4 Stetigkeit. 4.1 Intervalle

Save this PDF as:
 WORD  PNG  TXT  JPG

Größe: px
Ab Seite anzeigen:

Download "4 Stetigkeit. 4.1 Intervalle"

Transkript

1 4 Stetigkeit Der Grenzwertbegriff für Zhlenfolgen lässt sich uf Funktionen übertrgen. Funktionen (oder Abbildungen) wren bereits im Kpitel über Mengen ufgetreten. Hier wird nun der Fll betrchtet, dss Definitionsbereich und Bild Teilmengen der reellen Zhlen R sind. Definition 4. (Funktion) Sei D R. Eine Vorschrift f : D! R, diejedem 2 D genu einen Funktionswert f() 2 R zuordnet, heißt reellwertige Funktion. 4. Intervlle Ein häufiger nzutreffender Fll für den Definitionsbereich D R sind Intervlle. Definition 4.2 (Intervlle) Für die Endpunkte, b 2 R mit <pple b< notiert mn die Intervlle [, b] :={ 2 R pple pple b}, (, b) :={ 2 R <<b}, [, b) :={ 2 R pple <b}, (, b] :={ 2 R <pple b}, (bgeschlossenes Intervll), (offenes Intervll), (rechts hlboffenes Intervll), (links hlboffenes Intervll), und die uneigentlichen Intervlle [, ) :={ 2 R pple }, (nch oben unbeschränktes Intervll), (,b]:={2r pple b}, (nch unten unbeschränktes Intervll). In diesem Zusmmenhng ist derabschluss einer Menge interessnt. Dieser wird ddurch gebildet, dss mn die Rndpunkte der Menge mit hinzunimmt. Anschulich sind dies lle Punkte, die sich durch Folgen mit Folgengliedern in der Menge selbst nnähern lssen. Dbei muss der Grenzwert dieser Folge nicht in der Menge enthlten sein, knn lso m Rnd liegen. Forml definiert mn: Definition 4.3 (Abschluss) Eine Teilmenge M R heißt bgeschlossen,fllsdergrenzwertjederkonvergentenfolge ( n ) n2n von Punkten n 2 M ebenflls in der Menge M liegt, d.h. lim n! 2 M. 6

2 4Stetigkeit Für eine Teilmenge M R ist der Abschluss M definiert durch n o M := 2 R Es gibt eine Folge ( n ) n2n, n 2 M mit = lim n. n! Jeder Punkt von M ist utomtisch in M enthlten, d mn ls Folge die konstnte Folge von diesem Punkt wählen knn. Eine Menge ist bgeschlossen, flls M = M gilt. Beispiele 4.4 (i) Die Menge [, b] ist bgeschlossen. (ii) Der Abschluss von (, b), (, b] und [, b) ist gegeben durch [, b]. (iii) Die Menge [0, ) ist bgeschlossen. (iv) Der Abschluss von R \{0} ist gegeben durch R. 4.2 Folgenstetigkeit Nun lässt sich der Grenzwertprozess uf Funktionen übertrgen. Definition 4.5 (Grenzwert einer Funktion in einem Punkt) Sei D R und f : D! R eine Funktion. Die Funktion ht einen Grenzwert c 2 R in einem Punkt 2 D, wennfürlle Folgen von Punkten ( n ) n2n mit Grenzwert = lim n! n uch die Folge ( f( n )) n2n mit Grenzwert c konvergiert, d.h. wenn gilt n! (n!) ) f( n )! c (n!). In diesem Fll wird uch kurz notiert: lim f() =c.!, 2D Mn bechte, dss der betrchtete Punkt nicht im Definitionsbereich liegen muss. Er muss lediglich im Abschluss D liegen, dmit überhupt eine Folge n! eistiert. Im Speziellen muss lso uch die Funktion f : D! R dort nicht definiert sein. Dies wird bei der späterten Definition der Ableitung wesentlich sein. Zunächst sei ber die Eigenschft der Stetigkeit einer Funktion betrchtet. Eine Funktion uf einem reellen Intervll ist nschulich gesprochen dnn stetig, wenn der Grph zusmmenhängt, d.h. ohne bzusetzen zeichenbr ist. Forml lässt sich dies ddurch erklären, dss lle Folgen zu einem Punkt (im Speziellen die von links und die von rechts ) denselben Grenzwert hben. Definition 4.6 (Stetigkeit) Eine Funktion f : D! R heißt stetig in einem Punkt 2 D, wennfürjedefolge ( n ) n2n in D gilt: n! (n!) ) f( n )! f() (n!). 62

3 4.2 Folgenstetigkeit f () f (2 ) f (3 ) f () f ()!! f (2 ) f ( )! f (2 ) f ( ) 2 3! 3 2 f () 2 3! 3 2 Abbildung 4.: Stetigkeit nch der Folgendefinition: Für lle Folgen (n )n2n mit n! muss uch f (n )! f () gelten. (Links: stetig / Rechts: unstetig) Andernflls heißt die Funktion unstetig in. Ist die Funktion stetig in jedem Punkt von D, so nennt mn sie stetig uf D (oder uch schlicht: stetig). Für einen stetige Funktion gilt lso lim f () = f (lim ),!! d.h. Stetigkeit erlubt es, dss die Grenzwertbildung mit dem Anwenden der Funktion vertuscht wird. Beispiele 4.7 (i) Für ein beliebiges c 2 R ist eine konstnte Funktion f () = c ( 2 R) gegeben. Diese ist stetig, denn die Folge ( f (n ) )n2n = (c)n2n konvergiert für lle Folgen (n )n2n gegen c. f () c f () = c 63

4 4Stetigkeit (ii) Die Identitätsfunktion f() = ist stetig. Hier sind ( n ) n2n und ( f( n )) n2n gleich und die eine konvergiert genu dnn, wenn die ndere konvergiert. f() f() = (iii) Die Eponentilfunktion f() =e ist stetig. f() 4 f() =e 3 e Zunächst ist f() =e stetig im Punkt =0,d.hlim!0 e = e 0 =,dennesgilt für < e = 0 0! +! + 2 2! + 3 3! +... =! + 2 2! + 3 3! +... pple! + 2! ! pple! + 2! + 3! +... = (e )! 0 (! 0). Sei nun 2 R beliebig und ( n ) n2n eine Folge mit n!. Dnngilt: e e n = e e n! e =0 für ( n )! 0. 64

5 Stetigkeit (iv) Die Hevisidefunktion ( 0, für <0, H() :=, für 0, ist unstetig im Punkt =0. f() f() =H() Dzu betrchtet mn die Folge n :=, (n 2 N). Fürdiesegilt: n+ n! 0(n!) und f( n )=0für lle n 2 N, jedoch f(0) =. (v) Für eine endliche Zerlegung eines Intervll [, b) durch Punkte = p 0 <p <p 2 <...<p k = b ist eine Treppenfunktion stückweise definiert durch f() f() :=c i für 2 [ p i,p i ), pple i pple k. p p 2 p 3 p 4 p 5 b Eine Treppenfunktion ist im Allgemeinen in den Zerlegungspunkten p i unstetig (ußer für c i = c i ) und zwischen den Zerlegungspunkten stetig Stetigkeit Die Definition der Stetigkeit besgt qulittiv, dss mn denselben Wert erhält, egl uf welchem Weg mn zum Punkt gelngt. Der Nchweis der Stetigkeit für eine kon- 65

6 4Stetigkeit krete Funktion ist mit diesem Kriterium jedoch oftmls schwierig, d mn lle Folgen betrchten muss. Eine quntittive, äquivlente Definition der Stetigkeit ist wie folgt. Stz 4.8 ( - -Stetigkeit) Eine Funktion f : D! R ist genu dnn stetig in einem Punkt 2 D, wenneszu jedem > 0 ein > 0 gibt, so dss für lle Punkte 2 D gilt: < ) f() f() <. Beweis. - -stetig! Folgen-stetig: Sei ( n ) n2n eine beliebige Folge mit n! (n!). Zuzeigenist,dssdnnuch f( n )! f() gilt. Sei lso > 0 vorgegeben. Dnn gibt es nch - -stetig ein > 0, so dss für lle < der Abstnd f( n ) f() < ist. D die Folge ( n ) n2n gegen konvergiert, gibt es uch ein n,sodss n < für lle n n.somitgiltuch f( n ) f() < für lle n n. Folgen-stetig! - -stetig: Widerspruchsrgument: Angenommen, zu einem vorgegebenen > 0 gibt es kein geeignetes,d.h.esgibtzujedemnochsokleinen > 0 immer einen Punkt mit <, ber f() f(). Dnnwähltmn =,,,,...und bildet mit diesen Punkten die Folge, 2, 3, 4,...FürdieseFolgegiltnun n < n und f( n ) f(). Dmit gilt n!, jedochnichtf( n )! f() im Widerspruch zum Folgenkriterium der Stetigkeit. Anschulich bedeutet dies, dss der Funktionswert f() beliebig nhe n f() liegt, sofern nur uch hinreichend nhe n gewählt wird. Beispiele 4.9 (i) Für die Identität f() = knn mn für jedes ds gesuchte = wählen. Dmit gilt dnn < ) f() f() = < =. (ii) Für die konstnte Funktion f() =c gilt immer f() f() = c c =0für lle, 2 R. 66

7 4.4 Rechenregeln für stetige Funktionen f () f () + f () f () + f () f () f () f () + {z}? Abbildung 4.2: Stetigkeit nch der - -Definition: Für lle > 0 muss sich ein lssen, so dss lle Funktionswerte für Argumente 2 D mit die Funktionswerte höchstens f () f () < entfernt liegen. (iii) Die Betrgsfunktion f () = ist stetig. Mn wähle hung y finden < =. Denn mit der Bezie- y für lle, y 2 R gilt dnn die Abschätzung: < ) f () f () = f () < < =. f () = 4.4 Rechenregeln für stetige Funktionen Funktionen mit demselben Definitionsbereich lssen sich uf ntürliche Weise ddieren oder multiplizieren. Definition 4.0 Für Funktionen f, g : D! R mit demselben Definitionsbereich ist Summe und Produkt 67

8 4Stetigkeit der Funktionen definiert durch: (f + g)() :=f()+g(), und (f g)() :=f() g(). Die Stetigkeit bleibt bei solchen Opertionen erhlten. Stz 4. Seien f,g : D! R stetig. Dnn ist uch f + g und f g stetig. Beweis. Sei ( n ) n2n mit n!. Dnngilt Beispiel 4.2 Polynome lim (f + g)( n)= lim {f( n )+g( n )} n! n! = lim n! f( n )+ lim n! g( n )=f()+g() =(f + g)(). P () = nx k k = n n k=0 sind stetig. Denn diese sind Summe und Produkt von stetigen Funktionen (konstnte Funktionen und die Identität f() =). Es sei drn erinnert, dss für injektive Funktionen die sogennnte Umkehrfunktion eistiert. Definition 4.3 (Umkehrfunktion) Sei f : D! B R eine injektive Funktion mit Definitionsbereich D, Bild B. Die zugehörige Umkehrfunktion f : B! D (oder uch inverse Funktion) istufdembild von f definiert durch f (y) :=, y = f(). Die Umkehrfunktion f () drf nicht mit der reziproken Funktion f() = f() verwechselt werden. Es ist vielmehr diejenige Funktion, für die f (f()) =, 2 D gilt. Zudem sei drn erinnert, dss die Verkettung von Funktion definiert werden knn, sofern der Bildbereich der einen Funktion im Definitionsbereich der nderen liegt. Definition 4.4 (Komposition von Funktionen) Für zwei reellwertige Funktionen g : D! B R und f : B! R ist die Komposition (uch: Verkettung ) f g : D! R definiert durch: (f g)() :=f(g()), für lle 2 D. 68

9 4.4 Rechenregeln für stetige Funktionen Beispiele 4.5 (i) Für k 2 N ist die k-te Potenz gegeben durch die Funktion f() := k, 2 R. Beschränkt mn den Definitionsbereich uf [0, ) =R + [ {0}, soistdieseinjektiv mit Bild R + [ {0} und die zugehörige Umkehrfunktion wird ls die k-te Wurzel bezeichnet: f : R + [ {0}! R + [ {0}, f () := kp. Für einen rtionlen Eponenten z n Komposition definiert: mit z 2 Z,n 2 N wird die Potenzfunktion ls f() = z n :, f () = z,f 2 () = np und f() =f (f 2 ()),2 R + [ {0}. 4 f() = f() = 2p (ii) Die Eponentilfunktion f() =ep() =e ist für gnz R definiert und nimmt nur positive Werte n. Die Umkehrfunktion ist definiert ls der ntürliche Logrithmus f () =:ln(), d.h. Für lle 2 R + gilt : y := ln() :, = e y. Somit gilt für lle 2 R: ln(e )= = e ln(). 69

10 4Stetigkeit 5 f() =e f() =ln() 2 Stz 4.6 (Stetigkeit der Umkehrfunktion) Sei die uf einem beschränkten und bgeschlossenen Definitionsbereich D definierte reellwertige Funktion f : D! B R injektiv und stetig. Dnn ist uch die Umkehrfunktion f : B! D stetig. Beweis. Sei (y n ) n2n eine beliebige Folge in B mit y n! b 2 B, (n!). Dmitdie Umkehrfunktion stetig, muss nun gezeigt werden, dss für die Folge der Funktionswerte gilt: n := f (y n )! f (b) =:, (n 2 N). Dies sieht mn wie folgt: Die Folge ( n ) n2n ist beschränkt, d lle Folgenglieder in der beschränkten Menge D liegen. Dmit besitzt ( n ) n2n eine konvergente Teilfolge nk! p 2 D. Df stetig ist, konvergieren ber uch die Funktionswerte f( nk )! f(p). Zudemgiltberuch,dssf( nk )=y nk! b = f() konvergiert und somit f() =f(p) gilt. Wegen der Injektivität von f folgt drus = p. Somit besitzt jede konvergente Teilfolge von ( n ) n2n den gleichen Grenzwert und es gilt n!, wszuzeigenwr. Beispiele 4.7 (i) Die k-te Wurzel f() = kp ist ls Umkehrfunktion von k stetig. (ii) Der ntürliche Logrithmus f() =ln() ist ls Umkehrfunktion von e stetig. 4.5 Zwischenwertstz Stetige, reellwertige Funktion uf reellen Intervllen sind ddurch gekennzeichnet, dss sie keine Sprünge in den Funktionswerten ufweisen. Besitzt eine Funktion unterscheidliche Funktionswerte f() 6= f(b) n zwei Stellen 6= b,, b 2 D und ist dzwischen stetig, 70

11 4.5 Zwischenwertstz so nimmt die Funktion dher uch lle Werte zwischen f() und f(b) n. Dies lässt sich so vernschulichen: Geht ein Bergsteiger us dem Tl uf den Gipfel und dies durch einen stetigen Aufstieg (d.h. er knn nicht plötzlich etliche Meter in die Höhe springen), dnn kommt er bei seinem Aufstieg uch n jedem Höhenmeter zwischen Tl und Gipfel vorbei. Mthemtisch wird dies durch den sogennnten Zwischenwertstz usgedrückt. Stz 4.8 (Zwischenwertstz) Sei f :[, b]! R eine stetige Funktion. Dnn gibt es zu jeder Zhl y zwischen f() und f(b), d.h.f() pple y pple f(b) bzw. f() y f(b), einc 2 [, b] mit f(c) =y. Beweis. (Skizze) Durch Einschchtelung lässt sich ein immer kleineres Intervll finden, in dem der gesuchte Punkt liegen muss. Aufgrund der Vollständigkeit von R konvergiert dies gegen den gesuchten Punkt c. f(b) f() f(c) f() c b Abbildung 4.3: Illustrtion zum Zwischenwertstz Beispiel 4.9 Der Zwischenwertstz ht zhlreiche Anwendungen. Eine dvon ist die Eistenz von Fipunkten einer Funktion f. Dies sind Punkte 2 R für die f( )= gilt. Es gilt: Jede stetige Funktion f :[, b]! [, b] besitzt einen Fipunkt. Mn betrchte dzu die Funktion g() := f(). Diese ist wiederum stetig und d lle Funktionswerte im Intervll [, b] liegen, muss im Speziellen f(),f(b) 2 [, b] gelten. Dmit ist g() = f() 0 und g(b) =f(b) b pple 0. Aus dem Zwischenwertstz folgt, dss es eine Nullstelle 2 [, b] mit g( )=0gibt. Für diese gilt dnn f( )=. 7

1 Folgen von Funktionen

1 Folgen von Funktionen Folgen von Funktionen Wir etrchten Folgen von reell-wertigen Funktionen f n U R mit Definitionsereicht U R und interessieren uns für ntürliche Konvergenzegriffe. Genuer setzen wir uns mit folgenden Frgen

Mehr

Multiplikative Inverse

Multiplikative Inverse Multipliktive Inverse Ein Streifzug durch ds Bruchrechnen in Restklssen von Yimin Ge, Jänner 2006 Viele Leute hben Probleme dbei, Brüche und Restklssen unter einen Hut zu bringen. Dieser kurze Aufstz soll

Mehr

Einführung in die Analysis. Prof. Dr. René Grothmann

Einführung in die Analysis. Prof. Dr. René Grothmann Einführung in die Anlysis Prof. Dr. René Grothmnn 2011 2 Vorwort Es hndelt sich bei diesem Skript nur um eine Zusmmenfssung der Vorlesung. Beweise und Beispiele wurden uf ein Minimum reduziert. Auch eine

Mehr

A.25 Stetigkeit und Differenzierbarkeit ( )

A.25 Stetigkeit und Differenzierbarkeit ( ) A.5 Stetigkeit / Differenzierbrkeit A.5 Stetigkeit und Differenzierbrkeit ( ) Eine Funktion ist wenn die Kurve nicht unterbrochen wird, lso wenn mn sie zeichnen knn, ohne den Stift vom Bltt bzusetzen.

Mehr

definiert ist, heißt an der Stelle x0

definiert ist, heißt an der Stelle x0 1 Stetigkeit 1 Stetigkeit Bei der Behndlung der bschnittsweise deinierten Funktionen km es vor, dss der Grph dieser Funktion n der Nhtstelle einen Sprung ht. Andere dgegen hben keine Sprungstelle! Doch

Mehr

Kapitel 4 Differentialrechnung in mehreren Variablen. 4.1 Topologie des R n und Stetigkeit von Funktionen

Kapitel 4 Differentialrechnung in mehreren Variablen. 4.1 Topologie des R n und Stetigkeit von Funktionen Kpitel 4 Differentilrechnung in mehreren Vriblen 4.1 Topologie des R n und Stetigkeit von Funktionen Gegenstnd dieses Kpitels sind Funktionen in mehreren Vriblen. Wir können die Definitionsbereiche solcher

Mehr

Kapitel 10. Integration. Josef Leydold Mathematik für VW WS 2015/16 10 Integration 1 / 35

Kapitel 10. Integration. Josef Leydold Mathematik für VW WS 2015/16 10 Integration 1 / 35 Kpitel 0 Integrtion Josef Leydold Mthemtik für VW WS 205/6 0 Integrtion / 35 Flächeninhlt Berechnen Sie die Inhlte der ngegebenen Flächen! f (x) = Fläche: A = f (x) = +x 2 Approximtion durch Treppenfunktion

Mehr

Grundlagen der Integralrechnung

Grundlagen der Integralrechnung Grundlgen der Integrlrechnung W. Kippels 0. April 2014 Inhltsverzeichnis 1 Ds unbestimmte Integrl 2 2 Ds bestimmte Integrl 4 Beispielufgben 7.1 Beispielufgbe 1............................... 7.2 Beispielufgbe

Mehr

Aufgaben zur Vorlesung Analysis II Prof. Dr. Holger Dette SS 2012 Lösungen zu Blatt 6

Aufgaben zur Vorlesung Analysis II Prof. Dr. Holger Dette SS 2012 Lösungen zu Blatt 6 Aufgben zur Vorlesung Anlysis II Prof. Dr. Holger Dette SS 0 Lösungen zu Bltt 6 Aufgbe. Die Funktion f : [, ) R sei in jedem endlichen Teilintervll von [, ) Riemnnintegrierbr. Für n N sei I n := f() d.

Mehr

Differenzial- und Integralrechnung III

Differenzial- und Integralrechnung III Differenzil- und Integrlrechnung III Riner Huser April 2012 1 Einleitung 1.1 Polynome und Potenzfunktionen Die Polynome oder Polynomfunktionen lssen sich durch die endliche Anzhl von n+1 Prmetern i R in

Mehr

Ungleichungen. Jan Pöschko. 28. Mai Einführung

Ungleichungen. Jan Pöschko. 28. Mai Einführung Ungleichungen Jn Pöschko 8. Mi 009 Inhltsverzeichnis Einführung. Ws sind Ungleichungen?................................. Äquivlenzumformungen..................................3 Rechnen mit Ungleichungen...............................

Mehr

Vorkurs Mathematik DIFFERENTIATION

Vorkurs Mathematik DIFFERENTIATION Vorkurs Mthemtik 6 DIFFERENTIATION Beispiel (Ableitung von sin( )). Es seien f() = sin g() = h() =f(g()) = sin. (f () =cos) (g () =) Also ist die Ableitung von h: h () =f (g())g () =cos = cos. Mn nennt

Mehr

Gebrochenrationale Funktionen (Einführung)

Gebrochenrationale Funktionen (Einführung) Gebrochenrtionle Funktionen (Einführung) Ac Eine gebrochenrtionle Funktion R ist von der Form R(x) P(x) und Q(x) gnzrtionle Funktionen n-ten Grdes sind. P(x) Q(x), wobei Im Allgemeinen ht eine gebrochenrtionle

Mehr

3. Ganzrationale Funktionen

3. Ganzrationale Funktionen 3. Gnzrtionle Funktionen ) Definitionen und Beispiele Definition: Eine gnzrtionle Funktion n-ten Grdes ht ls Definitionsterm ein Polynom n-ten Grdes, d.h. y = f() = n n n-1 n-1 1 0. n 0, i ( i = 1, n)

Mehr

11. DER HAUPTSATZ DER DIFFERENTIAL- UND INTEGRALRECHNUNG

11. DER HAUPTSATZ DER DIFFERENTIAL- UND INTEGRALRECHNUNG 91 Dieses Skript ist ein Auszug mit Lücken us Einführung in die mthemtische Behndlung der Nturwissenschften I von Hns Heiner Storrer, Birkhäuser Skripten. Als StudentIn sollten Sie ds Buch uch kufen und

Mehr

Falls die Werte von X als Ergebnisse eines Zufallsvorgangs resultieren, wird X zu einer stetigen Zufallsvariable.

Falls die Werte von X als Ergebnisse eines Zufallsvorgangs resultieren, wird X zu einer stetigen Zufallsvariable. Sttistik I für Sttistiker, Mthemtiker und Informtiker Lösungen zu Bltt 11 Gerhrd Tutz, Jn Ulbricht, Jn Gertheiss WS 7/8 Theorie: Stetige Zufllsvriblen Begriff Stetigkeit: Eine Vrible oder ein Merkml X

Mehr

Mathematik. Ingo Blechschmidt. 22. Januar 2007

Mathematik. Ingo Blechschmidt. 22. Januar 2007 Mthemtik Ingo Blechschmidt 22. Jnur 2007 Inhltsverzeichnis I Mthemtik 2 1 Anlysis 2 1.1 Stetigkeit und Differenzierbrkeit........... 2 1.1.1 Stetigkeit..................... 2 1.1.2 Differenzierbrkeit................

Mehr

- 1 - VB Inhaltsverzeichnis

- 1 - VB Inhaltsverzeichnis - - VB Inhltsverzeichnis Inhltsverzeichnis... Die Inverse einer Mtrix.... Definition der Einheitsmtrix.... Bedingung für die inverse Mtrix.... Berechnung der Inversen Mtrix..... Ds Verfhren nch Guß mit

Mehr

Das Rechnen mit Logarithmen

Das Rechnen mit Logarithmen Ds Rechnen mit Logrithmen Etw in der 0. Klssenstufe kommt mn in Kontkt mit Logrithmen. Für die, die noch nicht so weit sind oder die, die schon zu weit dvon entfernt sind, hier noch einml ein kleiner Einblick:

Mehr

1.7 Inneres Produkt (Skalarprodukt)

1.7 Inneres Produkt (Skalarprodukt) Inneres Produkt (Sklrprodukt) 17 1.7 Inneres Produkt (Sklrprodukt) Montg, 27. Okt. 2003 7.1 Wir erinnern zunächst n die Winkelfunktionen sin und cos, deren Wirkung wir m Einheitskreis vernschulichen: ϕ

Mehr

Einführung in die Integralrechnung

Einführung in die Integralrechnung Einführung in die Integrlrechnung Vorbereitung für ds Probestudium n der LMU München 3. bis 7. September von W. Frks und O. Forster Integrle ls Flächeninhlte. Motivtion Flächeninhlte von Rechtecken sind

Mehr

Lineare DGL zweiter Ordnung

Lineare DGL zweiter Ordnung Universität Duisburg-Essen Essen, 03.06.01 Fkultät für Mthemtik S. Buer C. Hubcsek C. Thiel Linere DGL zweiter Ordnung Betrchten wir ds AWP { x + x + bx = 0 mit, b, t 0, x 0, v 0 R. Der Anstz xt 0 = x

Mehr

1.2 Der goldene Schnitt

1.2 Der goldene Schnitt Goldener Schnitt Psclsches Dreieck 8. Der goldene Schnitt Beim Begriff Goldener Schnitt denken viele Menschen n Kunst oder künstlerische Gestltung. Ds künstlerische Problem ist, wie ein Bild wohlproportioniert

Mehr

ARBEITSBLATT 5L-6 FLÄCHENBERECHNUNG MITTELS INTEGRALRECHNUNG

ARBEITSBLATT 5L-6 FLÄCHENBERECHNUNG MITTELS INTEGRALRECHNUNG Mthemtik: Mg. Schmid WolfgngLehrerInnentem RBEITSBLTT 5L-6 FLÄHENBEREHNUNG MITTELS INTEGRLREHNUNG Geschichtlich entwickelte sich die Integrlrechnug us folgender Frgestellung: Wie knn mn den Flächeninhlt

Mehr

11 Logarithmus und allgemeine Potenzen

11 Logarithmus und allgemeine Potenzen Logarithmus und allgemeine Potenzen Bevor wir uns mit den Eigenschaften von Umkehrfunktionen, und insbesondere mit der Umkehrfunktion der Eponentialfunktion ep : R R + beschäftigen, erinnern wir an den

Mehr

f(x) := lim f n (x) (a) Wann ist die Grenzfunktion f stetig? Reicht dazu die Stetigkeit aller Funktionen f n?

f(x) := lim f n (x) (a) Wann ist die Grenzfunktion f stetig? Reicht dazu die Stetigkeit aller Funktionen f n? Kpitel 9 Gleichmäßige Konvergenz von Funktionenfolgen 9.1 Gleichmäßige Konvergenz 9.2 Eigenschften der Grenzfunktion 9.3 Gleichmäßige Konvergenz von Funktionenreihen 9.4 Anwendung uf Potenzreihen 9.5 Tylor

Mehr

Quadratische Funktionen

Quadratische Funktionen Qudrtische Funktionen Die Scheitelpunktform ist eine spezielle Drstellungsform von qudrtischen Funktionen, nhnd der viele geometrische Eigenschften des Funktionsgrphen bgelesen werden können. Abbildung

Mehr

Präfixcodes und der Huffman Algorithmus

Präfixcodes und der Huffman Algorithmus Präfixcodes und der Huffmn Algorithmus Präfixcodes und Codebäume Im Folgenden werden wir Codes untersuchen, die in der Regel keine Blockcodes sind. In diesem Fll können Codewörter verschiedene Länge hben

Mehr

Vorlesung. Einführung in die mathematische Sprache und naive Mengenlehre

Vorlesung. Einführung in die mathematische Sprache und naive Mengenlehre Vorlesung Einführung in die mthemtische Sprche und nive Mengenlehre 1 Allgemeines RUD26 Erwin-Schrödinger-Zentrum (ESZ) RUD25 Johnn-von-Neumnn-Hus Fchschft Menge ller Studenten eines Institutes Fchschftsrt

Mehr

Grundwissen Abitur Analysis

Grundwissen Abitur Analysis GYMNASIUM MIT SCHÜLERHEIM PEGNITZ mthem-technolog u sprchl Gmnsium WILHELM-VON-HUMBOLDT-STRASSE 7 9257 PEGNITZ FERNRUF 0924/48333 FAX 0924/2564 Grundwissen Abitur Anlsis Ws sind Potenzfunktion mit ntürlichen

Mehr

4 Die rationalen Zahlen

4 Die rationalen Zahlen 4 Die rtionlen Zhlen Der Ring der gnzen Zhlen ht den Mngel, dß nicht jede Gleichung = X, 0 innerhl Z lösr ist. (Z.B. ist 1 = 2 X unlösr in Z). Zu seiner Beseitigung erweitert mn den Zhlereich zum Körper

Mehr

t 1 t cos(t) sin(t) haben als Spur jeweils den Einheitshalbkreis in der oberen Halbebene.

t 1 t cos(t) sin(t) haben als Spur jeweils den Einheitshalbkreis in der oberen Halbebene. Kpitel Kurvenintegrle Kurven Sei I = [, b] R ein Intervll Eine Weg ist eine Abbildung dieses Intervlls in den R d, d, : I R d Dbei nennt mn () den Anfngspunkt, (b) den Endpunkt und ds Bild ([, b]) die

Mehr

Kapitel 13. Taylorentwicklung Motivation

Kapitel 13. Taylorentwicklung Motivation Kpitel 13 Tylorentwicklung 13.1 Motivtion Sei D R offen. Sie erinnern sich: Eine in D stetig differenzierbre Funktion f : D R wird durch die linere Funktion g(x) = f() + f ()(x ) in einer Umgebung von

Mehr

2 Lineare Operatoren. T(αx + βy) = αtx + βty x,y X, α, β K. (b) Ist T linear, so heißt

2 Lineare Operatoren. T(αx + βy) = αtx + βty x,y X, α, β K. (b) Ist T linear, so heißt 2 Linere Opertoren Im Folgenden seien X,Y, Z stets normierte Räumen über dem selben Körper K = C oder K = R. 2.1. Definition. () Eine Abbildung T : X Y heißt liner, flls T(αx + βy) = αtx + βty x,y X, α,

Mehr

Grundwissen Mathematik 8. Klasse. Eigenschaften Besonderheiten - Beispiele

Grundwissen Mathematik 8. Klasse. Eigenschaften Besonderheiten - Beispiele Themen Direkte Proportionlität Eigenschften Besonderheiten - Beispiele Zwei Größen und y heißen direkt proportionl, wenn gilt: Zum k-fchen Wert von gehört der k-fche Wert von y; Der Quotient q = y ht für

Mehr

Bestimmtes (Riemannsches) Integral / Integral als Grenzwert einer Summe : Bedeutung: Fläche unter einer Funktion innerhalb bestimmter Grenzen

Bestimmtes (Riemannsches) Integral / Integral als Grenzwert einer Summe : Bedeutung: Fläche unter einer Funktion innerhalb bestimmter Grenzen III. Integrlrechnung : Bestimmtes (Riemnnsches Integrl / Integrl ls Grenzwert einer Summe : Bedeutung: Fläche unter einer Funktion innerhl estimmter Grenzen yf( y n y n ( Δ Berechnung der Fläche A unter

Mehr

Wirtschaftsmathematik für International Management (BA) und Betriebswirtschaft (BA)

Wirtschaftsmathematik für International Management (BA) und Betriebswirtschaft (BA) Wirtschftsmthemtik für Interntionl Mngement (BA) und Betriebswirtschft (BA) Wintersemester 2013/14 Stefn Etschberger Hochschule Augsburg Mthemtik: Gliederung 1 Aussgenlogik 2 Linere Algebr 3 Linere

Mehr

Funktionenfolgen. Kapitel 6

Funktionenfolgen. Kapitel 6 Kpitel 6 Funktionenfolgen Bemerkung 6.1 Motivtion. Dieser Abschnitt betrchtet die Konvergenz von Folgen von uf einem gemeinsmen Intervll definierten Funktionen. Dies ist eine wichtige Grundlge, um eine

Mehr

8 Integralrechnung. 8.1 Das Riemann-Integral

8 Integralrechnung. 8.1 Das Riemann-Integral 8 Integrlrechnung Der Integrlbegriff ist wie der Ableitungsbegriff motiviert durch die physiklische Beschreibung von Bewegungsbläufen (Geschwindigkeit, Beschleunigung). Er ist u.. uch von Bedeutung bei

Mehr

Mathe Warm-Up, Teil 1 1 2

Mathe Warm-Up, Teil 1 1 2 Mthe Wrm-Up, Teil 1 1 2 HEUTE: 1. Elementre Rechenopertionen: Brüche, Potenzen, Logrithmus, Wurzeln 2. Summen- und Produktzeichen 3. Gleichungen/Ungleichungen 1 orientiert sich n den Kpiteln 3,4,6,8 des

Mehr

Stetigkeit. Definitionen. Beispiele

Stetigkeit. Definitionen. Beispiele Stetigkeit Definitionen Stetigkeit Sei f : D mit D eine Funktion. f heißt stetig in a D, falls für jede Folge x n in D (d.h. x n D für alle n ) mit lim x n a gilt: lim f x n f a. Die Funktion f : D heißt

Mehr

Kurvenintegrale. 17. Juli 2006 (Korrigierte 2. Version) 1 Kurvenintegrale 1. Art (d.h. f ist Zahl, kein Vektor)

Kurvenintegrale. 17. Juli 2006 (Korrigierte 2. Version) 1 Kurvenintegrale 1. Art (d.h. f ist Zahl, kein Vektor) Kurvenintegrle Christin Mosch, Theoretische Chemie, Universität Ulm, christin.mosch@uni-ulm.de 7. Juli 26 (Korrigierte 2. Version Kurvenintegrle. Art (d.h. f ist Zhl, kein Vektor Bei Kurvenintegrlen. Art

Mehr

UNIVERSITÄT KARLSRUHE Institut für Analysis HDoz. Dr. P. C. Kunstmann Dipl.-Math. M. Uhl. Sommersemester 2009

UNIVERSITÄT KARLSRUHE Institut für Analysis HDoz. Dr. P. C. Kunstmann Dipl.-Math. M. Uhl. Sommersemester 2009 UNIVERSIÄ KARLSRUHE Institut für Anlysis HDoz. Dr. P. C. Kunstmnn Dipl.-Mth. M. Uhl Sommersemester 9 Höhere Mthemti II für die Fchrichtungen Eletroingenieurwesen, Physi und Geodäsie inlusive Komplexe Anlysis

Mehr

Abitur - Leistungskurs Mathematik. Sachsen-Anhalt 1999

Abitur - Leistungskurs Mathematik. Sachsen-Anhalt 1999 Abitur - Leistungskurs Mthemtik Schsen-Anhlt 999 Gebiet L - Anlysis Augbe.. y, D, R,. Die Funktionenschr sei gegeben durch Die Grphen der Funktionen der Schr werden mit G bezeichnet. ) Ermitteln Sieden

Mehr

5.5. Integralrechnung

5.5. Integralrechnung .. Integrlrechnung... Berechnung von Integrlen mit der Streifenmethode Definition: Gegeen seien, R mit < und eine uf [; ] stetige Funktion f. Der orientierte Inhlt der Fläche, die durch die -Achse, ds

Mehr

Übungen zur Analysis 2

Übungen zur Analysis 2 Mthemtisches Institut der Universität München Prof. Dr. Frnz Merkl Sommersemester 2013 Bltt 2 26.4.2013 Übungen zur Anlysis 2 2.1 Vernschulichung der Cuchy-Schwrz-Ungleichung. Gegeben seien die Vektoren

Mehr

6. Integration 6.1 Das Riemann-Integral

6. Integration 6.1 Das Riemann-Integral 6. Integrtion 6. Ds Riemnn-Integrl 6. Integrtion 6. Ds Riemnn-Integrl Mthemtik für Chemiker 6. Integrtion 6. Ds Riemnn-Integrl Flächenberechnung: Problemstellung und Lösungsidee Sei f : [, b] [0, ) eine

Mehr

Vorlesung Mathematik 1 für Ingenieure (Sommersemester 2016)

Vorlesung Mathematik 1 für Ingenieure (Sommersemester 2016) 1 Vorlesung Mthemtik 1 für Ingenieure (Sommersemester 2016) Kpitel 10: Integrlrechnung einer Veränderlichen Prof. Miles Simon Nch Folienvorlge von Prof. Dr. Volker Kibel Otto-von-Guericke Universität Mgdeburg.

Mehr

Wurzeln. bestimmen. Dann braucht man Wurzeln. Treffender müsste man von Quadratwurzeln sprechen. 1. Bei Quadraten, deren Fläche eine Quadratzahl ist,

Wurzeln. bestimmen. Dann braucht man Wurzeln. Treffender müsste man von Quadratwurzeln sprechen. 1. Bei Quadraten, deren Fläche eine Quadratzahl ist, Seitenlängen von Qudrten lssen sich mnchml sehr leicht und mnchml etws schwerer Wurzeln bestimmen. Dnn brucht mn Wurzeln. Treffender müsste mn von Qudrtwurzeln sprechen. Sie stehen in enger Beziehung zu

Mehr

9 Das Riemannsche Integral

9 Das Riemannsche Integral 1 9 Ds Riemnnsche Integrl 9.1 Definition und Beispiele Sei I = [, ] R mit

Mehr

Analysis 2. Mitschrift von www.kuertz.name

Analysis 2. Mitschrift von www.kuertz.name Anlysis 2 Mitschrift von www.kuertz.nme Hinweis: Dies ist kein offizielles Script, sondern nur eine privte Mitschrift. Die Mitschriften sind teweilse unvollständig, flsch oder inktuell, d sie us dem Zeitrum

Mehr

Thema 13 Integrale, die von einem Parameter abhängen, Integrale von Funktionen auf Teilmengen von R n

Thema 13 Integrale, die von einem Parameter abhängen, Integrale von Funktionen auf Teilmengen von R n Them 13 Integrle, die von einem Prmeter bhängen, Integrle von Funktionen uf Teilmengen von R n Wir erinnern drn, dß eine Funktion h : [, b] R eine Treppenfunktion ist, flls es eine Unterteilung x < x 1

Mehr

Mathematik: Vorwissen und Selbststudium

Mathematik: Vorwissen und Selbststudium Mthemtik: Vorwissen und Selbststudium Prof. Thoms Apel Studienjhr 00/ Lerning nything chnges people; lerning mth mkes big chnge it opens minds nd opens doors. [Hirsh Cohen, SIAM president 983-984] Vorwort

Mehr

1 Kurvendiskussion /40

1 Kurvendiskussion /40 009 Herbst, (Mthemtik) Aufgbenvorschlg B Kurvendiskussion /0 Gegeben ist eine Funktion f mit der Funktionsgleichung: f ( ) 0 6 = ; mit.. Untersuchen Sie ds Verhlten der Funktionswerte von f im Unendlichen.

Mehr

TECHNISCHE UNIVERSITÄT MÜNCHEN

TECHNISCHE UNIVERSITÄT MÜNCHEN TECHNISCHE UNIVERSITÄT MÜNCHEN Zentrum Mthemtik PROF. DR.DR. JÜRGEN RICHTER-GEBERT, VANESSA KRUMMECK, MICHAEL PRÄHOFER Höhere Mthemtik für Informtiker I (Wintersemester 00/00) Aufgbenbltt (. Oktober 00)

Mehr

Analysis I. Inhaltsverzeichnis. Martin Brokate. 1 Aussagen, Mengen, Abbildungen 1. 2 Das Prinzip der vollständigen Induktion 14

Analysis I. Inhaltsverzeichnis. Martin Brokate. 1 Aussagen, Mengen, Abbildungen 1. 2 Das Prinzip der vollständigen Induktion 14 Anlysis I Mrtin Brokte Inhltsverzeichnis Aussgen, Mengen, Abbildungen 2 Ds Prinzip der vollständigen Induktion 4 3 Die reellen Zhlen 8 4 Folgen 29 5 Die komplexen Zhlen 40 6 Reihen 44 7 Unendliche Mengen

Mehr

4 Die Integralfunktion*

4 Die Integralfunktion* Übungsmteril 1 Die Integrlfuntion* In den vorigen Kpiteln hben wir bereits ds unbestimmte und ds bestimmte Integrl und deren Eigenschften ennengelernt. Ersteres liefert die Menge der Stmmfuntionen einer

Mehr

Bruchterme und gebrochen rationale Funktionen ================================================================== Der Quotient zweier Terme

Bruchterme und gebrochen rationale Funktionen ================================================================== Der Quotient zweier Terme Bruchterme und gebrochen rtionle Funktionen Der Quotient zweier Terme Es ist ist 3 : 4 3 und. 4 : 3 4 3 4 Dehnt mn die Bruchschreibweise uf Terme us, dnn erhält mn sog. Bruchteme. ² ( + ) : (3 + 4) + 3

Mehr

Analysis mit dem Voyage 1

Analysis mit dem Voyage 1 Anlysis mit dem Voyge 1 1. Kurvendiskussion Gegeben ist die Funktionschr Den Nenner erhält mn mit Hilfe der Funktion getdenom. Zeros liefert die Nullstellen des Nenners und dmit die Werte, die us dem Definitionsbereich

Mehr

Brückenkurs Lineare Gleichungssysteme und Vektoren

Brückenkurs Lineare Gleichungssysteme und Vektoren Brückenkurs Linere Gleichungssysteme und Vektoren Dr Alessndro Cobbe 30 September 06 Linere Gleichungssyteme Ws ist eine linere Gleichung? Es ist eine lgebrische Gleichung, in der lle Vriblen nur mit dem

Mehr

Mathematik PM Rechenarten

Mathematik PM Rechenarten Rechenrten.1 Addition Ds Pluszeichen besgt, dss mn zur Zhl die Zhl b hinzuzählt oder ddiert. Aus diesem Grunde heisst diese Rechenrt uch Addition. + b = c Summnd plus Summnd gleich Summe Kommuttivgesetz

Mehr

Mathematik Brückenkurs

Mathematik Brückenkurs Rumpfskript zur Vorlesung Mthemtik-Brückenkurs /86 Mthemtik Brückenkurs im Fchbereich Informtik & Elektrotechnik Rumpfskript V7 Rumpfskript zur Vorlesung Mthemtik-Brückenkurs /86 Inhltsverzeichnis Mengen...

Mehr

Funktionsgrenzwerte, Stetigkeit

Funktionsgrenzwerte, Stetigkeit Funktionsgrenzwerte, Stetigkeit Häufig tauchen in der Mathematik Ausdrücke der Form lim f(x) auf. x x0 Derartigen Ausdrücken wollen wir jetzt eine präzise Bedeutung zuweisen. Definition. b = lim f(x) wenn

Mehr

Der Gauß - Algorithmus

Der Gauß - Algorithmus R Brinkmnn http://brinkmnn-du.de Seite 7..9 Der Guß - Algorithmus Der Algorithmus von Guss ist ds universelle Verfhren zur Lösung beliebiger linerer Gleichungssysteme. Einführungsbeispiel: 7x+ x 5x = Drei

Mehr

Analysis 2. Vorlesungsskript Sommersemester 2014. Bernd Schmidt. Version vom 15. Oktober 2014

Analysis 2. Vorlesungsskript Sommersemester 2014. Bernd Schmidt. Version vom 15. Oktober 2014 Anlysis 2 Vorlesungsskript Sommersemester 214 Bernd Schmidt Version vom 15. Oktober 214 Institut für Mthemtik, Universität Augsburg, Universitätsstr. 14, 86135 Augsburg, bschmidt@mth.uni-ugsburg.de 1 Inhltsverzeichnis

Mehr

Dr. Günter Rothmeier Kein Anspruch auf Vollständigkeit Elementarmathematik (LH) und Fehlerfreiheit

Dr. Günter Rothmeier Kein Anspruch auf Vollständigkeit Elementarmathematik (LH) und Fehlerfreiheit WS 008/09 7 Elementrmthemtik (LH) und Fehlerfreiheit. Zhlenbereiche... Die rtionlen Zhlen... Definition Die Definition der rtionlen Zhlen erfolgt hier innermthemtisch ebenflls wie diejenige der gnzen Zhlen

Mehr

Analysis I im SS 2011 Kurzskript

Analysis I im SS 2011 Kurzskript Anlysis I im SS 2011 Kurzskript Prof. Dr. C. Löh Sommersemester 2011 Inhltsverzeichnis -2 Literturhinweise 2-1 Einführung 4 0 Grundlgen: Logik und Mengenlehre 5 1 Zählen, Zhlen, ngeordnete Körper 14 2

Mehr

1 Einleitung 3. 3 Die Methode der Pfadregeln Drei Pfadregeln Anwendungen von drei Pfadregeln... 6

1 Einleitung 3. 3 Die Methode der Pfadregeln Drei Pfadregeln Anwendungen von drei Pfadregeln... 6 Mrkow-Ketten JUAN LU AUSARBEITUNG ZUM VORTRAG IM Blockseminr Stochstik (WINTERSEMESTER 28/9, LEITUNG PD DR. GUDRUN THÄTER) Zusmmenfssung: Eine Mrkow-Kette ist eine spezielle Klsse von stochstischen Prozessen.

Mehr

2 Berechnung von Flächeninhalten unter Kurvenstücken

2 Berechnung von Flächeninhalten unter Kurvenstücken Übungsmteril 1 Berechnung von Flächeninhlten unter Kurvenstücken.1 Annäherung durch Rechtecke Um die Fläche zu berechnen, die zwischen dem Funktionsgrphen einer Funktion und der -Achse eingeschlossen wird,

Mehr

1. Elementare Grundlagen 1.1. Vollständige Induktion und der binomische Lehrsatz. Wir folgen weitgehend den Überlegungen in Forster, Kapitel 1.

1. Elementare Grundlagen 1.1. Vollständige Induktion und der binomische Lehrsatz. Wir folgen weitgehend den Überlegungen in Forster, Kapitel 1. 1. Elementre Grundlgen 1.1. Vollständige Induktion und der binomische Lehrstz. Wir folgen weitgehend den Überlegungen in Forster, Kpitel 1. Die ohne Beweis ufgeführten Sätze sind mit den Sätzen identisch,

Mehr

Matrizen und Determinanten

Matrizen und Determinanten Mtrizen und Determinnten Im bschnitt Vektorlgebr Rechenregeln für Vektoren Multipliktion - Sklrprodukt, Vektorprodukt, Mehrfchprodukte wurde in einem Vorgriff bereits eine interessnte mthemtische Konstruktion

Mehr

Übungen zu Wurzeln III

Übungen zu Wurzeln III A.Nenner rtionl mchen: Nenner ist Qudrtwurzel: 5 bc 1.).).).) 5.) 1 15 9 bc.).) 8.) 9.) 10.) 5 5 B.Nenner rtionl mchen: Nenner ist höhere Wurzel: 1 1 9 5 1 1.).).).) 5.).) 5 C.Nenner rtionl mchen: Nenner

Mehr

A n a l y s i s. Wintersemester 2006/2007. Ernst Kuwert. Mathematisches Institut Universität Freiburg

A n a l y s i s. Wintersemester 2006/2007. Ernst Kuwert. Mathematisches Institut Universität Freiburg A n l y s i s I Wintersemester 2006/2007 Ernst Kuwert Mthemtisches Institut Universität Freiburg Inhltsverzeichnis 1 Grundlgen 1 1 Körperxiome und Anordnungsxiome...................... 1 2 Vollständige

Mehr

Vorlesungsskript Mathematik I für Wirtschaftsingenieure

Vorlesungsskript Mathematik I für Wirtschaftsingenieure Vorlesungsskript Mthemtik I für Wirtschftsingenieure Verfsserin: HSD Dr. Sybille Hndrock TU Chemnitz Fkultät für Mthemtik e-mil: hndrock@mthemtik.tu-chemnitz.de Wintersemester 2005/06 Litertur [] Dllmnn,

Mehr

Analysis I Wintersemester 2002/03. W. Ebeling

Analysis I Wintersemester 2002/03. W. Ebeling Anlysis I Wintersemester 2002/03 W. Ebeling c Wolfgng Ebeling Institut für Algebrische Geometrie Leibniz Universität Hnnover Postfch 6009 30060 Hnnover E-mil: ebeling@mth.uni-hnnover.de Litertur [] M.

Mehr

Grundkurs Mathematik. Einführung in die Integralrechnung. Lösungen und Ergebnisse zu den Aufgaben

Grundkurs Mathematik. Einführung in die Integralrechnung. Lösungen und Ergebnisse zu den Aufgaben Seite Einführung in die Integrlrechnung Lösungen und Ergenisse Gr Stefn Gärtner Grundkurs Mthemtik Einführung in die Integrlrechnung Lösungen und Ergenisse zu den Aufgen Von llen Wissenschftlern können

Mehr

Repetitionsaufgaben Exponential-und Logarithmusfunktion

Repetitionsaufgaben Exponential-und Logarithmusfunktion Repetitionsufgben Eponentil-und Logrithmusfunktion Inhltsverzeichnis A) Vorbemerkungen B) Lernziele C) Eponentilfunktionen mit Beispielen 2 D) Aufgben Ep.fkt. mit Musterlösungen 6 E) Logrithmusfunktionen

Mehr

Analysis II. Universität Stuttgart, SS 06 M. Griesemer

Analysis II. Universität Stuttgart, SS 06 M. Griesemer Anlysis II Universität Stuttgrt, SS 06 M. Griesemer Inhltsverzeichnis 9 Ds Riemnnsche Integrl 3 9.1 Definition und Beispiele........................... 3 9.2 Elementre Eigenschften..........................

Mehr

Skript zur Analysis 1. Kapitel 3 Stetigkeit / Grenzwerte von Funktionen

Skript zur Analysis 1. Kapitel 3 Stetigkeit / Grenzwerte von Funktionen Skript zur Analysis 1 Kapitel 3 Stetigkeit / Grenzwerte von Funktionen von Prof. Dr. J. Cleven Fachhochschule Dortmund Fachbereich Informatik Oktober 2003 2 Inhaltsverzeichnis 3 Stetigkeit und Grenzwerte

Mehr

Brückenkurs Mathematik

Brückenkurs Mathematik Prof. Dr.Ing. W. Scheideler Brückenkurs Mthemtik WS 0/ us und überrbeitet von B. Eng. Sevd Hppel und Dipl.Ing. Jun Rojs Prof. Dr.Ing. W. Scheideler Inhltsverzeichnis Brüche, Potenzen und Wurzeln. Brüche..

Mehr

Umwandlung von endlichen Automaten in reguläre Ausdrücke

Umwandlung von endlichen Automaten in reguläre Ausdrücke Umwndlung von endlichen Automten in reguläre Ausdrücke Wir werden sehen, wie mn us einem endlichen Automten M einen regulären Ausdruck γ konstruieren knn, der genu die von M kzeptierte Sprche erzeugt.

Mehr

Berechnung von Flächen unter Kurven

Berechnung von Flächen unter Kurven Berechnung von Flächen unter Kurven Es soll die Fläche unter einer elieigen (stetigen) Kurve erechnet werden. Dzu etrchten wir die (sog.) Flächenfunktion, mit der die zu erechnende Fläche qusi ngenähert

Mehr

Integralrechnung. www.mathe-total.de. Aufgabe 1

Integralrechnung. www.mathe-total.de. Aufgabe 1 Integrlrechnung Aufgbe Bestimme die Fläche zwischen der Kurve der Funktion f() = und -Achse über dem Intervll I = [; 3] näherungsweise. Bestimme die Obersumme und Teile ds Intervll I in drei gleich große

Mehr

Schreibweise : Der lineare Unterraum D(A) = L heißt Definitionsbereich. Für häufige Situationen L = X schreiben wir A : X Y.

Schreibweise : Der lineare Unterraum D(A) = L heißt Definitionsbereich. Für häufige Situationen L = X schreiben wir A : X Y. Kpitel 3 Linere Opertoren 3.1 Grundlegene Definitionen Wir betrchten in diesem Kpitel eine geringfügige Verllgemeinerung der m Ende von Abschnitt 2.1 eingeführten Begriffe des lineren Opertors bzw. der

Mehr

Numerische Mathematik I

Numerische Mathematik I Numerische Mthemtik I Dr. Wolfgng Metzler Universität Kssel unter Mitwirkung von Dipl.-Mth. Mrtin Steigemnn Sommersemester 2005 ii c 2005 Dr. Wolfgng Metzler, Fchbereich Mthemtik und Informtik der Universität

Mehr

Volumen von Rotationskörpern

Volumen von Rotationskörpern Volumen von Rottionskörpern Beispiele: [ Es stellt sich die Frge: Wie entstehen solche Rottionskörper bzw wie lssen sich solche Rottionskörper er zeugen? Rotiert eine Fläche z.b. um die x-achse, so entsteht

Mehr

Grenzwerte von Funktionen

Grenzwerte von Funktionen Grenzwert und Stetigkeit von Funktionen Methodische Bemerkungen H Hinweise und didktisch-methodische Anmerkungen zum Einstz der Areitslätter und Folien für den Themenkreis Grenzwert und Stetigkeit von

Mehr

Taylorreihen - Uneigentlische Integrale

Taylorreihen - Uneigentlische Integrale Anlysis II für M, LG und Ph, WS 2006/07, Übung 2, Lösungsskizze Gruppenübung Tylorreihen - Uneigentlische Integrle G 5 Berechnen Sie die Tylorreihe mit der Entwicklungsmitte 0 von f (x) = log(x + ), f

Mehr

Kapitel 6 Folgen und Stetigkeit

Kapitel 6 Folgen und Stetigkeit Kapitel 6 Folgen und Stetigkeit Mathematischer Vorkurs TU Dortmund Seite 76 / 226 Definition 6. (Zahlenfolgen) Eine Zahlenfolge (oder kurz: Folge) ist eine Funktion f : 0!. Statt f(n) schreiben wir x n

Mehr

b f(x)p(x) dx = f(ξ) 2e 2 , Hess f (2, 0) =

b f(x)p(x) dx = f(ξ) 2e 2 , Hess f (2, 0) = Es seien U R n offen und ψ : U R n stetig differenzierbr. Weiter sei f : U R zweiml stetig differenzierbr. Kennzeichnen Sie whre Aussgen mit W und flsche Aussgen mit F. F Flls dψ(x) ein Isomorphismus für

Mehr

Logarithmen zu speziellen und häufig gebrauchten Basen haben eigene Namen: Der Logarithmus zur Basis 10 heißt dekadischer oder Zehnerlogarithmus:

Logarithmen zu speziellen und häufig gebrauchten Basen haben eigene Namen: Der Logarithmus zur Basis 10 heißt dekadischer oder Zehnerlogarithmus: 0 Dr Andres M Seifert Sternstunden in Mthe, Physik und Technik wwwsternstunden-odenwldde Logrithmen Die Gleichung vom Typ b wird mit Hilfe des Logrithmus gelöst Der Logrithmus von zur Bsis b ist die Zhl,

Mehr

Kapitel III. Stetige Funktionen. 14 Stetigkeit und Rechenregeln für stetige Funktionen. 15 Hauptsätze über stetige Funktionen

Kapitel III. Stetige Funktionen. 14 Stetigkeit und Rechenregeln für stetige Funktionen. 15 Hauptsätze über stetige Funktionen Kapitel III Stetige Funktionen 14 Stetigkeit und Rechenregeln für stetige Funktionen 15 Hauptsätze über stetige Funktionen 16 Konvergenz von Funktionen 17 Logarithmus und allgemeine Potenz C 1 14 Stetigkeit

Mehr

MC-Serie 12 - Integrationstechniken

MC-Serie 12 - Integrationstechniken Anlysis D-BAUG Dr. Meike Akveld HS 15 MC-Serie 1 - Integrtionstechniken 1. Die Formel f(x) dx = xf(x) xf (x) dx i) ist im Allgemeinen flsch. ii) folgt us der Sustitutionsregel. iii) folgt us dem Huptstz

Mehr

Der Kreissektor (Kreisausschnitt) Kreissektors mit dem Mittelpunktswinkel ϕ : Bogenlänge: b Sektor. Flächeinhalt:: ASektor

Der Kreissektor (Kreisausschnitt) Kreissektors mit dem Mittelpunktswinkel ϕ : Bogenlänge: b Sektor. Flächeinhalt:: ASektor Grundwissen Mthemtik 0.Klsse 0 / Die Kugel Volumen der Kugel: Oberfläche der Kugel: V O Kugel Kugel 4 πr 4πr Der Kreissektor (Kreisusschnitt) Kreissektors mit dem Mittelpunktswinkel ϕ : ϕ Bogenlänge: b

Mehr

Analysis I/II. Skript zur Vorlesung 2009/2010. Peter Junghanns

Analysis I/II. Skript zur Vorlesung 2009/2010. Peter Junghanns Skript zur Vorlesung Anlysis I/II 9/ Peter Junghnns Hinweis: Ds vorliegende Skript stellt nur ein Gerüst zu den Inhlten der Vorlesung dr. Die Vorlesung selbst bietet weiterführende Erläuterungen, Beweise

Mehr

FernUniversität Gesamthochschule in Hagen

FernUniversität Gesamthochschule in Hagen FernUniversität Gesmthochschule in Hgen FACHBEREICH MATHEMATIK LEHRGEBIET KOMPLEXE ANALYSIS Prof. Dr. Andrei Dum Proseminr 9 - Anlysis Numerische Integrtion Ulrich Telle Mtrikel-Nr. 474 Köln, den 7. Dezember

Mehr

Elemente der Analysis II: Zusammenfassung der wichtigsten Definitionen und Ergebnisse

Elemente der Analysis II: Zusammenfassung der wichtigsten Definitionen und Ergebnisse Elemente der Anlysis II: Zusmmenfssung der wichtigsten Definitionen und Ergebnisse J. Wengenroth Dies ist die einzige zugelssene Formelsmmlung, die bei der Klusur benutzt werden drf. Es dürfen Unterstreichungen

Mehr

2 Der Cauchysche Integralsatz

2 Der Cauchysche Integralsatz themtik für Physiker IV, SS 2013 ontg 6.5 $Id: cuchy.tex,v 1.11 2013/05/07 14:26:31 hk Exp hk $ 2 Der Cuchysche Integrlstz 2.3 Die Cuchysche Integrlformel In der letzten Sitzung htten wir eine erste Form

Mehr

Thema 4 Limiten und Stetigkeit von Funktionen

Thema 4 Limiten und Stetigkeit von Funktionen Thema 4 Limiten und Stetigkeit von Funktionen Wir betrachten jetzt Funktionen zwischen geeigneten Punktmengen. Dazu wiederholen wir einige grundlegende Begriffe und Schreibweisen aus der Mengentheorie.

Mehr

Folgen und Reihen von Funktionen

Folgen und Reihen von Funktionen Folgen und Reihen von Funktionen Sehr häufig treten in der Mathematik Folgen bzw. Reihen von Funktionen auf. Ist etwa (f n ) eine Folge von Funktionen, dann können wir uns für ein festes x fragen, ob die

Mehr