,59 nf Bild 10 Tiefpassschaltung Durch die Filterschaltung wird der Verbraucherwiderstand 1 in den komplexen Widerstand Z = + jx transformiert. Die in diesem Fall vom Generator abgegebene Wirkleistung ist mit P max nach (17) P 4 / = i P max (1+ / i ) + (X / i ) (18) Setzt man voraus, dass die Blindelemente des Filters verlustfrei sind, ist die vom Filter aufgenommene Wirkleistung P nach (18) gleich der in 1 verbrauchten Wirkleistung. Für i und/oder X 0 ist P< Pmax ; es herrscht Fehlanpassung. Da der Blindwiderstand der Blindelemente und damit das Transformationsverhalten des Filters frequenzabhängig sind, ist auch P nach (18) eine Funktion der Frequenz. Dieser kann man durch die Struktur und Dimensionierung des Filters einen geforderten Verlauf geben. Die aus (18) zu ermittelnde Größe 9

10 a / db P P (1+ / ) + (X / ) 4 / max i i = 10lg 10lg (19) = i heißt Betriebsdämpfungsmaß des Filters. Bei dem Beispiel nach Bild 10 ist 1 ω 1CL+ jωl Z= (0) 1+ jω C 1 Z= 1+ ( ω C) 1 1 ωl ( ω 1C) (1 ω CL) + j 1+ ( ω C) 1 Bei sehr tiefen Frequenzen ist Z = 1 und somit P = P max, bei sehr hohen Frequenzen geht Z und damit P 0. Wählt man die in Bild 10 angegebene Dimensionierung, so erhält man aus (19) mit Z nach (0) das in Bild 11 abhängig von der Frequenz f dargestellte Betriebsdämpfungsmaß a a db 5 0 0, f MHz Bild 11 Betriebsdämpfungsmaß a des Tiefpasses nach Bild 10 abhängig von der Frequenz f (logarithmische Frequenzskala) 10

11 Weiterführende Literatur [1] Meinke, Hans: Einführung in die Elektrotechnik höherer Frequenzen, Band 1 Springer-Verlag Berlin, Heidelberg, New York. Fachbereichsbibliothek: ELT 705/005-1 [] Steinbuch, Karl; upprecht, Werner: Nachrichtentechnik Springer-Verlag Berlin, Heidelberg, New York. Fachbereichsbibliothek: ELT 804/005 3 Fragen und Aufgaben 1. Leiten Sie die Formel (18) ab!. Überlegen Sie, wie beim Versuch 4.3 aus den Größen Y = U /( U) und U C /( U) der komplexe Leitwert Y konstruiert werden kann! 3. Überlegen Sie, wie beim Versuch 4.4 aus den Größen Y = U /( U) und U LC /( U) der komplexe Leitwert Y konstruiert werden kann! 4. Berechnen Sie für den Serienschwingkreis des Versuchs 4.4 esonanzfrequenz f, esonanzblindwiderstand X, Gütefaktor Q und Dämpfungsfaktor d! 5. Ermitteln Sie für den Serienschwingkreis des Versuchs 4.4 bei der esonanzfrequenz die Spannungsverhältnisse U L /U und U C /U sowie die Winkel ϕ i = arc tan (I/U), ϕ L = arc tan (U L /U ) und ϕ C = arc tan (U C /U )! 6. Überlegen Sie, wie beim Versuch 4.5 aus den Größen Z = U e / U und U / U der komplexe Widerstand Z konstruiert werden kann! 4 Versuchsanleitung 4.1 Hinweise zu den Geräten Die im Versuch verwendeten elektronischen Vielfachmessinstrumente GL 134 und GL 135 können bis 5kHz zur erdfreien Messung von Wechselspannungen verwendet werden. Überprüfen Sie vor Beginn der Messungen Batteriespannungen, elektrischen Nullpunkt und Eichung! 11

12 Das mv-meter GL 16 ist nicht erdfrei. Der Netzstecker muss so gepolt werden, dass bei offenem Eingang im 1mV-Bereich ein Ausschlag von weniger als 100µV entsteht. Zur wechselweisen Messung von zwei verschiedenen Spannungen steht ein abgeschirmter Umschalter zur Verfügung. Vermeiden Sie durch Wahl geeigneter Messbereiche eine Überlastung der Instrumente! Die im Folgenden beschriebenen Arbeiten sollen für jede der in den Tabellen angegebenen Frequenzen durchgeführt werden. 4. Komplexer Widerstand Z einer L-eihenschaltung Aufbau der dargestellten Schaltung Einstellen der Spannung U = 1V und damit des Stroms I = 100µA und Messung von U L und U Berechnen von Z = U / I und X = U / I Konstruieren der Ortskurve Z(f) aus Z und X mit Hilfe eines Zirkels L GL 134 I U Quelle GL14 Z U 10 kω 75 mh U L GL 135 GL 16 Bild 1 Tabelle 1 f/hz U L /mv U/mV Z / kω X/kΩ 1

13 Tabelle f/khz U L /mv U/mV Z / kω X/kΩ Im(Z) kω e(z) kω Bild 13 13

14 4.3 Komplexer Leitwert Y einer C-eihenschaltung Aufbau der dargestellten Schaltung Einstellen der Spannung U = 5V und Messen der Spannungen U und U C Berechnen von Y = I / U = U /( U) und U C /( U) Konstruieren der Ortskurve Y(f) aus Y und U C /( U) mit Hilfe eines Zirkels GL 134 I U Quelle GL14 Y U = 1 kω 100 nf U C GL 135 GL 16 Bild 14 Tabelle 3 f/hz U /mv U C /mv Y / ms U C U / ms 14

15 Tabelle 4 f/khz U /mv U C /mv Y / ms U C U / ms 0,8 0,6 Im(Y) ms 0,4 0, 0 0 0, 0,4 0,6 0,8 1 e(y) ms Bild 15 15

16 4.4 Komplexer Leitwert Y eines Serienschwingkreises Aufbau der dargestellten Schaltung Einstellen von U = 5V Messen der Spannungen U C und U LC (nacheinander mit dem Instrument GL 16) sowie der Spannungen U und U L (nacheinander mit dem Instrument GL 134) Berechnen von Y = I / U = U /( U) und U LC /( U) Konstruieren der Ortskurve Y(f) in der dargestellten Y-Ebene aus Y und U LC /( U) mit Hilfe eines Zirkels. Es ist zu beachten, dass Y unterhalb der esonanzfrequenz im ersten, oberhalb der esonanzfrequenz im vierten Quadranten der Y-Ebene liegt. Auftragen der Verläufe von U, U L und U C über der Frequenz f GL 134 GL 134 I U U L = 1 kω 300 mh Quelle GL14 Y U GL 135 U LC 100 nf U C GL 16 GL 16 Bild 16 Tabelle 5 f/hz U C /mv U LC /mv U /mv U L /mv Y / ms U LC U / ms 16

17 Tabelle 6 f/khz U C /mv U LC /mv U /mv U L /mv Y / ms U LC U / ms 0,6 0,4 0, Im(Y) ms 0 0, 0,4 0,6 0,8 1 e(y) ms - 0, - 0,4-0,6 Bild 17 17

18 10 U, U L, U C, V Bild 18 f Hz 4.5 Komplexer Eingangswiderstand Z eines eaktanzhochpasses Aufbau der dargestellten Schaltung Einstellen von U = V und Messen von U und U e Berechnen von Z = U e / U und U / U Konstruieren der Ortskurve Z(f) aus Z und U / U mit Hilfe eines Zirkels GL 134 I U = V Quelle GL14 Z+ U = 1 kω GL 16 U e GL 16 Z Hochpaß GL Ω Bild 19 18

19 Tabelle 7 f/khz , ,5 0 U e /V U/V Z / kω U / kω U Tabelle 8 f/khz U e /V U/V Z / kω U / kω U 19

20 Im(Z) kω - 1,0-0,5 0 0,5 1 e(z) kω - 0,5-1 Bild 0-1,5 0

21 4.6 Betriebsdämpfungsmaß a des eaktanzhochpasses Einstellen der Leerlaufspannung des Generators auf U 0 = 1,55V = ˆ + 6dBm. Diese Einstellung bleibt für alle folgenden Messungen bestehen. 1dBm entspricht der Leistung von 1mW in einem Widerstand von 600Ω. Aufbau der dargestellten Schaltung Messung von Ausgangsspannung U a bzw. Pegel s a bei den angegebenen Frequenzen Auftragen von a = - s a über der Frequenz U 0 G GL 14 i = 600 Ω Hochpaß GL Ω U a GL 16 Bild 1 Tabelle 9 f/khz 0, 0,5 1,5 3 s a /db Tabelle 10 f/khz 3, s a /db 1

22 Anmerkung: Für U 0 = 1,55V und i = 600Ω ist die in (19) auftretende Maximalleistung P max = 1mW. Die Pegelskala des Instruments GL 16 ist so geeicht, dass in diesem Fall unmittelbar s a = - a in db abgelesen werden kann a 30 db 0 10 Bild f Hz

Grundlagen der Elektrotechnik II Duale Hochschule Baden Württemberg Karlsruhe Dozent: Gerald Oberschmidt

Grundlagen der Elektrotechnik II Duale Hochschule Baden Württemberg Karlsruhe Dozent: Gerald Oberschmidt DHBW Karlsruhe Grundlagen der Elektrotechnik II Grundlagen der Elektrotechnik II Duale Hochschule Baden Württemberg Karlsruhe Dozent: Gerald Oberschmidt 5 Hoch und Tiefpässe 5. L--Hoch und Tiefpass Abbildung

Mehr

Kapitel 6: Grundlagen der Wechselstromtechnik

Kapitel 6: Grundlagen der Wechselstromtechnik Inhalt Kapitel 6: Grundlagen der technik Sinusförmige Signale Zeigerdarstellung Darstellung mit komplexen Zahlen komplexe Widerstände Grundschaltungen Leistung im kreis Ortskurven Übertragungsfunktion

Mehr

Praktikum EE2 Grundlagen der Elektrotechnik. Name: Testat : Einführung

Praktikum EE2 Grundlagen der Elektrotechnik. Name: Testat : Einführung Fachbereich Elektrotechnik Ortskurven Seite 1 Name: Testat : Einführung 1. Definitionen und Begriffe 1.1 Ortskurven für den Strom I und für den Scheinleistung S Aus den Ortskurven für die Impedanz Z(f)

Mehr

Elektrotechnisches Grundlagen-Labor I. Netzwerke. Versuch Nr. Anzahl Bezeichnung, Daten GL-Nr.

Elektrotechnisches Grundlagen-Labor I. Netzwerke. Versuch Nr. Anzahl Bezeichnung, Daten GL-Nr. Elektrotechnisches Grundlagen-Labor I Netzwerke Versuch Nr. 1 Erforderliche Geräte Anzahl Bezeichnung, Daten GL-Nr. 2 n (Netzgeräte) 0...30V, 400mA 111/112 2 Vielfachmessgeräte 100kΩ/V 125/126 2 Widerstandsdekaden

Mehr

Grundlagen der Elektrotechnik 2 Seminaraufgaben

Grundlagen der Elektrotechnik 2 Seminaraufgaben ampus Duisburg Grundlagen der Elektrotechnik 2 Allgemeine und Theoretische Elektrotechnik Prof. Dr. sc. techn. Daniel Erni Version 2005.10 Trotz sorgfältiger Durchsicht können diese Unterlagen noch Fehler

Mehr

FH Giessen-Friedberg StudiumPlus Dipl.-Ing. (FH) M. Beuler Grundlagen der Elektrotechnik Wechselstromtechnik

FH Giessen-Friedberg StudiumPlus Dipl.-Ing. (FH) M. Beuler Grundlagen der Elektrotechnik Wechselstromtechnik 4 4. Wechselgrößen Nimmt eine Wechselgröße in bestimmten aufeinander folgenden Zeitabständen wieder denselben Augenblickswert an, nennt man sie periodische Wechselgröße. Allgemeine Darstellung periodischer

Mehr

1 Elektrische Stromkreise und lineare Netzwerke /20

1 Elektrische Stromkreise und lineare Netzwerke /20 Elektrische Stromkreise und lineare Netzwerke /20 Zwei Batterien G und G2 mit unterschiedlichen elektrischen Eigenschaften wurden polrichtig parallel geschaltet und an den Anschlussklemmen A, B mit einem

Mehr

Grundlagen der Elektrotechnik 2 Übungsaufgaben

Grundlagen der Elektrotechnik 2 Übungsaufgaben ampus Duisburg Grundlagen der Elektrotechnik 2 Allgemeine und Theoretische Elektrotechnik Prof. Dr. sc. techn. Daniel Erni Version 2006.07 Trotz sorgfältiger Durchsicht können diese Unterlagen noch Fehler

Mehr

Versuch B2/3: Parallelschwingkreis

Versuch B2/3: Parallelschwingkreis Versuch B2/3: Parallelschwingkreis 3. Einleitung Als realer Parallelschwingkreis wird die Parallelschaltung einer realen Kapazität (physikalisch als kapazitive Admittanz darstellbar) und einer realen Induktivität

Mehr

Praktikum II RE: Elektrische Resonanz

Praktikum II RE: Elektrische Resonanz Praktikum II E: Elektrische esonanz Betreuer: Dr. Torsten Hehl Hanno ein praktikum2@hanno-rein.de Florian Jessen florian.jessen@student.uni-tuebingen.de 29. März 2004 Made with L A TEX and Gnuplot Praktikum

Mehr

5.5 Ortskurven höherer Ordnung

5.5 Ortskurven höherer Ordnung 2 5 Ortskurven 5.5 Ortskurven höherer Ordnung Ortskurve Parabel Die Ortskurvengleichung für die Parabel lautet P A + p B + p 2 C. (5.) Sie kann entweder aus der Geraden A + p B und dem Anteil p 2 C oder

Mehr

Wechselstromkreis E 31

Wechselstromkreis E 31 E 3 kreis kreis E 3 Aufgabenstellung. Bestimmung von Phasenverschiebungen zwischen Strom und Spannung im kreis.2 Aufbau und ntersuchung einer Siebkette 2 Physikalische Grundlagen n einem kreis (Abb.) befinde

Mehr

2. Parallel- und Reihenschaltung. Resonanz

2. Parallel- und Reihenschaltung. Resonanz Themen: Parallel- und Reihenschaltungen RLC Darstellung auf komplexen Ebene Resonanzerscheinungen // Schwingkreise Leistung bei Resonanz Blindleistungskompensation 1 Reihenschaltung R, L, C R L C U L U

Mehr

Elektrotechnik Protokoll - Wechselstromkreise. André Grüneberg Mario Apitz Versuch: 16. Mai 2001 Protokoll: 29. Mai 2001

Elektrotechnik Protokoll - Wechselstromkreise. André Grüneberg Mario Apitz Versuch: 16. Mai 2001 Protokoll: 29. Mai 2001 Elektrotechnik Protokoll - Wechselstromkreise André Grüneberg Mario Apitz Versuch: 6. Mai Protokoll: 9. Mai 3 Versuchsdurchführung 3. Vorbereitung außerhalb der Versuchszeit 3.. Allgemeine Berechnungen

Mehr

Grundlagen der Elektrotechnik Protokoll Schwingkreise. Christian Kötz, Jan Nabbefeld

Grundlagen der Elektrotechnik Protokoll Schwingkreise. Christian Kötz, Jan Nabbefeld Grundlagen der Elektrotechnik Protokoll Schwingkreise Christian Kötz, Jan Nabbefeld 29. Mai 200 3. Versuchsdurchführung 3.. Versuchsvorbereitung 3..2. Herleitung Resonanzfrequenz und der 45 o Frequenz

Mehr

Wechselstromwiderstände

Wechselstromwiderstände Wechselstromwiderstände Wirkwiderstand, ideale Spule und idealer Kondensator im Wechselstromkreis Wirkwiderstand R In einem Wirkwiderstand R wird elektrische Energie in Wärmeenergie umgesetzt. Er verursacht

Mehr

Wechselstromkreis. lässt sich mit der Eulerschen Beziehung. darstellen als Realteil einer komplexen Größe:

Wechselstromkreis. lässt sich mit der Eulerschen Beziehung. darstellen als Realteil einer komplexen Größe: E04 Wechselstromkreis Es soll die Frequenzabhängigkeit von kapazitiven und induktiven Widerständen untersucht werden. Als Anwendung werden Übertragungsverhältnisse und Phasenverschiebungen an Hoch-, Tief-

Mehr

Praktikum Grundlagen der Elektrotechnik 2 (GET2) Versuch 2

Praktikum Grundlagen der Elektrotechnik 2 (GET2) Versuch 2 Werner-v.-Siemens-Labor für elektrische Antriebssysteme Prof. Dr.-Ing. Dr. h.c. H. Biechl Praktikum Grundlagen der Elektrotechnik 2 (GET2) Versuch 2 Messungen mit dem Oszilloskop Lernziel: Dieser Praktikumsversuch

Mehr

1 Leistungsanpassung. Es ist eine Last mit Z L (f = 50 Hz) = 3 Ω exp ( j π 6. b) Z i = 3 exp(+j π 6 ) Ω = (2,598 + j 1,5) Ω, Z L = Z i

1 Leistungsanpassung. Es ist eine Last mit Z L (f = 50 Hz) = 3 Ω exp ( j π 6. b) Z i = 3 exp(+j π 6 ) Ω = (2,598 + j 1,5) Ω, Z L = Z i Leistungsanpassung Es ist eine Last mit Z L (f = 50 Hz) = 3 Ω exp ( j π 6 ) gegeben. Welchen Wert muss die Innenimpedanz Z i der Quelle annehmen, dass an Z L a) die maximale Wirkleistung b) die maximale

Mehr

P1-53,54,55: Vierpole und Leitungen

P1-53,54,55: Vierpole und Leitungen Physikalisches Anfängerpraktikum (P1 P1-53,54,55: Vierpole und Leitungen Matthias Ernst (Gruppe Mo-24 Ziel des Versuchs ist die Durchführung mehrerer Messungen an einem bzw. mehreren Vierpolen (Drosselkette

Mehr

RE - Elektrische Resonanz Praktikum Wintersemester 2005/06

RE - Elektrische Resonanz Praktikum Wintersemester 2005/06 RE - Elektrische Resonanz Praktikum Wintersemester 5/6 Philipp Buchegger, Johannes Märkle Assistent Dr. Torsten Hehl Tübingen, den 8. November 5 Einführung Ziel dieses Versuches ist es, elektrische Resonanz

Mehr

FH OOW / Fachb. Technik / Studiengänge Informatik und Medientechnik Seite 4-1

FH OOW / Fachb. Technik / Studiengänge Informatik und Medientechnik Seite 4-1 FH OOW / Fachb. Technik / Studiengänge Informatik und Medientechnik Seite 4-4.) Lineare Schaltungen mit passiven Bauelementen 4. Die Schaltelemente Widerstand, Kapazität, Induktivität und Übertrager 4..

Mehr

Ostfalia Hochschule für angewandte Wissenschaften Fakultät Elektrotechnik

Ostfalia Hochschule für angewandte Wissenschaften Fakultät Elektrotechnik Ostfalia Hochschule für angewandte Wissenschaften Fakultät Elektrotechnik Labor Mess- und Elektrotechnik Laborleiter: Prof. Dr. Ing. Prochaska Versuch 5: Laborbetreuer: Schwingkreise 1. Teilnehmer: Matrikel-Nr.:

Mehr

Elektrische Filter Erzwungene elektrische Schwingungen

Elektrische Filter Erzwungene elektrische Schwingungen Elektrizitätslehre und Schaltungen Versuch 38 ELS-38-1 Elektrische Filter Erzwungene elektrische Schwingungen 1 Vorbereitung 1.1 Wechselstromwiderstände (Lit.: Gerthsen) 1.2 Schwingkreise (Lit.: Gerthsen)

Mehr

3 Ortskurven. 3.1 Einleitung. 3.2 Spannungs-/Widerstandsdiagramme in der Reihenschaltung

3 Ortskurven. 3.1 Einleitung. 3.2 Spannungs-/Widerstandsdiagramme in der Reihenschaltung C. FEPEL 3 Ortskurven 3. Einleitung Durch ein Zeigerbild wird ein bestimmter Betriebszustand eines Wechselstromnetzes bei konstanten Parametern (Amplitude und Frequenz der einspeisenden sinusförmigen Quellspannungen

Mehr

Übung Grundlagen der Elektrotechnik B

Übung Grundlagen der Elektrotechnik B Übung Grundlagen der Elektrotechnik B Themengebiet E: Komplexe Zahlen Aufgabe 1: echnen mit komplexen Zahlen Stellen Sie die folgenden komplexen Zahlen in der arithmetischen Form (z = x + jy und der exponentiellen

Mehr

Protokoll zum Laborversuch (Bachelor-Anleitung) Wechselstrom an Spule und Kondensator. Zug Labor am: Wochentag Abgabe am:

Protokoll zum Laborversuch (Bachelor-Anleitung) Wechselstrom an Spule und Kondensator. Zug Labor am: Wochentag Abgabe am: FHTW Berlin, Fachbereich, Physikalisches Praktikum - Wechselstromwiderstände Version /04 Hochschule für Technik und Wirtschaft Berlin Physikalisches Praktikum HTW-Berlin Protokoll zum Laborversuch (Bachelor-Anleitung)

Mehr

Übungsaufgaben Elektrotechnik/Elektronik für Medieninformatik

Übungsaufgaben Elektrotechnik/Elektronik für Medieninformatik HTW Dresden Fakultät Elektrotechnik Übungsaufgaben Elektrotechnik/Elektronik für Medieninformatik Gudrun Flach February 3, 2019 Grundlegende Begriffe Grundlegende Begriffe Aufgabe 1 Bestimmen Sie die Beziehungen

Mehr

Skriptum zur 2. Laborübung. Transiente Vorgänge und Frequenzverhalten

Skriptum zur 2. Laborübung. Transiente Vorgänge und Frequenzverhalten Elektrotechnische Grundlagen (LU 182.692) Skriptum zur 2. Laborübung Transiente Vorgänge und Frequenzverhalten Martin Delvai Wolfgang Huber Andreas Steininger Thomas Handl Bernhard Huber Christof Pitter

Mehr

Musterloesung. Name:... Vorname:... Matr.-Nr.:...

Musterloesung. Name:... Vorname:... Matr.-Nr.:... Nachklausur Grundlagen der Elektrotechnik I-A 6. April 2004 Name:... Vorname:... Matr.-Nr.:... Bearbeitungszeit: 135 Minuten Trennen Sie den Aufgabensatz nicht auf. Benutzen Sie für die Lösung der Aufgaben

Mehr

GRUNDLAGEN DER WECHSELSTROMTECHNIK

GRUNDLAGEN DER WECHSELSTROMTECHNIK ELEKTROTECHNIK M GLEICHSTROM. ELEKTRISCHE GRÖßEN UND GRUNDGESETZE. ELEKTRISCHE LADUNG UND STROM.3 ELEKTRISCHES FELD UND STROM.4 ELEKTRISCHES SPANNUNG UND POTENTIAL.5 ELEKTRISCHES LEISTUNG UND WIRKUNGSGRAD.6

Mehr

Umdruck zum Versuch. Basis 1 Eigenschaften einfacher Bauelemente und. Anwendung von Messgeräten

Umdruck zum Versuch. Basis 1 Eigenschaften einfacher Bauelemente und. Anwendung von Messgeräten Universität Stuttgart Fakultät Informatik, Elektrotechnik und Informationstechnik Umdruck zum Versuch Basis 1 Eigenschaften einfacher Bauelemente und Anwendung von Messgeräten Bitte bringen Sie zur Versuchsdurchführung

Mehr

Komplexe Zahlen und ihre Anwendung in der Elektrotechnik

Komplexe Zahlen und ihre Anwendung in der Elektrotechnik Praktikum für die Schüler der BOB Rosenheim im Rahmen des Workshops Komplexe Zahlen und ihre Anwendung in der Elektrotechnik SCHALTUNG 1 I ein Gegeben ist die Reihenschaltung eines Widerstandes R 10 k

Mehr

RE Elektrische Resonanz

RE Elektrische Resonanz RE Elektrische Resonanz Blockpraktikum Herbst 27 (Gruppe 2b) 24. Oktober 27 Inhaltsverzeichnis 1 Grundlagen 2 1.1 Impedanz...................................... 2 1.2 Phasenresonanz...................................

Mehr

Diplomvorprüfung WS 2010/11 Fach: Grundlagen der Elektrotechnik, Dauer: 90 Minuten

Diplomvorprüfung WS 2010/11 Fach: Grundlagen der Elektrotechnik, Dauer: 90 Minuten Diplomvorprüfung GET Seite 1 von 8 Hochschule München FK 03 Zugelassene Hilfsmittel: Taschenrechner, zwei Blatt DIN A eigene Aufzeichnungen Matr.-Nr.: Hörsaal: Diplomvorprüfung WS 2010/11 Fach: Grundlagen

Mehr

Formelsammlung Nachrichtentechnik

Formelsammlung Nachrichtentechnik Pegel und Dämpfung Absolutpegel Ausgangsspannung komplex H komplexe Übertragungsfunktion Eingangsspannung komplex H mit D Dämpfungsfunktion D dbm : 0 db mw dbv : 0 db V dbµv : 0 db µv dbw : 0 db W etc.

Mehr

Versuchsprotokoll zum Versuch Nr. 9 Hoch- und Tiefpass

Versuchsprotokoll zum Versuch Nr. 9 Hoch- und Tiefpass In diesem Versuch geht es darum, die Kennlinien von Hoch- und Tiefpässen aufzunehmen. Die Übertragungsfunktion aller Blindwiderstände in Vierpolen hängt von der Frequenz ab, so daß bestimmte Frequenzen

Mehr

Diplomvorprüfung SS 2009 Grundlagen der Elektrotechnik Dauer: 90 Minuten

Diplomvorprüfung SS 2009 Grundlagen der Elektrotechnik Dauer: 90 Minuten Diplomvorprüfung Grundlagen der Elektrotechnik Seite 1 von 7 Hochschule München Fakultät 03 Zugelassene Hilfsmittel: Taschenrechner, zwei Blatt DIN A4 eigene Aufzeichnungen Diplomvorprüfung SS 2009 Grundlagen

Mehr

Elektrische Messverfahren

Elektrische Messverfahren Vorbereitung Elektrische Messverfahren Carsten Röttele 20. Dezember 2011 Inhaltsverzeichnis 1 Messungen bei Gleichstrom 2 1.1 Innenwiderstand des µa-multizets...................... 2 1.2 Innenwiderstand

Mehr

Technische Universität München Lehrstuhl für Technische Elektrophysik. Tutorübungen zu Elektromagnetische Feldtheorie. (Prof.

Technische Universität München Lehrstuhl für Technische Elektrophysik. Tutorübungen zu Elektromagnetische Feldtheorie. (Prof. Technische Universität München Lehrstuhl für Technische Elektrophysik Tutorübungen zu Elektromagnetische Feldtheorie Prof. Wachutka Wintersemester 08/09 Lösung Blatt 0 Allgemeines zum Thema komplexe Wechselstromrechnung

Mehr

Filter und Schwingkreise

Filter und Schwingkreise FH-Pforzheim Studiengang Elektrotechnik Labor Elektrotechnik Laborübung 5: Filter und Schwingkreise 28..2000 Sven Bangha Martin Steppuhn Inhalt. Wechselstromlehre Seite 2.2 Eigenschaften von R, L und C

Mehr

E 12 Gedämpfter Schwingkreis

E 12 Gedämpfter Schwingkreis Fakultät für Physik und Geowissenschaften Physikalisches Grundpraktikum E Gedämpfter Schwingkreis Aufgaben. Messen Sie die frequenzabhängige Stromaufnahme eines L-Serienresonanzkreises für drei verschiedene

Mehr

Versuchsprotokoll von Thomas Bauer und Patrick Fritzsch. Münster, den

Versuchsprotokoll von Thomas Bauer und Patrick Fritzsch. Münster, den E6 Elektrische Resonanz Versuchsprotokoll von Thomas Bauer und Patrick Fritzsch Münster, den.. INHALTSVERZEICHNIS. Einleitung. Theoretische Grundlagen. Serienschaltung von Widerstand R, Induktivität L

Mehr

Filter. Ortsverband Pulheim G40

Filter. Ortsverband Pulheim G40 Filter Ortsverband Pulheim G40 Filter, Einführung 16.02.2018 Filter 2 Vierpol I e I a U e Vierpol U a Übertragungsverhalten bei I a = 0 ist A(jω) A jω = U a U e 16.02.2018 Filter 3 Streuparameter it wissen.de

Mehr

Uebungsserie 1.3 RLC-Netzwerke und komplexe Leistung

Uebungsserie 1.3 RLC-Netzwerke und komplexe Leistung 15. September 2017 Elektrizitätslehre 3 Martin Weisenhorn Uebungsserie 1.3 RLC-Netzwerke und komplexe Leistung Aufgabe 1. Komplexe Impedanz von Zweipolen Bestimmen Sie für die nachfolgenden Schaltungen

Mehr

Elektrische Messverfahren Versuchsauswertung

Elektrische Messverfahren Versuchsauswertung Versuche P1-70,71,81 Elektrische Messverfahren Versuchsauswertung Marco A. Harrendorf, Thomas Keck, Gruppe: Mo-3 Karlsruhe Institut für Technologie, Bachelor Physik Versuchstag: 22.11.2010 1 1 Wechselstromwiderstände

Mehr

RE - Elektrische Resonanz Blockpraktikum - Herbst 2005

RE - Elektrische Resonanz Blockpraktikum - Herbst 2005 E - Elektrische esonanz, Blockpraktikum - Herbst 25 13. Oktober 25 E - Elektrische esonanz Blockpraktikum - Herbst 25 Tobias Müller,Alexander Seizinger Assistent: Dr. Thorsten Hehl Tübingen, den 13. Oktober

Mehr

Praktikum 2.1 Frequenzverhalten

Praktikum 2.1 Frequenzverhalten Elektrizitätslehre 3 Martin Schlup, Martin Weisenhorn. November 208 Praktikum 2. Frequenzverhalten Lernziele Bei diesem Versuch werden die Frequenzabhängigkeiten von elektrischen Grössenverhältnissen aus

Mehr

Praktikum ETiT 1 V2 / 1 Vorbereitungsaufgaben V Vorbereitungsaufgaben (Versuch 2) Summe pro Aufgabe 4 Punkte

Praktikum ETiT 1 V2 / 1 Vorbereitungsaufgaben V Vorbereitungsaufgaben (Versuch 2) Summe pro Aufgabe 4 Punkte Praktikum ETiT V / Vorbereitungsaufgaben V. Vorbereitungsaufgaben (Versuch Summe pro Aufgabe 4 Punkte. a Geben Sie die Formel für die Kapazität eines Plattenkondensator mit Dielektrikum an (P. Wie groß

Mehr

Grundlagen der Elektrotechnik: Wechselstromwiderstand Xc Seite 1 R =

Grundlagen der Elektrotechnik: Wechselstromwiderstand Xc Seite 1 R = Grundlagen der Elektrotechnik: Wechselstromwiderstand Xc Seite 1 Versuch zur Ermittlung der Formel für X C In der Erklärung des Ohmschen Gesetzes ergab sich die Formel: R = Durch die Versuche mit einem

Mehr

ELEKTRONIK 2 SCHALTUNGSTECHNIK L5-1/18 Prof. Dr.-Ing. Johann Siegl. L5 Frequenzgangdarstellung im Bodediagramm

ELEKTRONIK 2 SCHALTUNGSTECHNIK L5-1/18 Prof. Dr.-Ing. Johann Siegl. L5 Frequenzgangdarstellung im Bodediagramm 1 von 18 15.03.2008 11:39 ELEKTRONIK 2 SCHALTUNGSTECHNIK L5-1/18 Die Frequenzgangdarstellung mittels Bodediagramm ist ein wichtiges Hilfsmittel zur Veranschaulichung der Frequenzverläufe von Übertragungsfaktoren,

Mehr

Notieren Sie bei der Aufgabe einen Hinweis, wenn die Lösung auf einem Extrablatt fortgesetzt

Notieren Sie bei der Aufgabe einen Hinweis, wenn die Lösung auf einem Extrablatt fortgesetzt 1. Klausur Elektrische Netzwerke Veröffentlichte Musterklausur 2010 Name:............................. Vorname:............................. Matr.-Nr.:............................. Bearbeitungszeit: 135

Mehr

Grundlagen der Elektrotechnik Praktikum Teil 2 Versuch B2/3. "Parallelschwingkreis"

Grundlagen der Elektrotechnik Praktikum Teil 2 Versuch B2/3. Parallelschwingkreis Grundlagen der Elektrotechnik Praktikum Teil 2 Versuch B2/3 "Parallelschwingkreis" Allgemeine und Theoretische Elektrotechnik (ATE) Elektrotechnik und Informationstechnik Fakultät für Ingenieurwissenschaften

Mehr

Grundlagen der Elektrotechnik 3. Übungsaufgaben

Grundlagen der Elektrotechnik 3. Übungsaufgaben Campus Duisburg Grundlagen der Elektrotechnik 3 Nachrichtentechnische Systeme Prof. Dr.-Ing. Ingolf Willms Version Juli 08 Aufgabe 1: Man bestimme die Fourier-Reihenentwicklung für die folgende periodische

Mehr

1. Laboreinheit - Hardwarepraktikum SS 2003

1. Laboreinheit - Hardwarepraktikum SS 2003 1. Laboreinheit - Hardwarepraktikum SS 2003 1. Versuch: Gleichstromnetzwerk Berechnen Sie für die angegebene Schaltung alle Teilströme und Spannungsabfälle. Fassen Sie diese in einer Tabelle zusammen und

Mehr

Musterlösung zur. Klausur Grundlagen der Elektrotechnik I im SoSe 18. Aufgabe 1. Die Lösungen zu Aufgabe 1 folgen zum Ende des Dokuments.

Musterlösung zur. Klausur Grundlagen der Elektrotechnik I im SoSe 18. Aufgabe 1. Die Lösungen zu Aufgabe 1 folgen zum Ende des Dokuments. Musterlösung zur Klausur Grundlagen der Elektrotechnik I im SoSe 18 Aufgabe 1 Die Lösungen zu Aufgabe 1 folgen zum Ende des Dokuments. Aufgabe 2 1. R 1 = R a und R b = R 2 R L R 2 +R L 2. R 1 + R 2 = 1

Mehr

Grundlagen der Elektrotechnik 3

Grundlagen der Elektrotechnik 3 Campus Duisburg Grundlagen der Elektrotechnik 3 Fakultät für Ingenieurwissenschaften Abteilung Elektrotechnik und Informationstechnik Fachgebiet Allgemeine und Theoretische Elektrotechnik Bismarckstraße

Mehr

Reihenschwingkreis. In diesem Versuch soll das Verhalten von ohmschen, kapazitiven und induktiven Widerständen im Wechselstromkreis untersucht werden.

Reihenschwingkreis. In diesem Versuch soll das Verhalten von ohmschen, kapazitiven und induktiven Widerständen im Wechselstromkreis untersucht werden. Universität Potsdam Institut für Physik und Astronomie Grundpraktikum E 13 Reihenschwingkreis In diesem Versuch soll das Verhalten von ohmschen, kapazitiven und induktiven Widerständen im Wechselstromkreis

Mehr

Musterlösung Grundlagen der Elektrotechnik B

Musterlösung Grundlagen der Elektrotechnik B Prof. Dr.-Ing. Joachim Böcker Musterlösung Grundlagen der Elektrotechnik B 7.4.2 7.4.2 Musterlösung Grundlagen der Elektrotechnik B Seite von 4 Version vom 6. Mai 2 Aufgabe : Ausgleichsvorgang 2 Punkte).

Mehr

Grundgebiete der Elektrotechnik 2

Grundgebiete der Elektrotechnik 2 Grundgebiete der Elektrotechnik 2 Wechselströme, Drehstrom, Leitungen, Anwendungen der Fourier-, der Laplace- und der Z-Transformation von Prof. Dr.-Ing. Horst Clausert, TU Darmstadt Prof. Dr.-Ing. Günther

Mehr

Lehrfach: Grundlagen der Elektrotechnik. Versuch: Wechselstromnetzwerke

Lehrfach: Grundlagen der Elektrotechnik. Versuch: Wechselstromnetzwerke WSNW P_10_05.docx Oc Lehrfach: Grundlagen der Elektrotechnik Versuch: Wechselstromnetzwerke Hochschule Zittau/Görlitz; Fakultät Elektrotechnik und Informatik Prof. Dr. techn. Stefan Kornhuber/Prof. Dr.-Ing.

Mehr

4. Passive elektronische Filter

4. Passive elektronische Filter 4.1 Wiederholung über die Grundbauelemente an Wechselspannung X Cf(f) X Lf(f) Rf(f) 4.2 Einleitung Aufgabe 1: Entwickle mit deinen Kenntnissen über die Grundbauelemente an Wechselspannung die Schaltung

Mehr

Übungsklausur/Lösungsvorschläge Elektrotechnik II

Übungsklausur/Lösungsvorschläge Elektrotechnik II Übungsklausur/ösungsvorschläge Elektrotechnik II Aufgabe : Ein Zweipol ( Originalschaltung ) bestehe nach Zeichnung aus einer Spule, einem Widerstand und einem Kondensator Ermitteln Sie die Gleichung f

Mehr

Fachhochschule Köln University of Applied Sciences Cologne Campus Gummersbach. Musterprüfung

Fachhochschule Köln University of Applied Sciences Cologne Campus Gummersbach. Musterprüfung Fachhochschule Köln University of Applied Sciences Cologne Campus Gummersbach Prof. Dr. Jürgen Weber Einführung in die Elektrotechnik I Name Matrikelnummer Hinweise zur Prüfung Neben der Prüfungsordnung

Mehr

Das Smith Diagramm und seine Anwendung bei der Anpassung von Impedanzen

Das Smith Diagramm und seine Anwendung bei der Anpassung von Impedanzen Das Smith Diagramm und seine Anwendung bei der Anpassung von Impedanzen Ein Ingenieur namens Smith fand ca. 940 eine Methode, um komplexe Widerstände und Leitwerte grafisch anschaulich darzustellen und

Mehr

Ferromagnetische Hysterese Versuch P1 83, 84

Ferromagnetische Hysterese Versuch P1 83, 84 Auswertung Ferromagnetische Hysterese Versuch P1 83, 84 Iris Conradi, Melanie Hauck Gruppe Mo-02 19. August 2011 Inhaltsverzeichnis Inhaltsverzeichnis 1 Induktivität und Verlustwiderstand einer Lustspule

Mehr

Transistor-Verstärker

Transistor-Verstärker Elektrotechnisches Grundlagen-Labor II Transistor-Verstärker Versuch Nr. 4 Erforderliche Geräte Anzahl Bezeichnung, aten GL-Nr. 1 Netzgerät 0... 30V, 400mA 112 1 trommesser 125 1 NF-Generator 143 1 NF-Millivoltmeter

Mehr

AUSWERTUNG: ELEKTRISCHE MESSMETHODEN. Unser Generator liefert anders als auf dem Aufgabenblatt angegeben U 0 = 7, 15V. 114mV

AUSWERTUNG: ELEKTRISCHE MESSMETHODEN. Unser Generator liefert anders als auf dem Aufgabenblatt angegeben U 0 = 7, 15V. 114mV AUSWERTUNG: ELEKTRISCHE MESSMETHODEN TOBIAS FREY, FREYA GNAM, GRUPPE 6, DONNERSTAG 1. MESSUNGEN BEI GLEICHSTROM Unser Generator liefert anders als auf dem Aufgabenblatt angegeben U 7, 15V. 1.1. Innenwiderstand

Mehr

Ernst-Moritz-Arndt-Universität Greifswald Fachbereich Physik Elektronikpraktikum

Ernst-Moritz-Arndt-Universität Greifswald Fachbereich Physik Elektronikpraktikum Ernst-Moritz-Arndt-Universität Greifswald Fachbereich Physik Elektronikpraktikum Protokoll-Nr.: 1 Grundschaltungen Protokollant: Jens Bernheiden Gruppe: 2 Aufgabe durchgeführt: 02.04.1997 Protokoll abgegeben:

Mehr

Praktikum Grundlagen der Elektrotechnik 1 (GET1) Versuch 2

Praktikum Grundlagen der Elektrotechnik 1 (GET1) Versuch 2 Werner-v.-Siemens-Labor für elektrische Antriebssysteme Prof. Dr.-Ing. Dr. h.c. H. Biechl Prof. Dr.-Ing. E.-P. Meyer Praktikum Grundlagen der Elektrotechnik 1 (GET1) Versuch 2 Spannungsteiler Ersatzspannungsquelle

Mehr

Gegeben ist die dargestellte Schaltung mit nebenstehenden Werten. Daten: U AB. der Induktivität L! und I 2. , wenn Z L. = j40 Ω ist? an!

Gegeben ist die dargestellte Schaltung mit nebenstehenden Werten. Daten: U AB. der Induktivität L! und I 2. , wenn Z L. = j40 Ω ist? an! Grundlagen der Elektrotechnik I Aufgabe K4 Gegeben ist die dargestellte Schaltung mit nebenstehenden Werten. R 1 A R 2 Daten R 1 30 Ω R 3 L R 2 20 Ω B R 3 30 Ω L 40 mh 1500 V f 159,15 Hz 1. Berechnen Sie

Mehr

Elektrische Schwingungen

Elektrische Schwingungen E05 Elektrische Schwingungen Elektrische Schwingungen am Serien- und Parallelschwingkreis werden erzeugt und untersucht. Dabei sollen Unterschiede zwischen den beiden Schaltungen und Gemeinsamkeiten mit

Mehr

Diplomvorprüfung SS 2010 Fach: Grundlagen der Elektrotechnik Dauer: 90 Minuten

Diplomvorprüfung SS 2010 Fach: Grundlagen der Elektrotechnik Dauer: 90 Minuten Diplomvorprüfung Grundlagen der Elektrotechnik Seite 1 von 8 Hochschule München FK 03 Zugelassene Hilfsmittel: Taschenrechner, zwei Blatt DIN A4 eigene Aufzeichnungen Diplomvorprüfung SS 2010 Fach: Grundlagen

Mehr

Inhalt. Q Elektrizität und Magnetismus Zeitabhängige Größen... 50

Inhalt. Q Elektrizität und Magnetismus Zeitabhängige Größen... 50 Inhalt Q Elektrizität und Magnetismus... 13 1.1 Physikalische Grundlagen... 13 1.2 Skalare und vektorielle Größen... 14 1.3 Mathematische Modelle in der Elektrotechnik... 16 1.4 Elektrische Ladung und

Mehr

Arbeitsbereich Technische Aspekte Multimodaler Systeme (TAMS) Praktikum der Technischen Informatik T2 2. Kapazität. Wechselspannung. Name:...

Arbeitsbereich Technische Aspekte Multimodaler Systeme (TAMS) Praktikum der Technischen Informatik T2 2. Kapazität. Wechselspannung. Name:... Universität Hamburg, Fachbereich Informatik Arbeitsbereich Technische Aspekte Multimodaler Systeme (TAMS) Praktikum der Technischen Informatik T2 2 Kapazität Wechselspannung Name:... Bogen erfolgreich

Mehr

Elektronik Prof. Dr.-Ing. Heinz Schmidt-Walter

Elektronik Prof. Dr.-Ing. Heinz Schmidt-Walter 6. Aktive Filter Filterschaltungen sind Schaltungen mit einer frequenzabhängigen Übertragungsfunktion. Man unterscheidet zwischen Tief, Hoch und Bandpässen sowie Sperrfiltern. Diesen Filtern ist gemeinsam,

Mehr

Wechselstromtechnik. Prof. Dr.-Ing. R. Koblitz Prof. Dr.-Ing. A. Klönne Prof. Dr.-Ing. H. Sapotta. Sommersemester 2014

Wechselstromtechnik. Prof. Dr.-Ing. R. Koblitz Prof. Dr.-Ing. A. Klönne Prof. Dr.-Ing. H. Sapotta. Sommersemester 2014 Wechselstromtechnik Prof. Dr.-Ing. R. Koblitz Prof. Dr.-Ing. A. Klönne Prof. Dr.-Ing. H. Sapotta Sommersemester 2014 14.03.2014, Prof. A. Klönne, Hochschule Karlsruhe, Moltkestr. 30, 76133 Karlsruhe; Tel.:

Mehr

Physikalisches Praktikum I. Wechselstromwiderstände: Serienschwingkreis Matrikelnummer:

Physikalisches Praktikum I. Wechselstromwiderstände: Serienschwingkreis Matrikelnummer: Fachbereich Physik Physikalisches Praktikum I E10 Name: Wechselstromwiderstände: Serienschwingkreis Matrikelnummer: Fachrichtung: Mitarbeiter/in: Assistent/in: Versuchsdatum: Gruppennummer: Endtestat:

Mehr

1. Klausur Elektrische Netzwerke Veröffentlichte Musterklausur Name:... Vorname:... Matr.-Nr.:... Bewertung. Bearbeitungszeit: 135 Minuten

1. Klausur Elektrische Netzwerke Veröffentlichte Musterklausur Name:... Vorname:... Matr.-Nr.:... Bewertung. Bearbeitungszeit: 135 Minuten 1. Klausur Elektrische Netzwerke Veröffentlichte Musterklausur 2013 Name:............................. Vorname:............................. Matr.-Nr.:............................. Bearbeitungszeit: 135

Mehr

Grundlagen der Elektrotechnik für Maschinenbauer

Grundlagen der Elektrotechnik für Maschinenbauer Universität Siegen Grundlagen der Elektrotechnik für Maschinenbauer Fachbereich 12 Prüfer : Dr.-Ing. Klaus Teichmann Datum : 3. Februar 2005 Klausurdauer : 2 Stunden Hilfsmittel : 5 Blätter Formelsammlung

Mehr

Musterlösung Grundlagen der Elektrotechnik B

Musterlösung Grundlagen der Elektrotechnik B Prof. Dr.-Ing. Joachim Böcker Musterlösung Grundlagen der Elektrotechnik B 06.0.206 06.0.206 Musterlösung Grundlagen der Elektrotechnik B Seite von 3 Aufgabe : Gleichstrommaschine (20 Punkte) In dieser

Mehr

Bundestechnologiezentrum für Elektro- und Informationstechnik e.v.

Bundestechnologiezentrum für Elektro- und Informationstechnik e.v. Lernprogramm Wechselstromtechnik Themenübersicht Wechselstromtechnik Einführung und Begriffe Wechselgrößen Merkmale Wechselgröße Vorteile der Wechselspannung Momentanwert-Scheitelwert-Periodendauer-Frequenz

Mehr

Vorbereitung: elektrische Messverfahren

Vorbereitung: elektrische Messverfahren Vorbereitung: elektrische Messverfahren Marcel Köpke 29.10.2011 Inhaltsverzeichnis 1 Ohmscher Widerstand 3 1.1 Innenwiderstand des µa Multizets...................... 3 1.2 Innenwiderstand des AVΩ Multizets.....................

Mehr

BERUFSAKADEMIE S T U T T G A R T University of Cooperative Education. Höhere Mathematik II. Übungen. Komplexe Zahlen. i e π + 1=

BERUFSAKADEMIE S T U T T G A R T University of Cooperative Education. Höhere Mathematik II. Übungen. Komplexe Zahlen. i e π + 1= BERUFSAKADEMIE S T U T T G A R T University of Cooperative Education Höhere Mathematik II Übungen Komplexe Zahlen i e π + 0 8 R. Mohr FK Blatt Komplexe Zahlen I WS 004/ Aufgabe : Gegeben sind die komplexen

Mehr

Übung Grundlagen der Elektrotechnik B

Übung Grundlagen der Elektrotechnik B Übung Grundlagen der Elektrotechnik B 1 Übertragungsfunktion, Filter Gegeben sei die folgende Schaltung: R U 2 1. Berechnen Sie die Übertragungsfunktion H( jω)= U 2. 2. Bestimmen Sie die Zeitkonstante.

Mehr

Versuch P1-70,71,81 Elektrische Messverfahren. Auswertung. Von Ingo Medebach und Jan Oertlin. 26. Januar 2010

Versuch P1-70,71,81 Elektrische Messverfahren. Auswertung. Von Ingo Medebach und Jan Oertlin. 26. Januar 2010 Versuch P1-70,71,81 Elektrische Messverfahren Auswertung Von Ingo Medebach und Jan Oertlin 26. Januar 2010 Inhaltsverzeichnis 1. Aufgabe...2 I 1.1. Messung des Innenwiderstandes R i des µa-multizets im

Mehr

Amateurfunkkurs. Themen Übersicht. Erstellt: Landesverband Wien im ÖVSV. 1 Widerstand R. 2 Kapazität C. 3 Induktivität L.

Amateurfunkkurs. Themen Übersicht. Erstellt: Landesverband Wien im ÖVSV. 1 Widerstand R. 2 Kapazität C. 3 Induktivität L. Amateurfunkkurs Landesverband Wien im ÖVSV Erstellt: 2010-2011 Letzte Bearbeitung: 20. Februar 2016 Themen 1 2 3 4 5 6 Zusammenhang zw. Strom und Spannung am Widerstand Ein Widerstand... u i Ohmsches Gesetz

Mehr

Vorbereitung zum Versuch

Vorbereitung zum Versuch Vorbereitung zum Versuch elektrische Messverfahren Armin Burgmeier (347488) Gruppe 5 2. Dezember 2007 Messungen an Widerständen. Innenwiderstand eines µa-multizets Die Schaltung wird nach Schaltbild (siehe

Mehr

ET-Praktikumsbericht 3. Semester I (Versuch 4, Zeit-/Frequenzverhalten von Vierpolen) Inhaltsverzeichnis 1 Der RC-Tiefpass Messung bei konstante

ET-Praktikumsbericht 3. Semester I (Versuch 4, Zeit-/Frequenzverhalten von Vierpolen) Inhaltsverzeichnis 1 Der RC-Tiefpass Messung bei konstante Praktikumsbericht Elektrotechnik 3.Semester Versuch 4, Vierpole 7. November Niels-Peter de Witt Matrikelnr. 8391 Helge Janicke Matrikelnr. 83973 1 ET-Praktikumsbericht 3. Semester I (Versuch 4, Zeit-/Frequenzverhalten

Mehr

Elektrotechnik für Studierende Inhalt. Vorwort...11

Elektrotechnik für Studierende Inhalt. Vorwort...11 5 Inhalt Vorwort...11 1 Signale...13 1.1 Definitionen zu Signalen...13 1.2 Klassifizierung von Signalen...15 1.2.1 Klassifizierung nach dem Signalverlauf...15 1.2.1.1 Determinierte Signale...15 1.2.1.2

Mehr

Versuch 14 Wechselstromwiderstände

Versuch 14 Wechselstromwiderstände Physikalisches A-Praktikum Versuch 14 Wechselstromwiderstände Praktikanten: Gruppe: Julius Strake Niklas Bölter B006 Betreuer: Johannes Schmidt Durchgeführt: 18.09.2012 Unterschrift: E-Mail: niklas.boelter@stud.uni-goettingen.de

Mehr

Vorbereitung: Vierpole und Leitungen

Vorbereitung: Vierpole und Leitungen Vorbereitung: Vierpole und Leitungen Marcel Köpke Gruppe 7 27..20 Inhaltsverzeichnis Aufgabe 3. Vierpole..................................... 3.2 RC-Spannungsteiler............................... 3.2.

Mehr

19. Frequenzgangkorrektur am Operationsverstärker

19. Frequenzgangkorrektur am Operationsverstärker 9. Frequenzgangkorrektur am Operationsverstärker Aufgabe: Die Wirkung komplexer Koppelfaktoren auf den Frequenzgang eines Verstärkers ist zu untersuchen. Gegeben: Eine Schaltung für einen nichtinvertierenden

Mehr

7. Ausgewählte Wechselstromanordnungen

7. Ausgewählte Wechselstromanordnungen 7. Ausgewählte Wechselstromanordnungen 7. Ausgewählte Wechselstromanordnungen 7. Schaltungen mit requenzselektiven Eigenschaten (t) y(t) Zeitbereich: Bildbereich (komplee Ebene): d y( t) ( ( t),, ( t)

Mehr

Wechselstromwiderstände

Wechselstromwiderstände Elektrizitätslehre und Schaltungen Versuch 29 ELS-29-1 Wechselstromwiderstände 1 Vorbereitung 1.1 Allgemeine Vorbereitung für die Versuche zur Elektrizitätslehre 1.2 Wechselspannung, Wechselstrom, Frequenz,

Mehr

/U Wie groß ist den beiden unter 6. genannten Fällen der von der Spannungsquelle U 1 gelieferte Strom? als Formel. 1 + jωc = R 2.

/U Wie groß ist den beiden unter 6. genannten Fällen der von der Spannungsquelle U 1 gelieferte Strom? als Formel. 1 + jωc = R 2. Aufgabe Ü6 Gegeben ist die angegebene Schaltung:. Berechnen Sie allgemein (als Formel) /. 2. Wie groß ist der Betrag von /? R 3. Um welchen Winkel ist gegenüber phasenverschoben? 4. Skizzieren Sie die

Mehr

3. Übungen zum Kapitel Der Wechselstromkreis

3. Übungen zum Kapitel Der Wechselstromkreis n n n n n n n n n n n n n n n n n n n n n n n Fachhochschule Köln University of Applied Sciences ologne ampus Gummersbach 18 Elektrotechnik Prof. Dr. Jürgen Weber Einführung in die Mechanik und Elektrote

Mehr

Leitwerts- und Widerstandsdiagramm Graphische Lösung von Transformationsaufgaben

Leitwerts- und Widerstandsdiagramm Graphische Lösung von Transformationsaufgaben Aus FUNKSCHAU Heft 14/1955, im Original -spaltig. Digitalisiert 10/016 von Eike Grund für http://www.radiomuseum.org mit freundlicher Genehmigung der FUNKSCHAU-Redaktion. Die aktuellen Ausgaben der FUNKSCHAU

Mehr

8. Schwingkreise. Reihenschwingkreis

8. Schwingkreise. Reihenschwingkreis . Schwingkreise Moeller et.al.: Grundlagen der Elektrotechnik,. Auflage, Teubner Verlag 996, Seite ff Paul,.: Elektrotechnik, Springer Verlag, 3. Auflage 993, Seite 5 ff, Pregla,.: Grundlagen der Elektrotechnik,

Mehr