Stetigkeit. Kapitel 4. Stetigkeit. Peter Becker (H-BRS) Analysis Sommersemester / 543

Save this PDF as:
 WORD  PNG  TXT  JPG

Größe: px
Ab Seite anzeigen:

Download "Stetigkeit. Kapitel 4. Stetigkeit. Peter Becker (H-BRS) Analysis Sommersemester / 543"

Transkript

1 Kapitel 4 Stetigkeit Peter Becker (H-BRS) Analysis Sommersemester / 543

2 Inhalt Inhalt 4 Stetigkeit Eigenschaften stetiger Funktionen Funktionenfolgen und gleichmäßige Konvergenz Umkehrfunktionen Spezielle Grenzwerte Peter Becker (H-BRS) Analysis Sommersemester / 543

3 Kontinuierliche Veränderung Anschauliche Vorstellung der Stetigkeit: kontinuierliche Veränderung (also keine sprunghafte Veränderung) Wenn sich x wenig ändert, dann ändert sich auch f (x) nur wenig. Aber was heißt wenig? Dies müssen wir präzisieren. Für die Präzisierung werden wir wieder Grenzwerte nutzen. Peter Becker (H-BRS) Analysis Sommersemester / 543

4 Sichtweisen der Stetigkeit (1) Eine Funktion soll stetig heißen, wenn hinreichend kleine Änderungen des Arguments zu beliebig kleinen Argumenten des Funktionswertes führen. Andere mögliche Sichtweise: Egal wie wir uns mit dem Argument einem Wert x 0 nähern, die Funktionswerte nähern sich dann stets f (x 0 ). nicht stetige Funktion Peter Becker (H-BRS) Analysis Sommersemester / 543

5 Sichtweisen der Stetigkeit (2) Jede dieser beiden Sichtweisen könnte die Basis für die Definition der Stetigkeit sein. Wir entscheiden uns zunächst für die zweite Sichtweise. Stetigkeit wird definiert mit Hilfe von Grenzwerten konvergenter Folgen. Im Anschluss präsentieren wir eine Aussage für die erste Sichtweise, ɛ-δ-kriterium und zeigen natürlich auch die Äquivalenz der beiden Konzepte. Peter Becker (H-BRS) Analysis Sommersemester / 543

6 Stetigkeit reellwertiger Funktionen Definition 4.1 Es seien d N, D R d, x 0 D und f : D R. Wir sagen f ist stetig in x 0, wenn für alle Folgen (x n ) n N in D gilt: lim x n = x 0 = lim f (x n) = f (x 0 ). n n f : D R heißt stetig auf D oder einfach nur stetig, wenn f in jedem x 0 D stetig ist. Peter Becker (H-BRS) Analysis Sommersemester / 543

7 Diskussion der Stetigkeitsdefinition Stetigkeit wird hier definiert mittels einer Allquantifizierung über einer Menge konvergenter Folgen. Dies macht den direkten Beweis der Stetigkeit u. U. sehr kompliziert. Dafür können wir leicht zeigen, dass eine Funktion f in x 0 nicht stetig ist. Hierzu müssen wir nur eine Folge (x n ) finden mit Ist f stetig in x 0, dann gilt lim x n = x 0 lim f (x n) f (x 0 ). n n lim f (x n) = f n ) lim x n. n Wir dürfen also Funktionsanwendung und Grenzwertbildung vertauschen. ( Peter Becker (H-BRS) Analysis Sommersemester / 543

8 Beachten Sie, dass wir Stetigkeit nicht nur für Funktionen mit einem Argument definiert haben. Zur Erinnerung: Eine Folge (x n ) in R d konvergiert genau dann gegen x 0 = (x (1) 0, x (2) 0,..., x (d) 0 ) R d, wenn für jede Komponentenfolge (x n (i) ) mit i = 1,..., d gilt: Siehe Definition lim x n (i) = x (i) n 0. Peter Becker (H-BRS) Analysis Sommersemester / 543

9 Beispiel einer nicht stetigen Funktion Beispiel 4.2 Die Funktion von Folie 257 lautet f (x) = { x + 1 für x > 1 x für x 1 Es sei x 0 := 1. Die Folge ( ) n n N hat den Grenzwert 1 = x 0, aber ( lim f ) = lim n n n n + 1 = 2 1 = f (1). Damit haben wir gezeigt, dass f nicht stetig in x 0 = 1 ist. Peter Becker (H-BRS) Analysis Sommersemester / 543

10 Beispiele stetiger Funktionen Beispiel 4.3 (i) Die identische Abbildung id : R R, x x ist stetig auf R. Beweis: Es sei (x n ) eine beliebige Folge mit lim n x n = x 0 R. Dann gilt: lim id(x n) = lim x n = x 0 n n ( = id(x 0 ) = id lim n x n (ii) Die Betragsfunktion abs : R R, x x ist stetig. Begründung: Satz 2.15 (v). ). Peter Becker (H-BRS) Analysis Sommersemester / 543

11 Fortsetzung Beispiel. (iii) Die Funktion f : R 2 R ist wegen Satz 2.15 stetig auf R 2. (iv) Die Funktionen Proj k : R d R (x, y) x + y (x 1,..., x k,..., x d ) x k für k = 1,..., d sind stetig. Die Funktion Proj k heißt Projektion auf die k-te Komponente. Peter Becker (H-BRS) Analysis Sommersemester / 543

12 Stetigkeit der Exponentialfunktion Satz 4.4 Die Funktion exp : R R ist stetig auf R. Beweis. Aus Satz 3.42 folgt (mit n = 0) exp(x) 1 2 x für x 1. Sei nun x 0 eine beliebige reelle Zahl und (x n ) eine konvergente Folge mit Grenzwert x 0. Dann ist (x n x 0 ) eine Nullfolge. Mit der oben zitierten Abschätzung folgt 0 {}}{ 0 exp(x n x 0 ) 1 2 x n x 0 und daraus lim exp(x n x 0 ) = 1. n Peter Becker (H-BRS) Analysis Sommersemester / 543

13 Fortsetzung Beweis. Aus der Funktionalgleichung der Exponentialfunktion folgt exp(x n ) = exp(x n x 0 + x 0 ) = exp(x n x 0 ) exp(x }{{} 0 ) 1 und somit lim exp(x n) = exp(x 0 ). n Peter Becker (H-BRS) Analysis Sommersemester / 543

14 Rechenregeln für stetige Funktionen Satz 4.5 Es seien d N und D R d. Weiterhin seien f, g : D R in x 0 D stetige Funktionen und λ R. Dann sind auch die Funktionen f + g : D R, x f (x) + g(x) λ f : D R, x λ f (x) f g : D R, x f (x) g(x) stetig in x 0. Gilt außerdem g(x 0 ) 0, dann ist auch f g : D R, x f (x) g(x) stetig in x 0, mit D := {x D g(x) 0}. Peter Becker (H-BRS) Analysis Sommersemester / 543

15 Beweis. Der Satz folgt direkt aus den Rechenregeln für Grenzwerte bei Folgen, siehe Satz Folgerung 4.6 (i) Jedes Polynom f : R R ist stetig. (ii) Wenn f, g : R R Polynome sind, dann ist die Funktion f g R \ {x R g(x) = 0}. stetig auf Beweis. Übungsaufgabe. Peter Becker (H-BRS) Analysis Sommersemester / 543

16 Verknüpfung stetiger Funktionen Satz 4.7 Es seien d N, D R d und E R. Weiter seien f : D R und g : E R Funktionen mit f (D) E. Wenn f stetig in x 0 und g stetig in f (x 0 ) ist, dann ist die Funktion g f : D R, x g(f (x)) stetig in x 0. Zur Erinnerung: (g f )(x) = g(f (x)). Peter Becker (H-BRS) Analysis Sommersemester / 543

17 Beweis. Zu zeigen: Für jede Folge (x n ) in D gilt: lim x n = x 0 = lim g(f (x n)) = g(f (x 0 )). n n Sei also (x n ) eine beliebige konvergente Folge mit Grenzwert x 0. Da f stetig ist folgt lim n f (x n ) = f (x 0 ). Damit ist (f (x n )) eine konvergente Folge mit Grenzwert f (x 0 ). Weil g in f (x 0 ) stetig ist, folgt lim n g(f (x n )) = g(f (x 0 )). Peter Becker (H-BRS) Analysis Sommersemester / 543

18 Verknüpfungsbeispiele Beispiel 4.8 Wenn f : D R stetig ist, dann ist auch stetig. f : D R x f (x) Begründung: f = abs f und die Funktion abs ist stetig, siehe Folie 263. Die Funktionen g(x) := exp(x) und f (x) := x 2 sind stetig, also ist auch g(f (x)) = exp( x 2 ) stetig. Peter Becker (H-BRS) Analysis Sommersemester / 543

19 ɛ-δ-kriterium Satz 4.9 Für eine Funktion f : D R mit D R sind die folgenden Aussagen äquivalent. (i) f ist stetig in x 0. (ii) Für alle ɛ > 0 existiert ein δ > 0, so dass für alle x D gilt: x x 0 < δ f (x) f (x 0 ) < ɛ. Bemerkung: Bedingung (ii) aus Satz 4.9 lautet in Quantorenschreibweise ɛ > 0 δ > 0 x D : x x 0 < δ f (x) f (x 0 ) < ɛ. Peter Becker (H-BRS) Analysis Sommersemester / 543

20 Diskussion ɛ-δ-kriterium Das ɛ-δ-kriterium entspricht der anderen Sichtweise der Stetigkeit: Hinreichend kleine Änderungen des Arguments führen zu beliebig kleinen Änderungen in den Funktionswerten. Negation der Bedingung: ɛ > 0 δ > 0 x D : x x 0 < δ f (x) f (x 0 ) ɛ. Peter Becker (H-BRS) Analysis Sommersemester / 543

21 Veranschaulichung des ɛ-δ-kriteriums Peter Becker (H-BRS) Analysis Sommersemester / 543

22 Stetig und nicht stetig mit dem ɛ-δ-kriterium Peter Becker (H-BRS) Analysis Sommersemester / 543

23 Beweis für (ii) (i). Es gilt (ii), also das ɛ-δ-kriterium: ɛ > 0 δ > 0 x D : x x 0 < δ f (x) f (x 0 ) < ɛ. Sei (x n ) eine beliebige Folge mit lim n x n = x 0. Wir müssen zeigen, dass lim n f (x n ) = f (x 0 ) gilt, also: Sei ɛ > 0 beliebig. ɛ > 0 n 0 N n n 0 : f (x n ) f (x 0 ) < ɛ. Wir wählen ein δ > 0 gemäß Voraussetzung. Wegen lim n x n = x 0 existiert ein n 0 N, so dass x n x 0 < δ für alle n n 0. Nach Voraussetzung (mit x = x n ) folgt dann mit diesem n 0 : f (x n ) f (x 0 ) < ɛ für alle n n 0. Peter Becker (H-BRS) Analysis Sommersemester / 543

24 Beweis für (i) (ii) Es gilt (i), also: Ann.: (ii) gilt nicht. lim x n = x 0 lim f (x n) = f (x 0 ). n n Dann existiert ein ɛ > 0, so dass für alle δ > 0 ein x D existiert mit x x 0 < δ und f (x) f (x 0 ) ɛ. Wir wählen ein solches ɛ und wenden es für δ = 1 n, n = 1, 2, 3,... an. Wir erhalten für jedes n ein x n D mit x n x 0 < 1 n und f (x n ) f (x 0 ) ɛ. Dann ist lim n x n = x 0, aber lim n f (x n ) f (x 0 ), eventuell existiert der Grenzwert auch gar nicht. Widerspruch! Peter Becker (H-BRS) Analysis Sommersemester / 543

25 Beispiele für die Arbeit mit dem ɛ-δ-kriterium Beispiel 4.10 Wir zeigen, dass f (x) = x stetig in einem beliebigen x 0 ist. Sei ɛ > 0 beliebig. Wir wählen δ = ɛ. Dann gilt für alle x D mit x x 0 < δ: f (x) f (x 0 ) = x x 0 < δ = ɛ. Wir zeigen, dass die Funktion von Folie 257 in x 0 = 1 nicht stetig ist. Wähle ɛ = 1. Sei δ > 0 beliebig. Wähle x = 1 + δ 2. Für dieses x gilt x x 0 < δ und weiterhin: f (x) f (1) = 1 + δ = 1 + δ 2 1 = ɛ. Peter Becker (H-BRS) Analysis Sommersemester / 543

26 Berührungspunkt Definition 4.11 Es seien d N und D R d. Ein Punkt a R d heißt Berührungspunkt von D, wenn es eine Folge (a n ) in D mit lim n a n = a gibt. Beispiel 4.12 Für ein offenes Intervall (b, c) R ist jedes a [b, c] ein Berührungspunkt, also auch die Intervallgrenzen. Beispielfolgen für die linke und rechte Intervallgrenze: a n = b + 1 n bzw. a n = c 1 n. Peter Becker (H-BRS) Analysis Sommersemester / 543

27 Grenzwerte bei Funktionen Definition 4.13 Es seien D R d, f : D R eine Funktion, a R d ein Berührungspunkt von D und b R {± }. (i) Gilt für alle Folgen (x n ) in D so schreiben wir dafür lim x n = a = lim f (x n) = b n n lim f (x) = b x a und bezeichnen dies als den Grenzwert von f für x gegen a. Peter Becker (H-BRS) Analysis Sommersemester / 543

28 Fortsetzung Definition. (ii) Nur für d = 1: Gilt für alle Folge (x n ) in D mit x n a für alle n (bzw. x n a für alle n) lim x n = a = lim f (x n) = b, n n dann schreiben wir lim f (x) = b, x a ( ) bzw. lim f (x) = b. x a und bezeichnen dies als den rechtsseitigen Grenzwert bzw. linksseitigen Grenzwert von f für x gegen a. Peter Becker (H-BRS) Analysis Sommersemester / 543

29 Fortsetzung Definition. (iii) Nur für d = 1: Gilt für jede Folge (x n ) in D lim x n = ± = lim f (x n) = b, n n dann schreiben wir lim f (x) = b, x ( bzw. ) lim f (x) = b. x und bezeichnen dies als den Grenzwert von f für x gegen bzw.. Peter Becker (H-BRS) Analysis Sommersemester / 543

30 Signum-Funktion 1 für x > 0 sgn(x) := 0 für x = 0 1 für x < 0 Peter Becker (H-BRS) Analysis Sommersemester / 543

31 Beispiele für Funktionsgrenzwerte Beispiel 4.14 Funktion linksseitiger G. rechtsseitiger G. Grenzwert sgn(x) 1 x 1 x lim sgn(x) = 1 x 0 lim x 0 lim x 0 1 x = 1 x = lim sgn(x) = 1 x 0 lim 1 x 0 x = lim x 0 1 x = existiert nicht existiert nicht lim x 0 1 x = Peter Becker (H-BRS) Analysis Sommersemester / 543

32 Lemma zu Grenzwerten Lemma 4.15 Die folgenden Aussagen sind äquivalent: (i) lim f (x) = a. x x0 (ii) lim f (x) = lim f (x) = a. x x0 x x0 Der Grenzwert von f für x gegen x 0 existiert also genau dann, wenn links- und rechtsseitiger Grenzwert existieren und diese Grenzwerte identisch sind. Peter Becker (H-BRS) Analysis Sommersemester / 543

33 Stetige Fortsetzung Definition 4.16 Es seien d N, D R d, x 0 / D ein Berührungspunkt von D und f : D R eine stetige Funktion. Wir sagen f ist stetig fortsetzbar in x 0, wenn es ein b R gibt mit Die Funktion f : D {x 0 } R mit lim f (x) = b. x x 0 f (x) = { f (x) für x D b für x = x 0 heißt stetige Fortsetzung von f in x 0. Peter Becker (H-BRS) Analysis Sommersemester / 543

34 Beispiel einer stetigen Fortsetzung Beispiel 4.17 Es gilt Beweis: Wegen ist exp(h) 1 h exp(h) 1 lim = 1. h 0 h exp(h) = k=0 h k k! = h 1 (exp(h) 1) = h 1 ( k=1 ) h k = k! k=1 h k 1. k! Peter Becker (H-BRS) Analysis Sommersemester / 543

35 Fortsetzung Beweis. Daraus folgt exp(h) 1 h 1 = k=2 k=0 h h k 1 k! h k+1 (k + 2)! = h h k (k + 2)! k=0 h k k! k=0 = h exp( h ). Da Absolutbetrag und Exponentialfunktion stetige Funktionen sind, folgt die Behauptung. Peter Becker (H-BRS) Analysis Sommersemester / 543

36 Folgerung 4.18 Stetigkeit Die Funktion f : R \ {0} R mit f (x) = exp(x) 1 x ist in 0 stetig fortsetzbar. f (x) exp(x) exp(x) 1 x x Peter Becker (H-BRS) Analysis Sommersemester / 543

Lösungen zu Aufgabenblatt 7P

Lösungen zu Aufgabenblatt 7P Analysis Prof. Dr. Peter Becker Fachbereich Informatik Sommersemester 205 9. Mai 205 Lösungen zu Aufgabenblatt 7P Aufgabe (Stetigkeit) (a) Für welche a, b R sind die folgenden Funktionen stetig in x 0

Mehr

Kapitel III. Stetige Funktionen. 14 Stetigkeit und Rechenregeln für stetige Funktionen. 15 Hauptsätze über stetige Funktionen

Kapitel III. Stetige Funktionen. 14 Stetigkeit und Rechenregeln für stetige Funktionen. 15 Hauptsätze über stetige Funktionen Kapitel III Stetige Funktionen 14 Stetigkeit und Rechenregeln für stetige Funktionen 15 Hauptsätze über stetige Funktionen 16 Konvergenz von Funktionen 17 Logarithmus und allgemeine Potenz C 1 14 Stetigkeit

Mehr

ε δ Definition der Stetigkeit.

ε δ Definition der Stetigkeit. ε δ Definition der Stetigkeit. Beweis a) b): Annahme: ε > 0 : δ > 0 : x δ D : x δ x 0 < δ f (x δ f (x 0 ) ε Die Wahl δ = 1 n (n N) generiert eine Folge (x n) n N, x n D mit x n x 0 < 1 n f (x n ) f (x

Mehr

Stetigkeit. Definitionen. Beispiele

Stetigkeit. Definitionen. Beispiele Stetigkeit Definitionen Stetigkeit Sei f : D mit D eine Funktion. f heißt stetig in a D, falls für jede Folge x n in D (d.h. x n D für alle n ) mit lim x n a gilt: lim f x n f a. Die Funktion f : D heißt

Mehr

Thema 4 Limiten und Stetigkeit von Funktionen

Thema 4 Limiten und Stetigkeit von Funktionen Thema 4 Limiten und Stetigkeit von Funktionen Wir betrachten jetzt Funktionen zwischen geeigneten Punktmengen. Dazu wiederholen wir einige grundlegende Begriffe und Schreibweisen aus der Mengentheorie.

Mehr

TECHNISCHE UNIVERSITÄT MÜNCHEN

TECHNISCHE UNIVERSITÄT MÜNCHEN TECHNISCHE UNIVERSITÄT MÜNCHEN Zentrum Mathematik PROF. DR.DR. JÜRGEN RICHTER-GEBERT, VANESSA KRUMMECK, MICHAEL PRÄHOFER Aufgabe 45. Polynome sind stets stetig. Höhere Mathematik für Informatiker II (Sommersemester

Mehr

Lösungshinweise zu den Hausaufgaben:

Lösungshinweise zu den Hausaufgaben: A. Kirchhoff, T. Pfrommer, M. Kutter, Dr. I. Rybak. Gruppenübung zur Vorlesung Höhere Mathematik Sommersemester Prof. Dr. M. Stroppel Prof. Dr. A. Sändig Lösungshinweise zu den Hausaufgaben: Aufgabe H.

Mehr

Mathematik I Herbstsemester 2014

Mathematik I Herbstsemester 2014 Mathematik I Herbstsemester 2014 www.math.ethz.ch/education/bachelor/lectures/hs2014/other/mathematik1 BIOL Prof. Dr. Erich Walter Farkas http://www.math.ethz.ch/ farkas 1 / 32 1 Stetigkeit Grenzwert einer

Mehr

Funktionsgrenzwerte, Stetigkeit

Funktionsgrenzwerte, Stetigkeit Funktionsgrenzwerte, Stetigkeit Häufig tauchen in der Mathematik Ausdrücke der Form lim f(x) auf. x x0 Derartigen Ausdrücken wollen wir jetzt eine präzise Bedeutung zuweisen. Definition. b = lim f(x) wenn

Mehr

Definition 3.1. Sei A X. Unter einer offenen Überdeckung von A versteht man eine Familie (U i ) i I offener Mengen U i X mit U i

Definition 3.1. Sei A X. Unter einer offenen Überdeckung von A versteht man eine Familie (U i ) i I offener Mengen U i X mit U i 3 Kompaktheit In der Analysis I zeigt man, dass stetige Funktionen f : [a, b] R auf abgeschlossenen, beschränkten Intervallen [a, b] gleichmäßig stetig und beschränkt sind und dass sie ihr Supremum und

Mehr

Stetige Funktionen, Binomischer Lehrsatz

Stetige Funktionen, Binomischer Lehrsatz Vorlesung 13 Stetige Funktionen, Binomischer Lehrsatz 13.1 Funktionenfolgen Wir verbinden nun den Grenzwertbegriff mit dem Funktionsbegriff. Es seien (a n ) n N eine reelle Folge und f : R R eine Funktion.

Mehr

n 1, n N \ {1}, 0 falls x = 0,

n 1, n N \ {1}, 0 falls x = 0, IV.1. Stetige Funktionen 77 IV. Stetigkeit IV.1. Stetige Funktionen Stetige Funktionen R R sind vielen sicher schon aus der Schule bekannt. Dort erwirbt man sich die naive Vorstellung, dass eine stetige

Mehr

17 Logarithmus und allgemeine Potenz

17 Logarithmus und allgemeine Potenz 7 Logarithmus und allgemeine Potenz 7. Der natürliche Logarithmus 7.3 Die allgemeine Potenz 7.4 Die Exponentialfunktion zur Basis a 7.5 Die Potenzfunktion zum Exponenten b 7.6 Die Logarithmusfunktion zur

Mehr

Taylorentwicklung von Funktionen einer Veränderlichen

Taylorentwicklung von Funktionen einer Veränderlichen Taylorentwicklung von Funktionen einer Veränderlichen 17. Januar 2013 KAPITEL 1. MATHEMATISCHE GRUNDLAGEN 1 Kapitel 1 Mathematische Grundlagen 1.1 Stetigkeit, Differenzierbarkeit und C n -Funktionen Der

Mehr

Aufgaben und Lösungen Ausarbeitung der Übungsstunde zur Vorlesung Analysis I

Aufgaben und Lösungen Ausarbeitung der Übungsstunde zur Vorlesung Analysis I Aufgaben und Lösungen Ausarbeitung der Übungsstunde zur Vorlesung Analysis I Wintersemester 2008/2009 Übung 11 Einleitung Es wird eine 15-minütige Mikroklausur geschrieben. i) Sei D R oderd C. Wann heißt

Mehr

Höhere Mathematik für Physiker II

Höhere Mathematik für Physiker II Universität Heidelberg Sommersemester 2013 Wiederholungsblatt Übungen zur Vorlesung Höhere Mathematik für Physiker II Prof Dr Anna Marciniak-Czochra Dipl Math Alexandra Köthe Fragen Machen Sie sich bei

Mehr

Analysis I - Stetige Funktionen

Analysis I - Stetige Funktionen Kompaktheit und January 13, 2009 Kompaktheit und Funktionengrenzwert Definition Seien X, d X ) und Y, d Y ) metrische Räume. Desweiteren seien E eine Teilmenge von X, f : E Y eine Funktion und p ein Häufungspunkt

Mehr

Wir beginnen mit der Definition eines metrischen Raumes, der in diesem Kapitel von zentraler Bedeutung ist. x, y, z X (Dreiecksungleichung).

Wir beginnen mit der Definition eines metrischen Raumes, der in diesem Kapitel von zentraler Bedeutung ist. x, y, z X (Dreiecksungleichung). Kapitel 4 Metrische Räume und Stetigkeit 4.1 Metrische und normierte Räume 4.2 Folgen in metrischen Räumen 4.3 Offene und abgeschlossene Mengen 4.4 Stetige Funktionen 4.5 Grenzwerte von Funktionen 4.6

Mehr

Stetige Funktionen. Kapitel Grenzwerte von Funktionen

Stetige Funktionen. Kapitel Grenzwerte von Funktionen Kapitel 5 Stetige Funktionen 5.1 Grenzwerte von Funktionen In diesem Abschnitt soll der Grenzwertbegriff auf Funktionen erweitert werden. Im Unterschied zu den Gliedern einer Folge sind die Funktionswerte

Mehr

4.1 Grundlegende Konstruktionen Stetigkeit von Funktionen Eigenschaften stetiger Funktionen... 92

4.1 Grundlegende Konstruktionen Stetigkeit von Funktionen Eigenschaften stetiger Funktionen... 92 Kapitel 4 Funktionen und Stetigkeit In diesem Kapitel beginnen wir Funktionen f : Ê Ê systematisch zu untersuchen. Dazu bauen wir auf den Begriff des metrischen Raumes auf und erhalten offene und abgeschlossene

Mehr

1. Aufgabe [2 Punkte] Seien X, Y zwei nicht-leere Mengen und A(x, y) eine Aussageform. Betrachten Sie die folgenden Aussagen:

1. Aufgabe [2 Punkte] Seien X, Y zwei nicht-leere Mengen und A(x, y) eine Aussageform. Betrachten Sie die folgenden Aussagen: Klausur zur Analysis I svorschläge Universität Regensburg, Wintersemester 013/14 Prof. Dr. Bernd Ammann / Dr. Mihaela Pilca 0.0.014, Bearbeitungszeit: 3 Stunden 1. Aufgabe [ Punte] Seien X, Y zwei nicht-leere

Mehr

11 Logarithmus und allgemeine Potenzen

11 Logarithmus und allgemeine Potenzen Logarithmus und allgemeine Potenzen Bevor wir uns mit den Eigenschaften von Umkehrfunktionen, und insbesondere mit der Umkehrfunktion der Eponentialfunktion ep : R R + beschäftigen, erinnern wir an den

Mehr

Skript zur Analysis 1. Kapitel 3 Stetigkeit / Grenzwerte von Funktionen

Skript zur Analysis 1. Kapitel 3 Stetigkeit / Grenzwerte von Funktionen Skript zur Analysis 1 Kapitel 3 Stetigkeit / Grenzwerte von Funktionen von Prof. Dr. J. Cleven Fachhochschule Dortmund Fachbereich Informatik Oktober 2003 2 Inhaltsverzeichnis 3 Stetigkeit und Grenzwerte

Mehr

18 Höhere Ableitungen und Taylorformel

18 Höhere Ableitungen und Taylorformel 8 HÖHERE ABLEITUNGEN UND TAYLORFORMEL 98 8 Höhere Ableitungen und Taylorformel Definition. Sei f : D R eine Funktion, a D. Falls f in einer Umgebung von a (geschnitten mit D) differenzierbar und f in a

Mehr

Stetige Funktionen. Definition. Seien (X, d) und (Y, ϱ) metrische Räume und f : X Y eine Abbildung. D(f) X sei der Definitionsbereich von f.

Stetige Funktionen. Definition. Seien (X, d) und (Y, ϱ) metrische Räume und f : X Y eine Abbildung. D(f) X sei der Definitionsbereich von f. Stetige Funktionen Abbildungen f : X Y, wobei X und Y strukturierte Mengen sind (wie z.b. Vektorräume oder metrische Räume), spielen eine zentrale Rolle in der Mathematik. In der Analysis sind Abbildungen

Mehr

Gleichmäßige Konvergenz und Funktionenräume

Gleichmäßige Konvergenz und Funktionenräume Gleichmäßige Konvergenz und Funktionenräume Isabella Lukasewitz und Andreas Brack 07.06.2010 Vortrag zum Proseminar zur Analysis Konvergenz und Funktionenräume INHALTSVERZEICHNIS Bereits in den Vorlesungen

Mehr

Der Abschluss D ist die Menge, die durch Hinzunahme der Intervallränder entsteht, in den obigen Beispielen also

Der Abschluss D ist die Menge, die durch Hinzunahme der Intervallränder entsteht, in den obigen Beispielen also Festlegung Definitionsbereich 11.1 Festlegung Definitionsbereich Festlegung: Wir betrachten Funktionen f : D Ñ R, deren Definitionsbereich eine endliche Vereinigung von Intervallen ist, also z.b. D ra,

Mehr

1 Reihen von Zahlen. Inhalt:

1 Reihen von Zahlen. Inhalt: 5 Kapitel 3 Reihen Reihen von Zahlen Inhalt: Konvergenz und Divergenz von Reihen reeller oder komplexer Zahlen, geometrische Reihe, harmonische Reihe, alternierende Reihen. Cauchy-Kriterium, absolute Konvergenz,

Mehr

Konvergenz im quadratischen Mittel - Hilberträume

Konvergenz im quadratischen Mittel - Hilberträume CONTENTS CONTENTS Konvergenz im quadratischen Mittel - Hilberträume Contents 1 Ziel 2 1.1 Satz........................................ 2 2 Endlich dimensionale Vektorräume 2 2.1 Defintion: Eigenschaften

Mehr

Stetigkeit von Funktionen

Stetigkeit von Funktionen Stetigkeit von Funktionen Definition. Es sei D ein Intervall oder D = R, x D, und f : D R eine Funktion. Wir sagen f ist stetig wenn für alle Folgen (x n ) n in D mit Grenzwert x auch die Folge der Funktionswerte

Mehr

Die komplexe Exponentialfunktion und die Winkelfunktionen

Die komplexe Exponentialfunktion und die Winkelfunktionen Die komplexe Exponentialfunktion und die Winkelfunktionen In dieser Zusammenfassung werden die für uns wichtigsten Eigenschaften der komplexen und reellen Exponentialfunktion sowie der Winkelfunktionen

Mehr

6 Reelle und komplexe Zahlenfolgen

6 Reelle und komplexe Zahlenfolgen $Id: folgen.tex,v.7 200//29 :58:57 hk Exp hk $ 6 Reelle und komplexe Zahlenfolgen 6. Folgenkonvergenz In der letzten Sitzung hatten wir den Begriff der Konvergenz einer reellen oder komplexen Folge gegen

Mehr

von und deren Werte in liegen, dabei ist wie bisher immer entweder oder. Verallgemeinerungen, etwa auf Abbildungen

von und deren Werte in liegen, dabei ist wie bisher immer entweder oder. Verallgemeinerungen, etwa auf Abbildungen III Stetigkeit, Grenzwerte bei Funktionen Natura non facit saltus (Die Natur macht keine Sprünge), dieser Anspruch von Raoul Fournier (1627) galt lange bei der mathematischen Behandlung von Naturvorgängen

Mehr

Stetigkeit. Im Bildungsplan bis 2004 verpflichtend, jetzt nicht mehr. - Soll Stetigkeit in der Schule behandelt werden? Warum?

Stetigkeit. Im Bildungsplan bis 2004 verpflichtend, jetzt nicht mehr. - Soll Stetigkeit in der Schule behandelt werden? Warum? 1 Nr.4-12.05.2016 Stetigkeit Im Bildungsplan bis 2004 verpflichtend, jetzt nicht mehr. - Soll Stetigkeit in der Schule behandelt werden? Warum? 1. Das ist ein ganz einfach zu verstehender Begriff, der

Mehr

IV. Stetige Funktionen. Grenzwerte von Funktionen

IV. Stetige Funktionen. Grenzwerte von Funktionen IV. Stetige Funktionen. Grenzwerte von Funktionen Definition. Seien X und Y metrische Räume und E X sowie f : X Y eine Abbildung und p ein Häufungspunkt von E. Wir schreiben lim f(x) = q, x p falls es

Mehr

2. Stetigkeit und Differenzierbarkeit

2. Stetigkeit und Differenzierbarkeit 2. Stetigkeit Differenzierbarkeit 9 2. Stetigkeit Differenzierbarkeit Wir wollen uns nun komplexen Funktionen zuwenden dabei zunächst die ersten in der Analysis betrachteten Eigenschaften untersuchen,

Mehr

x k = s k=1 y k = y konvergent. Dann folgt (cx k ) = cx für c K. Partialsummenfolge konvergiert

x k = s k=1 y k = y konvergent. Dann folgt (cx k ) = cx für c K. Partialsummenfolge konvergiert 4 Reihen Im Folgenden sei K R oder K C. 4. Definition. Es sei (x k ) Folge in K. Wir schreiben x k s und sagen, die Reihe x k konvergiere, falls die sogenannte Partialsummen-Folge s n x k n, 2,... in K

Mehr

10. Grenzwerte von Funktionen, Stetigkeit, Differenzierbarkeit. Der bisher intuitiv verwendete Grenzwertbegriff soll im folgenden präzisiert werden.

10. Grenzwerte von Funktionen, Stetigkeit, Differenzierbarkeit. Der bisher intuitiv verwendete Grenzwertbegriff soll im folgenden präzisiert werden. 49. Grenzwerte von Funktionen, Stetigkeit, Differenzierbarkeit a Grenzwerte von Funktionen Der bisher intuitiv verwendete Grenzwertbegriff soll im folgenden präzisiert werden. Einführende Beispiele: Untersuche

Mehr

15 Hauptsätze über stetige Funktionen

15 Hauptsätze über stetige Funktionen 15 Hauptsätze über stetige Funktionen 15.1 Extremalsatz von Weierstraß 15.2 Zwischenwertsatz für stetige Funktionen 15.3 Nullstellensatz von Bolzano 15.5 Stetige Funktionen sind intervalltreu 15.6 Umkehrfunktionen

Mehr

Aufgaben zur Analysis I aus dem Wiederholungskurs

Aufgaben zur Analysis I aus dem Wiederholungskurs Prof. Dr. H. Garcke, Dr. H. Farshbaf-Shaker, D. Depner WS 8/9 Hilfskräfte: A. Weiß, W. Thumann 6.3.29 NWF I - Mathematik Universität Regensburg Aufgaben zur Analysis I aus dem Wiederholungskurs Die folgenden

Mehr

Ferienkurs Analysis 1 - Wintersemester 2014/15. 1 Aussage, Mengen, Induktion, Quantoren

Ferienkurs Analysis 1 - Wintersemester 2014/15. 1 Aussage, Mengen, Induktion, Quantoren Ferienkurs Analysis 1 - Wintersemester 2014/15 Können Sie die folgenden Fragen beantworten? Sie sollten es auf jeden Fall versuchen. Dieser Fragenkatalog orientiert sich an den Themen der Vorlesung Analysis

Mehr

$Id: stetig.tex,v /06/26 15:40:18 hk Exp $

$Id: stetig.tex,v /06/26 15:40:18 hk Exp $ $Id: stetig.tex,v 1.11 2012/06/26 15:40:18 hk Exp $ 9 Stetigkeit 9.1 Eigenschaften stetiger Funktionen Am Ende der letzten Sitzung hatten wir eine der Grundeigenschaften stetiger Funktionen nachgewiesen,

Mehr

Musterlösung zu den Übungen zur Vorlesung Mathematik für Physiker II. x 2

Musterlösung zu den Übungen zur Vorlesung Mathematik für Physiker II. x 2 Musterlösung zu den Übungen zur Vorlesung Mathematik für Physiker II Wiederholungsblatt: Analysis Sommersemester 2011 W. Werner, F. Springer erstellt von: Max Brinkmann Aufgabe 1: Untersuchen Sie, ob die

Mehr

Kapitel 6 Folgen und Stetigkeit

Kapitel 6 Folgen und Stetigkeit Kapitel 6 Folgen und Stetigkeit Mathematischer Vorkurs TU Dortmund Seite 76 / 226 Definition 6. (Zahlenfolgen) Eine Zahlenfolge (oder kurz: Folge) ist eine Funktion f : 0!. Statt f(n) schreiben wir x n

Mehr

Analysis II (FS 2015): ZUSAMMENHÄNGENDE METRISCHE RÄUME

Analysis II (FS 2015): ZUSAMMENHÄNGENDE METRISCHE RÄUME Analysis II (FS 2015): ZUSAMMENHÄNGENDE METRISCHE RÄUME Dietmar A. Salamon ETH-Zürich 23. Februar 2015 1 Topologische Grundbegriffe Sei (X, d) ein metrischer Raum, d.h. X ist eine Menge und d : X X R ist

Mehr

Beispiel. Gegeben sei die Folge (a n ) n N mit. a n := n 2 + 5n + 1 n. Es gilt. (n 2 + 5n + 1) n 2 = n2 + 5n + 1 n) n2 + 5n n, woraus folgt

Beispiel. Gegeben sei die Folge (a n ) n N mit. a n := n 2 + 5n + 1 n. Es gilt. (n 2 + 5n + 1) n 2 = n2 + 5n + 1 n) n2 + 5n n, woraus folgt Beispiel. Gegeben sei die Folge (a n ) n N mit a n := n 2 + 5n + 1 n Es gilt ( ( ) (n 2 + 5n + 1) n 2 = n2 + 5n + 1 n) n2 + 5n + 1 + n, woraus folgt a n = (n2 + 5n + 1) n 2 n2 + 5n + 1 + n = 5n + 1 n2

Mehr

Kapitel 5. Stetige Funktionen 5.1. Stetigkeit

Kapitel 5. Stetige Funktionen 5.1. Stetigkeit Kapitel 5. Stetige Funktionen 5.1. Stetigkeit Reelle Zahlen sind ideale Objekte, die es uns ermöglichen, eine transparente und leistungsfähige Theorie aufzubauen. Ein Computer kann jedoch nur mit Approximationen

Mehr

Folgen, Reihen, Grenzwerte u. Stetigkeit

Folgen, Reihen, Grenzwerte u. Stetigkeit Folgen, Reihen, Grenzwerte u. Stetigkeit Josef F. Bürgler Abt. Informatik HTA Luzern, FH Zentralschweiz HTA.MA+INF Josef F. Bürgler (HTA Luzern) Einf. Infinitesimalrechnung HTA.MA+INF 1 / 33 Inhalt 1 Folgen

Mehr

6 Reelle und komplexe Zahlenfolgen

6 Reelle und komplexe Zahlenfolgen Mathematik für Physiker I, WS 200/20 Freitag 0.2 $Id: folgen.tex,v. 200/2/06 :2:5 hk Exp $ $Id: reihen.tex,v. 200/2/0 4:4:40 hk Exp hk $ 6 Reelle und komplexe Zahlenfolgen 6. Cauchyfolgen Wir kommen nun

Mehr

Topologische Räume und stetige Abbildungen Teil 2

Topologische Räume und stetige Abbildungen Teil 2 TU Dortmund Mathematik Fakultät Proseminar zur Linearen Algebra Ausarbeitung zum Thema Topologische Räume und stetige Abbildungen Teil 2 Anna Kwasniok Dozent: Prof. Dr. L. Schwachhöfer Vorstellung des

Mehr

Kapitel 7 STETIGKEIT

Kapitel 7 STETIGKEIT Kapitel 7 STETIGKEIT Fassung vom 8. Juni 2002 Claude Portenier ANALYSIS 29 7. Der Begri Stetigkeit 7. Der Begri Stetigkeit DEFINITION I.a. sagt man, daßeine Abbildung von einer Menge X in K n, wobei K

Mehr

Elementare Beweismethoden

Elementare Beweismethoden Elementare Beweismethoden Christian Hensel 404015 Inhaltsverzeichnis Vortrag zum Thema Elementare Beweismethoden im Rahmen des Proseminars Mathematisches Problemlösen 1 Einführung und wichtige Begriffe

Mehr

Analysis I - Einige Lösungen und Ergänzungen

Analysis I - Einige Lösungen und Ergänzungen Christian-Albrechts-Universität zu Kiel Mathematisch-Naturwissenschaftliche Fakultät Mathematisches Seminar Analysis I - Einige Lösungen und Ergänzungen von Dipl.-Math. Joscha Prochno Dipl.-Math. Dennis

Mehr

Zusammenfassung zur Konvergenz von Folgen

Zusammenfassung zur Konvergenz von Folgen Zusammenfassung zur Konvergenz von Folgen. Definition des Konvergenzbegriffs Eine Folge reeller Zahlen a n n heißt konvergent gegen a in Zeichen a n = a, falls gilt > 0 n 0 n n 0 : an a < Hinweise: Bei

Mehr

Mathematik für Naturwissenschaftler I WS 2009/2010

Mathematik für Naturwissenschaftler I WS 2009/2010 Mathematik für Naturwissenschaftler I WS 2009/2010 Lektion 12 1. Dezember 2009 Kapitel 3. Differenzialrechnung einer Variablen (Fortsetzung) Satz 19. Es seien M und N zwei nichtleere Teilmengen von R,

Mehr

Analysis I. 4. Beispielklausur mit Lösungen

Analysis I. 4. Beispielklausur mit Lösungen Fachbereich Mathematik/Informatik Prof. Dr. H. Brenner Analysis I 4. Beispielklausur mit en Aufgabe 1. Definiere die folgenden (kursiv gedruckten) Begriffe. (1) Eine bijektive Abbildung f: M N. () Ein

Mehr

Vorlesung. Funktionen/Abbildungen 1

Vorlesung. Funktionen/Abbildungen 1 Vorlesung Funktionen/Abbildungen 1 1 Grundlagen Hinweis: In dieser Vorlesung werden Funktionen und Abbildungen synonym verwendet. In der Schule wird eine Funktion häufig als eindeutige Zuordnung definiert.

Mehr

Folgen und Reihen von Funktionen

Folgen und Reihen von Funktionen Folgen und Reihen von Funktionen Sehr häufig treten in der Mathematik Folgen bzw. Reihen von Funktionen auf. Ist etwa (f n ) eine Folge von Funktionen, dann können wir uns für ein festes x fragen, ob die

Mehr

3 Reihen. 3.1 Konvergenz und Divergenz. Die Eindeutigkeit nach Satz 13 ergibt schließlich (5). (6) folgt aus (2) und (1) wegen. 1 a +log ba.

3 Reihen. 3.1 Konvergenz und Divergenz. Die Eindeutigkeit nach Satz 13 ergibt schließlich (5). (6) folgt aus (2) und (1) wegen. 1 a +log ba. Die Eindeutigkeit nach Satz 3 ergibt schließlich (5). (6) folgt aus (2) und () wegen Aussage (7) ergibt sich aus () und (6). 0 = log b = log b ( a a) = log b a +log ba. 3 Reihen 3. Konvergenz und Divergenz

Mehr

Stetigkeit von Funktionen

Stetigkeit von Funktionen 9 Stetigkeit von Funktionen Definition 9.1 : Sei D R oder C und f : D R, C. f stetig in a D : ε > 0 δ > 0 mit f(z) f(a) < ε für alle z D, z a < δ. f stetig auf D : f stetig in jedem Punkt a D. f(a) ε a

Mehr

KAPITEL 2. Folgen und Reihen

KAPITEL 2. Folgen und Reihen KAPITEL 2 Folgen und Reihen 1. Konvergenz und Divergenz Definition 2.1 (Folgen). Eine Abbildung a : N R (bzw. a : N 0 R) nennt man Folge. Statt a : N R schreibt man meist (a n ) n N und a n statt a(n).

Mehr

lim Der Zwischenwertsatz besagt folgendes:

lim Der Zwischenwertsatz besagt folgendes: 2.3. Grenzwerte von Funktionen und Stetigkeit 35 Wir stellen nun die wichtigsten Sätze über stetige Funktionen auf abgeschlossenen Intervallen zusammen. Wenn man sagt, eine Funktion f:[a,b] R, definiert

Mehr

7 KONVERGENTE FOLGEN 35. inf M = Infimum von M. bezeichnet haben. Definition. Sei (a n ) n N eine beschränkte Folge in R. Dann heißt.

7 KONVERGENTE FOLGEN 35. inf M = Infimum von M. bezeichnet haben. Definition. Sei (a n ) n N eine beschränkte Folge in R. Dann heißt. 7 KONVERGENTE FOLGEN 35 und die größe untere Schranke mit bezeichnet haben. inf M = Infimum von M Definition. Sei (a n ) n N eine beschränkte Folge in R. Dann heißt der Limes superior der Folge, und lim

Mehr

Funktionen. Mathematik-Repetitorium

Funktionen. Mathematik-Repetitorium Funktionen 4.1 Funktionen einer reellen Veränderlichen 4.2 Eigenschaften von Funktionen 4.3 Die elementaren Funktionen 4.4 Grenzwerte von Funktionen, Stetigkeit Funktionen 1 4. Funktionen Funktionen 2

Mehr

x, y 2 f(x)g(x) dµ(x). Es ist leicht nachzuprüfen, dass die x 2 setzen. Dann liefert (5.1) n=1 x ny n bzw. f, g = Ω

x, y 2 f(x)g(x) dµ(x). Es ist leicht nachzuprüfen, dass die x 2 setzen. Dann liefert (5.1) n=1 x ny n bzw. f, g = Ω 5. Hilberträume Definition 5.1. Sei H ein komplexer Vektorraum. Eine Abbildung, : H H C heißt Skalarprodukt (oder inneres Produkt) auf H, wenn für alle x, y, z H, α C 1) x, x 0 und x, x = 0 x = 0; ) x,

Mehr

Stetigkeit. Klaus-R. Loeffler. 1 Vorstellung, Definition und Folgerungen Stetigkeitscharakterisierung durch Folgen... 3

Stetigkeit. Klaus-R. Loeffler. 1 Vorstellung, Definition und Folgerungen Stetigkeitscharakterisierung durch Folgen... 3 Stetigkeit Klaus-R. Loeffler Inhaltsverzeichnis 1 Vorstellung, Definition und Folgerungen 1.1 Stetigkeitscharakterisierung durch Folgen......................... 3 Regeln zur Stetigkeit an einer Stelle

Mehr

SS 2016 Höhere Mathematik für s Studium der Physik 21. Juli Probeklausur. Die Antworten zu den jeweiligen Fragen sind in blauer Farbe notiert.

SS 2016 Höhere Mathematik für s Studium der Physik 21. Juli Probeklausur. Die Antworten zu den jeweiligen Fragen sind in blauer Farbe notiert. SS 6 Höhere Mathematik für s Studium der Physik. Juli 6 Probeklausur Die Antworten zu den jeweiligen Fragen sind in blauer Farbe notiert. Fragen Sei (X, d) ein metrischer Raum. Beantworten Sie die nachfolgenden

Mehr

MAA = MAB + B AA = B CA + CAA BA A Nun sehen wir mit Proposition 10.7 aus dem Skript, dass A M AB gelten muss.

MAA = MAB + B AA = B CA + CAA BA A Nun sehen wir mit Proposition 10.7 aus dem Skript, dass A M AB gelten muss. 1. Konvexität in der absoluten Ebene In einem Dreieck in der Euklidischen Ebene hat die Strecke zwischen zwei Seitenmittelpunkten die halbe Länge der dritten Seite. In der absoluten Ebene hat man eine

Mehr

Die alternierende harmonische Reihe.

Die alternierende harmonische Reihe. Die alternierende harmonische Reihe Beispiel: Die alternierende harmonische Reihe k k + = 2 + 3 4 + konvergiert nach dem Leibnizschen Konvergenzkriterium, und es gilt k k + = ln2 = 06934 für den Grenzwert

Mehr

Leitfaden a tx t

Leitfaden a tx t Leitfaden -0.7. Potenz-Reihen. Definition: Es sei (a 0, a, a 2,...) eine Folge reeller Zahlen (wir beginnen hier mit dem Index t 0). Ist x R, so kann man die Folge (a 0, a x, a 2 x 2, a 3 x 3,...) und

Mehr

Die komplexen Zahlen und Skalarprodukte Kurze Wiederholung des Körpers der komplexen Zahlen C.

Die komplexen Zahlen und Skalarprodukte Kurze Wiederholung des Körpers der komplexen Zahlen C. Die omplexen Zahlen und Salarprodute Kurze Wiederholung des Körpers der omplexen Zahlen C. Erinnerung an die Definition von exp, sin, cos als Potenzreihen C C Herleitung der Euler Formel Definition eines

Mehr

Repetitorium Mathe 1

Repetitorium Mathe 1 Übungsaufgaben Skript Repetitorium Mathe 1 WS 2014/15 25./26.01. und 31.01./01.02.2015 Inhaltsverzeichnis 1 Bruchrechnung 2 2 Zahlsysteme 2 3 Arithmetisches und geometrisches Mittel 2 4 Wachstum 2 5 Lineare

Mehr

Reihen. Kapitel 3. Reihen, Potenzreihen und elementare Funktionen. Peter Becker (H-BRS) Analysis Sommersemester / 543

Reihen. Kapitel 3. Reihen, Potenzreihen und elementare Funktionen. Peter Becker (H-BRS) Analysis Sommersemester / 543 Kapitel 3 Reihen, Potenzreihen und elementare Funktionen Peter Becker (H-BRS) Analysis Sommersemester 2016 160 / 543 Inhalt Inhalt 3 Reihen Absolute Konvergenz Potenzreihen Elementare Funktionen Anwendung:

Mehr

2. Mathematische Grundlagen

2. Mathematische Grundlagen 2. Mathematische Grundlagen Erforderliche mathematische Hilfsmittel: Summen und Produkte Exponential- und Logarithmusfunktionen 21 2.1 Endliche Summen und Produkte Betrachte n reelle Zahlen a 1, a 2,...,

Mehr

11. Übungsblatt zur Mathematik I für Maschinenbau

11. Übungsblatt zur Mathematik I für Maschinenbau Fachbereich Mathematik Prof. Dr. M. Joswig Dr. habil. Sören Kraußhar Dipl.-Math. Katja Kulas. Übungsblatt zur Mathematik I für Maschinenbau Gruppenübung WS 200/ 2.0.-28.0. Aufgabe G (Grenzwertberechnung)

Mehr

13 Stetige Funktionen

13 Stetige Funktionen $Id: stetig.tex,v.4 2009/02/06 3:47:42 hk Exp $ 3 Stetige Funktionen 3.2 Stetige Funktionen In anderen Worten bedeutet die Stetigkeit einer Funktion f : I R also f(x n) = f( x n ) n n für jede in I konvergente

Mehr

2 Stetige Funktionen. 2.1 Grenzwerte von Funktionen. Definition Beispiel

2 Stetige Funktionen. 2.1 Grenzwerte von Funktionen. Definition Beispiel 2 Stetige Funktionen 2. Grenzwerte von Funktionen Definition Sei I R ein Intervall, a I ein innerer Punkt und f eine reellwertige Funktion, die auf I \ {a} (aber eventuell nicht in a) definiert ist. Wir

Mehr

Wirtschaftsmathematik für International Management (BA) und Betriebswirtschaft (BA)

Wirtschaftsmathematik für International Management (BA) und Betriebswirtschaft (BA) Wirtschaftsmathematik für International Management (BA) und Betriebswirtschaft (BA) Wintersemester 2015/16 Stefan Etschberger Hochschule Augsburg Grundlagentest Polynome! Testfrage: Polynome 1 Die Summe

Mehr

Jeweils am Montag um 18:30 treffen sich Studenten in Seminarraum 3 zum gemeinsamen Lernen.

Jeweils am Montag um 18:30 treffen sich Studenten in Seminarraum 3 zum gemeinsamen Lernen. Jeweils am Montag um 18:30 treffen sich Studenten in Seminarraum 3 zum gemeinsamen Lernen. Betrachtungen zu Sprache, Logik und Beweisen Sprache Wir gehen von unserem Alphabet einigen Zusatzsymbolen aus.

Mehr

Folgen und Reihen. Inhaltsverzeichnis. Fragen und Antworten. (bitte nur für den Eigengebrauch verwenden)

Folgen und Reihen. Inhaltsverzeichnis. Fragen und Antworten. (bitte nur für den Eigengebrauch verwenden) Fragen und Antworten Folgen und Reihen (bitte nur für den Eigengebrauch verwenden) Inhaltsverzeichnis 1 Folgen und Reihen 2 1.1 Fragen............................................... 2 1.1.1 Folgen...........................................

Mehr

Kap. 10: Folgen und Reihen. Eine Funktion a : N Ñ R

Kap. 10: Folgen und Reihen. Eine Funktion a : N Ñ R Definition: Zahlenfolge Kap. 10: Folgen und Reihen 10.1 Definition: Zahlenfolge Eine Funktion a : N Ñ R poder Cq heißt reelle (oder komplexe) Zahlenfolge. Man nennt a n apnq das n-te Folgenglied und schreibt

Mehr

Funktionalgleichungen

Funktionalgleichungen Funktionalgleichungen Thomas Peters Thomas Mathe-Seiten www.mathe-seiten.de 10. Mai 2010 Funktionalgleichungen sind Gleichungen, mit denen Funktionen charakterisiert oder bestimmt werden können. In diesem

Mehr

Anwendungen der Differentialrechnung

Anwendungen der Differentialrechnung KAPITEL 5 Anwendungen der Differentialrechnung 5.1 Maxima und Minima einer Funktion......................... 80 5.2 Mittelwertsatz.................................... 82 5.3 Kurvendiskussion..................................

Mehr

2 3 x3 17. x k dx = x k x k+1 k +1. Mit jeder weiteren partiellen Integration reduziert sich der Grad des Faktors x n, induktiv erhalten wir also

2 3 x3 17. x k dx = x k x k+1 k +1. Mit jeder weiteren partiellen Integration reduziert sich der Grad des Faktors x n, induktiv erhalten wir also Universität Konstanz Fachbereich Mathematik und Statistik Repetitorium Analysis 0 Dr DK Huynh Blatt 8 Aufgabe 6 Bestimmen Sie (a) (x + x 7x+)dx (c) (f) x n exp(x)dx (n N fest) sin (x)dx (g) (b) (d) ln(x)dx

Mehr

Kapitel 5 KONVERGENZ

Kapitel 5 KONVERGENZ Kapitel 5 KONVERGENZ Fassung vom 21. April 2002 Claude Portenier ANALYSIS 75 5.1 Metrische Räume 5.1 Metrische Räume DEFINITION 1 Sei X eine Menge. Eine Abbildung d : X X! R + heißt Metrik oder Distanz

Mehr

2. Stetige lineare Funktionale

2. Stetige lineare Funktionale -21-2. Stetige lineare Funktionale Die am Ende von 1 angedeutete Eigenschaft, die ein lineares Funktional T : D(ú) 6 verallgemeinerten Funktion macht, ist die Stetigkeit von T in jedem n 0 0 D(ú). Wenn

Mehr

Konvergenz im quadratischen Mittel und Parsevalsche Gleichung

Konvergenz im quadratischen Mittel und Parsevalsche Gleichung Konvergenz im quadratischen Mittel und Parsevalsche Gleichung Skript zum Vortrag im Proseminar Analysis bei Prof Dr Picard, gehalten von Helena Malinowski In vorhergehenden Vorträgen und dazugehörigen

Mehr

Höhere Mathematik I für die Fachrichtung Informatik. Lösungsvorschläge zum 2. Übungsblatt

Höhere Mathematik I für die Fachrichtung Informatik. Lösungsvorschläge zum 2. Übungsblatt KARLSRUHER INSTITUT FÜR TECHNOLOGIE INSTITUT FÜR ANALYSIS Dr. Christoph Schmoeger Heio Hoffmann WS 2013/14 Höhere Mathemati I für die Fachrichtung Informati Lösungsvorschläge zum 2. Übungsblatt Aufgabe

Mehr

5 Potenzreihenansatz und spezielle Funktionen

5 Potenzreihenansatz und spezielle Funktionen 5 Potenzreihenansatz und spezielle Funktionen In diesem Kapitel betrachten wir eine Methode zur Lösung linearer Differentialgleichungen höherer Ordnung, die sich anwenden läßt, wenn sich alle Koeffizienten

Mehr

Etwas Topologie. Handout zur Vorlesung Semi-Riemannsche Geometrie, SS 2004 Dr. Bernd Ammann

Etwas Topologie. Handout zur Vorlesung Semi-Riemannsche Geometrie, SS 2004 Dr. Bernd Ammann Etwas Topologie Handout zur Vorlesung Semi-Riemannsche Geometrie, SS 2004 Dr. Bernd Ammann Literatur Abraham, Marsden, Foundations of Mechanics, Addison Wesley 1978, Seiten 3 17 Definition. Ein topologischer

Mehr

Taylor-Entwicklung der Exponentialfunktion.

Taylor-Entwicklung der Exponentialfunktion. Taylor-Entwicklung der Exponentialfunktion. Betrachte die Exponentialfunktion f(x) = exp(x). Zunächst gilt: f (x) = d dx exp(x) = exp(x). Mit dem Satz von Taylor gilt um den Entwicklungspunkt x 0 = 0 die

Mehr

Konvergenz, Filter und der Satz von Tychonoff

Konvergenz, Filter und der Satz von Tychonoff Abschnitt 4 Konvergenz, Filter und der Satz von Tychonoff In metrischen Räumen kann man topologische Begriffe wie Stetigkeit, Abschluss, Kompaktheit auch mit Hilfe von Konvergenz von Folgen charakterisieren.

Mehr

Tutorübung 5. Analysis 2 für Lehramt TU Dortmund, Sommersemester 2014

Tutorübung 5. Analysis 2 für Lehramt TU Dortmund, Sommersemester 2014 Tutorübung 5 Analysis 2 für Lehramt TU Dortmund, Sommersemester 24 Aufgabe T Bestimme die Taylorreihen von (a) cos(x) um a. (b) ln(x) um a. (c) um a 2. +x Bestimme in allen Fällen das Taylorpolynom T n,a

Mehr

Inhalt. Vorwort Mittelwertsatz der Integralrechnung... 31

Inhalt. Vorwort Mittelwertsatz der Integralrechnung... 31 Inhalt Vorwort... 5 1 Stammfunktionen... 7 1.1 Erklärung der Stammfunktionen........................................... 7 1.2 Eigenschaften der Stammfunktionen.................................... 10 1.3

Mehr

Humboldt-Universität zu Berlin Institut für Mathematik Prof. A. Griewank Ph.D.; Dr. A. Hoffkamp; Dipl.Math. T.Bosse; Dipl.Math. L. Jansen,T.

Humboldt-Universität zu Berlin Institut für Mathematik Prof. A. Griewank Ph.D.; Dr. A. Hoffkamp; Dipl.Math. T.Bosse; Dipl.Math. L. Jansen,T. Humboldt-Universität zu Berlin Institut für Mathematik Prof. A. Griewank Ph.D.; Dr. A. Hoffkamp; Dipl.Math. T.Bosse; Dipl.Math. L. Jansen,T. Streubel Lösungsalternativen für die Übungsaufgaben zur Vorlesung

Mehr

Regulär variierende Funktionen

Regulär variierende Funktionen KAPITEL 4 Regulär variierende Funktionen Unser nächstes Ziel ist es, die Max-Anziehungsbereiche der Extremwertverteilungen zu beschreiben. Dies wird im nächsten Kapitel geschehen. Wir haben bereits gesehen,

Mehr

Kapitel 7. Exponentialfunktion

Kapitel 7. Exponentialfunktion Kapitel 7. Exponentialfunktion 7.1. Potenzreihen In Kap. 5 haben wir Reihen ν=0 a ν studiert, wo die Glieder feste Zahlen sind. Die Summe solcher Reihen ist wieder eine Zahl, z.b. die Eulersche Zahl e.

Mehr

9 Konvergenz und absolute Konvergenz von Reihen

9 Konvergenz und absolute Konvergenz von Reihen 9 Konvergenz und absolute Konvergenz von Reihen 9.2 Konvergenz von Reihen 9.5 Monotoniekriterium für Reihen 9.6 Konvergenzkriterium von Cauchy für Reihen 9.9 Rechenregeln für konvergente Reihen 9.10 Absolute

Mehr

Surjektive, injektive und bijektive Funktionen.

Surjektive, injektive und bijektive Funktionen. Kapitel 1: Aussagen, Mengen, Funktionen Surjektive, injektive und bijektive Funktionen. Definition. Sei f : M N eine Funktion. Dann heißt f surjektiv, falls die Gleichung f(x) = y für jedes y N mindestens

Mehr

n=1 a n mit reellen Zahlen a n einen

n=1 a n mit reellen Zahlen a n einen 4 Unendliche Reihen 4. Definition und Beispiele Ein altes Problem der Analysis ist es, einer Reihe mit reellen Zahlen einen Wert zuzuordnen. Ein typisches Beispiel ist die unendliche Reihe + +..., die

Mehr